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Introduction and summary

Superconformal Chern-Simons theories play an important role as conformal field theories

describing aspects of M2-branes in string theory, as was suggested in [1] and became clear

with the constructions of the BLG [2–5] and ABJM [6, 7] models with gauge groups SO(4)

and U(M) × U(N), inheriting N = 8 and N = 6 superconformal symmetry respectively.

This motivated the construction and classification of other Chern-Simons-matter theories

for various gauge groups, displaying a certain amount of supersymmetry or vice versa. The

first of these models were the U(M) × U(N) and Sp(M) × O(N) theories with N = 4

supersymmetry of [8]. Upon further examination they were found to have also enhanced

N = 5 and, for Sp(M) × O(2), N = 6 supersymmetry in [9]. A neat group theoretical

classification of gauge groups leading toN = 6 supersymmetry followed in [10]. The general

superconformal gaugings with N ≤ 8 where then derived in [11] by an approach starting

from gauged supergravity. Subsequently, these findings were explained as constraints on

possible gauge groups from manifest supersymmetry through superspace approaches for

N = 6 and 8 in [12, 13] and [14], and similarly for N = 4 and 5 in [15] and [16]. In

this work we will reproduce these results for all cases with N ≤ 8 by the superspace

method initially employed for N = 6 and 8 in [17]. This approach, which is universal for

all N , focuses on the scalar multiplet transforming under spin(N ) and determining the

corresponding on-shell field strengths. The analysis therefore deals mainly with properties

of the respective spin matrices which can be shared or bequeathed between different values

of N . The simplicity of this method allows direct insight into the mechanism of the

supersymmetry enhancement noticed in some of the aforementioned references.

An interesting generalisation is the coupling of these theories to superconformal gravity.

This was achieved in [18] for N = 6 (ABJM) and for N = 8 in [17], the latter giving rise to

a new theory with SO(N) gauge symmetry existing only in the presence of the supergravity

sector. The superspace point of view was enabled by the invention [19] and elaboration [20]

of three dimensional N -extended curved superspace and subsequently by the construction

of off-shell actions by the formulation of conformal superspace [21, 22]. Extending the

results for N = 6 and 8 in [17] we will analyse the constraints for possible gauge groups

in curved superspace for 4 ≤ N ≤ 8. This will lead to some new models for N = 6, 7

and 8, in particular. The following table summarises these findings. Focusing on the

situation in flat superspace we find a collection of admissible gauge groups for N = 4

constituting, in a sequence of increasing N , the first occurrence of a restriction on possible

gauge symmetries for fundamental and bifundamental matter (we note in passing that

the spin(7) also implies G2 gauging, as the subgroup preserving some fixed compensator.)

The same restriction appears for N = 5. This can be understood by noticing that an

N = 4 Clifford representation naturally exhibits the same properties as the chiral one,

since the left- and right-handed components transform under different factors of spin(4) =

SU(2) × SU(2), while on the other hand, the N = 4 Clifford representation just coincides

with an implementation of the N = 5 spin group USp(4). Moving to N = 6, many

properties of the N = 5 matrices as the chiral blocks are taken along; however, the spin

group SU(4) now being manifestly complex prevents the gauging of SO(M) × Sp(N) and
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fundamental bifundamental

N = 4 SU(N)a ×U(1)a−a/N U(M)a ×U(N)−a

Sp(N)a ×U(1)−a SU(M)a × SU(N)−a ×U(1)a/N−a/M

Sp(M)a × SO(N)−a

spin(7)a × SU(2)−a

+SG

N = 5 SU(N)a ×U(1)a−a/N U(M)a ×U(N)−a

Sp(N)a ×U(1)−a SU(M)a × SU(N)−a ×U(1)a/N−a/M

Sp(M)a × SO(N)−a

spin(7)a × SU(2)−a

+SG

N = 6 SU(N)a ×U(1)a−a/N U(M)a ×U(N)a

Sp(N)a ×U(1)−a SU(M)a × SU(N)a ×U(1)a/N−a/M

Sp(M)a × SO(2)a

+SG SU(N)×U(1) SU(M)a × SU(N)a

N = 7 SU(2)a × SU(2)a

+SG SU(N)−λ/8 ×U(1)(2−N)λ/16 SU(2)a × SU(2)a−λ/8

SO(N)−λ/16

spin(7)−λ/16

N = 8 SU(2)a × SU(2)a

+SG SU(N)−λ/4 ×U(1)(2−N)λ/8 SU(2)a × SU(2)a−λ/4

SO(N)−λ/8

spin(7)−λ/8

Table 1. Allowed gauge groups for the (spin(N )-chiral) scalar compensator in flat space and

additional groups in the presence of supergravity. Subscripts of the group factors indicate the

relative coupling constants (or restricted charges), where for N ≥ 6 the Chern-Simons currents

corresponding to the right-acting factors will be coupled with opposite sign in the action. Some of

the groups with fundamental representation correspond to limits of bifundamental gaugings.

spin(7)×SU(2) which rely on a reality condition for the matter fields possible in the previous

two cases. The nature of an N = 6 Clifford spinor is quite different from that of an N = 4

one. Its left- and right-handed components transform under the SU(4) representations

complex conjugate to each other and appear together in the description in terms of a chiral

spinor, whereas for N = 4 the two chiral components formed two separate theories. For this

reason the gauge groups of the N = 6 chiral matter cannot be expected also to be present

for a Clifford spinor. It rather turns out that the only possibility is real SU(2)×SU(2) for a

Majorana spinor whose chiral components are complex conjugate to each other. This is then
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the requirement for enhancement to N = 7. Finally, this realisation of real SU(2)× SU(2)

is transferred to N = 8 where the N = 7 spin matrices serve as the chiral blocks.

The additional gauge groups appearing in curved superspace do not show a clear

pattern, since the super Cotton tensor which now contributes is of varying rank leading to

a different behaviour for each N . The liberation of the U(1) charges in N = 6 is accounted

for by the presence of the U(1) R-symmetry factor in supergravity. The similarity between

N = 7 and 8 is supported by the existence of real and orthogonal representations of their

spin groups. In this conformal case, the gravitationally coupled N = 7 and 8 theories

are indeed different (although they admit the same gauge groups), which may be worth

pointing out in view of results for Poincaré supergravity (e.g. [23]).

An interesting application of the gravitationally coupled theories is the realisation of

topologically massive gravity (TMG) [17, 18, 24–28]. It was noted in [18] for N = 6

(ABJM) that the product of the Chern-Simons coupling and the anti-de Sitter radius is

fixed to be µℓ = 1, the chiral point of [29]. For N = 8 with SO(N) gauge symmetry it was

found in [17, 25] that |µℓ|−1 = 3 for one non-vanishing component of the compensator and

a formula for p components where some of the values correspond, perhaps accidentally,

to various interesting TMG solutions. The conjecture that µℓ is always fixed in such

a superconformal description with N ≥ 4 was confirmed in [27]. The method there is

algebraic and relies on the formalism of N -extended superspace [19, 20] and conformal

superspace [21, 22] and was used to show that µℓ = 1 for N = 4. It will be employed

here to determine the values of µℓ for 4 ≤ N ≤ 8 and all possible deformations due to the

presence of additional gauge degrees of freedom and couplings. The result agrees with and

extends the values obtained so far in the literature.

In section 1 we give the preliminaries for curved superspaces, scalar multiplets, topo-

logically massive gravity and Chern-Simons gauging. In the subsequent sections we analyse

each model with N -extended supergravity, leading to the results outlined above, as well as

obtaining on-shell equations for the gauge and supergravity sectors.

1 Superconformal geometry and scalar compensators

While Chern-Simons-matter theories can be viewed as genuine rigid supersymmetric the-

ories on their own right it is sometime convenient to interpret the matter fields as com-

pensators for the superconformal geometry. One benefit of this is that one can use super-

conformal calculus as we do below. Another feature is that it straightforwardly leads to

topologically massive supergravities. In this section, as a preparation for the classification

of models in the remaining sections, we review the superconformal approach.

1.1 Conformal superspace and anti-de Sitter superspace

N -extended superconformal geometry can be formulated in terms of N -extended super-

space [19, 20] (see also [17]), a curved supermanifold with locally gauged Lorentz and SO(N )

R-symmetry involving super-Weyl invariant constraints on the torsions, or conformal su-

perspace [22], where the whole superconformal algebra is gauged as the starting point.
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The first formalism, extensively applied here, was used in [30] to describe anti-de Sitter

superspace, where the Lorentz vector fields and the covariant derivatives of the scalar fields

forming the torsions are assumed to vanish. In this case, the algebra of spinor derivatives

reduces to

{DI
α,D

J
β } = 2iδIJ(γa)αβDa + iεαβ

(

W IJKL + 4δK[IKJ ]L
)

NKL + 4iKIJ
Mαβ (1.1)

where NKL and Mαβ denote the R-symmetry and Lorentz generators respectively. The

totally antisymmetric tensor W IJKL is the super Cotton multiplet contributing for N ≥ 4

and KIJ = K[diag(1, . . . , 1,−1, . . . ,−1)]IJ ≡ KkIJ belongs to the compensating Weyl

multiplet. If we denote the number of the negative entries by q, this is referred to as

a (p, q) adS superspace. Furthermore, the commutator of two vector derivatives can be

related to the cosmological constant as1

[Dm,Dn]| = 4K2|Mmn = ℓ−2
Mmn. (1.2)

In conformal superspace, on the other hand, the algebra of covariant spinor derivatives

reads

{∇I
α,∇J

β} = 2iδIJ(γa)αβ∇a + iεαβW
IJKL

NKL, (1.3)

where the special conformal curvatures have been omitted, since those and all higher-

dimensional field strengths are expressed by derivatives of the super Cotton tensor W IJKL.

In the present analysis this formalism will only be used to identify the physical dimension-

two SO(N ) field strength,

F IJ
(αβ) =

−i

(N − 2)(N − 3)
∇K

(α∇L
β)W

IJKL|. (1.4)

Restricted to adS superspace, this formula applies to the geometry described by DI
α, because

the extra gauge fields are assumed to vanish.

1.2 Scalar on-shell multiplets and equations of motion

The matter fields transform under spin(N ), whose generators are subject to the Lie algebra

[N IJ ,N KL] = 4δ[K[I
N

J ]L]. (1.5)

The Clifford algebra of spin matrices

γIγJ = δIJ + γIJ (1.6)

provides a solution as

N
IJ = −1

2
γIJ . (1.7)

1The right-hand side follows from expressing the 3d Riemann tensor by the Ricci tensor which is deter-

mined, on shell, by the cosmological constant via the Einstein equation.
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From the point of view of irreducible representations, the most natural realisation of the

spin matrices γI for N = 2m and N = 2m+ 1 is given by the chiral representation, which

can be constructed iteratively as

γ1 = σ1 ⊗ 1⊗ . . .⊗ 1

γ2,...,2m = iσ2 ⊗ iγ̃1,...,N−1

γ∗ = γ2m+1 = −imγ1 · . . . · γ2m = σ3 ⊗ 1⊗ . . .⊗ 1 (1.8)

where γ̃ generate the N = 2m−1 dimensional Clifford algebra and each element consists of

m factors of 2×2 matrices. For even N = 2m, the generators of spin(N ) are block-diagonal

and commute with the matrices

PL/R =
1

2
(1± γ∗) (1.9)

which are projectors on the irreducible representations. These are called left- and right-

handed and transform under the generators provided by the chiral Clifford algebra

Σ IΣ̄J = δIJ + Σ IJ

Σ̄ IΣJ = δIJ + Σ̄ IJ (1.10)

where

γI =

(

0 Σ I

Σ̄ I 0

)

. (1.11)

In this case, fields transforming under the chiral generators will be referred to as chiral

spinors, whereas those transforming under the reducible generators will be called Clifford

spinors.

The algebra (1.1) acting on a Lorentz scalar transforming under spin(N ) reads2

{DI
α,D

J
β }Q = 2iδIJ(γa)αβDaQ− i

2
εαβ

(

W IJKLΣKL + 4KL[JΣ I ]L
)

Q. (1.12)

In terms of on-shell superfields, the spinor derivative of the scalar is [17, 27]

D
I
αQ = iΣ IΛα. (1.13)

In order to obey the supersymmetry algebra, the derivative of Λα must then be of the form

D
I
αΛβ = (γa)αβΣ

I
DaQ+

1

2
εαβH

I (1.14)

where HI is subject to the equation

Σ [JHI] = −1

2

(

W IJKLΣKL + 4KL[JΣ I]L
)

Q. (1.15)

The general ansatz for HI is

HI = AW IKLMΣKLMQ+BWKLPQΣ
IKLPQQ+ 2KIJΣJQ (1.16)

2In the following, Σ I is written for spin matrices and may be replaced by Σ̄ I or γI where appropriate.
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where A,B are constants to be determined using properties of the spin matrices. As will

be shown in the corresponding sections, for N ≤ 6 this is possible with the supergravity

sector being off shell. For N = 7 and 8 it is only possible if the super Cotton tensor is

expressed on shell by matter fields (and further, if these are flavoured a solution only exists

only in the presence of the corresponding gauge sector).

Being equipped with a solution for HI , the equation of motion for the spinor field Λα

can be obtained by closing the supersymmetry algebra. From the parametrisation (1.14)

it follows

{DI
α,D

J
β }Λγ = Σ (I

D
J)
(αDβ)γQ− Σ [I

D
J ]
[αDβ]γQ− 1

2
εγ(αD

(I
β)H

J) +
1

2
εγ[αD

[I
β]H

J ]. (1.17)

Commuting the derivatives and keeping only the scalar torsion one finds, using [DI
α,Dβγ ] =

−2εα(βεγ)δK
IJDδ

J [30],

{DI
α,D

J
β }Λγ = 2iδIJDαβΛγ − 2iδIJεγ(α /DΛβ) − iεαβΣ

IJ /DΛγ

− 2iKL(IΣJ)ΣLεγ(αΛβ) + 3iεαβK
L[IΣJ ]ΣLΛγ

− εγ(αD
(I
β)H

J) − 1

2
εαβD

[I
γ HJ ]. (1.18)

Then it can be read off (with, schematically, H̃Q = H)

/DΛγ = − 1

N

(

K I
I +

1

2
H̃IΣ

I

)

Λγ . (1.19)

Acting with DJ
β , antisymmetrising in βγ, and discarding non-scalar background fields,

finally leads to the scalar equation of motion

ND
a
DaQ = KJLΣJHL − 1

2N ΣJ

(

K I
I +

1

2
H̃IΣ

I

)

HJ . (1.20)

1.3 Topologically massive gravity

The action of topologically massive gravity with cosmological constant reads [31]

S = − 1

κ2

∫

d3x e
(

R+ 2ℓ−2
)

+
1

4µκ2

∫

d3x e εmnl

(

ωab
mRnl,ab −

2

3
ωab
mω c

n,b ωl,ca

)

. (1.21)

The superconformal generalisation of this action involves the gravitinos, auxiliary compo-

nents from the super Cotton tensor and a Chern-Simons term for the SO(N ) gauge fields

which is given by [22]

1

4µκ2

∫

d3x e εmnl

(

−2BIJ
m Fnl,IJ − 4

3
BIJ

m B K
n,I Bl,KJ

)

. (1.22)

The Einstein-Hilbert term of the TMG action can be realised by a conformal compensator

φ with the action

S =

∫

d3x e

(

−1

2
(Daφ)(Daφ)−

1

16
R|φ|2 + λ(|φ|2)3

)

(1.23)
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where the derivatives are covariant with respect to SO(N ) and the trivially acting Lorentz

group (and possibly other gauge groups)

Da = Ea +
1

2
BIJ

a NIJ +
1

2
Ωmn
a Mmn + . . . . (1.24)

The correct Einstein-Hilbert term is produced if the compensator φ is chosen such that

|φ|2 = 16κ−2, (1.25)

which is possible by a Weyl transformation.

With this coupled compensator, the super Cotton tensor obtains a non-trivial on-shell

equation of motion. It can be assumed that

W IJKL = cλQ̄Σ IJKLQ, (1.26)

where λ = µκ2 is the Chern-Simons coupling constant and c is a combinatorial number

fixed below. This form is the only possible due to the dimensions of the available fields

and — indeed — calculating the field strength with the formula (1.4) yields the form of a

scalar current

F IJ
(αβ) = −cλ

[

(D(αβ)φ)Σ
IJφ− φ̄Σ IJ (D(αβ)φ)

]

(1.27)

where φ is the leading component of Q. On the other hand, the scalar current can be

read off from the kinetic term in the conformal compensator action (1.23), while the field

strength is related to this current via the equation of motion for the gauge fields from (1.22)

− 1

λ
εabcFab = − 2

λ
F c = jc. (1.28)

This determines c, leading to the conclusion

W IJKL = − λ

16
Q̄Σ IJKLQ. (1.29)

With the above results it is possible to determine µℓ. Imposing Q to be constant, the

supersymmetry algebra requires the super-Weyl gauge3

4KΣ IJQ = −W IJKLΣKLQ, (1.30)

where we note that an equivalent condition is HI = 0. Solving for K and proceeding as

in [27] one finds

|µℓ|−1Q =
1

2N (N − 1)
|Q|−2(Q̄Σ IJKLQ)ΣIJKLQ. (1.31)

The value of |µℓ|−1 is now expressed for general N in terms of the Fierz identities for the

rank-four Clifford matrices. The result is

N = 4 5 6 7 8

|µℓ|−1 = 1 3/5 1 2 3

where it must be noted that for N = 6 the formula had to be adjusted due to an additional

U(1)R R-symmetry factor without which the theory would not be consistent as will be

explained in section 6.

3As shown in [30], the super Cotton tensor can be non-vanishing only in the case of (N , 0) adS superspace,

i.e. kIJ = δIJ .
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1.4 Gauge theory

Gauging a flavour group of the form F ×G with the scalar Q transforming in the bifunda-

mental representation produces a right-acting and a left-acting field strength term subject

to the constraint (see e.g. [20] and references therein)

{DI
α,D

J
β }Q = 2iδIJ(γa)αβDaQ+ iεαβF

IJQ+ iεαβQGIJ (1.32)

and obeying the Bianchi identity

D
I
αF

JK = D
[I
α F JK] − 2

N − 1
δI[JDα,LF

K]L. (1.33)

The equation for HI in the spinor derivative of Λβ is now

Σ [JHI] = F IJQ+QGIJ . (1.34)

The condition for accordance of a gauge group with supersymmetry is tantamount to the

existence of a non-zero solution for HI of this equation. The ansatz

HI = AF IKΣKQ+BFKLΣ
IKLQ+ CΣKQGIK +DΣ IKLQGKL (1.35)

generally cannot be solved in this off-shell form; however, the field strengths can be specified

regarding their algebraic properties by using their on-shell equations [17]. Given the di-

mensions of the available fields, these must be rank-two bilinears of the scalars. This agrees

with the Bianchi identity and the multiplet projection on the physical dimension-two field

strength

F(αβ) ∝ D
I
(αD

J
β)FIJ ∝ D

I
(αD

J
β)Q̄ΣIJQ, (1.36)

which has the form of a scalar current. The right- and left-acting field strength terms are

expressed in terms of the scalars as

F IJ
A (τA ·Q) r̄

r = a tr(QΣ IJτAQ̄)(τA ·Q) r̄
r = aQ v̄

v Σ IJ(τA)
v

w Q̄ w
v̄ (τA) s

r Q r̄
s

(Q · σA) r̄
r GIJ

A = b (Q · σA) r̄
r tr(Q̄Σ̄ IJσAQ) = bQ s̄

r (σA) r̄
s̄ Q̄ v

v̄ Σ̄ IJ(σA)
v̄

w̄ Q w̄
v (1.37)

where a, b are the coupling constants and τA, σA are the generators of the right- and left-

acting group factor, respectively. We note that the convenient ordering of Q and Q̄ in

the right-acting term is opposite to the usual ordering in the kinetic term for the coupled

scalar. Therefore, the Chern-Simons current obtains a relative minus sign for N = 6, 7 and

8 where the bilinears are antisymmetric as for example QΣ IJQ̄ = −Q̄Σ̄ IJQ.

In the case of a fundamental representation we have the field strength term

F IJ
A (τA ·Q)r = a Q̄vΣ IJ(τA)

w
v Qw(τ

A) s
r Qs. (1.38)

Depending on the group, Fierz-like identities for the generators can be used. The cho-

sen conventions and the resulting field strength terms for the classical gauge groups are

presented in the table below (the exceptional cases as in [11] will also be considered). Cal-

culating Σ [JHI] in terms of these on-shell expressions will reveal the structure of allowed

gauge groups.
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group factor (τA)ij(τ
A)kl (Q̄Σ IJτAQ)(τAQ)k

SO(N) 2δk[iδj]l 2(Q̄[kΣ IJQl])Ql

Sp(N) 2Ωk(iΩj)l 2(Q̄(kΣ IJQl))Ql

U(1) −q2δ j
i δ

l
k −q2(Q̄lΣ IJQl)Qk

SU(N) 1
N δ

j
iδ

l
k − δliδ

j
k

1
N (Q̄lΣ IJQl)Qk − (Q̄lΣ IJQk)Ql

U(N) −δliδ
j
k −(Q̄lΣ IJQk)Ql.

Table 2. Generator identities and on-shell field strength terms for the classical gauge group factors.

2 N = 1 and N = 2

As a warm-up we discuss the gauging of a scalar multiplet in flat superspace for N = 2 and

3.4 N = 1 gauge theory in three dimensions has been discussed in well-known literature [33]

and we have nothing more to add.

For N = 2, the Clifford algebra is realised by the chiral representation of the spin

matrices

γ1 =

(

0 1

1 0

)

γ2 =

(

0 −i

i 0

)

γ∗ =

(

1 0

0 −1

)

(2.1)

with the chiral blocks

Σ 1 = Σ̄ 1 = 1

Σ 2 = −Σ̄ 2 = −i. (2.2)

The generator of spin(2) is

γ12 =

(

i 0

0 −i

)

(2.3)

and its fundamental representation is reducible into two scalars Q and Q̄ transforming

under U(1) and its complex conjugate respectively.

Equation (1.34) is easily solved for HI in terms of a complex number

iH1 −H2 = 2F 12Q+ 2QG12. (2.4)

Any (bi-)fundamental gauging can be implemented in this way.

3 N = 3

The spin matrices are

γ1 =

(

0 1

1 0

)

γ2 =

(

0 −i

i 0

)

γ3 =

(

1 0

0 −1

)

(3.1)

4Off-shell Yang-Mills multiplets coupled to conformal supergravity in three spacetime dimensions for

N ≤ 3 can be found in [32].
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and the generators proportional to γ12, γ13 and γ23 are those of spin(3) = SU(2). The

group indices are raised and lowered as va = εabvb and va = vbεba where the values of the

metric tensor are the entries of

ε =

(

0 1

−1 0

)

. (3.2)

One can easily show the identity

(γ[J)ab(γ
I])cd = ε(a(c(γ

IJ)d)b). (3.3)

Rather than substituting on-shell field strengths into (1.35) it is simpler to directly write

down the most general rank one tensor cubic in the Clifford spinor denoted by q and its

conjugate q̄

HI
a = (γI) b

a (A{qbq̄cqc}+B{qcq̄bqc}+ C{qcq̄cqb})
+ 4(γI) d

c (D{qcq̄dqa}+ E{qcq̄aqd}+ F{qaq̄cqd}). (3.4)

The brackets {.} encapsulate the group index structure. Since, for the case of a bifunda-

mental representation, there are two free indices, one can have in principle nine terms

{AB̄C}rr̄ ≡ c1Arr̄B̄C + c2ArB̄r̄C + c3ArB̄C r̄

+ d1A r̄B̄ rC + d2AB̄r̄rC + d3AB̄ rC r̄

+ e1A r̄B̄Cr + e2AB̄r̄Cr + e3AB̄Crr̄ . (3.5)

In fact, d2 will always vanish and some of the other terms are usually redundant.5 The

invisible indices are appropriately contracted. For a fundamental representation we define

{AB̄C} = c1AαB̄
αCβ + c2A

αB̄βCα + c3AβB̄
αCα. (3.6)

For groups possessing a rank-four invariant, further terms have to be included where the

free index is situated at this tensor. This will be relevant for some exceptional groups.

Using (3.3) we then find

γ[JHI] = −A(γIJ{q)mq̄cqc} −B{qc(γIJ q̄)mqc} − C{qcq̄c(γIJq)m}
+D{qm(q̄γIJq) + qcq̄m(γIJq)c − qc(γIJ q̄)mqc − (γIJq)mq̄cqc}
+ E{qm(q̄γIJq) + (qγIJ q̄)qm − qcq̄c(γ

IJ)m + (γIJq)mq̄cqc}
+ F{qcq̄m(γIJq)c + (qγIJ q̄)qm + qcq̄c(γ

IJq)m + qc(γIJ q̄)mqc}. (3.7)

Only the terms which are rank-two bilinears in q and q̄ can contribute to a field strength.

The others must cancel out through the choice D = −F = −B, E−D = A and F−E = C,

leading to

γ[JHI] = (E + F ){(qγIJ q̄)qm}+ (E − F ){qm(q̄γIJq)}. (3.8)

5It must be reminded when the constants c, d, e are implied to be equal in different terms once the

constants A,B, . . . have been related to each other.
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Since the left- and right-acting terms have independent coefficients, any bifundamental or

fundamental gauging is possible by choosing the appropriate coefficients in (3.5) or (3.6)

according to the table 2.

We note in passing that upon deleting γ3 in the above equations, the same procedure

and result applies to N = 2 Clifford spinors.

4 N = 4

This is the minimal number of supersymmetries for which non-trivial constraints on the

possible gauge groups as well as the mass of the graviton in toplogically massive gravity

are obtained. The left- and right-handed spin matrices are now given by

(Σ I)īi = (1, iσ1,2,3)īi

(Σ̄ I)īi = (1,−iσ1,2,3)
īi. (4.1)

The spin group is SU(2)L × SU(2)R where the two factors are associated with the indices

i and ī respectively. For the rank-four element it holds that

Σ IJKL = 1εIJKL. (4.2)

4.1 Flavour gauging

An ansatz for HI which involves only the left-handed scalar reads

HI,m̄ = (Σ̄ I)m̄m(A{QmQ̄iQi}+B{QiQ̄mQi}+ C{QiQ̄iQm}). (4.3)

From this it follows that

Σ [JHI] = (ΣJI)im(A{QmQ̄kQi −QmQ̄iQk}+ C{QkQ̄iQm −QiQ̄kQm}) (4.4)

where B has been set to zero without loss of generality and the spinor indices have been

rearranged using

AiB
kCk = AkBiCk −AkBkCi (4.5)

in order to obtain field strength terms.6 The others must be cancelled by choosing A = C,

leading to

Σ [JHI] = −A{(QΣ IJQ̄)Q−Q(Q̄Σ IJQ)}, (4.6)

which, in turn, needs to be compatible with (1.34) for closure of the supersymmetry al-

gebra. Applying (3.5) we find that a general possibility which avoids field strength terms

inconsistent with table 2 is taking only c3 non-zero. In other words one has to consider

Σ [JHI] = −Ac3[(QΣ IJQ̄)Q−Q(Q̄Σ IJQ)], (4.7)

where the products are understood as matrix products with the bifundamental indices.

Then, the products U(M) × U(N) and SU(N) × SU(N) with opposite couplings a = −b

6This corrects the statement in [27] that gauging is not possible with only a one-handed spinor.
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are naturally consistent with (4.7), which may be collected into the expression SU(M) ×
SU(N)×U(1)◦ where the U(1) charge is constrained by −q2 = a( 1

N − 1
M ) so that it cancels

the gauge traced bilinear terms from the SU(N) factors.7 For these one has Ac3 = a,

resulting in the solution for HI

HI,m̄ = a(Σ̄ I)m̄m(QmQ̄iQi −QiQ̄
iQm). (4.8)

The only other combination is Sp(M) × SO(N) with opposite couplings and the reality

condition

Qi = Q̄jεji. (4.9)

This leads to

HI,m̄ = 2a(Σ̄ I)m̄m(QmQ̄iQi −QiQ̄
iQm). (4.10)

Another possibility is to consider also a term supplemented to (3.5) involving an invariant

tensor Cijkl. In this case, the second group factor has to be SU(2) in order to write

− CrvwsQ
v̄

v (Q̄v̄wΣ
IJQ r̄

s ) =
1

2
Crvws(Q

v̄
v Σ IJQ̄v̄w)Q

r̄
s (4.11)

where total antisymmetry of Cijkl and reality of Q have been assumed. Since the left-acting

symplectic SU(2) requires the presence of an orthogonal term from the right-acting factor,

the generators of the right-acting group must fulfil

(τA)ij(τA)kl = 2δi[kδl]j +
3

2
Cijkl. (4.12)

This is the case for spin(7) (and its subgroup G2) [11]. The solution reads

HI,m̄ = −2a(Σ̄ I)m̄m(QmQ̄iQi −QiQ̄
iQm) r̄

r

− a(Σ̄ I)m̄mCrvws(Q
v̄

m,v Q̄v̄wQ
r̄
s −Q v̄

v Q̄v̄wQ
r̄

m,s ). (4.13)

Let us now investigate the possibility of a fundamental representation. In this case one has

(setting c3 = 0 and A = 1)

Σ [JHI] = ∓c1
[

(Q̄αΣ IJQα)Qβ − (Q̄αΣ IJQβ)Qα

]

− (c2 ∓ c2)(Q̄βΣ
IJQα)Qα (4.14)

where the lower sign holds for symplectic groups. Comparing with table 2, we find that

fundamental representations are possible for the groups

Sp(N)×U(1)◦ q2 = a

SU(N)×U(1)◦ q2 = a
N − a

with the U(1) charges being restricted as indicated. These two are equivalent to the above

bifundamental Sp(N)×SO(2) and SU(N)×SU(1)×U(1)◦ respectively. For Sp(N)×U(1)◦

the solution for HI is

HI,m̄ = −1

2
a(Σ̄ I)m̄m

(

Qm,αQ̄
i,αQi,β + 3Qm,βQ̄

i,αQi,α

)

(4.15)

and for SU(N)×U(1)◦

HI,m̄ = a(Σ̄ I)m̄m
(

Qm,αQ̄
i,αQi,β −Qi,αQ̄

i,αQm,β

)

. (4.16)
7Clearly, further pairwise cancelling U(1) factors can always be added.
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4.2 Clifford spinors

If a right-handed scalar is included in the theory, the ansatz for HI,m̄ must be extended

by terms like (Σ̄ I )m̄mQmQ̄īQ
ī and (Σ̄ I)k̄kQk̄Q̄kQ

m̄. However, the field strength would be

proportional to

(QΣ IJQ̄)Qm + (QΣ̄ IJQ̄)Qm (4.17)

for which the conditions producing the left-handed bilinear still would have to apply, leading

to the same possible gauge groups. For a more compact description and in prospect of

supersymmetry enhancement to N = 5, one can use reducible Clifford spinors

qa
.
=

(

Qi

Qī

)

(4.18)

with the corresponding spin matrices

(γI) b
a

.
=

(

0 (Σ I)ij̄

(Σ̄ I )īj 0

)

, (γ∗) b
a

.
=

(

δ
j
i 0

0 −δī
j̄

)

(4.19)

and the metric

Cab .
=

(

εij 0

0 εīj̄

)

(4.20)

acting by the rules

qa = Cabqb , qa = qbCba

Qi = εijQj , Qi = Qjεji

Qī = εīj̄Qj̄ , Qī = Qj̄εj̄ī. (4.21)

We note that, upon including γ∗ as γ5, the above realises the spin matrices of N = 5.

Moreover, the metric Cab coincides with the metric of spin(5) = USp(4).

The general ansatz for HI
a in terms of qa is then8

HI
a = (γI) b

a (A{qbq̄cqc}+B{qcq̄bqc}+ C{qcq̄cqb})
+ 2(γI) d

c (D{qcq̄dqa}+ E{qcq̄aqd}+ F{qaq̄cqd}). (4.22)

For illustration, the E-term can be worked out in terms of SU(2) spinors. Using the identity

(Σ [I)ij̄(Σ̄
J ])l̄k = −1

2
δki (Σ̄

IJ)l̄j̄ +
1

2
δl̄j̄(Σ

IJ) k
i , (4.23)

it follows that

γ[JH ′I] = E{
(

(Σ IJQ)kQ̄j̄Q
j̄ +Qk(Q̄Σ̄ IJQ) +Qj̄Q̄

j̄(Σ IJQ)k − (QΣ̄ IJ Q̄)Qk

(QΣ IJQ̄)Qk̄ −QjQ̄j(Σ̄
IJQ)k̄ −Qk̄(Q̄Σ IJQ)− (Σ̄ IJQ)k̄Q̄jQj

)

}

= E{(qγIJ q̄)q − q(q̄γIJq)− (γIJq)q̄cqc − qcq̄c(γ
IJq)}. (4.24)

8Possible terms involving γ∗ would turn out to be redundant.
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The second line holds, because terms cubic in Q’s of the same handedness cancel identically.

Thus, we see that by virtue of their two-component properties bilinears of Q naturally lead

to the corresponding bilinears of q. The other terms lead to similar structures and must

be arranged such that

γ[JHI] = E{(qγIJ q̄)q − q(q̄γIJq)}, (4.25)

representing the same situation as for the chiral spinors. The solutions for HI are now

groups HI,a

SU(M)× SU(N)×U(1)◦ a(γI)ab(qbq̄
cqc − qcq̄

cqb) + 2a(γI)cdqcq̄
aqd

Sp(M)× SO(N) 2a(γI)ab(qbq̄
cqc − qcq̄

cqb) + 4a(γI)cdqcq̄
aqd

SU(N)×U(1) a(γI)ab(qαb q̄
c
αq

β
c − qαc q̄

c
αq

β
b ) + 2a(γI)cdqαc q̄

a
αq

β
d

Sp(N)×U(1) −a(γI)ab(2qαb q̄
c
αq

β
c − qαc q̄

c
αq

β
b )− a(γI)cd(2qαc q̄

a
αq

β
d − qαc q̄

a,βqd,α).

They can be written in the compact form

HI,a = −E(γI)ab{(qbq̄cqc − qcq̄
cqb) + 2(γI)cdqcq̄

aqd}, (4.26)

with the appropriate coefficients specified above.

In the next section we will recognise that enhancement to N = 5 supersymmetry

is implicit here, since the above formalism follows trivially from the one for N = 5 by

removing γ5.

4.3 Coupling to supergravity

Referring to (1.29) the super Cotton tensor W IJKL ≡ WεIJKL is given by

W = − λ

16
|Q|2. (4.27)

The algebra for pure supergravity (1.12) then becomes

{DI
α,D

J
β }Q = 2iδIJ(γa)αβDaQ− iεαβ (2K −W )Σ IJQ (4.28)

and the corresponding solution for HI
sg is

HI
sg = (W − 2K) Σ̄ IQ. (4.29)

A constant solution for Q corresponds to HI
sg = 0 and leads to µℓ = 1 as shown in [27] and

as implied by the formula (1.31).9

When gauging a flavour symmetry, the super Cotton tensor is expressed as a trace

over gauge indices, which clearly is compatible with the above solution for the supergravity

sector. The complete solution is then

HI = HI
sg +HI

cs (4.30)

9For reasons explained in [27] the description in terms of a Clifford spinor does not admit a topologically

massive adS gravity.
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where HI
cs is the contribution from the gauge sector of the desired gauge group. This

causes a deformation of µℓ in terms of the coupling a for the groups with fundamental

representation.

We note that there is no other solution HI than the above sum, which would both

represent the supergravity sector and generalise the gauge groups found in flat superspace.

5 N = 5

Let us begin by recalling the SO(5) spin matrices (γI) j
i in the chiral representation

γ1 = σ1 ⊗ 1

γ2,3,4 = −σ2 ⊗ σ1,2,3

γ5 = σ3 ⊗ 1. (5.1)

These generate the spin group USp(4) with invariant symplectic form

ε =















0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0















. (5.2)

Indices are then raised and lowered as

qi = εijqj , qi = qjεji , εijεkj = δik, (5.3)

where εij and εij are the components of ε. The spin matrices with upper and lower indices

are antisymmetric and related by the dualisation

εijkl(γI)kl = −2(γI)ij . (5.4)

This can be used to prove the formula

2(γ[I)ij(γ
J ])kl = 4δ

[k
[i (γ

IJ)
l]
j] . (5.5)

Using antisymmetry and the Clifford-algebra one derives the Fierz identity

(γI) j
i (γI)

l
k = −δ

j
iδ

l
k + 2εikε

jl + 2δliδ
j
k. (5.6)

Finally, the dualisation properties of the rank-two and -four elements are given by

εI1...I5γ
I5 = γI1...I4

εI1...I5γ
I4I5 = −2γI1...I3 . (5.7)

– 16 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
4

5.1 Flavour gauging

For bifundamental scalars, the general ansatz for HI
k is

HI
k = (γI) l

k

[

A{qlq̄iqi}+B{qiq̄lqi}+ C{qiq̄iql}
]

+ 2(γI) j
i

[

D{qiq̄jqk}+ E{qiq̄kqj}+ F{qkq̄iqj}
]

. (5.8)

From this, γ[JHI] can be calculated using (5.5). Without loss of generality, one can choose

the condition D = F = B = 0 and further A = C = −E in order to cancel all terms which

cannot contribute to a field strength. The remaining is

γ[JHI] = E{(qγIJ q̄)q − q(q̄γIJq)}. (5.9)

Recalling the discussion in section 4 we the see that the possible gauge groups are the same

as for N = 4. The solution for HI is then of the form

HI
k = −E(γI) l

k {(qlq̄iqi − qiq̄
iql) + 2(γI)ijqiq̄kqj}. (5.10)

This clarifies the enhanced N = 5 supersymmetry of the N = 4 Clifford spinor, for which

all of the above equations (and (5.5), especially,) still hold if we restrict the SO(5) index

to the range I = 1, . . . , 4.

5.2 Coupling to supergravity

The super Cotton tensor is W I = 1
4!ε

IJKLMWJKLM and the algebra for pure supergravity

becomes

{DI
α,D

J
β }q = 2iδIJ(γa)αβDaq + iεαβ

(

WAγAIJ − 2KΣ IJ
)

q. (5.11)

In order to obtain HI
sg, the ansatz (equivalent to (1.16))

HI
sg = XWKγIKq + YW Iq + 2KγIq (5.12)

is inserted into (1.15), which yields X = −Y = −1. The on-shell super Cotton tensor is

given by

W I = − λ

16
|qγI q̄|, (5.13)

in terms of which HI
sg becomes

HI
sg,k = − λ

16
(γI |q)kq̄j |qj +

λ

16
|qj(γI q̄|)kqj

+
λ

16
|qk(q̄|γIq)− λ

16
|qmq̄k|(γIq)m

− λ

16
|qγI q̄|qk + 2K(γIq)k, (5.14)

where |.| denotes the trace over gauge indices.

For the determination of µℓ, we set HI
sg on shell to zero and solve for K. For this,

the contraction γIH
I
sg has to be evaluated using the Fierz identity. This leads to terms

proportional to q̄iqiqm and qiqiq̄m, where it is implicitly assumed that qi is non-vanishing
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only for one flavour index which can always be achieved by a suitable choice of gauge. The

former has the form of the compensator term appearing in K, whereas the latter can be

handled as follows: since the metric εij consists of block diagonal 2× 2 ε-symbols, one can

choose for the compensator q3,4 = 0, leading effectively to a two dimensional object with

the metric ε2×2. Then one can use the formula

AiB
kCk = AkBiCk −AkBkCi (5.15)

valid for such objects to write the problematic terms in the form of the compensator term.

With this choice we then find that |µl|−1 = 3/5.

In terms of the on-shell super Cotton tensor, the supergravity equation (1.15) reads

γ[JH
I]
sg =

λ

16
|qiq̄i|(γIJq)k +

λ

16
|qk(q̄|γIJq)− λ

16
|qmq̄k|(γIJq)m

− λ

16
|qi(γIJ q̄|)kqi +

λ

16
(γIJ |q)kq̄l|ql − 2KγIJq (5.16)

which is compatible with the above solution for HI
sg.

Adding the on-shell ansatz for HI
sg to the ansatz for HI

cs from the gauge sector, we

find no solution that reproduces this equation while generalising the gauge groups already

known from the flat case. The gauge sector can lead to deformations of µℓ if two gauge com-

ponents are chosen non-zero for the fundamental matter representations. This behaviour

will be treated in the subsequent sections for the theories with higher N , where it will lead

to more interesting results.

6 N = 6

This theory is interesting, on one hand due to its relation to M2-branes [6, 7] and also

because in this model the coupling to supergravity allows for new flavour gauge groups

both in the bifundamental and in the fundamental representation. To see this we first

recall the chiral representation of the spin matrices with the adjustment, that the N = 5

matrices γ̃I with lower and upper indices are used as the chiral blocks as

(γ1) b
a =

(

0 εij

−εij 0

)

≡
(

0 (Σ 1)ij

(Σ̄ 1)ij 0

)

(γ2,...,6) b
a =

(

0 i(γ̃I)ij

i(γ̃I)ij 0

)

≡
(

0 (Σ 2,...,6)ij

(Σ̄ 2,...,6)ij 0

)

(γ∗) b
a =

(

δ
j
i 0

0 −δ
j
i

)

. (6.1)
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Basic identities are

1

2
εijkl(Σ I)kl = −(Σ̄ I)ij (6.2)

(Σ I)ij(Σ̄I)
kl = −4δk[iδ

l
j] (6.3)

(Σ̄ I)ij(Σ̄I)
kl = 2εijkl (6.4)

2(Σ̄ [I )ij(ΣJ ])kl = 4δ
[i
[k(Σ

IJ)
j]
l] (6.5)

and the dualisation of the rank two element is

εIJKLPQΣ
PQ = −2iΣIJKL. (6.6)

6.1 Flavour gauging

The general ansatz for HI is

HI,k = 2A(Σ̄ I)ij{QiQ̄
kQj}+B(Σ̄ I)kl{QlQ̄

iQi}+ C(Σ̄ I)kl{QiQ̄
iQl}. (6.7)

Using (6.5) we calculate Σ [JHI] in close analogy to N = 5 and find the condition A = B =

−C, so that we are left with10

Σ [JHI] = A{(QΣ̄ IJQ̄)Q+Q(Q̄Σ IJQ)}. (6.8)

This leads to the solution (cf. [17])

HI,k = −A(Σ̄ I)kl({QlQ̄
iQi −QiQ̄

iQl) + 2(Σ̄ I)ijQiQ̄
kQj} (6.9)

known from N = 4 and N = 5 only this time with the absence of bifundamental Sp(M)×
SO(N > 2) gauging, since a reality condition is not possible for the complex SU(4) spinors.

This agrees with the classification of [10]. The case of Sp(M) × SO(2) (corresponding

to the results of [9] and [7]) is equivalent to the fundamental Sp(M) × U(1)◦ gauging.

Again, restricting the range of I gives an a posteriori demonstration of the supersymmetry

enhancement from N = 4 to N = 5 and (with the mentioned exception) to N = 6.

6.2 Clifford spinors

In view of a possible enhancement to N = 7, we now analyse a possible realisation of these

models in terms of a Clifford spinor. We define

qa =

(

Qi

P i

)

, q̄a =
(

Q̄i, P̄i

)

. (6.10)

An ansatz for HI has to involve terms with γIKγK and γ∗, as opposed to N = 4 where

these terms were superfluous. Working out such an ansatz in terms of the chiral components

of the above Clifford spinor, one finds that there remain terms incompatible with the field

10With this conventional ordering of Q and Q̄ the two field strengths in the algebra have the same

sign; however, the physical Chern-Simons currents will have opposite signs since QΣ̄ IJQ̄ = −Q̄Σ IJQ

corresponding to the ordering in the kinetic term.
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strengths which cannot be cancelled. In order to move around this obstacle it is necessary to

impose the Majorana condition Qi = Pi and further to assume the bifundamental gauging

of real SU(2)× SU(2) where

q̄ v
v̄ = εvwq w̄

w εw̄v̄ (6.11)

so that the identity

Q[kQ̄|i|Qm] = −1

2
Q[kQ̄m]Qi −

1

2
QiQ̄[kQm] (6.12)

applies.11

However, this is only manifest in a real basis for the Majorana spinor. To this end we

perform the transformation

q −→ U · q (6.13)

where
(

Qi

Q̄i

)

−→ 1√
2

(

1 1

−i1 i1

)

·
(

Qi

Q̄i

)

=
1√
2

(

Qi + Q̄i

−i(Qi − Q̄i)

)

. (6.14)

This defines a real representation since the generators are block-diagonal and it holds

that(Σ IJQ)∗ = Σ̄ IJQ̄. Accordingly, the spin matrices are changed to

γI −→ UγIU †

γ∗ −→ Uγ∗U †. (6.15)

These are all imaginary and antisymmetric and, with γ∗ = γ7, provide a real representation

of spin(7). The index of qa can now be raised and lowered with the metric δab.

The Fierz lemma is

8δabδcd = δadδcb + γI
adγ

I
cb −

1

2
γIJ
adγ

IJ
cb − 1

3!
γIJK
ad γIJK

cb

+
1

4!
γIJKL
ad γIJKL

cb +
1

5!
γIJKLM
ad γIJKLM

cb − 1

6!
γIJKLMN
ad γIJKLMN

cb , (6.16)

which is equivalent to

8δabδcd = δ(ad)δcb + γI
[ad]γ

I
cb + γ∗

[ad]γ
∗
cb −

1

2
γIJ
[ad]γ

IJ
cb − γ∗I

[ad]γ
∗I
cb

− 1

3!
γIJK
(ad) γ

IJK
cb − 1

2
γ∗IJ
(ad)γ

∗IJ
cb (6.17)

where the manifest symmetries are indicated. It can be derived

γ
I[K
ab γ

L]I
cd + γ

∗[K
ab γ

L]∗
cd = 4δ[a[cγ

KL
d]b] − γ

[K
ab γ

L]
cd

8δ(c[bγ
K
a]d) = δcdγ

K
ab − γK∗J

cd γ∗J
ab − 1

2
γKIJ
cd γIJ

ab

8δ[c[bγ
K
a]d] = −γKI

cd γI
ab + γKI

ab γI
cd − γK∗

cd γ∗
ab + γK∗

ab γ∗
cd. (6.18)

11This follows from Qltr(Q̄kQm) = QkQ̄mQl +QmQ̄kQl = QlQ̄kQm +QlQ̄mQk.
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As suggested by (1.35) and the Fierz identities, a more than sufficient ansatz is

HI
b = A(γIq)bq̄dqd +Bqd(γ

I q̄)bqd + Cqdq̄d(γ
Iq)b

+D(qγI q̄)qb + EγI
cdqcq̄bqd + Fqb(q̄γ

Iq)

+G(qγIK q̄)(γKq)b +H(γKq)b(q̄γ
IKq)

+ J(qγI∗q̄)(γ∗q)b +K(γ∗q)b(q̄γ
I∗q)

+ L(qγKγ∗q̄)(γIKγ∗q)b +M(γIKγ∗q)b(q̄γ
Kγ∗q). (6.19)

Calculating γ[JHI], most constants can be set to zero while the others are related by

G = −A = B = −D = J , leading to

(γ[JHI])a = G
[

qa(q̄γ
IJq) + (qγIJ q̄)qa − γIJ

bc qbq̄aqc)
]

. (6.20)

Using the properties of SU(2)× SU(2), this can be written as

γ[JHI] =
3

2
G
[

q(q̄γIJq) + (qγIJ q̄)q)
]

. (6.21)

The couplings are then −a = −b = 3
2G and the solution reads

HI
b =

2

3
a
[

(γIq)bq̄dqd − qd(γ
I q̄)bqd + (qγI q̄)qb − (qγIK q̄)(γKq)b − (qγI∗q̄)(γ∗q)b

]

(6.22)

which will be discovered in the next section to be identical to the solution for N = 7.

6.3 Coupling to supergravity

The super Cotton tensor is W IJKL = 1
2ε

IJKLPQWPQ. Since spin(6) = SU(4) has no real

representation the algebra of the supergravity sector (1.12) must be extended to include a

U(1)R field strength dual to the super Cotton tensor [17, 34], i. e.

{DI
α,D

J
β }Q = 2i(γa)αβDaQ− 1

2
εαβWPQΣ

IJPQQ+ q̃εαβW
IJQ− 2iεαβKΣ IJQ (6.23)

where q̃ is the U(1)R charge of Q. For HI
sg we find

HI
sg = − i

2
WPQΣ̄

IPQQ+ iW IKΣ̄KQ+ 2KΣ̄ IQ (6.24)

if q̃ = −1. The on-shell super Cotton tensor is

W IJ =
λ

16
i|QΣ̄ IJQ̄|, (6.25)

so that

HI,k
sg = −λ

4
|QiQ̄

k|(Σ̄ I )ilQl +
λ

16
|QiQ̄

i|(Σ̄ I )klQl + 2KΣ̄ IQ. (6.26)

Then, fromHI
sg = 0 and one non-vanishing gauge component, it follows µℓ = 1 in agreement

with [18].
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In order to include the gauge sector we recall the condition (1.15) from the supergravity

sector in terms of scalars

Σ [JH
I]
sg =

λ

16

[

|QiQ̄
i|(Σ IJQ)k − 2(Σ IJ) l

k |QlQ̄
m|Qm

− 2|QkQ̄
j |(Σ IJQ)j + 2|QΣ̄ IJQ̄|Qk

]

− 2KΣ IJQ. (6.27)

The ansatz

HI
sg = XWPQΣ̄

IPQQ+ YW IKΣ̄KQ+ 2KΣ̄ IQ (6.28)

then gives

Σ [JH
I]
sg =

λ

16
[2iX|QiQ̄

i|(Σ IJQ)k − i(6X + Y )(Σ IJ) l
k |QlQ̄

m|Qm

− i(2X − Y )|QkQ̄
j |(Σ IJQ)j + i(2X − Y )|QΣ̄ IJQ̄|Qk]− 2KΣ IJQ. (6.29)

Adding the corresponding ansatz (6.7) forHI
cs of the gauge sector for bifundamental scalars,

the system can be solved again. Fixing X = − i
2 , we find a = b, Y = i + i 8λa(

1
N − 1

M ) ≡
i + i 8λafNM and

HI,k
cs = (Σ̄ I)ija(fNM |QiQ̄

k|Qj − 2QiQ̄
kQj)

+ (Σ̄ I)kla

(

1

4
fNM |QlQ̄

i|Qi −
1

2
fNMQl|Q̄iQi| −QlQ̄

iQi

)

+ a(Σ̄ I)klQiQ̄
iQl. (6.30)

As a result, the coupling to supergravity admits the new possibility SU(N)× SU(M) with

equal couplings a = b. For N = M these solutions reduce to the SU(N)×SU(N) case with

independent gauge and pure supergravity sectors.

Since the compensator term in K is gauge-traced, only one entry of the bifundamental

matrix Q r̄
r can be non-vanishing. In consequence, µℓ is deformed in terms of a and fNM .

For fundamental representations we find SU(N)×U(1) where the U(1) is arbitrary (as

opposed to the flat case) with X = − i
2 and Y = i− i 8λ(

a−q2

N − a), i.e.

HI
sg =

(

a− q2

N
− a

)

Q̄i
αQ

β
i (Σ̄

IQα)

−
(

λ

4
−
(

a− q2

N
− a

))

(QαΣ̄ IQβ)Q̄α

+

(

λ

16
− 1

2

(

a− q2

N
− a

))

Q̄i
αQ

α
i (Σ̄

IQβ) + 2KΣ̄ IQβ (6.31)

and

HI
cs = −

(

a+
a− q2

N

)

(QαΣ̄ IQβ)Q̄k
α − a− q2

N
Q̄i

αQ
β
i (Σ̄

IQα)

+
1

2

(

a+
a− q2

N

)

(Σ̄ IQβ)Q̄k
αQ

α
k . (6.32)
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The sum is

HI = HI
sg +HI

cs = (QαΣ̄ IQβ)Q̄k
α

(

−2a− λ

4

)

+ Q̄i
αQ

β
i (Σ̄

IQα)(−a)

+

(

λ

16
+ a

)

Q̄i
αQ

α
i (Σ̄

IQβ) + 2KΣ̄ IQβ . (6.33)

This Yang-Mills contribution implies a deformation of µℓ in terms of a and N . For the

particular example a = −λ
8 one has

HI =
λ

8
Q̄i

αQ
β
i (Σ̄

IQα)− λ

16
Q̄i

αQ
α
i (Σ̄

IQβ) + 2KΣ̄ IQβ . (6.34)

This can be used to obtain different values for µℓ depending on how many of the SU(N)

components are chosen to be non-zero. One can take them as Qi
α = vδiα (as in [25] treating

N = 8) where α = 1, . . . , p ≤ 4. This leads to the formula

|µℓ|−1 =

∣

∣

∣

∣

2

p
− 1

∣

∣

∣

∣

. (6.35)

7 N = 7

This model is interesting since it can be coupled to gravity only after gauging the bifund-

mental flavour symmetry. On the other hand, coupling to gravity leads to new gauge

groups in the fundamental representation. In the previous section a real representation of

spin(7) was constructed from a reducible Majorana representation for N = 6. Explicitly it

is given by

γ1 = σ1 ⊗ 1⊗ σ2

γ2 = −σ3 ⊗ σ1 ⊗ σ2

γ3 = −σ1 ⊗ σ2 ⊗ σ3

γ4 = −σ3 ⊗ σ2 ⊗ 1

γ5 = −σ1 ⊗ σ2 ⊗ σ1

γ6 = σ3 ⊗ σ3 ⊗ σ2

γ7 = σ2 ⊗ 1⊗ 1. (7.1)

It can be read off

(γI)a(b(γ
I)c)d = δadδbc − δa(bδc)d. (7.2)

Using the Fierz lemma

8δacδbd = δadδbc + γI
adγ

I
bc −

1

2
γIJ
adγ

IJ
bc − 1

6
γIJK
ad γIJK

bc (7.3)
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one can derive the useful identities12

γIJK
ab γIJK

cd = 6(δabδcd − 8δc(aδb)d)

γ
I[K
ab γ

L]I
cd = 4δ[a[cγ

KL
d]b] − γ

[K
ab γ

L]
cd

γ
IJ [K
ab γ

L]IJ
cd = −8δ(c(aγ

KL
b)d)

−8δ(c[aγ
K
b]d) = δcdγ

K
ab −

1

2
γKIJ
cd γIJ

ab

−8δ[c[aγ
K
b]d] = −γKI

cd γI
ab + γKI

ab γI
cd

γI
abγ

IKL
cd = −γKL

ab δcd − 4δ(c[aγ
KL
b]d) + 4γ

[K
(c[aγ

L]
b]d)

γIJ
ab γ

IJKL
cd = 8δ(c[aγ

KL
b]d) + 8γ

[K
(c[aγ

L]
b]d)

γKLM
cd γIKLM

ab = 48δ(a(cγ
I
d)b) (7.4)

The spin matrices are related by the dualisations

εSPQRKLMγLM = 2iγSPQRK

εSPQRKLMγKLM = −3!iγSPQR. (7.5)

7.1 Flavour gauging

Noting that there is no closed form for the contraction γI
abγ

I
cd we need to include more

terms in the ansatz for HI than before. As suggested by the off-shell form (1.35) and the

Fierz identities it is sufficient to write

HI
a = γI

ab [A{qbq̄cqc}+B{qcq̄bqc}+ C{qcq̄cqb}]
+ γI

cd [D{qcq̄dqa}+ E{qcq̄aqd}+ F{qaq̄cqd}]
+ γIK

cd γK
ab [G{qcq̄dqb}+H{qbq̄cqd}] . (7.6)

Evaluating γ[JHI], one is forced to set G = −D, H = −F and E = 0 in order to cancel

the terms involving γ
[I
ijγ

J ]
kl and further to choose C = H, A = −G, G −H = B. Finally,

we take H = 0 without loss of generality. This leads to

(γ[JHI])a = G{(qγIJ q̄)qa + qa(q̄γ
IJq)− γIJ

bc qbq̄aqc}. (7.7)

The last term can only be dealt with in the case of real SU(2)× SU(2) so that

γ[JHI] =
3

2
G
[

(qγIJ q̄)q + q(q̄γIJq)
]

. (7.8)

Then one can take Gc3 = −2
3a = −2

3b resulting in

HI
a =

2

3
aγI

ab [qbq̄cqc − qcq̄bqc] +
2

3
aγI

cdqcq̄dqa −
2

3
aγIK

cd γK
abqcq̄dqb (7.9)

which is the same as for the N = 6 Majorana spinor if the value I = 7 of the free index is

excluded and the term in the contraction with K = 7 is extracted in terms of γ∗. There is

no solution for a fundamental gauge group.

12The first one can be used to calculate µℓ with the formula given in the beginning.
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7.2 Coupling to supergravity

The super Cotton tensor is W IJKL = 1
6ε

IJKLSPQWSPQ, so that

γ[JH
I]
sg = −1

2

(

− i

3
WSPQγ

IJSPQ + 4KγIJ

)

q. (7.10)

The ansatz

HI
sg = XWKLMγIKLMq + YW IKLγKLq + 2KγIq (7.11)

leads to

γ[JH
I]
sg = −XWSPQγ

IJSPQq + (Y − 3X)WPQ[IγJ ]PQq + 2YW IJPγP q. (7.12)

This time, there is no solution for HI in this off-shell form. On shell, with

W IJK = −i
λ

16
|qγIJK q̄| (7.13)

one finds

−1

2
W IJKLγKLq = − λ

16

[

|q(q̄|γIJq) + |qc(γIJ q̄|)qc + (γIJ |q)q̄c|qc + |qcq̄|(γIJq)c
]

+
λ

8

[

(γ[I |q)(q̄|γJ ]q) + |qc(γ[I q̄|)(γJ ]q)c

]

(7.14)

and for the ansatz

HI
sg = −4

−iλ

16
(Y − 3X)

[

|q(q̄|γIq) + |qcq̄|(γIq)c
]

− 4
−iλ

16
(Y + 3X)

[

|qc(γI q̄|)qc + (γI |q)q̄c|qc
]

+ 2Y
−iλ

16
|qcq̄c|(γIq)

+ 2KγIq, (7.15)

implying

γ[JH
I]
sg = −4

−iλ

16
(Y − 3X)

[

|(γ[Jq)(q̄|γI]q) + |qc(γ[J q̄)|(γI]q)c

]

+ 4
−iλ

16
(Y + 3X)

[

|qc(γIJ q̄|)qc + (γIJ |q)q̄c|qc
]

− 2Y
−iλ

16
|qcq̄c|(γIJq)

− 2KγIJq. (7.16)

Also here, the coefficients cannot be chosen to reproduce the supergravity term, except in

the absence of flavour indices where there is a solution with X = 0 and Y = − i
3 (which

implies |µℓ|−1 = 2).

For a flavoured scalar, we add the ansatz HI
sg for the supergravity sector to the ansatz

HI
cs for the gauge sector and evaluate again Σ [JHI]. For bifundamental matter it turns
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out that real SU(2)× SU(2) remains the only possibility. In this case the gauge traces can

be turned into matrix products in the bifundamental indices so that

−1

2
W IJKLγKLq = −λ

8

[

1

2
q(q̄γIJq) + qc(γ

IJ q̄)qc + (γIJq)q̄cqc −
1

2
(qγIJ q̄)q

]

+
λ

4

[

(γ[Iq)(q̄γJ ]q) + qc(γ
[I q̄)(γJ ]q)c

]

(7.17)

and

γ[JHI] = −8
−iλ

16
(Y − 3X)

[

(γ[Jq)(q̄γI]q) + qc(γ
[J q̄)(γI]q)c

]

+ 8
−iλ

16
(Y + 3X)

[

qc(γ
IJ q̄)qc + (γIJq)q̄cqc

]

− 4Y
−iλ

16
qcq̄c(γ

IJq)

−A(γIJq)q̄cqc +G

(

3

2
q(q̄γIJq) +

3

2
(qγIJ q̄)q − (γIJq)q̄cqc

)

− 2KγIJq (7.18)

where we have set some coefficients to zero without loss of generality and further G =

B = −D. It can be seen that the field strength terms of the gauge sector also have to

contribute to the supergravity sector. This leads to the relation for the couplings a− b = λ
8

and a + b = −3G. Fixing the remaining constants (e.g. X = −Y = − i
8 , A = − λ

32 − G)

finally leads to the solution

HI =

[

λ

8
+

1

3

(

2a− λ

8

)]

((γIq)q̄cqc + (qγI q̄)q) +

[

λ

8
− 1

3

(

2a− λ

8

)]

qc(γ
I q̄)qc

− λ

8
q(q̄γIq)− 1

3

(

2a− λ

8

)

(qγIK q̄)(γKq)

+ 2KγIq. (7.19)

Giving an expectation value to one of the spin(7) components implies |µℓ|−1 = 2.

Regarding fundamental gauge groups, it is expected that SU(N) is a possibility at least

for N = 2 since a or b can be set to zero in the above bifundamental gauging. Indeed, for

SU(N)× U(1) it is found a solution where the coupling is completely fixed by the gravity

coupling a = −λ
8 and the charge is constrained as q2 = λ

16(N − 2). The corresponding

solution for HI reads

HI
β = −λ

8

[

qα(q̄
αγIqβ) + qcαq̄

α(γIqβ)c + qcα(γ
I q̄α)qcβ

]

+
λ

16

[

(γIqα)q̄
α
c q

c
β − (γIqβ)q̄

α
c q

c
α − (qαγ

[I q̄α)(γJ ]qβ) + (qαγ
IK q̄α)(γKqβ)

]

+ 2KγIqβ . (7.20)

For SO(N), a field strength term can be provided entirely by the supergravity sector, with

a = − λ
16 and

HI
β =

λ

4
qα(qαγ

Iqβ) +
λ

8
(γIqα)qαqβ + 2KγIqβ . (7.21)
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Then, also spin(7) or G2 can be gauged by employing the invariant rank-four tensor in the

ansatz for the gauge sector leading to the term

GCβαγδ[(q
αγIJqγ)qδa + qαa (q

γγIJqδ)− γIJ
bc q

α
b q

γ
aq

δ
c ] = 3GCβαγδ(q

αγIJqγ)qδa. (7.22)

Then G = − λ
16

1
2 and

HI
β =

λ

4
qα(qαγ

Iqβ) +
λ

8
(γIqα)qαqβ +

λ

32
Cβαγδ[(q

αγIqγ)qδ − (qαγIKqγ)γKqδ]

+ 2KγIqβ . (7.23)

8 N = 8

The spin matrices of N = 7 are taken as the chiral blocks (Σ I)īi and (Σ̄ I )̄ii for N = 8,

namely

Σ 1 = Σ̄ 1 = 1

Σ 2,...,8 = −Σ̄ 2,...,8 = iγ̃1,...,7 (8.1)

so that (Σ I)T = Σ̄ I . We note the “triality relation”13

(Σ I)i(̄i(Σ
I)jj̄) = δijδīj̄ . (8.2)

It indicates that interchanging the role of the SO(8) indices with that of one of the spin(8)

matrix indices specifies new spin matrices solving the Clifford algebra. For the superspace

it is then formally possible to let the spinor coordinates transform under one of the spin(8)

representations while the scalar multiplet carries an SO(8) vector index. The resulting,

algebraically equivalent formalism was used for the BLG model, especially. We will repeat

the following treatment in this “trialised version” in the appendix.

8.1 Flavour gauging

The ansatz for HI is very similar to the one for N = 7 and the relevant Fierz identity

needed to calculate Σ [JHI] is

(ΣK[I)ij(Σ
J ]K)kl = 4δ[i[k(Σ

IJ)l]j] (8.3)

which may be derived by enhancing the N = 7 identities to include Σ 1 = Σ̄ 1 = 1. The

general ansatz for HI is then

HI
k̄ = (Σ̄ I )k̄k

[

A{QkQ̄iQi}+B{QiQ̄kQi}
]

+ C(Σ IK)ij(Σ̄
K )k̄k{QiQ̄jQk}. (8.4)

It implies

(Σ [JHI])m = −Σ IJ
mk

[

A{QkQ̄iQi}+B{QiQ̄kQi}
]

+ C{(QΣ IJQ̄)Qm +Qm(Q̄Σ IJQ)

+Qi(Σ
IJQ̄)mQi − Σ IJ

kl QkQ̄mQl − (Σ IJQ)mQ̄iQi} (8.5)

13A list of many identities can be found in [13].
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Again, one finds the sole possibility of real SU(2)× SU(2) and

HI
k̄ =

2

3
a(Σ̄ I )k̄k

[

QkQ̄iQi −QiQ̄kQi

]

− 2

3
a(Σ IK)ij(Σ̄

K )k̄kQiQ̄jQk. (8.6)

The equivalence to the solution with explicit SO(7) covariance is totally obvious. For a

fundamental representation there is no solution.

8.2 Comment on supersymmetry enhancement

This concludes a line from the N = 4 to the N = 8 chiral theories. Supersymmetry

enhancement in this framework has two aspects. The first one, from the N = 4 Clifford

theory via N = 5 to the N = 6 chiral theory and similarly from N = 6 Majorana to N = 8

chiral, means that one can extend the index range of the SO(N ) vector index I in the

supersymmetry transformations

D
I
αQ = iΣ IΛα

D
I
αΛβ = (γa)αβΣ

I
DaQ+

1

2
εαβH

I (8.7)

without changing the form of these equations, i.e. the form of HI in particular. The second

one concerns the critical transition from N = 4 chiral to N = 4 Clifford and similarly for

N = 6. Here, it is crucial whether it is possible to construct a Clifford doublet from

two chiral spinors while keeping the structure leading to the allowed gauge symmetries.

For N = 4 this is naturally the case, which is owed to the two-component properties of

the chiral spinors and to the fact that both spin(4) and spin(5) (i.e. spin(4) Clifford) are

symplectic groups. A different case occurs from N = 6 chiral to N = 6 Clifford. Due to the

complexness of spin(6) = SU(4) it turns out that a doublet of two SU(4) spinors has very

different algebraic properties than a single spinor. The only case where one can implement

a gauge symmetry is real SU(2)× SU(2) which can be realised by imposing the Majorana

condition on the Clifford spinor. This real representation then extends to N = 7 and 8 as

discussed above.

8.3 Coupling to supergravity

The super Cotton tensor is now self-dual and the supergravity equation continues to be

Σ [JH
I]
sg = −1

2
W IJKLΣKLQ− 2KΣ IJQ. (8.8)

The ansatz

HI
sg = XW IKLM Σ̄KLMQ+ 2KΣ̄ IQ (8.9)

provides no solution off shell since

Σ [JH
I]
sg = XW [I|KLM |ΣJ ]KLMQ+ 3XW IJLMΣLMQ− 2KΣ IJQ. (8.10)

In terms of the on-shell super Cotton tensor

W IJKL = − λ

16
|QΣ IJKLQ̄| (8.11)
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the super Cotton term reads

−1

2
W IJKLΣKLQ =

λ

16
|QiQ̄i|(Σ IJQ)− λ

8
|Qi(Σ

IJQ̄|)Qi −
λ

8
(Σ IJ |Q)Q̄i|Qi

− λ

8
|Q(Q̄|Σ IJQ)− λ

8
|QiQ̄|(Σ IJQ)i (8.12)

while the ansatz becomes

HI
sg = −X

λ

16

[

24|Qi(Σ̄
I Q̄|)Qi + 24(Σ̄ I |Q)Q̄i|Qi − 6|QiQ̄i|(Σ̄ IQ)

]

+ 2KΣ̄ IQ (8.13)

and implies

Σ [JH
I]
sg = X

λ

16

[

24|Qi(Σ
IJQ̄|)Qi + 24(Σ IJ |Q)Q̄i|Qi − 6|QiQ̄i|(Σ IJQ)

]

− 2KΣ IJQ. (8.14)

Assuming an unflavoured scalar leads to X = 1
14 and

HI
sg = 3

λ

16
Q2Σ IQ+ 2KΣ IQ. (8.15)

Taking HI
sg = 0 leads to |µℓ|−1 = 3.

For a flavoured scalar we again add the on-shell ansatz of the gauge sector to the one

for the supergravity sector. It becomes apparent that for bifundamental matter the only

possibility remains real SU(2)× SU(2) in which case

−1

2
W IJKLΣKLQ =

λ

8
QiQ̄i(Σ

IJQ)− λ

4
Qi(Σ

IJQ̄)Qi −
λ

4
(Σ IJQ)Q̄iQi

− λ

4
Q(Q̄Σ IJQ)− λ

4
QiQ̄(Σ IJQ)i (8.16)

and

Σ [JHI] = X
λ

16

[

48Qi(Σ
IJQ̄)Qi + 36(Σ IJQ)Q̄iQi

]

− 2KΣ IJQ

−
[

A(Σ IJQ)Q̄iQi +BQi(Σ
IJQ̄)Qi

]

+
3

2
C
[

(QΣ IJQ̄)Q+Q(Q̄Σ IJQ) +Qi(Σ
IJQ̄)Qi − (Σ IJQ)Q̄iQi

]

(8.17)

where the gauge traces have been rewritten as matrix products in the bifundamental indices.

One finds a solution where the couplings must fulfil a+ b = −3C and a− b = λ
4 and

HI =
λ

16

[

16

3
Qi(Σ̄

I Q̄)Qi +
2

3
(Σ̄ IQ)Q̄iQi

]

+
2

3
a
[

(Σ̄ IQ)Q̄iQi −Qi(Σ̄
I Q̄)Qi

]

− 1

3

(

2a− λ

4

)

(Σ IK)ijQiQ̄j(Σ̄
KQ) + 2KΣ̄ IQ. (8.18)

This can be rewritten in terms of traces which gives |µℓ|−1 = 3 for one non-vanishing

spin(8) component.
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For a fundamental representation at least SU(2) should be possible, as a or b can be

set to zero in the above bifundamental gauging. Indeed, more generally for SU(N)×U(1)

it is found a = −λ
4 and the U(1) charge obeys q2 = (N − 2)λ8 . The solution then is

HI
β =

λ

16

[

4Qi
α(Σ̄

I Q̄α)Qi
β −Qi

αQ̄
α
i (Σ̄

IQβ)
]

+
λ

8
(QβΣ

IKQ̄α)(Σ̄KQα) + 2KΣ̄ IQβ . (8.19)

For SO(N), the field strength term is contained in the supergravity sector with the coupling

a = −λ
8 . It follows

HI
β =

λ

16

[

4(Σ̄ IQα)Q
i
αQ

i
β −Qi

αQ
i
α(Σ̄

IQβ)
]

+ 2KΣ̄ IQβ . (8.20)

This leads to the formula already discovered in [25]

|µℓ|−1 =

∣

∣

∣

∣

4

p
− 1

∣

∣

∣

∣

(8.21)

where p ≤ 8 is the number of non-vanishing entries of the matrix Qα
i =

diag(v, . . . , v, 0, . . . , 0). Finally, for spin(7) or G2 one has

HI
β =

λ

16

[

4(Σ̄ IQα)Q
i
αQ

i
β −Qi

αQ
i
α(Σ̄

IQβ)
]

− λ

16
Cβαγδ(Σ

IK)ij(Σ̄
K )k̄kQ

α
i Q

γ
jQ

δ
k

+ 2KΣ̄ IQβ . (8.22)

9 Conclusions

In this paper we have elaborated on the on-shell superspace formulation of Chern-Simons-

matter theories with and without coupling to supergravity, introduced in [17]. The strength

of this formalism is that the classification of such theories is to a large extend reduced to

representation theory of the spin(N ) R-symmetry group and therefore provides a unifying

view on theories with different numbers of supercharges. Moreover, it readily provides the

matter equations of motion useful for model building.

While confirming (and correcting some) results in the previous literature and revealing

the relation between models with different numbers of supercharges within our construction,

we completed the classification of such models by a number of new consistent theories

coupled to supergravity, for N = 6, 7 and 8 in particular. We hope that some of these

models will be useful in string/M-theory.

We also found a plethora of new topologically massive gravity models with enhanced

supersymmetry and determined the masses of the graviton in these theories. Perhaps, this

can be a good starting point for analysing the non-perturbative consistency of topologically

massive gravity.

A N = 8 in the trialised version

Pure supergravity. The supercoordinates now transform under spin(8) and the scalar

multiplet under SO(8). Hence,

{D i
α,D

j
β}QI = 2iδij(γa)αβDaQ

I + iεαβW
ijkl

NklQ
I + 4iεαβKN

ijQI , (A.1)
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where

NklQ
I =

1

2
(Σ IJ)klQJ . (A.2)

An antisymmetric tensor is converted to a spinorial tensor as14

− 1

4
(Σ IJ)ijAIJ = Aij . (A.3)

The derivatives of the scalar and spinor fields are

Dα,iQ
I = i(Σ I)īiΛ

ī
α (A.4)

and

D
i
αΛ

j̄
β = (γa)αβ(Σ

I)ij̄DaQI +
1

2
εαβH

ij̄ (A.5)

where H ij̄ must fulfil

(HΣ̄ I)[ij] =
1

2
W ijkl(Σ IJ)klQJ + 2K(Σ IJ)ijQJ . (A.6)

The self-dual super Cotton tensor can be expressed by a symmetric and traceless rank-two

tensor [17]

Wijkl ≡
1

16
(ΣKP )[ij(Σ

LP )kl]CKL (A.7)

leading to

(HΣ̄ I)[ij] =
1

2
CK[I(ΣJ ]K)ijQJ + 2K(Σ IJ)ijQJ . (A.8)

The exclusive ansatz for Hij̄ is

Hij̄ = A(ΣK)ij̄CKJQ
J − 2K(ΣJ)ij̄QJ (A.9)

implying

(Σ IH̄)ij = −ACK[IΣJ ]KQJ +ACK(IΣJ)KQJ + 2K(Σ IJ)ijQJ . (A.10)

This means that, thanks to the second term, the algebra is not consistent if the super

Cotton tensor is off shell. On shell, due to its symmetry and tracelessness, the super

Cotton tensor is of the form [17]

CIJ = C

(

Q̄(IQJ) −
1

8
δIJQ̄

KQK

)

. (A.11)

For the above expressions it is found

CKIΣJKQJ = −1

2
CΣKJ

(

Q̄IQK + Q̄KQI
)

QJ − 1

8
CΣJIQ̄KQKQJ . (A.12)

Assuming no flavour gauging so far, one finds the solution A = − 3
14 and

Hij̄ = − 3

16
C(ΣK)ij̄QKQJQJ − 2K(ΣJ)ij̄QJ . (A.13)

14In agreement with NKLQI = −2δI[KQL].
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Setting Hij̄ = 0 leads to the relation

ℓ−1 =
3

16
C̃λQJQJ = 3C̃µ (A.14)

where C̃λ ≡ C.

In order to specify the constant C, the equation of motion for the SO(8) gauge field

has to be determined. The third component of the super Cotton tensor in the trialised

version is given by

− 1

2
F ij
αβ = wij

αβ =
i

60
∇k

(α∇l
β)W

ijkl. (A.15)

The spinor super Cotton tensor is on-shell expressed by CIJ

W ijkl =
C

16
(Σ IK)[ij(ΣJK)kl]Q(IQJ). (A.16)

It can be calculated

∇k
(α∇l

β)Q(IQJ) = 2i(γa)αβ(Σ
K(I)klQ

J)∇aQK (A.17)

leading to

wij
αβ =

−1

180

C

16
(γa)αβ

[

32(Σ IL)ijδJLK(IQJ) + 4(Σ ILΣK(IΣ |JL|)[ij]QJ)
]

∇aQK (A.18)

and after further elaboration it can be found

wij
αβ =

C

16
(γa)αβ(Σ

JK)ijQJ∇aQK . (A.19)

Comparing the kinetic term (omitting the term quadratic in Ba)

− 1

2
D

aQI
DaQI =

1

4
Bij

a (Σ IJ)ijQI∂aQJ ≡ −jaijB
ij
a (A.20)

with the equation of motion
2

λ
F ij
a = jija (A.21)

yields C = C̃λ = λ and thus |µℓ|−1 = 3.

Flavour gauging. The supersymmetry algebra for a gauge group F ×G is

{D i
α,D

j
β}QK = iδijDαβQ

K + iεαβF
ijQK + iεαβQ

KGij . (A.22)

The condition for H reads

(Σ IH̄)[ij] = FijQ
I +QIGij = a(ΣKL)ij{QKQ̄LQ

I}+ b(ΣKL)ij{QIQ̄KQL}. (A.23)

The ansatz is15

H̄ = AΣ̄KLM{QKQ̄LQM}
+ Σ̄K(B{QJQ̄KQJ}+ C{QKQ̄JQJ}+D{QJQ̄JQK}). (A.24)

15An off-shell ansatz cannot be solved.
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It is found immediately B = C = D = 0 and thus

Σ IH̄ = A(ΣLM{QIQ̄LQM}+ ΣKL{QKQ̄LQI} − ΣKM{QKQ̄IQM}). (A.25)

The third term can be dealt with if F × G is taken to be real SU(2) × SU(2) [17]. The

solution is then −a = −b = 3
2Ac3 and (cf. [17])

H̄ = −2

3
aΣ̄KLMQKQ̄LQM . (A.26)

For a fundamental representation their is no solution.

Coupling to supergravity. In the case of gauge transforming scalars, H̄sg cannot be

solved separately. The two sectors must therefore be added in advance

Σ IH̄
!
= aΣKL{QKQ̄LQI}+ bΣLM{QIQ̄LQM}

+
1

4
λΣKJtr(Q(IQ̄K))QJ

+
1

4
λΣ IK

(

tr(Q(JQ̄K))QJ − 1

4
tr(QJQ̄J)QK

)

(A.27)

Σ IH̄ = AΣKL({QIQ̄KQL}+ {QKQ̄LQI} − {QKQ̄IQL})
+ Σ IK

(

B{QJQ̄KQJ}+ C{QKQ̄JQJ}+D{QJQ̄JQK}
)

+XλΣ IK

(

tr(Q(KQ̄J))QJ − 1

8
tr(QJQ̄J)QK

)

. (A.28)

This time, the D-term is needed to fix the supergravity sector. Still, SU(2)× SU(2) is the

only possibility, in which case it can be manipulated as

Σ IH̄
!
= −aΣKLQKQ̄LQI − bΣLMQIQ̄LQM

+
1

8
λΣKJ(QIQ̄KQJ −QKQ̄JQI)

+
1

4
λΣ IK

(

tr(QKQ̄J)QJ − 1

4
tr(QJQ̄J)QK

)

(A.29)

Σ IH̄ =
3

2
Ac3Σ

KL(QIQ̄KQL +QKQ̄LQI)

+Dẽ3Σ
IKQKtr(Q̄JQJ)

+XλΣ IK

(

tr(QKQ̄J)QJ − 1

8
tr(QJQ̄J)QK

)

. (A.30)

One can fix X = 1
4 and D = − λ

32 . The coupling constants fulfil a − b = −λ
4 and

a+ b = −3Ac3 (see also [17]). Then H̄ = H̄cs + H̄sg with

H̄cs = −1

3
(a+ b)Σ̄KLMQKQ̄LQM − λ

32
Σ̄KQKtr(QJQ̄J) (A.31)

and

H̄sg =
1

4
λΣ̄K

(

tr(QKQ̄J)QJ − 1

8
tr(QJQ̄J)QK

)

+ 2KΣ̄KQK . (A.32)
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In order to solve H̄ = 0 for K, only one SO(8) component can be non-zero. This leads

again to |µℓ|−1 = 3.

One possibility for a fundamental gauge group is SO(N). In this case,

Σ IH̄ = Dc1Σ
IKQK

β Qα
JQ

J
α

+XλΣ IK

(

Qα
KQJ

αQ
J
β − 1

8
Qα

JQ
J
αQ

K
β

)

(A.33)

Σ IH̄
!
= 2aΣKLQα

KQL
βQ

I
α

+
1

4
λΣKJQα

IQ
K
α QJ

β +
1

4
λΣ IK

(

Qα
JQ

K
α QJ

β − 1

4
Qα

JQ
J
αQ

K
β

)

. (A.34)

The conditions are a = −λ
8 andDc1−X

8 λ = − 1
16λ. A choice isX = 1

4 andDc1 = − 1
32λ.

Then

H̄ =
λ

16
Σ̄K(4Qα

KQJ
αQ

J
β −Qα

JQ
J
αQ

K
β ) + 2KΣ̄KQK

β . (A.35)

This formula can be used to obtain different values for µℓ depending on how many of

the SO(N) components are chosen to be non-zero. Following [25], one can take them as

QI
α = vδIα where α = 1, . . . , p ≤ 8. One arrives at the formula (agreeing with [25])

|µℓ|−1 =

∣

∣

∣

∣

4

p
− 1

∣

∣

∣

∣

. (A.36)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078

[hep-th/0411077] [INSPIRE].

[2] J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020

[hep-th/0611108] [INSPIRE].

[3] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66

[arXiv:0709.1260] [INSPIRE].

[4] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes,

Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

[5] J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105

[arXiv:0712.3738] [INSPIRE].

[6] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[7] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [INSPIRE].

[8] D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in

N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2004/11/078
https://arxiv.org/abs/hep-th/0411077
https://inspirehep.net/search?p=find+J+%22JHEP,0411,078%22
https://doi.org/10.1103/PhysRevD.75.045020
https://arxiv.org/abs/hep-th/0611108
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D75,045020%22
https://doi.org/10.1016/j.nuclphysb.2008.11.014
https://arxiv.org/abs/0709.1260
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B811,66%22
https://doi.org/10.1103/PhysRevD.77.065008
https://arxiv.org/abs/0711.0955
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D77,065008%22
https://doi.org/10.1088/1126-6708/2008/02/105
https://arxiv.org/abs/0712.3738
https://inspirehep.net/search?p=find+J+%22JHEP,0802,105%22
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+J+%22JHEP,0810,091%22
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://inspirehep.net/search?p=find+J+%22JHEP,0811,043%22
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://inspirehep.net/search?p=find+J+%22JHEP,1006,097%22


J
H
E
P
0
2
(
2
0
1
8
)
1
5
4

[9] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].

[10] M. Schnabl and Y. Tachikawa, Classification of N = 6 superconformal theories of ABJM

type, JHEP 09 (2010) 103 [arXiv:0807.1102] [INSPIRE].

[11] E.A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben and E. Sezgin, The superconformal

gaugings in three dimensions, JHEP 09 (2008) 101 [arXiv:0807.2841] [INSPIRE].

[12] H. Samtleben and R. Wimmer, N = 6 superspace constraints, SUSY enhancement and

monopole operators, JHEP 10 (2010) 080 [arXiv:1008.2739] [INSPIRE].

[13] H. Samtleben and R. Wimmer, N = 8 superspace constraints for three-dimensional gauge

theories, JHEP 02 (2010) 070 [arXiv:0912.1358] [INSPIRE].

[14] I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B. Samsonov and B.M.

Zupnik, ABJM models in N = 3 harmonic superspace, JHEP 03 (2009) 096

[arXiv:0811.4774] [INSPIRE].

[15] S.M. Kuzenko and I.B. Samsonov, Superconformal Chern-Simons-matter theories in N = 4

superspace, Phys. Rev. D 92 (2015) 105007 [arXiv:1507.05377] [INSPIRE].

[16] S.M. Kuzenko and I.B. Samsonov, Implications of N = 5, 6 superconformal symmetry in

three spacetime dimensions, JHEP 08 (2016) 084 [arXiv:1605.08208] [INSPIRE].

[17] U. Gran, J. Greitz, P.S. Howe and B.E.W. Nilsson, Topologically gauged superconformal

Chern-Simons matter theories, JHEP 12 (2012) 046 [arXiv:1204.2521] [INSPIRE].

[18] X. Chu and B.E.W. Nilsson, Three-dimensional topologically gauged N = 6 ABJM type

theories, JHEP 06 (2010) 057 [arXiv:0906.1655] [INSPIRE].

[19] P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with

central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183

[hep-th/9505032] [INSPIRE].

[20] S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter

couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

[21] D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity

in three dimensions: new off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132]

[INSPIRE].

[22] D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity

in three dimensions: off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].

[23] B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models,

Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].

[24] S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97

[INSPIRE].

[25] B.E.W. Nilsson, Critical solutions of topologically gauged N = 8 CFTs in three dimensions,

JHEP 04 (2014) 107 [arXiv:1304.2270] [INSPIRE].
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