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Abstract

Background: The development of high-throughput experimental technologies, such as next-generation sequencing,
have led to new challenges for handling, analyzing and integrating the resulting large and diverse datasets.
Bioinformatical analysis of these data commonly requires a number of mutually dependent steps applied to numerous
samples for multiple conditions and replicates. To support these analyses, a number of workflow management
systems (WMSs) have been developed to allow automated execution of corresponding analysis workflows. Major
advantages of WMSs are the easy reproducibility of results as well as the reusability of workflows or their components.

Results: In this article, we presentWatchdog, a WMS for the automated analysis of large-scale experimental data.
Main features include straightforward processing of replicate data, support for distributed computer systems,
customizable error detection and manual intervention into workflow execution.Watchdog is implemented in Java
and thus platform-independent and allows easy sharing of workflows and corresponding program modules. It
provides a graphical user interface (GUI) for workflow construction using pre-defined modules as well as a helper
script for creating new module definitions. Execution of workflows is possible using either the GUI or a command-line
interface and a web-interface is provided for monitoring the execution status and intervening in case of errors. To
illustrate its potentials on a real-life example, a comprehensive workflow and modules for the analysis of RNA-seq
experiments were implemented and are provided with the software in addition to simple test examples.

Conclusions: Watchdog is a powerful and flexible WMS for the analysis of large-scale high-throughput experiments.
We believe it will greatly benefit both users with and without programming skills who want to develop and apply
bioinformatical workflows with reasonable overhead. The software, example workflows and a comprehensive
documentation are freely available at www.bio.ifi.lmu.de/watchdog.
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Background
The development of high-throughput experimental meth-
ods, in particular next-generation-sequencing (NGS), now
allows large-scale measurements of thousands of proper-
ties of biological systems in parallel. For example, modern
sequencing platforms now allow simultaneously quanti-
fying the expression of all human protein-coding genes
and non-coding RNAs (RNA-seq [1]), active translation
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of genes (ribosome profiling [2]), transcription factor
binding (ChIP-seq [3]), and many more. Dissemination
of these technologies combined with decreasing costs
resulted in an explosion of large-scale datasets available.
For instance, the ENCODE project, an international col-
laboration that aims to build a comprehensive list of
all functional elements in the human genome, currently
provides data obtained in more than 7000 experiments
with 39 different experimental methods [4]. While such
large and diverse datasets still remain the exception, sci-
entific studies now commonly combine two or more
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high-throughput techniques for several conditions or in
time-courses in multiple replicates (e.g. [5–7]).
Analysis of such multi-omics datasets is quite com-

plex and requires a lot of mutually dependent steps. As
a consequence, large parts of the analysis often have to
be repeated due to modifications of initial analysis steps.
Furthermore, errors e.g. due to aborted program runs
or improperly set parameters at intermediate steps have
consequences for all downstream analyses and thus have
to be monitored. Since each analysis consists of a set of
smaller tasks (e.g read quality control, mapping against
the genome, counting of reads for gene features), it can
usually be represented in a structured way as a workflow.
Automated execution of such workflows is made possible
by workflow management systems (WMSs), which have a
number of advantages.
First, a workflow documents the steps performed

during the analysis and ensures reproducibility. Second,
the analysis can be executed in an unsupervised and
parallelized manner for different conditions and repli-
cates. Third, workflows may be reused for similar studies
or shared between scientists. Finally, depending on the
specific WMS, users with limited programming skills
or experience with the particular analysis tools applied
within the workflow may more or less easily apply com-
plicated analyses on their own data. On the downside,
the use of a WMS usually requires some initial training
and some overhead for the definition of workflows.
Moreover, the WMS implementation itself might restrict
which analyses can be implemented as workflows in the
system. Nevertheless, the advantages of WMSs generally
outweigh the disadvantages for larger analyses.
In recent years, several WMS have been developed

that address different target groups or fields of research
or differ in the implemented set of features. The most
well-known example, Galaxy, was initially developed
to enable experimentalists without programming expe-
rience to perform genomic data analyses in the web
browser [8]. Other commonly used WMSs are KNIME
[9], an open-source data analysis platform which
allows programmers to extend its basic functionality
by adding new Java programs, and Snakemake [10], a
python-based WMS. Snakemake allows definition of
tasks based on rules and automatically infers depen-
dencies between tasks by matching filenames. A more
detailed comparison of these WMSs is given in the
Results section.
In this article, we present Watchdog, a WMS designed

to support bioinformaticians in the analysis of large
high-throughput datasets with several conditions and
replicates. Watchdog offers straightforward processing of
replicate data and easy outsourcing of resource-intensive
tasks on distributed computer systems. Additionally,
Watchdog provides a sophisticated error detection system

that can be customized by the user and allows manual
intervention. Individual analysis tasks are encapsulated
within so-called modules that can be easily shared
between developers. Although Watchdog is implemented
in Java, there is no restriction on which programs can
be included as modules. In principle, Watchdog can be
deployed on any operating system.
Furthermore, to reduce the overhead for workflow

design, a GUI is provided, which also enables users with-
out programming experience to construct and run work-
flows using pre-defined modules. As a case study on how
Watchdog can be applied, modules for read quality checks,
read mapping, gene expression quantification and dif-
ferential gene expression analysis were implemented and
a workflow for analyzing differential gene expression in
RNA-seq data was created. Watchdog, including docu-
mentation, implemented modules as well as the RNA-
seq analysis workflow and smaller test workflows can be
obtained at www.bio.ifi.lmu.de/watchdog.

Implementation
Overview ofWatchdog
The core features of Watchdog and their relationships are
outlined in Fig. 1 and briefly described in the follow-
ing. More details and additional features not mentioned
in this overview are described in subsequent sections,
Additional files 1, 2 and 3 and in the manual available at
www.bio.ifi.lmu.de/watchdog.

Modules
Modules encapsulate re-usable components that per-
form individual tasks, e.g. mapping of RNA-seq data,
counting reads for gene features or visualizing results
of downstream analyses. Each module is declared in an
XSD file containing the command to execute and the
names and valid ranges of parameters. In addition to
the XSD file, a module can contain scripts or com-
piled binaries required by the module and a test script
running on example data. Module developers are com-
pletely flexible in the implementation of individual mod-
ules. They can use the programming language of their
choice, include binaries with their modules or automat-
ically deploy required software using Conda (https://
conda.io/), Docker (https://www.docker.com/, an exam-
ple module using a Docker image for Bowtie 2 [11] is
included with Watchdog) or similar tools. Furthermore,
Watchdog provides a helper bash script to generate the
XSD definition file for new modules and (if required) a
skeleton bash script that only needs to be extended by the
program call.
Essentially, any program that can be run from the

command-line can be used in a module and several pro-
gram calls can be combined in the same module using
e.g. an additional bash script. In principle, a module could
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Fig. 1 Overview ofWatchdog. aModules are defined in an XSD format that describes the command to be executed and valid parameters. All
modules together represent the software library that can be used in workflows and can be extended by defining new modules. b A workflow is
defined in an XML format and consists of tasks that depend on each other. Among others, the XML format allows setting environment variables,
defining different executors in the settings part of the workflow and processing replicate data in a straightforward way. cWatchdog parses the
workflow, creates the corresponding tasks, executes them and verifies whether execution of each task terminated successfully or not. d Email
notification (optional) and log files combined with either the GUI or a simple web-interface allow monitoring the execution of the workflow and
intervening if necessary, e.g. by restarting tasks with modified parameters

even contain a whole pipeline, such as Maker-P [12], but
this would run counter the purpose of a WMS. Here, it
would make more sense to separate the individual steps of
the pipeline into different modules and then implement
the pipeline as a Watchdog workflow. Finally, Watchdog
is not limited to bioinformatics analyses, but can be also
used for workflows from other domains.

Workflows
Workflows are defined in XML and specify a sequence
of tasks to be executed, the values of their input param-
eters and dependencies between them. An example for a
simple workflow is given in Fig. 2. Among other features
that are described later, it is possible to define constants,
environment variables and execution hosts in a dedicated
settings element at the beginning of the workflow, redi-
rect the standard error and standard output for individual
tasks or define how detailed the user is informed on the
execution status of tasks.
The advantage of XML is that it is widely used in

many contexts. Thus, a large fraction of potential Watch-
dog users should already be familiar with its syntax and
only need to learn the Watchdog XML schema. Further-
more, numerous XML editors are available, including
plugins for the widely used integrated development envi-
ronment (IDE) Eclipse [13], which allow XML syntax
checking and document structure highlighting. Finally, a
number of software libraries for programmatically load-
ing or writing XML are also available (e.g. Xerces for Java,
C++ and Perl (http://xerces.apache.org/), ElementTree
in Python).
In addition, Watchdog also provides an intuitive GUI

(denoted workflow designer) that can be used to design a
workflow, export the corresponding XML file afterwards
and run the workflow in the GUI.

Watchdog
The core element ofWatchdog that executes the workflow
was implemented in Java and therefore is, in principle,
platform-independent. Individual modules, however, may
depend on the particular platform used. For instance, if a
module uses programs only available for particular oper-
ating systems (e.g. Linux, macOS, Windows), it can only
be used for this particular system.
As a first step, Watchdog validates the XML format of

the input workflow and parses the XML file. Based on
the XML file, an initial set of dependency-free tasks, i.e.

Fig. 2 Simple workflow in XML format. This example shows a simple
Watchdog workflow executing a 30 second sleep task. A constant
namedWAIT_TIME is defined within the settings environment (line 5).
Email notification of the user is enabled using the optionalmail
attribute of the tasks environment (line 8). Here, a task of type sleepTask
with id 1 and name sleep is defined (lines 9-13). Either id or name can
be used to refer to this task in dependency declarations of other tasks.
Within the parameter environment of the sleepTask, values are
assigned to required parameters (lines 10-12), which were specified in
the XSD file of this particular module. In this case, the parameter wait
is set to the value stored in the constantWAIT_TIME (line 11)

http://xerces.apache.org/
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tasks that do not depend on any other tasks, is generated
and added to the WMS scheduler to execute them. Sub-
sequently, the scheduler continuously identifies tasks for
which dependencies have been resolved, i.e. all preceding
tasks the task depends on have been executed success-
fully, and schedules them for execution. Once a task is
completed, Watchdog verifies that the task finished suc-
cessfully. In this case, the task generator and scheduler are
informed since dependencies of other tasks might have
become resolved. In case of an error, the user is informed
via email (optional) and the task is added to the scheduler
again but is blocked for execution until the user releases
the block or modifies its parameters. Alternatively, the
user may decide to skip the task or mark the error
as resolved.

User interfaces
Watchdog provides both a command-line version as well
as a GUI that can be used to execute workflows and to
keep track of their processing. Moreover, a web-interface
is provided to GUI and command-line users that displays
the status of all tasks in a table-based form and allows
monitoring and interacting with the execution of tasks
by releasing scheduled tasks, changing parameters after
a failed task execution and more (see Fig. 3). The link to
the web-interface is either printed to standard output or
sent to the user by email if they enabled email notification.
In the latter case, the user will also be notified per email
about execution failure (always) or success (optional).
Finally, the command-line interface also allows resuming
a workflow at any task or limiting the execution of the
workflow to a subset of tasks using the -start (start
execution at specified task), -stop (stop execution after
specified task), -include (include this task in execution)
and -exclude (exclude this task for execution) options.
In the following more details are provided on principles

and possibilities of workflow design in Watchdog and

defining custom modules. The GUI is described in detail
in Additional file 1.

Process blocks for creating subtasks
Analysis of high-throughput data often requires perform-
ing the same analysis steps in parallel for a number of
samples representing different conditions or biological or
technical replicates. To support these types of analyses,
Watchdog uses so-called process blocks to automatically
process tasks that differ only in values of parameters, e.g.
short read alignment for all FASTQ files in a directory.
For this purpose, process blocks define a set of instances,
each of which contain one or more variables. For each
instance, one subtask is created and subtask placeholders
in the task definition are replaced with the variable val-
ues of the instance. For the example in which a task is
executed for all FASTQ-files in a directory, each instance
holds one variable containing the absolute file path of the
file. The number of subtasks corresponds to the number
of FASTQ-files in the directory.
Currently four different types of process blocks are sup-

ported by Watchdog: process sequences, process folders,
process tables and process input (Fig. 4). In case of process
sequences (Fig. 4a) and process folders (Fig. 4b), instances
only hold a single variable. Process sequences are com-
parable to for-loops as they generate instances contain-
ing numerical values (integer or floating-point numbers)
with a fixed difference between two consecutive numbers
(default: 1). Instances generated by process folders con-
tain the absolute path to files and are generated based on
a parent folder and a filename pattern.
Process tables (Fig. 4c) and process input (Fig. 4d) blocks

can generate instances with multiple variables. Instances
generated by a process table are based on the content of a
tab-separated file. The rows of the table define individual
instances and the columns the variables for each instance.
In case of process input blocks, variables and instances

Fig. 3Web-interface ofWatchdog. Each line of the table provides information on the status of a task or subtask. The drop-down menu at the end of
each line allows to perform specific actions depending on the status of the task. The menu is shown for subtask 1-2, which could not be executed
successfully. To generate this screenshot the example workflow depicted in Fig. 6 was processed, which compresses all log-files stored in directory
/tmp/. Since the number of simultaneously running subtasks was set to at most 2 for this task, subtask 1-5 is put on hold until subtasks 1-3 and 1-4
have finished or the user manually releases the resource restriction
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a) b)

c) d)

Fig. 4 Types of process blocks. With the help of process blocks,
multiple tasks that differ only in the parameter values can be created
without defining all of them separately. Four different types of
process blocks are implemented that fall into two general classes.
Instances of the first class contain only a single variable, either (a) a
value from a numerical sequence (process sequence) or (b) a path to
files (process folder). In (a), subtasks are created based on an integer
sequence starting at 5 and ending at 7 with an increment of 1. In (b),
a subtask is created for each sh-file in the folder /etc/. Instances of the
second type can contain multiple variables, either (c) instances
derived from tables (process table) or (d) instances based on return
values returned by previous tasks this task depends on (process
input). In (c), a table with two columns named name and type and
two rows is used as input for the process table. This results in two
subtasks for this task, one for each row. The process input block in (d)
depends on a task with id 1, which itself had two subtasks. Hence, this
task returns two instances, each containing the variables file and
fCount obtained from its return variables

are derived from return values of preceding tasks the task
depends on.
Figure 5 shows an example how process blocks can be

defined and Fig. 6 shows how they can be used for creation
of subtasks. In Additional file 2, a detailed description
with examples is provided on how to use process blocks
for the analysis of data sets with several replicates or con-
ditions. Furthermore, Watchdog provides a plugin system
that allows users with programming skills to implement
novel types of process blocks without having to change the
originalWatchdog code (see Additional file 3).

Dependencies
By default, all tasks specified in a Watchdog workflow are
independent of each other and are executed in a non-

Fig. 5 Definition of process blocks. In this example, two process
blocks are defined within the processBlock environment (lines 2-5). In
line 3, a process sequence named num is defined consisting of three
instances (1, 5 and 9). In line 4, a process folder selecting all log-files in
the /tmp/ directory is defined

deterministic order. Alternatively, dependencies on either
task or subtask level (details in the next paragraphs) can be
defined using the id or name attribute of a task (see Fig. 7).
Dependency definitions impose a partial order on tasks,
meaning that tasks depending on other tasks will only be
executed after those other tasks have finished successfully.
Tasks without dependencies or resolved dependencies will
still be executed in a non-deterministic order.
Although explicit dependency definition adds a small

manual overhead compared to automatic identification
based on in- and output filenames as in Snakemake, it also
provides more flexibility as dependencies can be defined
that are not obvious from filenames. For instance, analy-
sis of sequencing data usually involves quality control of
sequencing reads, e.g. with FastQC [14], before mapping
of reads, and users might want to investigate the results of
quality control before proceeding to read mapping. How-
ever, output files of quality control are not an input to read
mapping and thus this dependency could not be identified
automatically. To provide more time to manually vali-
date results of some intermediate steps, Watchdog allows
adding checkpoints after individual tasks. After comple-
tion of a task with checkpoint, all dependent tasks are put
on hold until the checkpoint is released. All checkpoints in

Fig. 6 Usage of process blocks. The process block logFiles defined in
Fig. 5 is used to generate several subtasks (line 1). These subtasks
create compressed versions of the log-files stored in /tmp/. In this
case, at most two subtasks are allowed to run simultaneously.
Additional file 2 describes how process block variables can be
accessed. Here, the placeholder {} is replaced by the variable values
stored in the process block, i.e. the complete file paths, and [1] is
replaced with the file names (without the ‘.log’ file-ending) (lines 3-4)
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Fig. 7 Definition of dependencies. The task defined in this example
creates subtasks using the process block logFiles from Fig. 5 (line 1)
with both task and subtask dependencies. A task dependency on the
task sleep defined in Fig. 2 is indicated in line 3. In addition, subtask
dependencies to the task with id 2 defined in Fig. 6 are indicated in
line 4. In this case, each subtask depends on the subtask of task 2
which was created using the same instance defined by the process
block logFiles, i.e. the same file path

a workflow can be deactivated upon workflow execution
with the -disableCheckpoint flag of the Watchdog
command-line version.

Task dependencies
A task B can depend on one or more other tasks A1 to An,
which means that execution of task B is put on hold until
tasks A1 to An have finished successfully. If some of the
dependencies A1 to An use process blocks to create sub-
tasks, task B is put on hold until all subtasks are finished
successfully. Figure 8a illustrates the described behavior
on a small example in which task B depends on three
other tasks.

a) b)

Fig. 8 Types of dependencies. Dependencies can either be defined
on (a) task or (b) subtask level. a Task B depends on tasks A1 , A2 and
A3 . Task A2 uses a process block to create the three subtasks A2−1,
A2−2 and A2−3. Task B will be executed when A1 , A2 (including all
subtasks) and A3 have finished successfully. b Tasks A and B create
subtasks using a process block. For example, task Amight decompress
files stored in a folder (by using a process folder) and task Bmight
extract data from the decompressed files afterwards (by using a
process input block). Here, subtask Bx of B only depends on the
subtask Ax of A based on whose return values it is created

Subtask dependencies
If a subtask Bx of a task B only depends on a particular
subtask Ax of A instead of all subtasks of A, the definition
of subtask dependencies in the workflow allows executing
Bx as soon as Ax has finished successfully (but not nec-
essarily other subtasks of A). This is illustrated in Fig. 8b
and can be explained easily for the most simple case when
the process block used for task B is a process input block
containing the return values of subtasks of A. In that case,
a subtask Bx depends only on the subtask Ax of A that
returned the instance resulting in the creation of Bx. The
use of subtask dependencies is particularly helpful if sub-
tasks of A need different amounts of time to finish or
cannot all be executed at the same time due to resource
restrictions, such as a limited amount of CPUs or mem-
ory available. In this case, Bx can be executed as soon as
Ax has finished but before all other subtasks of A have fin-
ished. An example application would be the conversion of
SAM files resulting from read mapping (task A) to BAM
files (task B).

Parallel and distributed task execution
By default all tasks are executed one after the other on
the host running Watchdog (see Fig. 9a,b). In principle,
however, tasks that are independent of each other or
individual subtasks of a task can be executed in parallel.
Watchdog implements three different types of executors
that facilitate parallel execution of tasks: (i) local executor
(Fig. 9c), (ii) remote executor (Fig. 9d) and (iii) clus-
ter executor (Fig. 9e). All executors allow multi-threaded
execution of tasks. In cases (i) and (ii)Watchdog uses mul-
tiple threads for parallel execution of tasks while in case
(iii) the cluster master is utilized to distribute tasks on
the cluster. Before execution or after completion or fail-
ure of tasks, files or directories can be created, deleted
or copied to/from remote file systems (e.g. the file sys-
tem of a remote or cluster executor) using so-called task
actions. By default, Watchdog supports virtual file sys-
tems based on the protocols File, HTTP, HTTPS, FTP,
FTPS and SFTP as well as the main memory (RAM).
However, any file system with an implementation of the
FileProvider interface from the Commons Virtual File Sys-
tem project of the Apache Software Foundation (http://
commons.apache.org/proper/commons-vfs/) can also be
used (see manual).
Executors and their resource limitations are declared

in the settings element at the beginning of the work-
flow (see Fig. 10) and assigned to tasks based on their
names. Within each workflow, an arbitrary number of
executors of different types can be defined and any of
these can be assigned to individual tasks. For instance,
memory-intensive tasks might be executed on a dedicated
high-memory computer using a remote executor while
other tasks spawning many subtasks are distributed using

http://commons.apache.org/proper/commons-vfs/
http://commons.apache.org/proper/commons-vfs/
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a) b)

c)

d) e) f)

Fig. 9 Parallel and distributed task execution. Three different types of executors are implemented inWatchdog: (i) execution on the local host that
runsWatchdog, (ii) remote execution via SSH or (iii) cluster execution using DRMAA or the Slurm Workload Manager. a In this example, the four
subtasks 1a, 1b, 2a and 2b are created byWatchdog based on tasks 1 and 2 using process blocks. Task 2a depends on 1a, and 2b on 1b. All tasks are
assumed to require the same runtime. b By default, one task is executed after the other on the host runningWatchdog. cWatchdog also allows
parallel execution in all three executionmodes (local, remote and cluster execution). d For remote execution,Watchdog establishes a SSH connection
to pre-defined execution hosts and randomly distributes the tasks that should be executed to these execution hosts. e For cluster execution, the
DRMAA or Slurm master receives tasks to execute and redirects them to its execution hosts.Watchdog has no influence on which execution host is
used for task execution because the tasks are distributed by the internal DRMAA or Slurm scheduler. f During slave mode (supported for remote and
cluster execution), tasks or subtasks that depend on each other are scheduled on the same execution host, which allows using the local disk space
of the host for storage of files that are needed only temporarily but by different tasks

a cluster executor and non-resource-intensive tasks are
run using a local executor. Here, the number of simul-
taneously running (sub)tasks can be restricted on task
(see Fig. 6) or executor level (see Fig. 10), e.g. to not
occupy the whole cluster with many long-running tasks.
Provided the name of a particular executor remains the

Fig. 10 Defining executors. This example defines three possible
executors: (i) the local host runningWatchdog using two parallel
threads for task execution (line 3). This will be used by default for task
execution if no other executor is specified in a task definition using
the executor attribute. (ii) a remote host named goliath accessed by
SSH and authenticated via a private key that should be protected by a
passphrase (line 4). (iii) a cluster executor that schedules a maximum
of 16 simultaneously running tasks on the short queue of a computer
cluster supporting DRMAA (line 5)

same, everything else can be modified about this executor
without having to change the tasks part of the work-
flow. This includes not only resource limitations or the
maximum number of running tasks but even the type of
executor, for instance when moving the workflow to a
different system.
Every host that accepts secure shell connections (SSH)

can be used as a remote executor (see Fig. 9d). In this
case, a passphrase-protected private key for user authen-
tication must be provided. For cluster execution, any grid
computing infrastructures that implement the Distributed
Resource Management Application API (DRMAA) can
be utilized (see Fig. 9e). By default, Watchdog uses the
Sun Grid Engine (SGE) but other systems that provide
a DRMAA Java binding can also be used. Furthermore,
Watchdog provides a plugin system that allows users with
programming skills to add new executor types without
having to change the originalWatchdog code. This plugin
system is explained in detail in Additional file 3 and was
used to additionally implement an executor for comput-
ing clusters or supercomputers running the Slurm Work-
load Manager (https://slurm.schedmd.com/). The plugin
system can also be used to provide support for cloud com-
puting services that do not allow SSH. Support for the
Message Passing Interface (MPI) is not explicitly modeled

https://slurm.schedmd.com/
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in Watchdog, but MPI can be used by individual modules
if it is supported by the selected executor.
Finally, to allow storage of potentially large temporary

files on the local hard disk of cluster execution hosts and
sharing of these files between tasks,Watchdog also imple-
ments a so-called slave mode (see Fig. 9f). In slave mode,
the scheduler ensures that tasks or subtasks depending on
each other are processed on the same host allowing them
to share temporary files on the local file system. For this
purpose, a new slave is first started on an execution host,
which establishes a network connection to the master (i.e.
the host running Watchdog) and then receives tasks from
the master for processing.

Error detection and handling
During execution of workflows, a number of errors can
occur resulting either in aborted program runs or incor-
rect output. To identify such errors, Watchdog imple-
ments a sophisticated error checking system that allows
flexible extension by the user. For this purpose, Watch-
dog first checks the exit code of the executed module. By
definition an exit code of zero indicates that the called
command was executed successfully. However, some tools
return zero as exit code regardless of whether the com-
mand succeeded or failed. Thus, the exit code alone is
not a reliable indicator whether the command was exe-
cuted successfully. Furthermore, a command can techni-
cally succeed without the desired result being obtained.
For instance, the mapping rate for RNA-seq data may be
very low due to wrong parameter choices or low quality
of reads. To handle such cases, the user has the option
to implement custom success and error checkers in Java
that are executed byWatchdog after a task is finished. Two
steps must be performed to use custom checkers: imple-
mentation in Java and invocation in the XML workflow
(see Fig. 11 for an example and the manual for details).
Once the task is finished, the checkers are evaluated in

the same order as they were added in the XML workflow.
In cases in which both success and error were detected by

Fig. 11 Invocation of a custom error checker. The example illustrates
how a custom error checker implemented in class CErr located in
directory /home/ can be added to a task (line 3). In line 4 and 5, two
arguments of type string and integer are forwarded to the constructor
of the error checker

different checkers, the task will be treated as failed. When
an error is detected, the user is informed via email noti-
fication (if enabled, otherwise the information is printed
to standard output), including the name of the execution
host, the executed command, the returned exit code and
the detected errors.
Information on failure or success is also available via

the web-interface, which then allows to perform several
actions: (i) modify the parameter values for the task and
restart it, (ii) simply restart the task, (iii) ignore the failure
of the task or (iv) manually mark the task as successfully
resolved. In case of (iii), (sub)tasks that depend on that
task will not be executed, but other (sub)tasks will con-
tinue to be scheduled and executed. To continue with the
processing of tasks depending on the failed task, option
(iv) can be used. In this case, values of return parame-
ters of the failed task can be entered manually via the
web-interface.
Option (i) is useful if a task was executed with inappro-

priate parameter values and avoids having to restart the
workflow at this point and potentially repeating tasks that
are defined later in the workflow but are not dependent on
the failed task. AsWatchdog aims to execute all tasks with-
out (unresolved) dependencies as soon as executors and
resource limitations allow, these other tasks might already
be running or even be finished. Option (ii) is helpful if a
(sub)task fails due to some temporary technical problem
in the system, a bug in a program used in the correspond-
ing module or missing software. The user can then restart
the (sub)task as soon as the technical problem or the bug is
resolved or the software has been installed without having
to restart the other successfully finished or still running
(sub)tasks. Here, the XSD definition of a module cannot
be changed during a workflow run as XSD files are loaded
at the beginning of workflow execution, but the underly-
ing program itself can be modified as long as the way it
is called remains the same. Option (iii) allows to finish an
analysis for most samples of a larger set even if individual
samples could not be successfully processed, e.g. due to
corrupt data. Finally, option (iv) is useful if custom error
checkers detect a problem with the results, but the user
nevertheless wants to finish the analysis.

Defining custommodules
Watchdog is shipped with 20 predefined modules, but the
central idea of the module concept is that every developer
can define their own modules, use them in connection
with Watchdog or share them with other users. Each
module consists of a folder containing the XSD mod-
ule definition file and optional scripts, binaries and test
scripts. It should be noted here that while the complete
encapsulation of tasks within modules is advantageous
for larger tasks consisting of several steps or including
additional checks on in- or output, the required module
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creation adds some burden if only a quick command is
to be executed, such as a file conversion or creation of
a simple plot. However, to reduce the resulting overhead
for module creation, a helper bash script is available for
unix-based systems that interactively leads the developer
through the creation of the XSD definition file.
For this purpose, the script asks which parameters and

flags to add. In addition, optional return parameters can
be specified that are required if the module should be
used as process input block. If the command should not
be called directly because additional functions (e.g. checks
for existence of input and output files and availability of
programs) should be executed before or after the invo-
cation of the command, the helper script can generate a
skeleton bash script that has to be only edited by the devel-
oper to include the program and additional function calls.
Please note that modules shipped with Watchdog were
created with the helper script, thus XSD files and large
fractions of bash scripts were created automatically with
relatively little manual overhead. Once the XSD file for a
module is created, the module can be used in a workflow.
By default, Watchdog assumes that modules are located
in a directory named modules/ in the installation direc-
tory ofWatchdog. However, the user can define additional
module folders at the beginning of the workflow.

Results and discussion
Example workflows
For testing and getting to know the potentials of Watch-
dog by first-time users, two longer example workflows
are provided with the software, which are documented
extensively within the XML file (contained in the exam-
ples sub-directory of the Watchdog installation directory
after configuring the examples, see manual for details).
All example workflows can also be loaded into the GUI
in order to get familiar with its usage (see Additional
file 1). In order to provide workflows that can be used for
practically relevant problems, 20 modules were developed
that are shipped together with Watchdog. In addition,
several smaller example workflows are provided, each
demonstrating one particular feature of Watchdog. They
are explained in detail in the manual. The next para-
graphs describe the two longer example workflows and
the corresponding test dataset.

Test dataset
A small test dataset consisting of RNA-seq reads is
included in theWatchdog examples directory. It is a subset
of a recently published time-series dataset on HSV-1
lytic infection of a human cell line [5]. For this purpose,
reads mapping to chromosome 21 were extracted for both
an uninfected sample and a sample obtained after eight
hours of infection. Both samples in total contain about
308,000 reads.

Workflow 1 - Basic information extraction
This workflow represents a simple example for testing
Watchdog and uses modules encapsulating the programs
gzip, grep and join, which are usually installed on unix-
based systems by default. Processing of the workflow
requires about 50MB of storage and less than one minute
on a modern desktop computer. As a first step, gzipped
FASTQ files are decompressed. Afterwards, read head-
ers and read sequences are extracted into separate files.
To demonstrate the ability of Watchdog to restrict the
number of simultaneously running jobs, the sequence
extraction tasks are limited to one simultaneous run, while
the header extraction tasks are run in parallel (at most 4
simultaneously). Once the extraction tasks are finished,
the resulting files from each sample are compressed
and merged.

Workflow 2 - Differential gene expression
This workflow illustrates Watchdog’s potentials for run-
ning a more complex and practically relevant analysis. It
implements a workflow for differential gene expression
analysis of RNA-seq data and uses a number of external
software programs for this purpose. Thus, although XSD
files for corresponding modules are provided by Watch-
dog, the underlying software tools have to be installed and
paths to binaries added to the environment before running
this workflow. The individual modules contain depen-
dency checks for the required software that will trigger an
error if some of them are missing.
Software required by modules used in the work-

flow include FastQC [14], ContextMap 2 [15], BWA [16],
samtools [17], featureCounts [18], RSeQC [19], R [20],
DEseq [21], DEseq2 [22], limma [23], and edgeR [24]. The
workflow can be restricted to just the initial analysis steps
using the -start and -stop options of the Watchdog
command-line version and individual analyses steps can
be in- or excluded using the -include and -exclude
options. Thus, parts of this workflow can be tested with-
out having to install all programs. Please also note that the
workflow was tested on Linux and may not immediately
work on macOS due to differences in pre-installed soft-
ware. Before executing the workflow a few constants have
to be set, which are marked as TODO in the comments of
the XML file. Processing of the workflow requires about
300MB of storage and a fewminutes on a modern desktop
computer.
The first step is again decompression of gzipped FASTQ

files. Afterwards, quality assessment is performed for each
replicate using FastQC, which generates various quality
reports for raw sequencing data. Subsequently, the reads
are mapped to chromosome 21 of the human genome
using ContextMap 2. After read mapping is completed,
the resulting SAM files are converted to BAM files and
BAM files are indexed using modules based on samtools.
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Afterwards, reads are summarized to read counts per
gene using featureCounts. As methods for differential
gene expression detection may require replicates, pseudo-
replicates are generated by running featureCounts twice
with different parameters. This was done in order to pro-
vide a simple example that can be executed as fast as
possible and should not be applied when real data is
analyzed. In parallel, quality reports on the read map-
ping results are generated using RSeQC. Finally, limma,
edgeR, DEseq and DEseq2 are applied on the gene count
table in order to detect differentially expressed genes. All
four programs are run as part of one module, DETest,
which also combines result tables of the different meth-
ods. Several of the provided modules also generate figures
using R.

Comparison with other WMSs
Most WMSs can be grouped into two types based on
how much programming skills are required in order to
create a workflow. If a well-engineered GUI or web inter-
face is provided, users with basic computer skills should
be able to create their own workflows. However, GUIs
can also restrict the user as some features may not be
accessible. Hence, a second group of WMSs addresses
users with more advanced programming skills and
knowledge of WMS-specific programming or scripting
languages.
As a comprehensive comparison of all available WMS

is outside the scope of this article, two commonly used
representatives of each group were selected and com-
pared with Watchdog. Figure 12 lists features of each
WMS, which are grouped into the categories setup, work-
flow design, workflow execution and integration of new
tools. As representative WMSs Galaxy [8], KNIME [9],
Snakemake [10], and Nextflow [25] were chosen. In the
following paragraphs, the selected WMSs are discussed.
Because all four WMSs as well as Watchdog allow non-
programmers to execute predefined workflows, this prop-
erty is not further discussed. Furthermore, an analysis of
the computational overhead of Watchdog and Snakemake
showed that the computational overhead of using either
WMS (and likely any other) is negligible compared to the
actual runtime of the executed tasks (see Additional file 4).

Galaxy
The most well-known WMS for bioinformatic analyses
is Galaxy [8]. It was initially developed to enable exper-
imentalists without programming experience to perform
genomic data analyses in the web browser. Users can
upload their own data to a Galaxy server, select and com-
bine available analysis tools from a menu and configure
them using web forms. To automatically perform the same
workflow on several samples in a larger data set, so-called
collections can be used.

In addition to computer resources, Galaxy provides a
web-platform for sharing tools, datasets and complete
workflows. Moreover, users can set up private Galaxy
servers. In order to integrate a new tool, an XML-file has
to be created that specifies the input and output param-
eters. Optionally, test cases and the expected output of a
test case can be defined. Once the XML-file has been pre-
pared, Galaxy must be made aware of the new tool and
be re-started. If public Galaxy servers should be used,
all input data must be uploaded to the public Galaxy
servers. This is especially problematic for users with
only low-bandwidth internet access who want to analyze
large high-throughput datasets but cannot set up their
own server.
In summary, Galaxy is a good choice for users with

little programming experience who want to analyze data
using a comfortable GUI, might not have access to enough
computer resources for analysis of large high-throughput
data otherwise, appreciate the availability of a lot of pre-
defined tools and workflows and do not mind the manual
overhead.

KNIME
The Konstanz Information Miner, abbreviated as
KNIME [9], is an open-source data analysis platform
implemented in Java and based on the IDE Eclipse [13]. It
allows programmers to extend its basic functionality by
adding so-called nodes. In order to create a new node,
at least three interfaces must be implemented in Java:
(i) a model class that contains the data structure of the
node and provides its functionality, (ii) view classes that
visualize the results once the node was executed and (iii)
a dialog class used to visualize the parameters of the node
and to allow the user to change them.
One disadvantage for node developers is that the design

of the dialog is labor-intensive, in particular for nodes
that accept a lot of parameters. Another shortcoming of
KNIME is that only Java code can be executed using the
built-in functionality. Hence, wrapper classes have to be
implemented in Java if a node requires external binaries
or scripts. Furthermore, KNIME does not support dis-
tributed execution in its free version. However, two exten-
sions can be bought that allow either workflow execution
on the SGE or on a dedicated server.
Hence, the free version of KNIME is not suitable for the

analysis of large high-throughput data. However, KNIME
can be used by people without programming skills for the
analysis of smaller datasets using predefined nodes, espe-
cially, if a GUI is required that can be used to interactively
inspect and visualize the results of the analysis.

Snakemake
A workflow processed by Snakemake [10] is defined as a
set of rules. These rules must be specified in Snakemake’s
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Fig. 12 Comparison ofWatchdog with other WMSs. Comparison was performed using features grouped into the categories setup, workflow design,
workflow execution and integration. Workflow is abbreviated as workf. in this table. Integration refers to the integration of new data analysis tools
into the particular WMS. Footnotes: 1six non-free extensions are available; 2since version 2.4.8, rules can also explicitly refer to the output of other
rules; 3explanation: includes a way to automatically run a predefined workflow for a variable number of replicates based on filename patterns; 4have
to be created manually in the web-interface from uploaded files; 5explanation: finished steps of the workflow can return variables that are used by
subsequent steps as input; 6can only return the names of output files; 7other supported executors:Watchdog: new executors can be added with the
plugin system, Galaxy: PBS/Torque, Open Grid Engine, Univa Grid Engine, Platform LSF, HTCondor, Slurm, Galaxy Pulsar, Snakemake: can also use
cluster engines with access to a common file system and a submit command that accepts shell scripts as first argument, Nextflow: SGE, LSF, Slurm,
PBS/Torque, NQSII, HTCondor, Ignite; 8non-free extensions for SGE or dedicated server support are available; 9custom executors for cloud
computing services can be created using the plugin system; 10Watchdog: HTTP/S, FTP/S and SFTP by default, can be extended to any remote file
system with an implementation of the FileProvider interface from the Commons Virtual File System project, Galaxy: Object Store plugins for S3,
Azure, iRODS, Snakemake: S3, GS, SFTP, HTTP, FTP, Dropbox, XRootD, NCBI, WebDAV, GFAL, GridFTP. Nextflow: HTTP/S, FTP, S3; 11a hard-coded error
checker triggered on keywords ‘exception’ and ‘error’ in standard output and error is provided; 12depends on the node implementation and left to
developer; 13explanation: usage of local storage during distributed execution in order to avoid unnecessary load on the shared storage system;
14direct integration of python code is possible; 15own scripting language available; 16explanation: describes the concept used to separate workflow
definition and functionality (e.g.Watchdog’s modules) in order to allow easy re-use of functionality; 17modules can include binaries in the module
directory or automatically deploy required software using Conda, Singularity, Docker or similar tools available on the used system

own language in a text file named Snakefile. Similar to
GNU Make, which was developed to resolve complex
dependencies between source files, each rule describes
how output files can be generated from input files using
shell commands, external scripts or native python code.
At the beginning of workflow execution, Snakemake auto-
matically infers the rule execution order and dependencies
based on the names of the input and output files for
each rule. From version 2.4.8 on, dependencies can also
be declared by explicitly referring to the output of rules
defined further above.Workflows can be applied automat-
ically to a variable number of samples using wildcards, i.e.
filename patterns on present files.

In Snakemake, there is no clear separation between
the tool library and workflow definition as the command
used to generate output files is defined in the rule
definition itself. Starting with version 3.5.5, Snake-
make introduced re-usable wrapper scripts e.g. around
command-line tools. In addition, it provides the pos-
sibility to include either individual rules or complete
workflows as sub-workflows. Thus, Snakemake now
allows both encapsulation of integrated tools as well as
quickly adding commands directly into the workflow.
By default, no new jobs are scheduled in Snakemake as

soon as one error is detected based on the exit code of
the executed command. Accordingly, the processing of the



Kluge and Friedel BMC Bioinformatics  (2018) 19:97 Page 12 of 13

complete workflow is halted until the user fixes the prob-
lem. This is of particular disadvantage if time-consuming
tasks are applied on many replicates in parallel and
one error for one replicate prevents execution of tasks
for other replicates. While this default mode can be
overridden by the -keep-going flag, this flag has to
be set when starting execution of the workflow and
applies globally independent of which particular parts of
the workflow caused the error. In addition, the option
-restart-times allows automatically restarting jobs
after failure for a predefined number of times and each
rule can specify how resource constraints are adapted
in case of restarts. However, this option is only useful
in case of random failure or failure due to insufficient
resources. If errors result from incorrect program calls
or inappropriate parameter values, restarting the task will
only result in the same error again. Finally, Snakemake is
the only one of the compared WMSs that does not pro-
vide return variables that can be used as parameters in
later steps.
In summary, Snakemake is a much improved version of

GNU Make. Programmers will be able to create and exe-
cute own workflows using Snakemake once they learned
the syntax and semantic of the Snakemake workflow def-
inition language. However, as Snakemake does not offer a
GUI or editor for workflow design, most experimentalists
without programming skills will not be able to create their
own workflows.

Nextflow
The idea behind the WMS Nextflow [25] is to use pipes
to transfer information from one task to subsequent
tasks. In Unix, pipes act as shared data streams between
two processes whereby one process writes data to a
stream and another reads that data in the same order as
it was written. In Nextflow, different tasks communicate
through channels, which are equivalent to pipes, by
using them as input and output. A workflow consists of
several tasks, which are denoted as processes and are
defined using Nextflow’s own language. The commands
that are executed by processes can be either bash com-
mands or defined in Nextflow’s own scripting language.
Nextflow also provides the possibility to apply a task
on a set of input files that follow a specific filename
pattern using a channel that is filled with the filenames
at runtime.
By default, all running processes are killed by Nextflow

if a single process causes an error. This is particularly
inconvenient if tasks with long runtimes are processed
(e.g. transcriptome assembly based on RNA-seq reads).
However, alternative error strategies can be defined for
each task before workflow execution, which allow to either
wait for the completion of scheduled tasks, ignore exe-
cution errors for this process or resubmit the process. In

the latter case, computing resources can also be adjusted
dynamically.
InNextflow, there is no encapsulation of integrated tools

at all since the commands to execute are defined in the
file containing the workflow. While this is advantageous
for quickly executing simple tasks, reusing tasks in the
same or other workflows requires code duplication. Fur-
thermore,Nextflow also does not offer a GUI for workflow
design, which makes it hard for beginners to create their
own workflows as they must be written in Nextflow’s own
very comprehensive programming language.

Conclusion
In this article, we present the WMS Watchdog, which
was developed to support the automated and distributed
analysis of large-scale experimental data, in particular
next-generation sequencing data. The core features of
Watchdog include straightforward processing of replicate
data, support for and flexible combination of distributed
computing or remote executors and customizable error
detection that allows automated identification of tech-
nical and content-related failure as well as manual user
intervention.
Due to the wide use of XML, most potential users of

Watchdog will already be familiar with the syntax used
in Watchdog and only need to learn the semantic. This
is in contrast to other WMSs that use their own syntax.
Furthermore, Watchdog’s powerful GUI also allows non-
programmers to construct workflows using predefined
modules. Moreover, module developers are completely
free in which software or programming language they use
in their modules. Here, the modular design of the tool
library provides an easy way for sharingmodules by simply
sharing the module folder.
In summary, Watchdog combines advantages of exist-

ing WMSs and provides a number of novel useful features
for more flexible and convenient execution and control
of workflows. Thus, we believe that it will benefit both
experienced bioinformaticians as well experimentalists
with no or limited programming skills for the analysis of
large-scale experimental data.

Availability and requirements
• Project name: Watchdog
• Homepage: www.bio.ifi.lmu.de/watchdog; Bioconda

package: anaconda.org/bioconda/watchdog-wms;
Docker image: hub.docker.com/r/klugem/watchdog-
wms/

• Operating system: Platform independent
• Programming language: Java, XML, XSD
• Other requirements: Java 1.8 or higher, JavaFX for

the GUI
• License: GNU General Public License (GPL)
• Any restrictions to use by non-academics: none

http://www.bio.ifi.lmu.de/watchdog
http://anaconda.org/bioconda/watchdog-wms
http://hub.docker.com/r/klugem/watchdog-wms/
http://hub.docker.com/r/klugem/watchdog-wms/
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Additional files

Additional file 1: Overview on theWatchdog GUI. Contains an overview
on theWatchdog GUI for designing workflows and a step-by-step
instruction on how to use it for creating a simple workflow. (PDF 1177 kb)

Additional file 2: Replicate data analysis inWatchdog. Describes how to
use process blocks for the automated analysis of data sets with many
different replicates or conditions. (PDF 126 kb)

Additional file 3: ExtendingWatchdog. Describes how to use the plugin
system to extendWatchdog by new executors or process blocks without
changing the originalWatchdog code. (PDF 118 kb)

Additional file 4: Computational overhead ofWatchdog. Contains an
analysis of the computational overhead ofWatchdog and Snakemake for
executing a workflow with a variable number of samples. (PDF 157 kb)
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