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Abstract: Boosting algorithms were originally developed for machine learning but were later adapted to
estimate statistical models—offering various practical advantages such as automated variable selection
and implicit regularization of effect estimates. The interpretation of the resulting models, however,
remains the same as if they had been fitted by classical methods. Boosting, hence, allows to use an
advanced machine learning scheme to estimate various types of statistical models. This tutorial aims
to highlight how boosting can be used for semi-parametric modelling, what practical implications
follow from the design of the algorithm and what kind of drawbacks data analysts have to expect. We
illustrate the application of boosting in the analysis of a stunting score from children in India and a
high-dimensional dataset of tumour DNA to develop a biomarker for the occurrence of metastases in
breast cancer patients.
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1 Introduction

The annual International Workshop on Statistical Modelling (IWSM), which lays the
foundation for this journal, has some never-changing traditions: welcome reception
on Monday, the social event on Wednesday and of course the conference dinner on
Thursday, which sometimes lasts until the early Friday morning. Another tradition
of the workshop is the short course on Sunday, followed by an informal gathering.
The one in Gottingen in 2014 will for many always be remembered as the night
when Germany won the Football World Cup. But some participants might perhaps
also remember the topic of the short course, it was Boosting for Statistical Modelling
presented by two young Germans.

We are now a few years older, are still working with boosting and want to provide
in this article an assessable and non-technical introduction to the topic, aimed at
scientists that are not yet familiar with this tool.
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Although boosting originally emerged from the field of machine learning (Freund,
1990), over the last few years a lot of methodological research focused on developing
and extending boosting algorithms for statistical modelling (for a recent overview,
see Mayr et al., 2014a,b, and the references therein).

The reason for the success of these statistical boosting approaches is first of all
that they offer various practical advantages for high-dimensional data situations—a
setting data analysts are nowadays often confronted with, for example, in the field
of omics or other big data applications like in ecology. Furthermore, boosting yields
statistical models with data-driven variable selection, implicit penalization (Hepp
et al., 2016) and shrinkage of effect estimates (similar to the least absolute shrinkage
and selection operator LASSO; Tibshirani, 1996). These properties of the algorithm
are controlled by one single parameter: the number of boosting iterations to be carried
out, which reflects the trade-off between bias and variance. The boosting approach
is robust against multicollinearity issues and very flexible when it comes to different
types of effects (Hofner et al., 2014b): the resulting models can include not only linear
and non-linear but also spatial or random effects. A drawback of statistical boosting
is that due to the particular design of the algorithms, there are no estimates for the
standard errors of resulting effects directly available.

From a methodological perspective, statistical boosting is the link between the
areas of computer science and statistical modelling. It bridges the gap between two
rather different points of view on how to gather information from data (Breiman,
2001): on the one hand, there is the classical statistical modelling view that focuses on
structured additive models to describe the outcome in order to find an approximation
of the underlying stochastic data generation process. On the other hand, there is the
machine learning and predictive modelling view that focuses primarily on algorithmic
models to predict the outcome while avoiding structural assumptions—treating the
nature of the underlying process as unknown (cf. Mayr et al., 2017a). As statistical
boosting, in fact, is a machine learning algorithm which is used to estimate classical
statistical models, it inherits characteristics from both worlds. Also the terminology
is partly influenced by machine-learning jargon, hence, we incorporate a Glossary
table at the end of this article, describing often used vocabulary in the literature
on boosting.

In this tutorial article, we want to give a non-technical introduction on (a) how
to apply boosting for statistical modelling, (b) what choices have to be made for the
analysis and (c) in which practical situations it might be helpful and in which not. We
will focus on boosting algorithms that are based on gradient boosting (Biihlmann and
Hothorn, 2007). A second group of algorithms uses a slightly different design (e.g.,
likelihood-based boosting; Tutz and Binder, 2006); however, the overall structure
is the same: many features discussed here hence carry over also to those related
approaches.

We will highlight the abilities of statistical boosting via two exemplary data
analyses: one is a widely known dataset on childhood malnutrition in India,
containing continuous and categorical predictors, as well as a regional effect. The
second one is a high-dimensional microarray dataset for the prediction of breast
cancer with more explanatory variables than observations (p > n). Both datasets are
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publicly available; the underlying R-code to reproduce the analyses presented here is
published via the online supplementary material.

2 Data

2.1 Childhood malnutrition in India

Childhood malnutrition in India is not necessarily a consequence of extreme poverty
but can also be linked to cultural factors with strong regional differences (Arnold
etal., 2009). Following a bulletin of the World Health Organization (WHO), growth
assessments are the best way to define the health and nutritional status of children
(de Onis et al., 1993). Stunted growth is defined as a reduced growth rate compared
to a standard population and is considered as the first consequence of malnutrition
of the mother during pregnancy, or malnutrition of the child during the first months
after birth. Stunted growth is often measured via a Z score, which compares the
anthropometric measures of the child with a reference population. In our case, we
compare the height of children (H;) to the median height in the reference population
divided by the standard deviation of height in the reference population:

_ H; —med(H)
Z="m

This Z score will be denoted as stunting score in the following. Negative values of
the score indicate that the child’s growth is below the expected growth of a child with
normal nutrition. The stunting score will be the outcome (response) variable in our
data example: we analyse the relationship of the mother’s age and body mass index
(BMI) as well as age of the child with stunted growth resulting from malnutrition in
early childhood. Furthermore, we will investigate regional differences by including
the district of India in which the child is growing up. The raw distribution of the
average stunting score per district is depicted in Figure 1.

The variables used here are only a very small subset of the available variables. For
an in-depth analysis based on boosted quantile regression, see Fenske et al. (2011)
and Fenske et al. (2013). The dataset that we use in this analysis is a random subset of
4 000 observations based on the Standard Demographic and Health Survey, 1998-99,
on malnutrition of children in India, which can be downloaded after registration from
http://www.measuredhs.com.

2.2 DNA signature to predict metastases of small node-negative
breast carcinoma

Modern biomedical and epidemiological studies often gather vast amounts of
molecular or genetic, so-called omics, data. The overall aim is, on the one hand, to
identify the most informative variables from these large datasets in order to investigate
their influence on clinical outcomes. On the other hand, these selected variables are
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Figure 1 Geographical distribution of the stunting score; the raw mean per district is depicted, ranging
from dark red (low stunting score) to light yellow (higher scores). Dashed regions represent regions
without data

then also used to construct some kind of prediction rule (i.e., a biomarker) based on
a small subset of omics variables sometimes combined with other clinical variables,
which can later be used to improve the treatment of patients based on their individual
risk.

Statistical boosting algorithms in this context are favourable, because they can
fulfil both tasks simultaneously by selecting and fitting a prediction model at the
same time (cf. Mayr and Schmid, 2014).

In the dataset for this example we have tumour DNA from the invasive ductal
carcinomas (the most common form of breast cancer) without axillary lymph
node involvement (T1T2NO) in 168 patients. The tumour DNA was compared to
non-tumour DNA via comparative genomic hybridization (CGH). During 5 years
after the diagnosis, 111 of these patients developed metastases and 57 did not. The
aim of the analysis is now to develop a prediction rule that discriminates well between
these two groups based on 2 905 DNA features from CGH arrays. The original dataset
is available on GEO (https://www.ncbi.nlm.nih.gov/geo, accession code GSE19159)
and is based on the work of Gravier et al. (2010). A copy of the data is also available
via GitHub (Ramey, 2016).

3 Statistical boosting

Let us consider statistical models for the two examples given earlier. To model
malnutrition of Indian children, that is, the z-transformed stunting score (in the
following denoted as outcome y), we can specify linear effects for the age (x1) and
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BMI (x;) of the mother, and the age (x3) of the child. As the effects on stunting might
be more complex we can also think about flexible, smooth effects. Additionally, we
want to model the spatial variation to capture additional heteroscedasticity, that is,
the effect of the district (x;).

Hence, a model for the conditional expectation could look as follows:

3
E(y; | %)) = Bo+ ) filxi) + filxie), i=1,....m (3.1)

where By is the intercept, f; is a smooth effect and f; is a (smooth) spatial effect. For
the conditional distribution of the stunting score, we assume a Gaussian distribution.

In order to predict if patients suffering from small node-negative breast cancer will
develop metastases based on CGH array data, we can use a linear logistic regression
model (for a binomial distribution):

logit(E(y; | x:)) = logit(P(y; = 1 | x:) = x/ B, (3.2)

where P denotes the conditional probability that y; = 1 given the covariate vector x;.

Regression coefficients are denoted as B, and logit(p) = log 1

Due to the modular nature (see Section 3.6), statistical boosting allows us to fit
both these very different models without changing anything in the structure of the
algorithm. In the stunting model, we are faced with an (Gaussian) additive model
which contains additionally a spatial effect. In the second example, we want to fit
a linear logistic model with much more genetic predictors than observations. In this
high-dimensional setting, statistical boosting will be used not only to estimate the

model but also to select the most influential DNA features (variable selection, see
Section 3.2).

3.1 The general design of the algorithm

First and foremost, statistical boosting can be seen as one of many possible algorithms
to fit a statistical model such as least squares regression or maximum likelihood.
Essentially, the boosting algorithm minimizes a specific loss function (which quantifies
the discrepancy between observed data and the model) in an iterative fashion.

It mimics least squares optimization if we use a quadratic error loss or it mimics
maximum likelihood estimation if we use the negative likelihood as loss function.
However, due to the iterative nature of the algorithm, special strengths and drawbacks
exist which have to be kept in mind. We will discuss these after a bit more formal
introduction of the method.

Next to the loss function to be minimized, the user needs to specify the effect types,
for example, linear or smooth effects, which are used to model the influence on the
outcome. These effect types are specified via so-called base-learners (see Glossary).
We will discuss specifics of base-learners in Section 3.3.
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Boosting now proceeds in an iterative fashion to minimize the loss function (see
Figure 2 for a schematic overview). In every iteration, one computes the negative
gradient of the loss function (e.g., the first derivative of the likelihood) and evaluates
it for the outcome and the model at the current iteration, which can be considered
as some kind of residuals. Next, each of the base-learners is fitted separately to the
negative gradient. Only the best-fitting base-learner, that is, the most influential effect,
is selected for an update of the model. One recomputes the negative gradient (‘the
residuals’) and repeats the procedure by fitting again all base-learners (including the
one we just added) to the updated negative gradient.

There are two main differences to forward stepwise regression, the first is that
we do not use the outcome itself but a transformation of the outcome by using the
negative gradient of the loss function. This can be considered as using problem specific
residuals which are derived from the loss function.

Another difference is that we allow a base-learner to be used multiple times. To
avoid overfitting and to slowly move towards the minimal loss, the estimated effect
of the selected base-learner is multiplied by a constant step-length v (usually v = 0.1),
before being added to the model.

The major tuning parameter is the number of boosting iterations (often called
Mgop). The final model in iteration #14,p is then simply the sum of all selected effects
multiplied by the step-length. Hence, we obtain an additive model, which can be
interpreted in the usual fashion as we will show in our examples later. It can be shown
that this approach minimizes the loss function and the estimated model converges
towards the maximum likelihood (or least squares) estimate if 7250, — 00 (Bithlmann
and Hothorn, 2007).

3.2 Model tuning and variable selection

In order to tune the model via the number of boosting iterations 77y, a process also
often denoted as model selection or hyperparameter optimization, one usually uses
cross-validation techniques such as bootstrap, k-fold cross-validation or subsampling
(Mayr et al., 2012b). Common to all these techniques is that one fits the model on a
random subset of the data and uses the remaining data to evaluate the performance of
the model. We do this by evaluating the loss function of the model for the observations
not used for model fitting (the so-called out-of-bag data) for a sequence of boosting
iterations. An example of predictive risk (see Glossary: risk is just the observed loss)
for the breast cancer application based on 25-fold bootstrap is given in Figure 3.
The underlying idea is that we are not really interested in the best model-fit for the
observed data, but in the best generalization of the underlying structure, which hence
also works well for new observations.

As in each boosting iteration only one single base-learner is updated and added to
the model, and as we can add one base-learner more than once, we have at most m
base-learners selected up to iteration . If we only use a small number of boosting
iterations, we thus select only the most important variables. An example of the
progression of the regression coefficients from the breast cancer example over the
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Figure 2 Graphical representation of the main features of the boosting algorithm. First, the user needs to
specify the loss function to determine the model to be fitted. Other parameters might need specification.
Usually, this is only the number of iterations m,,. The negative gradient of the loss function is computed
and serves as outcome. Now, we fit each of the base-learners separately to the negative gradient: for
example, a linear model (base-learner 1), a linear model for a categorical effect (base-learner 2), a linear
model where the variable has no real influence on the outcome (base-learner 3), or a smooth effects model
(base-learner J). We select the best fitting base-learner and redo the whole process with an updated
negative gradient unless my,, is reached
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Figure 3 Predictive risk for the breast cancer example via 25-fold bootstrap. Grey lines indicate the
performance on out-of-bag observations, for the single models while the black line is the average over all
25 models. The dashed line indicates the minimal risk, that is, the optimal model complexity

first four iterations is given in Figure 4. The number of iterations plays a similar
role as the penalty parameter A in case of Ly regularization (e.g., LASSO), where the
number and size of coefficients increases with decreasing A (see Hepp et al., 2016, for
details).

What is particularly interesting in the context of statistical modelling is that, in
fact, mgop is the only tuning parameter that is optimized. It controls not only the
variable selection properties of the algorithm but also the implicit penalization for
the different types of effects, as will be outlined in the next section.

3.3 Type of effects

So far, we only very briefly sketched base-learners as representatives of the effect type
to be modelled. Each base-learner is a simple regression model relating the predictor
to the outcome. For linear effects, we use linear base-learners, that is, simple linear
regression models. These are always fitted to the negative gradient via least squares
regression, irrespective of the nature of the actual outcome and the regression problem
one is interested in. The conditional distribution is captured via the loss function
which is to be minimized.

Similarly, we can define base-learners for other effect types such as smooth effects,
where we use P-splines (Schmid and Hothorn, 2008) which are fitted to the negative
gradient via penalized least squares. Bivariate P-splines can be used to model spatial
effects or smooth interaction surfaces. Spatial effects of regions can be defined via
Markov random fields (see India example and Sobotka and Kneib, 2012).
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Figure 4 Coefficient paths for first five boosting iterations in the breast cancer example. One can see that
in the first step g1CNS507 is selected (with a negative effect) as all other effects are still zero.The intercept

is implicitly updated in each iteration. In the second iteration, g1CNS91 is updated and the effect of
glCNS507 stays unaltered. In the third iteration, g1CNS507 is updated again, followed by g1int340

Other base-learners include random effects base-learners (Kneib et al., 2009,
Web Appendix), base-learners for constrained effect estimates including monotonic
categorical effects and monotonic P-splines, convex or concave categorical effects
and P-splines (Hofner et al., 2014a), and cyclic effects (e.g., for temporal effects with
recurring pattern; Hofner et al., 2014a). All these effects are fitted via penalized least
squares base-learners. For more technical details on each of the base-learners and
advanced use cases we refer to the given citations and to Hofner et al. (2014b).

It has to be noted, however, that inside the different base-learners no further
hyperparameters are needed to be optimized or tuned: they are iteratively applied
with constant penalty terms; as the base-learner can be updated multiple times, also
the final level of penalization (e.g., the final smoothness in case of a non-linear effect)
depends on the number of boosting iterations 7z, (see Figure 5 for an example): The
same spline (fixed equidistant knots, constant degrees of freedom) is updated various
times. As a result, the spline coefficients are simply summed up, the smoothness
reduces from iteration to iteration and the spline will eventually overfit. The final
level of penalization, hence, depends only on the number of boosting iterations 724y,

all other parameters are kept constant.

3.4 Model choice

As discussed in Section 3.2, boosting with early stopping (see Glossary) leads to
variable selection. If we spec1fy multiple base-learners for a single variable, boosting
selects the best fitting base-learner(s) and thus conducts model selection.

A common scenario is that researchers want to fit a model which is as simple as
possible, yet as flexible as necessary. In that case, one can specify linear base-learners
and smooth base-learners for each continuous variable. The boosting algorithm now
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Figure 5 Example on how my,, affects the smoothness of non-linear effect estimates (simulated data).
The dash-dotted blue line refers to the true effect, the solid red lines represent the estimated effect between
0 and 50000 boosting iterations. The optimal number of boosting iterations would be around 100.
Afterwards the model (slowly) starts to overfit the training data
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decides in each iteration if a linear effect is sufficient or a smooth effect is needed.
The final effect of a variable is then the sum over the linear and smooth effect
(if both were chosen at least once). If for one variable only the linear base-learner
was selected, one can conclude that a linear effect is sufficient to model the influence
of that variable. If none of the base-learners was chosen, this variable seemingly has
no influence on the outcome (given the other variables already in the model).

This idea can also be extended to interactions (or spatial effects), where one can
separately model linear marginal effects, linear interaction effects, smooth marginal
effects and smooth interaction effects (see, e.g., Kneib et al., 2009).

Note that smooth effects are usually preferred over linear effects for the same
variable as they contain linear effects as a special case but offer more flexibility. To
reduce this selection bias, one can re-parameterize smooth P-splines such that one
subtracts the linear effect and only models smooth deviations from linearity. For
technical details, regarding the choice for the degrees of freedom to ensure unbiased
selection, see Hofner et al. (2011).

3.5 Model classes

In our data examples, we want to model a classical Gaussian additive model for
the stunting score and a generalized additive logit-model for the development of
metastases in breast cancer patients. These different model classes, however, can
still be estimated by basically the same algorithm. As statistical boosting does not
fit the base-learners on the actual observations, but on the gradient vector of the
loss function, only this loss function, determines the particular regression setting.

As a result, statistical boosting can be used to find any GAM model by using
the negative log-likelihood as loss function; however, the scope is much broader: the
only restriction for the loss function is that it should be convex and differentiable
(first order) with respect to the model term. Statistical boosting can, hence, be also
adapted to fit regression situations that are not based on a likelihood. A popular
example for such a scenario is quantile regression (Koenker et al., 1994), which
relies on the optimization of the weighted absolute deviation from observations and
fitted quantiles (i.e., the so-called check-function) that can be optimized by boosting
(Fenske et al., 2011; Mayr et al., 2012c¢). Another example is the C-index introduced
by Harrell et al. (1982), which can be used as a discriminatory measure for survival
data (Harrell et al., 1984): via using the negative C-index as loss function one can
optimize statistical models with respect to their ability to discriminate well between
patients with longer and shorter survival times (Mayr and Schmid, 2014; Mayr et al.,
2016).

But statistical boosting can also be adapted to even more complex model classes,
such as generalized additive models for location scale shape (GAMLSS; Rigby and
Stasinopoulos, 2005) or joint models (Waldmann et al., 2017). In GAMLSS, not only
the expected value of a distribution, but all parameters are modelled to the covariates
(see also the tutorials by Stasinopoulos et al. (2018) and Umlauf and Kneib (2018) in
this special issue). As a result, the boosting algorithm needs to estimate various models
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simultaneously by circling through the different dimensions (Mayr et al., 2012a). For
a recent tutorial on this type of boosting algorithms, see Hofner et al. (2016).

3.6 Modular nature of boosting

One reason for the growing methodological research on statistical boosting
algorithms (Mayr et al., 2014b) is that they are relatively easy to extend towards
new regression settings (i.e., to include new loss functions) or to incorporate new
types of effects (i.e., new base-learners). In fact, if one flicks through the different
tutorials in this special issue, all model classes presented there can also be fitted by
boosting: Not only quantile regression and distributional regression as mentioned
earlier but also conditional transformation models (Hothorn, 2018) via mboost,
functional regression (Bauer et al., 2018) via the package FDboost (Brockhaus et al.,
2017) and advanced survival analysis (Bender et al., 2018; Berger and Schmid, 2018,
see the references therein).

For practical purposes, another advantage is the modular nature of the algorithm
(Bihlmann et al., 2014), which basically allows to combine any base-learner with
any type of loss function. In other words, all implemented regressions settings and all
new extensions (e.g., GAMs, quantile regression and C-index; see Section 3.5) can be
fitted with any type of covariate effect (e.g., linear, smooth, spatial and monotonic;
see Section 3.3) without the need to adapt the algorithm itself.

As the base-learners are applied to the negative gradient of the loss function,
the structure of the algorithm does not change at all if we simply replace one loss
function with another. For example, if we want to fit the model for the stunting score
not regarding the expected value but the median of the distribution, all we have to
do is to replace the L, loss with the L; (Fenske et al., 2011). A nice example is given
in the tutorial article by Waldmann (2018) in this special issue.

3.7 Implementation

This modular structure of the algorithm carries over to its implementation in the
statistical programming environment R (R Development Core Team, 2016). The most
flexible add-on package for the gradient boosting variant we are presenting here is
the mboost package (model-based boosting, Hothorn et al., 2016).

The main mboost functions to carry out boosting are glmboost () for linear
models and gamboost () for additive models. The different types of effects (i.e., the
base-learners) can be specified in a formula environment:

modell <- gamboost (stunting ~ bbs(mage) + bbs(mbmi) + bbs(cage)
+ bmrf (mcdist, bnd = neighborhood),
data = india, family = Gaussian())

In this case, stunting is the outcome, mage, mbmi and cage are included
via penalized B-spline base-learners (bbs () ), and mcdist via a Markov random
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field base-learner (bmrf () ). The model class is specified (in this case for a classical
Gaussian regression) via family = Gaussian().

To fit an initial model, the user, hence, has to specify (a) with which type of effects
the covariates should be included in the model via the base-learners (or stick to linear
models via glmboost () ) and (b) what type of loss function should be applied. When
these two points are selected, the next choice is the number of boosting iterations.
Per default, gamboost performs 100 iterations; however, it is not recommended
to simply use this ad-hoc value for the final model. Tuning the model via m240p
(see Section 3.2) can be done via the cvrisk () function which provides different
resampling procedures (default is 25-fold bootstrap) to select the best #72p:

cvr <- cvrisk(modell, grid = 1:2000)

In this case, cvrisk () automatically searches for the best model (with respect to
the predictive risk) on a grid from 1 to 2 000 iterations. Details on mboost, including
tables with available loss functions and base-learners, can be found in a recent tutorial
(Hofner et al., 2014Db).

4 Examples

In order to apply statistical boosting in practice, the data analyst, hence, faces three
major choices: (a) loss function, (b) base-learners and (c) the stopping iteration. The
latter, however, is typically tuned in a data-driven fashion. In our two examples,
modelling of the stunting score and the DNA signature to predict metastases in breast
cancer patients, we will particularly highlight how these three choices are performed.
The code to reproduce both analyses and the figures in this article is included as
supplementary material.

4.1 Childhood malnutrition in India

For the stunting score, which in fact is based on a z-transformation, a sensible loss
function could be the L, loss leading to classical Gaussian regression of the mean.
Regarding the base-learners, we chose to incorporate the continuous variables BMI
and age of the mother and age of the child as potentially non-linear predictors via
P-spline base-learners. Additionally, we included a spatial effect for the 422 districts of
India via a Markov random field base-learner, modelling the neighbouring structure of
those districts to account for spatial variation that is not explained by subject-specific
variables.

We fitted the model (see model 1 in Section 3.7) on all 4000 observations
and selected the optimal stopping iteration via 25-fold subsampling (with sampling
probability 7 = 0.5). The optimal value for mo, was 1941. This relatively large
value for 74y, is typical for situations with large 7 but small p where boosting shows
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Figure 6 Smooth estimated partial effects of the model for malnutrition in India

a rather slow overfitting behaviour (Bihlmann and Hothorn, 2007). We then refitted
the model with this 724, see Figure 6 for the resulting smooth effects and Figure 7
for the spatial effect estimates.

Following our model, the problem of stunted growth of children in India is most
pronounced for young mothers (negative effects for mothers from the age of 15 to
21 years) with low BMI (negative effects for mother with BMI from 15 to 20). When
it comes to the age of the children, the greatest risk for stunted growth seems to be
reached around the second birthday of the child.

Figure 7 reveals regional effects on the stunting score. Following our model,
stunted growth is most pronounced in the northern regions of India (negative effect).
In the south and also in the north-eastern regions, on the other hand, the growth of
children seems to be above average. These regional variation, could be a marker for
economic or cultural differences between regions of India.

4.2 DNA signature to predict metastases of small node-negative
breast carcinoma

For the breast cancer data, we first fitted a prognostic model for the development
of metastases on all patients. As the outcome is binary, we chose as loss function
the negative log-likelihood of the Bernoulli distribution. For all potential 2 905 DNA
predictors, we considered simple linear models as base-learners.
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Figure 7 Estimated partial spatial effect of the districts on malnutrition in India

The optimal stopping iteration was obtained via 25-fold bootstrap and was
estimated as 65 (see Figure 3). This early stopping led to the selection of only 29
variables. For an overview of the selected variables with effect estimates see the
corresponding table in the supplementary material.

With these 29 features, we could predict the establishment of metastases with
very high accuracy. The AUC (area under the curve, a value around 0.5 refers to
a non-informative prediction rule while a perfect discrimination results in a value
of 1) on the same dataset was 0.981. The corresponding ROC curve is given in
Figure 8 (left). In order to investigate if this high prediction accuracy was due to
overfitting, we repeated the analysis by splitting the data into training and test set.
On the training data, we fitted the model and optimized the number of iterations via
25-fold bootstrap. We then used the test set to compare the predicted outcome for
this new data with the true outcome. The AUC was again 0.981, differing only in the
fourth digit. The corresponding ROC curve is given in Figure 8 (right).

Even though the prediction accuracy was essentially equal, we obtained a different
prognostic signature. The overlap of DNA variables in the two models was 10, while
19 variables were only selected on the full dataset and 12 were only selected on
the training data (cf. table in the supplementary material). A reason for this good
and similar performance of the DNA signature, although relying partly on different
variables, could be the high grade of information included in several of these 2 905
tumour variables that were generated by comparing tumour and non-tumour DNA
of the patients (Gravier et al., 2010). The variables which do not overlap between
the two signatures are, hence, replaceable without losing accuracy, either because
their effect is of minor importance or because other variables incorporate the same
information.
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and evaluated on a test set (right)

5 Conclusion

Statistical boosting is a flexible alternative to fit regression models. Although the
concept emerged from machine-learning where most algorithmic models must be
seen as black-box prediction schemes without any straight-forward interpretation of
covariate effects, in this case, the resulting statistical models follow the same structure
as if they had been estimated by classical approaches with the same interpretability.
In fact, in case of low-dimensional data (7 > p), boosting models converge (with
growing 7,y ) to the same solution as classical maximum likelihood estimation.

Statistical boosting algorithms lead to several advantages in practice, however, also
have some limitations. Advantageous are (a) the intrinsic variable selection properties
and shrinkage of effect estimates leading to better prediction accuracy, (b) the
robustness towards multicollinearity issues, (c) their flexibility to combine different
covariate effects with different regression settings in one unified framework and (d)
that they still work for high-dimensional data with more candidate variables than
observations (p > 7). Limitations are (a) the need for model tuning via the stopping
iteration, (b) the relatively long run-time (compared to, e.g., LASSO algorithms)
particularly for model tuning and most importantly (c) the lack of theoretic results
on standard errors for effect estimates. As a result of the last point, we are not able
to provide confidence intervals or hypothesis tests for single covariate effects. There
exist work-arounds for these issues based on resampling procedures (Hofner et al.,
2014a; Mayr et al., 2017b); however, these ad-hoc solutions further increase the
computational complexity and run-time.

Putting these advantages and limitations into perspective, it gets clear for which
regression settings boosting algorithms are favourable:

« Prediction models for high-dimensional data, particularly when covariate effects
should be interpretable.
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 General regression settings where variable selection or model choice (e.g., linear
versus smooth effects) is necessary.

« Statistical models with multicollinearity problems (high correlation between
different covariates).

« Statistical models for regression settings, where other estimation schemes are
either not feasible (e.g., C-index) or are not as flexible regarding different types
of effects (e.g., spatial effects for quantile regression).

On the other hand, statistical boosting might not be the favourable choice for the
following regression settings:

« Statistical models where the focus is primarily on inference for covariate effects,
for example, low-dimensional clinical studies where the primary focus is to assess
the statistically significant benefit of an intervention.

« General low-dimensional models where no variable selection is needed for
classical regression settings (e.g., linear models or GAMs).

In conclusion, statistical boosting can be a very helpful method in the toolbox of
a modern statistician when it comes to fitting a regression model. It is not the
gold standard but it is nice to know that it is there and it might be very handy
in various situations. Due to the different vocabulary, it might sometimes appear
rather complicated, but in fact, for most settings it is as simple to apply as classical

approaches.

Glossary

Boosting jargon

What does that mean?

base-learner

loss function

training/learning
data

out-of-bag
observations

empirical risk
predictive risk

pseudo residuals

early stopping

Underlying regression functions that the algorithm applies iteratively. Typically, each
base-learner refers to a single covariate and defines its type of effect, for example, a
linear model leads to a linear effect.

Describes the discrepancy between model and data and is the objective function to be
optimized. Defines the regression setting, for example, the L, loss leads to classical
regression of the mean, L, to median regression, the negative log-likelihood leads to
the corresponding GLM or GAM.

Data that was used for the estimation of the model, in contrast to test data which
describes new observations.

Often used term for observations that are part of the test data which was generated
via resampling procedures. The opposite are in-bag observations that are part of the
training data.

Sum over the evaluated loss function on observations that are part of the training data.
Sum over the loss on observations that are part of the test data, sometimes also called
out-of-bag risk.

Describes the negative gradient vector of the loss on which the base-learners are fitted.
In case of the L,-loss, this is equivalent to fitting the residuals of the previous iteration.
Stopping the algorithm before convergence, leads to variable selection and shrinkage,
controlled by mgop.
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