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Introduction and summary

Superconformal Chern-Simons theories play an important role as conformal field theories
describing aspects of M2-branes in string theory, as was suggested in [1] and became clear
with the constructions of the BLG [2-5] and ABJM [6, 7] models with gauge groups SO(4)
and U(M) x U(N), inheriting N' = 8 and N' = 6 superconformal symmetry respectively.
This motivated the construction and classification of other Chern-Simons-matter theories
for various gauge groups, displaying a certain amount of supersymmetry or vice versa. The
first of these models were the U(M) x U(N) and Sp(M) x O(N) theories with N = 4
supersymmetry of [8]. Upon further examination they were found to have also enhanced
N =5 and, for Sp(M) x O(2), N' = 6 supersymmetry in [9]. A neat group theoretical
classification of gauge groups leading to N' = 6 supersymmetry followed in [10]. The general
superconformal gaugings with N/ < 8 where then derived in [11] by an approach starting
from gauged supergravity. Subsequently, these findings were explained as constraints on
possible gauge groups from manifest supersymmetry through superspace approaches for
N = 6 and 8 in [12, 13| and [14], and similarly for N' = 4 and 5 in [15] and [16]. In
this work we will reproduce these results for all cases with A/ < 8 by the superspace
method initially employed for A/ = 6 and 8 in [17]. This approach, which is universal for
all NV, focuses on the scalar multiplet transforming under spin(N') and determining the
corresponding on-shell field strengths. The analysis therefore deals mainly with properties
of the respective spin matrices which can be shared or bequeathed between different values
of M. The simplicity of this method allows direct insight into the mechanism of the
supersymmetry enhancement noticed in some of the aforementioned references.

An interesting generalisation is the coupling of these theories to superconformal gravity.
This was achieved in [18] for N' = 6 (ABJM) and for N’ = 8 in [17], the latter giving rise to
a new theory with SO(V) gauge symmetry existing only in the presence of the supergravity
sector. The superspace point of view was enabled by the invention [19] and elaboration [20]
of three dimensional N-extended curved superspace and subsequently by the construction
of off-shell actions by the formulation of conformal superspace [21, 22]. Extending the
results for N/ = 6 and 8 in [17] we will analyse the constraints for possible gauge groups
in curved superspace for 4 < N < 8. This will lead to some new models for N' = 6,7
and 8, in particular. The following table summarises these findings. Focusing on the
situation in flat superspace we find a collection of admissible gauge groups for N' = 4
constituting, in a sequence of increasing A, the first occurrence of a restriction on possible
gauge symmetries for fundamental and bifundamental matter (we note in passing that
the spin(7) also implies Gy gauging, as the subgroup preserving some fixed compensator.)
The same restriction appears for N' = 5. This can be understood by noticing that an
N = 4 Clifford representation naturally exhibits the same properties as the chiral one,
since the left- and right-handed components transform under different factors of spin(4) =
SU(2) x SU(2), while on the other hand, the N' = 4 Clifford representation just coincides
with an implementation of the N' = 5 spin group USp(4). Moving to N' = 6, many
properties of the A/ = 5 matrices as the chiral blocks are taken along; however, the spin
group SU(4) now being manifestly complex prevents the gauging of SO(M) x Sp(N) and



fundamental bifundamental
N=1 SUN)a X U(L—a/y U(M)a x U(N)
Sp(N)g x U(1)—q SU(M)q x SU(N) —q X U(1)a/x—a/u
Sp(M)a x SO(N)—q
spin(7)q x SU(2)_4
+SG
N=5 SUN)a X U(L—asy U(M)a x U(N)_
Sp(N)g x U(1)—q SU(M)q x SU(N) —q X U(1)a/x—a/u
Sp(M)a x SO(N) -4
spin(7)q x SU(2)_4
+5G
N=6 SU(N)a x Ul)a-ain U(M)a x U(N),
Sp(N)a x U(1)_ SU(M)s x SUNV)a x ULy
Sp(M)a x SO(2)4
+SG SU(N) x U(1) SU(M), x SU(N),
N=1 SU(2)a x SU(2),
+5G SU(N)—xs % U(1) 2= nyr/ie SU(2)a % SU(2)a—xs
SO(N) _x/16
Spin(7) _x/6
N =8 SU(2)q x SU(2),
+SG SU(N) _xa X U(1)2—n)ws SU(2)a x SU(2)a—x/4
SO(NV)_xss
spin(7) _x/s

Table 1. Allowed gauge groups for the (spin(N)-chiral) scalar compensator in flat space and
additional groups in the presence of supergravity. Subscripts of the group factors indicate the
relative coupling constants (or restricted charges), where for N' > 6 the Chern-Simons currents
corresponding to the right-acting factors will be coupled with opposite sign in the action. Some of
the groups with fundamental representation correspond to limits of bifundamental gaugings.

spin(7) x SU(2) which rely on a reality condition for the matter fields possible in the previous
two cases. The nature of an N/ = 6 Clifford spinor is quite different from that of an N' = 4
one. Its left- and right-handed components transform under the SU(4) representations
complex conjugate to each other and appear together in the description in terms of a chiral
spinor, whereas for ' = 4 the two chiral components formed two separate theories. For this
reason the gauge groups of the N’ = 6 chiral matter cannot be expected also to be present
for a Clifford spinor. It rather turns out that the only possibility is real SU(2) x SU(2) for a
Majorana spinor whose chiral components are complex conjugate to each other. This is then



the requirement for enhancement to N' = 7. Finally, this realisation of real SU(2) x SU(2)
is transferred to N/ = 8 where the A/ = 7 spin matrices serve as the chiral blocks.

The additional gauge groups appearing in curved superspace do not show a clear
pattern, since the super Cotton tensor which now contributes is of varying rank leading to
a different behaviour for each /. The liberation of the U(1) charges in N' = 6 is accounted
for by the presence of the U(1) R-symmetry factor in supergravity. The similarity between
N =T and 8 is supported by the existence of real and orthogonal representations of their
spin groups. In this conformal case, the gravitationally coupled N' = 7 and 8 theories
are indeed different (although they admit the same gauge groups), which may be worth
pointing out in view of results for Poincaré supergravity (e.g. [23]).

An interesting application of the gravitationally coupled theories is the realisation of
topologically massive gravity (TMG) [17, 18, 24-28]. It was noted in [18] for N' = 6
(ABJM) that the product of the Chern-Simons coupling and the anti-de Sitter radius is
fixed to be uf = 1, the chiral point of [29]. For N' = 8 with SO(N) gauge symmetry it was
found in [17, 25] that || ~* = 3 for one non-vanishing component of the compensator and
a formula for p components where some of the values correspond, perhaps accidentally,
to various interesting TMG solutions. The conjecture that uf is always fixed in such
a superconformal description with N' > 4 was confirmed in [27]. The method there is
algebraic and relies on the formalism of N-extended superspace [19, 20] and conformal
superspace [21, 22] and was used to show that uf = 1 for N' = 4. It will be employed
here to determine the values of uf for 4 < N < 8 and all possible deformations due to the
presence of additional gauge degrees of freedom and couplings. The result agrees with and
extends the values obtained so far in the literature.

In section 1 we give the preliminaries for curved superspaces, scalar multiplets, topo-
logically massive gravity and Chern-Simons gauging. In the subsequent sections we analyse
each model with N-extended supergravity, leading to the results outlined above, as well as
obtaining on-shell equations for the gauge and supergravity sectors.

1 Superconformal geometry and scalar compensators

While Chern-Simons-matter theories can be viewed as genuine rigid supersymmetric the-
ories on their own right it is sometime convenient to interpret the matter fields as com-
pensators for the superconformal geometry. One benefit of this is that one can use super-
conformal calculus as we do below. Another feature is that it straightforwardly leads to
topologically massive supergravities. In this section, as a preparation for the classification
of models in the remaining sections, we review the superconformal approach.

1.1 Conformal superspace and anti-de Sitter superspace

N-extended superconformal geometry can be formulated in terms of N -extended super-
space [19, 20] (see also [17]), a curved supermanifold with locally gauged Lorentz and SO(N)
R-symmetry involving super-Weyl invariant constraints on the torsions, or conformal su-
perspace [22], where the whole superconformal algebra is gauged as the starting point.



The first formalism, extensively applied here, was used in [30] to describe anti-de Sitter
superspace, where the Lorentz vector fields and the covariant derivatives of the scalar fields
forming the torsions are assumed to vanish. In this case, the algebra of spinor derivatives
reduces to

(2L, 2]} = 216" (v")apPa + itap <W”KL + 45KUKJ1L> Nir + 4K s (11)

where Ak, and .#,p denote the R-symmetry and Lorentz generators respectively. The
totally antisymmetric tensor W!/XZ is the super Cotton multiplet contributing for N > 4
and K/ = Kldiag(1,...,1,—1,...,—1)]Y = Kk’ belongs to the compensating Weyl
multiplet. If we denote the number of the negative entries by ¢, this is referred to as
a (p,q) adS superspace. Furthermore, the commutator of two vector derivatives can be
related to the cosmological constant as!

(D, Dr| = AK?| Moy = 0% M. (1.2)

In conformal superspace, on the other hand, the algebra of covariant spinor derivatives
reads

(V5.V} =2i6" (v")apVa + leagW ! *F Ay, (1.3)

where the special conformal curvatures have been omitted, since those and all higher-
dimensional field strengths are expressed by derivatives of the super Cotton tensor W//KL,
In the present analysis this formalism will only be used to identify the physical dimension-
two SO(N) field strength,

—i

1J _ K7L IJKL

Restricted to adS superspace, this formula applies to the geometry described by 22, because
the extra gauge fields are assumed to vanish.

1.2 Scalar on-shell multiplets and equations of motion

The matter fields transform under spin(/N'), whose generators are subject to the Lie algebra
(1T KL = 45IKU gy J1E] (1.5)

The Clifford algebra of spin matrices

vy = 817 417 (1.6)
provides a solution as
1
N = —§y” : (1.7)

!The right-hand side follows from expressing the 3d Riemann tensor by the Ricci tensor which is deter-
mined, on shell, by the cosmological constant via the Einstein equation.



From the point of view of irreducible representations, the most natural realisation of the
spin matrices y! for N' = 2m and N’ = 2m + 1 is given by the chiral representation, which
can be constructed iteratively as

YVi=9l®..o1
2 _ iO'Q ® ii/lw"Nil
yi=yrmtl = myl T — 1. 91 (1.8)
where 74 generate the N' = 2m — 1 dimensional Clifford algebra and each element consists of
m factors of 2 x 2 matrices. For even ' = 2m, the generators of spin(N) are block-diagonal
and commute with the matrices

Pup=~(1£v") (1.9)

1
2
which are projectors on the irreducible representations. These are called left- and right-
handed and transform under the generators provided by the chiral Clifford algebra

EIEJ _ 61J+ ZIJ
D e e (1.10)

0 st
S (21 . > . (1.11)

In this case, fields transforming under the chiral generators will be referred to as chiral

where

spinors, whereas those transforming under the reducible generators will be called Clifford
spinors.
The algebra (1.1) acting on a Lorentz scalar transforming under spin(N) reads?

(2L, 21Q = 218" (") 0 2aQ — %EQB (W”KLEKL + 4KL[J2”L) Q. (1.12)
In terms of on-shell superfields, the spinor derivative of the scalar is [17, 27]
210 =151 A,. (1.13)
In order to obey the supersymmetry algebra, the derivative of A, must then be of the form
Do = (V)ap = 2aQ + %sa,gHI (1.14)
where H' is subject to the equation
pUgl = f% (W”KLEKL + AR E”L) Q. (1.15)
The general ansatz for H' is

H = AWTEIM 5000 00Q + BWippo ZTELPRQ + 2K 3;Q (1.16)

2In the following, X! is written for spin matrices and may be replaced by X7 or y! where appropriate.



where A, B are constants to be determined using properties of the spin matrices. As will
be shown in the corresponding sections, for N' < 6 this is possible with the supergravity
sector being off shell. For N/ = 7 and 8 it is only possible if the super Cotton tensor is
expressed on shell by matter fields (and further, if these are flavoured a solution only exists
only in the presence of the corresponding gauge sector).

Being equipped with a solution for H, the equation of motion for the spinor field A,
can be obtained by closing the supersymmetry algebra. From the parametrisation (1.14)
it follows

92U + rEN. (1.17)

_ J) J] 1
{957 9@’}/17 - Z(Ig(agﬁ)vQ Rz D@ — §5v(a B) 2 EvlaZp)

[

Commuting the derivatives and keeping only the scalar torsion one finds, using [Z/, Dsy) =
—QEQ(B{-ZW)C;KIJ@‘(; (30],
(2L, 230, = 218" Doy — 218" e (o D Ag) —ieapZ DA,
— 4K DD gle ( Agy + Bieqg KU 2100 A,

— & (a.@(l

1
B)H‘]) — §saBQyHJ]. (1.18)

Then it can be read off (with, schematically, HQ = H)

1

1 -~
DA, = Y (K/ + 2H1271> A, (1.19)

Acting with -@B] , antisymmetrising in (v, and discarding non-scalar background fields,
finally leads to the scalar equation of motion

N2°9,Q = K'tx,H; — QNEJ (KI + H,EI> HY. (1.20)

1.3 Topologically massive gravity

The action of topologically massive gravity with cosmological constant reads [31]

1 1 2
S = -3 3z e (R+ 26_2) + m /dgx e emn (wffRnl,ab —3Wm bwn bcwhca). (1.21)
The superconformal generalisation of this action involves the gravitinos, auxiliary compo-
nents from the super Cotton tensor and a Chern-Simons term for the SO(N) gauge fields

which is given by [22]

1
4p1K2

4
/d3l‘ e Emnl (—QBglJFnlJJ — 3B£1JBTL7IKB[’KJ) . (122)

The Einstein-Hilbert term of the TMG action can be realised by a conformal compensator
¢ with the action

5= [ < (T0)(9u0) — = RI0P + (6" >) (1.23)



where the derivatives are covariant with respect to SO(N) and the trivially acting Lorentz
group (and possibly other gauge groups)

1 1
Do = Eo + iBéJc/VIJ + S Mo + - (1.24)
The correct Einstein-Hilbert term is produced if the compensator ¢ is chosen such that
|p|? = 16572, (1.25)

which is possible by a Weyl transformation.
With this coupled compensator, the super Cotton tensor obtains a non-trivial on-shell
equation of motion. It can be assumed that

WKL = eAQuKLQ, (1.26)

where A = uk? is the Chern-Simons coupling constant and c¢ is a combinatorial number
fixed below. This form is the only possible due to the dimensions of the available fields
and — indeed — calculating the field strength with the formula (1.4) yields the form of a
scalar current
Flagy = M [(Zap ) ZV 6 — 62 (D ap)9)] (1.27)
where ¢ is the leading component of (). On the other hand, the scalar current can be
read off from the kinetic term in the conformal compensator action (1.23), while the field
strength is related to this current via the equation of motion for the gauge fields from (1.22)
— %s“chab = —%FC = j°. (1.28)
This determines ¢, leading to the conclusion

A =
WIJKL _ _TGQEIJKLQ‘ (129)

With the above results it is possible to determine pf. Imposing @) to be constant, the
supersymmetry algebra requires the super-Weyl gauge?

AKX Q = —WRE S, (1.30)
where we note that an equivalent condition is H! = 0. Solving for K and proceeding as
in [27] one finds

1 _
(7'Q = QI HQXELQ)x : 1.31

The value of |pf|~! is now expressed for general A in terms of the Fierz identities for the
rank-four Clifford matrices. The result is

N= 4 5 6 7 8
wl=t= 1 35 1 2 3
where it must be noted that for N' = 6 the formula had to be adjusted due to an additional
U(1)r R-symmetry factor without which the theory would not be consistent as will be

explained in section 6.

3 As shown in [30], the super Cotton tensor can be non-vanishing only in the case of (N, 0) adS superspace,
ie. k' =o',



1.4 Gauge theory

Gauging a flavour group of the form F' x G with the scalar () transforming in the bifunda-
mental representation produces a right-acting and a left-acting field strength term subject
to the constraint (see e.g. [20] and references therein)

{24, 743Q = 28" (7)ap ZaQ + ieasF'’ Q + ieasQG"’ (1.32)
and obeying the Bianchi identity

2

I pJK _ ol pJK] _
7. F 95 F N1

61 9,  FEIE, (1.33)

The equation for H' in the spinor derivative of Ag is now
sUHT = FI7Q 4+ QG (1.34)

The condition for accordance of a gauge group with supersymmetry is tantamount to the
existence of a non-zero solution for H'! of this equation. The ansatz

H' = AF'™83:Q + BF . 250 Q + CXk QG™E + DYTELQGK (1.35)

generally cannot be solved in this off-shell form; however, the field strengths can be specified
regarding their algebraic properties by using their on-shell equations [17]. Given the di-
mensions of the available fields, these must be rank-two bilinears of the scalars. This agrees
with the Bianchi identity and the multiplet projection on the physical dimension-two field
strength

F(a,B) X @{a.@g)FIJ X _@(Ia@b])QE[JQ, (1.36)

which has the form of a scalar current. The right- and left-acting field strength terms are
expressed in terms of the scalars as

FY(4 Q)7 = aw(@QEnaQ)(r" Q)7 = aQ, 5 (14),Q," (), Q,7
QM) G =b(Q 0%, m(QEY74Q) =bQ ()]0, T (04),"Q,7  (137)

where a, b are the coupling constants and 74,04 are the generators of the right- and left-
acting group factor, respectively. We note that the convenient ordering of @ and Q in
the right-acting term is opposite to the usual ordering in the kinetic term for the coupled
scalar. Therefore, the Chern-Simons current obtains a relative minus sign for N’ = 6,7 and
8 where the bilinears are antisymmetric as for example QX7 Q = —QX Q.

In the case of a fundamental representation we have the field strength term

FA (4 Q) = aQ 27 (14)," Qu(7),5Qs. (1.38)

Depending on the group, Fierz-like identities for the generators can be used. The cho-
sen conventions and the resulting field strength terms for the classical gauge groups are
presented in the table below (the exceptional cases as in [11] will also be considered). Cal-
culating X/ H in terms of these on-shell expressions will reveal the structure of allowed
gauge groups.



group factor  (74)ij (7)) (QETTAQ)(74Q)s
SO(NV) 2850511 2(Q*X17QM)Q
Sp(N) 20 2(Q* X7,
U(1) —q*8;5,! Q' ZQ)Qx
SUWN) {878}, — 81} %(Q@”rozk—(@z“@k)@
U(N) 518} —(Q@'£77QL)Qu.

Table 2. Generator identities and on-shell field strength terms for the classical gauge group factors.

2 N=1land N =2

As a warm-up we discuss the gauging of a scalar multiplet in flat superspace for N’ = 2 and
3.4 N = 1 gauge theory in three dimensions has been discussed in well-known literature [33]
and we have nothing more to add.

For N' = 2, the Clifford algebra is realised by the chiral representation of the spin

) ) ) e
10 i 0 0 -1

with the chiral blocks

matrices

0= 5% =i (2.2)

n (i 0
Y _<o _i> (2.3)

and its fundamental representation is reducible into two scalars @ and @ transforming

The generator of spin(2) is

under U(1) and its complex conjugate respectively.
Equation (1.34) is easily solved for H' in terms of a complex number

iH' — H? = 2F'2Q + 2QG". (2.4)

Any (bi-)fundamental gauging can be implemented in this way.

3 N=3

The spin matrices are

) ) el
10 i 0 0 -1

4Off-shell Yang-Mills multiplets coupled to conformal supergravity in three spacetime dimensions for
N <3 can be found in [32].

,10,



and the generators proportional to y'2,v? and y?3 are those of spin(3) = SU(2). The

ab

group indices are raised and lowered as v® = %y, and v, = v’ep, where the values of the

01
€= (_1 0) . (3.2)

7Y - (3.3)

metric tensor are the entries of

One can easily show the identity

(Y[J)ab(yl] )Cd - E(a(c(y

Rather than substituting on-shell field strengths into (1.35) it is simpler to directly write
down the most general rank one tensor cubic in the Clifford spinor denoted by ¢ and its
conjugate q

Hy = (V) (Aavdac} + B{a“@ac} + Cla“aean})
+4(v") H(D{q°0aga} + E{a°Gaga} + F{qa0"qa})- (3.4)

The brackets {.} encapsulate the group index structure. Since, for the case of a bifunda-
mental representation, there are two free indices, one can have in principle nine terms

{ABC}TF = ClArfBC + CQArBfC + C3ATBC 7
+ dlA fB TC + d2ABf7~C + d3AB TC I3
+e1A ;BC, 4 e9AB;C, + e3ABC, 5 . (3.5)

In fact, dy will always vanish and some of the other terms are usually redundant.> The
invisible indices are appropriately contracted. For a fundamental representation we define

{ABC} = ClAaBa05 + CzAaégca + CgAgBaCa. (3.6)

For groups possessing a rank-four invariant, further terms have to be included where the
free index is situated at this tensor. This will be relevant for some exceptional groups.
Using (3.3) we then find

'Y[JHI} = _A(YIJ{Q)ch(JC} - B{qc('YIJQ)mQC} - C{qc(jc('YIJQ)m}
+ D{gm(@v" @) + € @G (V" e = V" Dmtc — V" Q)mTac}
+ E{gm(@" @) + (¥ Dam — ¢ 6cv")m + V" Q) m@©ac}
+ F{ (Y e + (" Dam + @Y O)m + Y Dmac}. (3.7
Only the terms which are rank-two bilinears in ¢ and ¢ can contribute to a field strength.

The others must cancel out through the choice D = —F = —-B, FE—D =Aand F—E =C,
leading to

YWHY = (E+ F){(av" @)am} + (E — F){am(@y'’9)}. (3.8)

5Tt must be reminded when the constants ¢,d, e are implied to be equal in different terms once the

constants A, B, ... have been related to each other.

— 11 —



Since the left- and right-acting terms have independent coefficients, any bifundamental or
fundamental gauging is possible by choosing the appropriate coefficients in (3.5) or (3.6)
according to the table 2.

We note in passing that upon deleting y3 in the above equations, the same procedure
and result applies to N' = 2 Clifford spinors.

4 N =14

This is the minimal number of supersymmetries for which non-trivial constraints on the
possible gauge groups as well as the mass of the graviton in toplogically massive gravity
are obtained. The left- and right-handed spin matrices are now given by

(215 = (L,i012,3)

(2% =(1, —101,2,3)%- (4.1)

The spin group is SU(2)1, x SU(2)r where the two factors are associated with the indices
i and i respectively. For the rank-four element it holds that

S IIKL _ q IJKL (4.2)

4.1 Flavour gauging

An ansatz for H! which involves only the left-handed scalar reads
HY = (SN (A{QmQ'Qi} + B{Q'QmQi} + C{Q'QiQm}).- (4.3)
From this it follows that

SUHN = (271 (A{QmQrQi — QmQiQk} + C{QrQiQm — QiQrQum}) (4.4)

where B has been set to zero without loss of generality and the spinor indices have been
rearranged using
A;B*Cy, = AFB,C), — A*BLC; (4.5)

in order to obtain field strength terms.® The others must be cancelled by choosing A = C,
leading to
2V ET = —A{(QEQ)Q - Q@I Q) (4.6)

which, in turn, needs to be compatible with (1.34) for closure of the supersymmetry al-
gebra. Applying (3.5) we find that a general possibility which avoids field strength terms
inconsistent with table 2 is taking only c3 non-zero. In other words one has to consider

SVHD = —A6[(QE7Q)Q — Q(QEQ)), (4.7)

where the products are understood as matrix products with the bifundamental indices.
Then, the products U(M) x U(N) and SU(N) x SU(N) with opposite couplings a = —b

5This corrects the statement in [27] that gauging is not possible with only a one-handed spinor.

— 12 —



are naturally consistent with (4.7), which may be collected into the expression SU(M) x
SU(N) x U(1)° where the U(1) charge is constrained by —¢* = a(+ — £5) so that it cancels
the gauge traced bilinear terms from the SU(N) factors.” For these one has Acz = a,
resulting in the solution for H'

HY = a( 1) (QmQ' Qi — QiQ' Q). (4.8)
The only other combination is Sp(M) x SO(N) with opposite couplings and the reality
condition

Qi= Q¢ (4.9)

This leads to

HE™ = 20(51™™(Q,,Q' Qi — QiQ' Q). (4.10)
Another possibility is to consider also a term supplemented to (3.5) involving an invariant
tensor Cjjz;. In this case, the second group factor has to be SU(2) in order to write

- Crvstvﬁ(QﬁwEIJQsF) = %Cfrvws(QU{)Z’IJQ”DU))Q;7 (411)

where total antisymmetry of Cj;; and reality of ) have been assumed. Since the left-acting
symplectic SU(2) requires the presence of an orthogonal term from the right-acting factor,
the generators of the right-acting group must fulfil

3
(TA)ij(TA)kl = 26i[k61]j + icijkl. (4.12)
This is the case for spin(7) (and its subgroup Gs) [11]. The solution reads
H™ = —20(81)™"™(QmQ'Qi — QiQ'Qm),”
- a(;j[)mmcrvws (Qm,vT)inst - QyﬁinQm7SF)- (413)

Let us now investigate the possibility of a fundamental representation. In this case one has
(setting c3 =0 and A =1)

SVHD = %61 [(Q°27Q4)Q5 — (Q° 27 Qp)Qu] — (2 F 2)(Qs 2 Q")Qn  (4.14)

where the lower sign holds for symplectic groups. Comparing with table 2, we find that
fundamental representations are possible for the groups

Sp(N) xU(1)° ¢ =a
SUN)xU(1)° ¢*=4%4—-a

with the U(1) charges being restricted as indicated. These two are equivalent to the above
bifundamental Sp(N) x SO(2) and SU(N) x SU(1) x U(1)° respectively. For Sp(N) x U(1)°
the solution for H is

HI™ = —%a(i’[)mm (Qmﬂ@i’a@i,ﬁ + 3Qm,5Qi’an‘,a) (4.15)
and for SU(N) x U(1)°
HI™ = a(fﬂ)mm (Qm,a@i’aQiﬂ - inaQi’anﬂ) : (4.16)

"Clearly, further pairwise cancelling U(1) factors can always be added.
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4.2 Clifford spinors

If a right-handed scalar is included in the theory, the ansatz for H L™ must be extended
by terms like (£7)"™Q,,Q;Q" and (£1)*Q;QrQ™. However, the field strength would be
proportional to

(QEYQ)Qm + (QX"Q)Qm (4.17)

for which the conditions producing the left-handed bilinear still would have to apply, leading
to the same possible gauge groups. For a more compact description and in prospect of
supersymmetry enhancement to A/ = 5, one can use reducible Clifford spinors

da = (g:) (4.18)
with the corresponding spin matrices
(0 (=D woo (80
COREN e O : (4.19)
(XH9 0 0 o
J
and the metric
y . (€90
c» = (4.20)
0 8;5
acting by the rules
qa = Caleﬂ Ga = quba
Q' =¢evQ;, Qi = Q¢j
Q' =¢€7Q;, Qi = ez (4.21)

We note that, upon including y* as y°, the above realises the spin matrices of N' = 5.
Moreover, the metric C® coincides with the metric of spin(5) = USp(4).
The general ansatz for H! in terms of g, is then®

H = (V) (Alawgtact + B{d“@ac} + C{d“q.av})
+2(vD) DL Gaga} + E{d°Guga} + F{qaT aa})- (4.22)

For illustration, the E-term can be worked out in terms of SU(2) spinors. Using the identity
- T\ | PR
() G(ZY = — Sk + sl (5T k, (4.23)
it follows that

WE — B ((E”Q>kczjcz5 +QUQIVQ) + Q@ (21 Q) - (QEV Q)Qk) }
(QE7Q)QF — Q1Q;( L1 Q)F — QF(QX Q) — (Y Q) QI Q;
= E{(ev"0)a — a(@v" ) - v )T @ — ¢“ac(v )} (4.24)

8Possible terms involving y* would turn out to be redundant.
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The second line holds, because terms cubic in ()’s of the same handedness cancel identically.
Thus, we see that by virtue of their two-component properties bilinears of () naturally lead
to the corresponding bilinears of q. The other terms lead to similar structures and must
be arranged such that

yWHD = E{(¢evy" §)a — a(@v" 9)}, (4.25)

representing the same situation as for the chiral spinors. The solutions for H! are now

groups Hbe
SU(M) x SU(N) x U(1)° a(y")®(@q°qe — aeq°av) + 2a(v!)*qeq%qa
Sp(M) x SO(N) 2a(v")®(@3°qe — ae@°a) + 4a(y!)“qeq®qa
SU(N) x U(1) a(y")" (qb Tal — a2 35y + 2a(v!) g2 qla]
Sp(N) x U(1) —a(y) (2053508 — a2 q5ay) — a(y) (208384 — 420> qa.a)-

They can be written in the compact form

He = —E(Yl)ab{(qu_CQC —qcq°q) + Q(YI)qucqaqd}’ (4.26)

with the appropriate coefficients specified above.

In the next section we will recognise that enhancement to N' = 5 supersymmetry
is implicit here, since the above formalism follows trivially from the one for N' = 5 by
removing v°.

4.3 Coupling to supergravity

Referring to (1.29) the super Cotton tensor WKL = Wel /KL ig given by

W= QP (4.27)
The algebra for pure supergravity (1.12) then becomes

{2}, 27}Q = 216" (v")0pZaQ — ieap (2K — W) 217 Q (4.28)

and the corresponding solution for HZ, is

= (W —2K) 51Q. (4.29)

A constant solution for @ corresponds to HZ, = 0 and leads to ¢ = 1 as shown in [27] and
as implied by the formula (1.31).°

When gauging a flavour symmetry, the super Cotton tensor is expressed as a trace
over gauge indices, which clearly is compatible with the above solution for the supergravity
sector. The complete solution is then

o' =ml, + HL (4.30)

9For reasons explained in [27] the description in terms of a Clifford spinor does not admit a topologically
massive adS gravity.
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where H/, is the contribution from the gauge sector of the desired gauge group. This
causes a deformation of pf in terms of the coupling a for the groups with fundamental
representation.

We note that there is no other solution H'! than the above sum, which would both
represent the supergravity sector and generalise the gauge groups found in flat superspace.

5 N=5

Let us begin by recalling the SO(5) spin matrices (v’ )Z-j in the chiral representation

Yi=01®1
Y2,34 = —02 & 0123
vs =03 ® 1. (5.1)

These generate the spin group USp(4) with invariant symplectic form

01 0 O
-10 0 O
- — (5.2)
00 0 1
00 -1
Indices are then raised and lowered as
¢ =g,  a=d¢ei, ey =78, (5.3)

where ¢;; and ¢ are the components of . The spin matrices with upper and lower indices
are antisymmetric and related by the dualisation

Rl (D), = —2(y1)i, (5.4)
This can be used to prove the formula
201y (v = a5 (v, (5.5)
Using antisymmetry and the Clifford-algebra one derives the Fierz identity
V) (v = 878, + 2eae’ + 2678} (5.6)
Finally, the dualisation properties of the rank-two and -four elements are given by

en. Y? =vn.1,
e 1Y = =2y, 1. (5.7)
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5.1 Flavour gauging

For bifundamental scalars, the general ansatz for H ,g is
=" [A{ad e} + B{d'aa} + C{d'Ga}]
+200); [D{d'Gar} + E{d'@ras} + F{and'a}] - (5.8)

From this, vyl H!l can be calculated using (5.5). Without loss of generality, one can choose
the condition D = F = B = 0 and further A = C' = —F in order to cancel all terms which
cannot contribute to a field strength. The remaining is

yWHD = E{(¢v" 9)q — a(@v" )} (5.9)

Recalling the discussion in section 4 we the see that the possible gauge groups are the same
as for N' = 4. The solution for H' is then of the form

Hi = —EG"H(ad's — wd'a) +2(v")7 aidrg; - (5.10)

This clarifies the enhanced N’ = 5 supersymmetry of the N' = 4 Clifford spinor, for which
all of the above equations (and (5.5), especially,) still hold if we restrict the SO(5) index
to the range I =1,...,4.

5.2 Coupling to supergravity

The super Cotton tensor is W/ = %EI JELMyy e r o and the algebra for pure supergravity
becomes
(2L, 74 }q = 26" () apDad + ieap (Whyars — 2K 57 q. (5.11)

In order to obtain HZ,, the ansatz (equivalent to (1.16))
HL = XWiyBq+ YW!q+ 2Kyl (5.12)

is inserted into (1.15), which yields X = —Y = —1. The on-shell super Cotton tensor is
given by
A
wh=—-"|ov'q 5.13

in terms of which H!, becomes

A y Ao
Hl = —TG(YI\Q)MI% + Elq] (v'ql)rg;

A —1~, 1 A m = I
+1gleay’a) = 1ol (v )m
A _
— Tolav'dla + 2K (v ), (5.14)

where |.| denotes the trace over gauge indices.

For the determination of uf, we set HZ, on shell to zero and solve for K. For this,
the contraction y;HZ, has to be evaluated using the Fierz identity. This leads to terms
proportional to ¢'¢;¢,, and ¢'q;Gm, where it is implicitly assumed that ¢; is non-vanishing
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only for one flavour index which can always be achieved by a suitable choice of gauge. The
former has the form of the compensator term appearing in K, whereas the latter can be
handled as follows: since the metric ¢ consists of block diagonal 2 x 2 e-symbols, one can
choose for the compensator g3 4 = 0, leading effectively to a two dimensional object with
the metric €9y9. Then one can use the formula

A;B*Cy, = A*B;C, — A*BC; (5.15)

valid for such objects to write the problematic terms in the form of the compensator term.
With this choice we then find that |ul|~! = 3/5.

In terms of the on-shell super Cotton tensor, the supergravity equation (1.15) reads

[JH{]:A i (a1 A1 _i m= (1T
Y Hse = 16106l r + plan(dly T a) = pld" @l (v d)m

. 3 A _
— E’qZ(VIJQDin + E(Y”‘Q)k‘]”% —2Ky!q (5.16)

which is compatible with the above solution for HZ,.

Adding the on-shell ansatz for H., to the ansatz for HZl from the gauge sector, we
find no solution that reproduces this equation while generalising the gauge groups already
known from the flat case. The gauge sector can lead to deformations of uf if two gauge com-
ponents are chosen non-zero for the fundamental matter representations. This behaviour
will be treated in the subsequent sections for the theories with higher A/, where it will lead
to more interesting results.

6 N =6

This theory is interesting, on one hand due to its relation to M2-branes [6, 7] and also
because in this model the coupling to supergravity allows for new flavour gauge groups
both in the bifundamental and in the fundamental representation. To see this we first
recall the chiral representation of the spin matrices with the adjustment, that the N’ =5
matrices ¥/ with lower and upper indices are used as the chiral blocks as

we [0 e\ _ [ 0 (Z)y
(”“_Lwo>_ﬂﬁw o)
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Basic identities are

1 .. L
€M (Z N = —(£0)7 (6.2)
(1) ()M = 4558, (6.3)
(ENI( )M = 269M (6.4)

2SI (2 = 48,(2M)] (6.5)

and the dualisation of the rank two element is

errrrpoiT? = 22X K. (6.6)

6.1 Flavour gauging

The general ansatz for H' is
H'' = 24(21)7{QiQ"Q;} + B(E")™M@iQ'Qi} + C(£1)"{Q:Q'Qu}. (6.7)

Using (6.5) we calculate XV H'l in close analogy to N = 5 and find the condition A = B =
—C, so that we are left with!®

2V HN = A{(QEQ)Q + QX Q). (6.8)

This leads to the solution (cf. [17])
HY = A {QiQ'Q: — QiQ'Q1) + 2(21)7 Q:iQ*Q;} (6.9)

known from N =4 and N = 5 only this time with the absence of bifundamental Sp(M) x
SO(N > 2) gauging, since a reality condition is not possible for the complex SU(4) spinors.
This agrees with the classification of [10]. The case of Sp(M) x SO(2) (corresponding
to the results of [9] and [7]) is equivalent to the fundamental Sp(M) x U(1)° gauging.
Again, restricting the range of I gives an a posteriori demonstration of the supersymmetry
enhancement from N' =4 to A/ =5 and (with the mentioned exception) to N = 6.

6.2 Clifford spinors

In view of a possible enhancement to N’ = 7, we now analyse a possible realisation of these
models in terms of a Clifford spinor. We define

G — (Q’) . =(0'.P). (6.10)

Pi

An ansatz for H' has to involve terms with y/® vy and y*, as opposed to N' = 4 where
these terms were superfluous. Working out such an ansatz in terms of the chiral components
of the above Clifford spinor, one finds that there remain terms incompatible with the field

10With this conventional ordering of Q and @ the two field strengths in the algebra have the same
sign; however, the physical Chern-Simons currents will have opposite signs since QL7Q = —QX1/Q
corresponding to the ordering in the kinetic term.
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strengths which cannot be cancelled. In order to move around this obstacle it is necessary to
impose the Majorana condition ); = P; and further to assume the bifundamental gauging
of real SU(2) x SU(2) where

3" =€, ean (6.11)

so that the identity
_ 1 ~ 1 =
Q@i Qm) = —5Qulm Qi — 5QiQkCQm) (6.12)

applies.t!
However, this is only manifest in a real basis for the Majorana spinor. To this end we
perform the transformation
qg—U-q (6.13)

Qi L, L1 1) (@) _ 1 Qi+
(Qi> Tz (—111 111) ‘ <Q> VG <_i(Qi - Qi)> : (6.14)

This defines a real representation since the generators are block-diagonal and it holds
that( X1/ Q)* = £1/Q. Accordingly, the spin matrices are changed to

where

yI — UyIUJf
v — Uy*UT. (6.15)

These are all imaginary and antisymmetric and, with y* = y”, provide a real representation
of spin(7). The index of g, can now be raised and lowered with the metric 8,p.

The Fierz lemma is

1 1
88abSed = dadder + Vi VL — 51/%1/&3] - gYﬁKYgé] K

1 IJKL_ ,IJKL 1 IJKLM_,IJKLM 1 IJKLMN_ ,IJKLMN
+ E'Yad Yeb + g'}/ad Yeb - @'Yad Yeb ) (616)

which is equivalent to

* * 1 * *
80apdcd = 5(ad)5cb + Y[Iadﬁib +Yaq)Yeb — §Y[’a{1ﬂ£1}] - Y[ald]ycl{

1 IJK_ IJK 1 «IJ _  xIJ
— g Yad) Yeh ~ 5Y(ad)Yeb (6.17)

where the manifest symmetries are indicated. It can be derived

I[K_ LI «[K_ Llx _ KL (K, L]
Yab Yed T Yab Yed = O afeYap] = Yap Yed

1
K K K xJ KIJ,1J
85(c[bYa]d) =8cdYab — Yed " Yab — §ch Yab

K KI. I KI. I Kx_ Kx_ *
85[C[bya]d] = Yed Yab T Yab Yed — Yed Yab + Yab Yed- (618)

"This follows from Qitr(QrQm) = QxQ@m@1 + QmQrQi = QQrQm + QIQmQk.
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As suggested by (1.35) and the Fierz identities, a more than sufficient ansatz is

Hl = A 9)sGaga + Baa(Y' @)paa + Cqada(v a)s
+ D(qv'@)qp + BV 190090 + Fan(av'q)

+ Gy (Y @) + Hy™ q)o(av" ™ q)

+ (Y™ (v ) + K(¥*)u(qy"*q)
+ L(

v Y O v ) + MY Ev )@y v*q). (6.19)

Calculating vl H!), most constants can be set to zero while the others are related by
G=—-A=B=-D=J, leading to

(‘Y[JH[})(I =G [QQ(Q_YIJQ) + (WIJQ)QQ - YnganQC)] : (6'20)
Using the properties of SU(2) x SU(2), this can be written as
3 _ _
Wa =26 [aav"e) + (v Do) - (6.21)

The couplings are then —a = —b = %G and the solution reads

2 _ _ _ * = *
Hy = 39 (V' @)o@aa — aa(Y' Dvaa + (@' D — (@™ )V 0o — (¥ (v a)s]  (6.22)
which will be discovered in the next section to be identical to the solution for N = 7.

6.3 Coupling to supergravity

The super Cotton tensor is WI/KL = Lel JKLPQyy . - Since spin(6) = SU(4) has no real
representation the algebra of the supergravity sector (1.12) must be extended to include a
U(1)g field strength dual to the super Cotton tensor [17, 34], i. e.

. 1 . :
(2L, 771Q = 2i(v")apZaQ — §5a,3WPQEIJPQQ + GeasW'' Q — 2ieqp KX Q  (6.23)
where § is the U(1)R charge of Q. For HZ, we find

HL = _%WPQEIPQQ WK SQ +2K21Q (6.24)

if § = —1. The on-shell super Cotton tensor is
A o
Wi = SRl (6.25)

so that \ \
HLF = —Z\QiQk\(E’)“Ql + E|Qz-c‘giy(51)klcgl +2K51Q. (6.26)

Then, from HZ, = 0 and one non-vanishing gauge component, it follows ;¢ = 1 in agreement
with [18].
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In order to include the gauge sector we recall the condition (1.15) from the supergravity

sector in terms of scalars

S al = 2121 Q) — 205, (@

—2|QrQ’|(27Q); +21QEQIQk| — 2K 27 Q. (6.27)
The ansatz
HL, = XWpoPeQ + YWIE SrQ + 2K 27Q (6.28)
then gives
1] A

SV H = E[QiX\QiQiKEUQ)k —i(6X + Y)(£M), Q™| Qm
—i(2X - V)|QrQ7 (217 Q); +i(2X = V)|QXQIQk] — 2K 2 Q. (6.29)

Adding the corresponding ansatz (6.7) for HL of the gauge sector for bifundamental scalars,
the system can be solved again. Fixing X = —%, we find a = b, Y =i+ i%a(% — ﬁ) =
i+ i%a fnar and

HEE = (ShTa( fvum]QiQ%|Q; — 2Q:Q%Q;)
+(ZHMa (ifNM’QlQi|Qi - %fNMQl|QiQi| - QlQiQi>
+a(ZHMQ:Q' Q. (6.30)

As a result, the coupling to supergravity admits the new possibility SU(N) x SU(M) with
equal couplings a = b. For N = M these solutions reduce to the SU(IN) x SU(N) case with
independent gauge and pure supergravity sectors.
Since the compensator term in K is gauge-traced, only one entry of the bifundamental
matrix @,” can be non-vanishing. In consequence, pf is deformed in terms of @ and fy ;.
For fundamental representations we find SU(N) x U(1) where the U(1) is arbitrary (as
opposed to the flat case) with X = —1 and Y =i— i%(a;\;f —a), ie.

Hi, = (“ 0 _ a) QLRI (Z1Q*)

N
42 B B
(3 ("5 -0) J@srene
A lfla—g’ ~i o o108 IR
+<16—2( - —a>)QaQ,~(2Q)+2mQ (6.31)
and
I _ a—q° a‘Iﬁ_k_a_q2‘i Byl o
il = - (a+ 50 ) @500k - QLN er)
1 —¢*\ - _
+3 (a + aNq> (Z10%)Qk Q5. (6.32)
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The sum is

H HSG + Heg = (QQEIQ’B)Q (_2a - i)
+QLQ1(21Q%)(~a)

A
+ <16 + a> QLM ZTQ%) + 2K 21Q°. (6.33)
This Yang-Mills contribution implies a deformation of ©f in terms of @ and N. For the
particular example a = —% one has
IA‘iﬁ‘Ia )“ia‘lﬁ SIPal
H' = 2QaQ/(27Q%) = 15QaQ7 (27Q7) + 2K 2°Q". (6.34)

This can be used to obtain different values for pf depending on how many of the SU(NV)
components are chosen to be non-zero. One can take them as Q°, = v8?, (as in [25] treating
N =8) where a = 1,...,p < 4. This leads to the formula

|l = ']2) — 1|. (6.35)

7T N=7

This model is interesting since it can be coupled to gravity only after gauging the bifund-
mental flavour symmetry. On the other hand, coupling to gravity leads to new gauge
groups in the fundamental representation. In the previous section a real representation of
spin(7) was constructed from a reducible Majorana representation for N' = 6. Explicitly it
is given by

=0 ®1®o

= —03® 01 ®o2

=—01RQ02Q 03

—03®02®1

=-—01RQ02Q0;

=03 ® 03 Q09

=0 ®1®I1. (7.1)

~2\]~Q\2~2\2~2~2
I

It can be read off
(YDa(Y)e)d = Saadoe — Sa(pdeya- (7.2)

Using the Fierz lemma

884cdbd = Saddbe + Vivi. — fvﬁévie’ - gvéﬁKvig’ K (7.3)
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one can derive the useful identities!?

YEEAVEE = 6(8a18ca — 88:(adb)d)
Vo Ve = SV — Yo Ve
Var Ver | = ~88(c(a¥ifi
—80(caYtg) = SedVhy — ;vﬁif Tyl
—881cia Vil = —VA iy + Ve Y
ViV EE = —vESea — 48 (o Vi + Y (e Vi
VEYERE = 88wavih + 8Vl
Yed M var MM = 488 (a(cYap,) (7.4)
The spin matrices are related by the dualisations
gSPQRKLM.,  _ 9i\ SPQRK
gSPQRKLM,, .\ _ 3\ SPOR (7.5)

7.1 Flavour gauging

Noting that there is no closed form for the contraction yébygd we need to include more
terms in the ansatz for H' than before. As suggested by the off-shell form (1.35) and the
Fierz identities it is sufficient to write

H({ = ’Yéb [A{QbQCCIC} + B{Qc@b‘]a} + C{QCQCQI)H
+ v, [D{4cGaga} + F{qcGaqa} + F{qadeqa}]
+ YL v [Glactan} + H{wGeaa}] - (7.6)

Evaluating yY H'!, one is forced to set G = —D, H = —F and E = 0 in order to cancel

the terms involving ygyﬁ and further to choose C'= H, A = —G, G — H = B. Finally,

we take H = 0 without loss of generality. This leads to

Y HD), = G{av" D) ga + 4@ 9) — VL apGage}- (7.7)

The last term can only be dealt with in the case of real SU(2) x SU(2) so that

3 _ _
YWHT = 26 [(ovV D) + alayq)] (7.8)
Then one can take Geg = —%a = —%b resulting in
Hl_gal[—i— 2 7o 2 K K. - 7.9
a = 30Vap [@dede — 4eGble] + 30Veqdedada — 30V ed Vabdedady (7.9)

which is the same as for the N/ = 6 Majorana spinor if the value I = 7 of the free index is
excluded and the term in the contraction with K = 7 is extracted in terms of y*. There is
no solution for a fundamental gauge group.

12The first one can be used to calculate puf with the formula given in the beginning.
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7.2 Coupling to supergravity

The super Cotton tensor is W!/KL = %F,UKLSPQWSPQ, so that

I 1 i
WHG =2 (—SWsva”SPQ + 4Kv”> 2
The ansatz
Hi, = XWicay™ Mg + YW ™y g + 2Ky'q
leads to

YWh = ~XWspqy' /5P + (Y — 3X)WPQUy/IPQq 1 oy wl/Fy pg.

This time, there is no solution for H' in this off-shell form. On shell, with

A
IJK _ 2 IJK -~
W = —iclay 7l
one finds
1 A
—sWH kg = = lla@@y™ o) + lae(v" ahae + (v 10)elge + laeal (v a)c]
A
+ 5 [0V o) + e ah (o).

and for the ansatz

i ) .
Hio = =4 (Y = 3X) [la(aly" o) + lacal (v"q)c]
Zi
— 4= (Y +3X) [lae(v'a)ge + (V']9)@clac]

~iA
2Y —— |qee| (v!
+2Y — o laedel (v a)
+2Kv'q,
implying
—iA
WHIL = ~422( = 33) [0V @)@y + a0V )l a).

—i\
+ 4T6(Y +3X) [lee(v"al)ge + (V' 0)clqc]

—i\,
- QYF‘QCQC‘(‘YIJQ)
— 2Ky”q.

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

Also here, the coefficients cannot be chosen to reproduce the supergravity term, except in

the absence of flavour indices where there is a solution with X = 0 and Y = —% (which

implies |uf|~1 = 2).

For a flavoured scalar, we add the ansatz HZ, for the supergravity sector to the ansatz

HL for the gauge sector and evaluate again XYY H'l. For bifundamental matter it turns
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out that real SU(2) x SU(2) remains the only possibility. In this case the gauge traces can
be turned into matrix products in the bifundamental indices so that

1
_ §WIJKLYKL g=—

1 B _ 1 B
[zq(qv”q) + (Y Dge + v 9)Geqe — 2(qv”q)q}

+ 2 [0 @ e + .0 (v o) (7.17)

> 0o >

and
yWHI = —8%(1/ —3X) [(v[‘]q)(ch/”fn + qc(v[‘]é)(v”q)c}

i) ) ) i
+8——(Y +3X) [¢c(v"' Dac + v @)Geqc] — 4Y —=qcac(v'7q)

16 16
) 3 3 ) .
- A" q)qeqe + G <2q(qv] Tq) + 5(%/[ 9 — ! Jq}chc>
—akylg (7.18)

where we have set some coefficients to zero without loss of generality and further G =
B = —D. It can be seen that the field strength terms of the gauge sector also have to
contribute to the supergravity sector. This leads to the relation for the couplings a —b = %
and a + b = —3G. Fixing the remaining constants (e.g. X = =Y = —é, A= —3—”\2 -G)
finally leads to the solution

i =55 (20 3)] @oaa s @ion + 5 -5 (20 3)] wtv'an
- %q(qvlq) - % (2a - 2) (" v"a)
+2Kvlq. (7.19)

Giving an expectation value to one of the spin(7) components implies |uf| ™1 = 2.
Regarding fundamental gauge groups, it is expected that SU(N) is a possibility at least
for N = 2 since a or b can be set to zero in the above bifundamental gauging. Indeed, for
SU(N) x U(1) it is found a solution where the coupling is completely fixed by the gravity
A

¢ and the charge is constrained as ¢* = A (N —2). The corresponding

coupling a = — i

solution for H' reads

A ~
1} = =2 [aa(@Y'45) + 40" (V' 09)e + d6(v' %))
A _ _ _
+ £ [ (i — (0 as)aas — @V i) (vas) + (aav"F 0 (v s)]
+ 2K’YIQ5. (7.20)
For SO(N), a field strength term can be provided entirely by the supergravity sector, with
a= —% and
r_ A I Ar I
Hj = 5 4a(40¥"48) + (¥ da)dads + 2Kv"gp. (7.21)
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Then, also spin(7) or G2 can be gauged by employing the invariant rank-four tensor in the
ansatz for the gauge sector leading to the term

GCanal(@®Y" q)a) + a5 (v &) = vi! 65 a1ad) = 3GChans(a™Y" 0)a)-  (7:22)
Then G = —%6% and
Hj = %qa(qaqu,ﬁ) + %(qua)%z% + %Cﬁava[(q“vlq”)q‘s — (@Y ]
+ 2Ky q5. (7.23)
8 N=8

The spin matrices of N' = 7 are taken as the chiral blocks (X7);; and (£7);; for N' = 8,
namely
=3=1
22,...,8 _ _22,...,8 _ i;)'/l,...,7 (81)

so that (21)T = 2!, We note the “triality relation”!3

(ED6(E1)5) = 8i;55;. (8.2)

It indicates that interchanging the role of the SO(8) indices with that of one of the spin(8)
matrix indices specifies new spin matrices solving the Clifford algebra. For the superspace
it is then formally possible to let the spinor coordinates transform under one of the spin(8)
representations while the scalar multiplet carries an SO(8) vector index. The resulting,
algebraically equivalent formalism was used for the BLG model, especially. We will repeat
the following treatment in this “trialised version” in the appendix.

8.1 Flavour gauging

The ansatz for H'! is very similar to the one for N' = 7 and the relevant Fierz identity
needed to calculate SV H' is

(DK (2715, = A8 (2 )y (8.3)

which may be derived by enhancing the N' = 7 identities to include X! = £ = 1. The
general ansatz for H' is then

HE = (205 [A{QrQiQi} + B{QiQrQ;}] + C(ZM)5(25) 1 {QiQ;Qu}- (8.4)
It implies

(B HD),, = —2I [A{Q1Q:Qi} + B{Q:iQ1Q:i}] + C{QEZY Q)Qm + Qum(QE Q)
+ Qi(EIJQ)in - EélJQkaQl - (EIJQ)szQz} (85)

13 A list of many identities can be found in [13].
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Again, one finds the sole possibility of real SU(2) x SU(2) and

Hj, = §a<21>,;k [QkQiQ: — QiQkQi] - ga(zm)ij@%k@i@j@k. (8.6)

The equivalence to the solution with explicit SO(7) covariance is totally obvious. For a
fundamental representation there is no solution.

8.2 Comment on supersymmetry enhancement

This concludes a line from the /' = 4 to the N' = 8 chiral theories. Supersymmetry
enhancement in this framework has two aspects. The first one, from the N = 4 Clifford
theory via A" = 5 to the N' = 6 chiral theory and similarly from A/ = 6 Majorana to N’ = 8
chiral, means that one can extend the index range of the SO(N) vector index I in the
supersymmetry transformations

20 =151 4,
1
P05 = (V)apZE! 2,Q + 5saﬁHf (8.7)

without changing the form of these equations, i.e. the form of H' in particular. The second
one concerns the critical transition from A = 4 chiral to N/ = 4 Clifford and similarly for
N = 6. Here, it is crucial whether it is possible to construct a Clifford doublet from
two chiral spinors while keeping the structure leading to the allowed gauge symmetries.
For N/ = 4 this is naturally the case, which is owed to the two-component properties of
the chiral spinors and to the fact that both spin(4) and spin(5) (i.e. spin(4) Clifford) are
symplectic groups. A different case occurs from N = 6 chiral to N' = 6 Clifford. Due to the
complexness of spin(6) = SU(4) it turns out that a doublet of two SU(4) spinors has very
different algebraic properties than a single spinor. The only case where one can implement
a gauge symmetry is real SU(2) x SU(2) which can be realised by imposing the Majorana
condition on the Clifford spinor. This real representation then extends to A" =7 and 8 as
discussed above.

8.3 Coupling to supergravity
The super Cotton tensor is now self-dual and the supergravity equation continues to be

1
sl = g WHEE Q- 2K 21 Q. (8.8)

The ansatz
HL, = XWIKIM g 0,Q + 2K 21Q (8.9)

provides no solution off shell since
sV gl = xwlIKLM| g IKLM gy 4 sy l7IM 5\ 0 — 2K 517 Q). (8.10)

In terms of the on-shell super Cotton tensor

A _
WIJKL _ _T6|QEIJKLQ| (811)
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the super Cotton term reads
WKL S0,Q = 210iQI(PQ) - Sl ahe: - SV 1Q)Qie;
- 2le@s7Q) - Sl Q) (3.12)
while the ansatz becomes
HL, = X2 2GS QDQ, + 245 Q)IQ: - 610G (5 Q)]
+2K51Q (8.13)

and implies

S EL = X 2 (2415 Q)Q: + 245 IQ)QUQ: ~ 61257 Q)
— 2Kk 31Q. (8.14)

Assuming an unflavoured scalar leads to X = ﬁ and
I A o T I
Hy, = SEQ 2N+ 2K Q. (8.15)

Taking HZI, = 0 leads to |uf|~" = 3.

For a flavoured scalar we again add the on-shell ansatz of the gauge sector to the one
for the supergravity sector. It becomes apparent that for bifundamental matter the only
possibility remains real SU(2) x SU(2) in which case

_%WUKLEKLQ — %Qi()i(ﬂ”@) - gQi(ZIJQ)Qi - %(EUQ)Qin‘
A

- 20@57Q) - Q5" Q) (3.16)

and
sV Hl = X% [48Q:(277Q)Q; + 36(27 Q)Q:Qi] — 2K X" Q
- [A(ZQ)QiQi + BQi{(Z" Q) Q]
+ gC (REQ)Q+QQXQ) + QLM Q)Q: — (27Q)QiQi]  (8.17)

where the gauge traces have been rewritten as matrix products in the bifundamental indices.
One finds a solution where the couplings must fulfila + b= —3C and a — b = % and

i = 2 | SO0+ (000 + 3051000 - (' Q)
- % <2a - 2) (271,,Q:Q;(5%Q) + 2K X1 Q. (8.18)

This can be rewritten in terms of traces which gives |uf|~! = 3 for one non-vanishing
spin(8) component.
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For a fundamental representation at least SU(2) should be possible, as a or b can be
set to zero in the above bifundamental gauging. Indeed, more generally for SU(N) x U(1)
it is found a = —% and the U(1) charge obeys ¢* = (N — 2)%. The solution then is

Hh = 2 [101(51Q%)Q) — QAQP(51Qa)] + S(Q 3 Q) (55 Qu) + 2K 5 Qs (819)

For SO(N), the field strength term is contained in the supergravity sector with the coupling
a= —%. It follows

A _ o o _
Hjy = 2 [4(2'Qa)Q4LQ5 ~ QuQi(£'Qp)] + 2K 51 Qs. (8.20)

This leads to the formula already discovered in [25]
4
~1
pl] ™t = ’ - 1’ 8.21
|| 5 (8.21)
where p < 8 is the number of non-vanishing entries of the matrix Qf =

diag(v,...,v,0,...,0). Finally, for spin(7) or G5 one has

Ao o \ )
= = [451Q0)R4Q% — QLQL(Z'Q8)] — £ Crns (57525, Q0 Q) Q1

+2K51Q5. (8.22)

I
Hip

9 Conclusions

In this paper we have elaborated on the on-shell superspace formulation of Chern-Simons-
matter theories with and without coupling to supergravity, introduced in [17]. The strength
of this formalism is that the classification of such theories is to a large extend reduced to
representation theory of the spin(N') R-symmetry group and therefore provides a unifying
view on theories with different numbers of supercharges. Moreover, it readily provides the
matter equations of motion useful for model building.

While confirming (and correcting some) results in the previous literature and revealing
the relation between models with different numbers of supercharges within our construction,
we completed the classification of such models by a number of new consistent theories
coupled to supergravity, for ' = 6,7 and 8 in particular. We hope that some of these
models will be useful in string/M-theory.

We also found a plethora of new topologically massive gravity models with enhanced
supersymmetry and determined the masses of the graviton in these theories. Perhaps, this
can be a good starting point for analysing the non-perturbative consistency of topologically
massive gravity.

A N = 8 in the trialised version

Pure supergravity. The supercoordinates now transform under spin(8) and the scalar
multiplet under SO(8). Hence,

{20, 733Q" = 2167 (1) 03 ZuQ” + ieagW M NuQ" + dieas KN QT, (A1)
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where

1
M@ = §(EIJ)leJ- (A.2)
An antisymmetric tensor is converted to a spinorial tensor as*
Lis1s) Ay = A A3
=1 (E)i AL = Ay (A.3)

The derivatives of the scalar and spinor fields are

DeiQ =i(87); 4% (A4)
and . . . )
Doy = (V)ap(E)? 2°Qr + SEastl” (A.5)
where H must fulfil
R iy
(HEI)[W] _ §szkl(E]J)leJ + 2K(EIJ)Z]QJ. (A6)
The self-dual super Cotton tensor can be expressed by a symmetric and traceless rank-two
tensor [17]
1
Wijkl = E(EKP)[U‘(ELP)M}CKL (A7)
leading to
a1 g
(HZI)[ZJ] _ 5C«z?([I(ZJ]K)ijQJ + 2K(EIJ)Z]QJ‘ (A.8)

The exclusive ansatz for Hﬁ is
Hj; = A(2%)50k,Q7 — 2K(27)5Q, (A.9)

implying
(TH); = —ACKURTIEQ; + ACKU S DKQ ;oK (217)9Q,. (A.10)

This means that, thanks to the second term, the algebra is not consistent if the super
Cotton tensor is off shell. On shell, due to its symmetry and tracelessness, the super
Cotton tensor is of the form [17]

Cry=C (Q(IQJ) - ;51JQKQK> : (A.11)
For the above expressions it is found
CKIIEQ, — _%CZKJ (QIQK 4 QKQI) Qs — éCZJIQKQKQJ' (A.12)
Assuming no flavour gauging so far, one finds the solution A = —% and
Hj; = —%C’(EK)ﬁQKQJQJ —2K(27)5Q.. (A.13)

"“In agreement with Nk Q1 = —287x Q1.
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Setting H;; = 0 leads to the relation
-1 3 A J S

where C\ = C.

(A.14)

In order to specify the constant C, the equation of motion for the SO(8) gauge field

has to be determined. The third component of the super Cotton tensor in the trialised

version is given by
_ EFU — U _ vk vl Wz]kl
9 ap = Wap = 5o ViaVB)

The spinor super Cotton tensor is on-shell expressed by C!/
C

T (2O (ETMQ Q).

Wijkl _
16

It can be calculated

ViV QuQ = 21(v)as (25X Q7 VaQik

leading to
—1 C .
z] _ o( 5L zgéJ 4 ZILZK(IE\JL\ igl nJ) v,
and after further elaboration it can be found

i C a ij
Weg = E(’y )as(Z7FVIQ 1V Q.

Comparing the kinetic term (omitting the term quadratic in By)

1 1 . o
= 52°Q'%.Qr = (B (¥");Q10.,Qs = —ji;BJ
with the equation of motion
92 .
N = jd

yields C' = CX = X and thus |[puf|~! = 3.
Flavour gauging. The supersymmetry algebra for a gauge group F' x G is
{25, 75}Q" =187 D63Q +1easFIQN +1ie0sQ" GY.

The condition for H reads

(LTH)j = FiyQ' + Q'Gyij = a(2™ )i {QrQrQ"} + b(£5);;{Q"QkQL}

The ansatz is'®

H=AZMMIQrQrQu}
+ 28 (B{QQKkQu} + C{QKkQQs} + D{QQ QK }).

15 An off-shell ansatz cannot be solved.
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)



It is found immediately B = C'= D = 0 and thus

STH = A(ZMMQrQLQm} + XM H{QkQrQr} — FM{QQrQu}). (A.25)
The third term can be dealt with if F' x G is taken to be real SU(2) x SU(2) [17]. The
solution is then —a = —b = 3 Acs and (cf. [17])
_ 2 _ _
H = —2aZ M QrQrQu- (A.26)

For a fundamental representation their is no solution.

Coupling to supergravity. In the case of gauge transforming scalars, Hg; cannot be
solved separately. The two sectors must therefore be added in advance

TH = aSKHQKQrQ1} + bEMM{QrQrQu)
- i)\EKJtr(Q(IQK))QJ
+ %)\ZIK (tr(Q(]QK))QJ — itf(QJQJ)QK> (A.27)

SH = A ({QrQkQL} + {QkQLQr} — {QkQrQL})
+ 2 (B{QQkQs} + C{QKQQ s} + D{Q,Q QK })

+ X ALK <tr(Q(KQJ))QJ - étr(QJQJ)QK) : (A.28)

This time, the D-term is needed to fix the supergravity sector. Still, SU(2) x SU(2) is the
only possibility, in which case it can be manipulated as

STH L —aZ5QrQrQr — bX"™MQrQrQum
+ %)\EKJ(QIQKQJ - QrQsQr)

1 ) 1

+ 1)\2”{ <tr(QKQJ)QJ - 4tr(QJQJ)QK> (A.29)
3 _ _
YIH = 5AC;;EKL(QIQKQL + QrQrQr)
+ Dés S Qrtr(QuQy)

_ 1 _
+XARTE <tF(QKQJ)QJ - StT(QJQJ)QK) : (A.30)
One can fix X = i and D = —3%. The coupling constants fulfil a — b = —% and

a+b= —3Acsz (see also [17]). Then H = Heg + Hyg with

Hgs = —%(a +0) M Qe QLM — %EKQKU"(QJQJ) (A.31)
and . )
Hy, = ZAEK (tr(QKQJ)QJ - 8tr(QJQJ)QK> +2K 55 Q. (A.32)
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In order to solve H = 0 for K, only one SO(8) component can be non-zero. This leads
again to |ul|~ = 3.
One possibility for a fundamental gauge group is SO(N). In this case,

S'H = D £ QK Q5Q:

£ XADTE <Q%Qi@é - QIQIQf ) (A.33)
2TH = 20550 Q%Q5Q!
+ ATIQIQEQL + 'K (Q?Qf Q) - 1Q3QIQk ) . (A.34)
The conditions are a = —% and Dcl—%/\ = —1—16)\. A choiceis X = i and D¢y = —3—12)\.
Then
1 = 2 K05 Q1Q% - Q5QIQ) + 2K ZF QK. (4.35)

This formula can be used to obtain different values for pf depending on how many of
the SO(N) components are chosen to be non-zero. Following [25], one can take them as
Q! = v8! where o =1,...,p < 8. One arrives at the formula (agreeing with [25])

|l ~t = ’j; - 1'. (A.36)
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