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Using data recorded with the Belle detector, we observe a new excited hyperon, an Ω�− candidate
decaying into Ξ0K− and Ξ−K0

S with a mass of 2012.4� 0.7ðstatÞ � 0.6ðsystÞ MeV=c2 and a width of

Γ ¼ 6.4þ2.5
−2.0 ðstatÞ � 1.6ðsystÞ MeV. The Ω�− is seen primarily in ϒð1SÞ;ϒð2SÞ, and ϒð3SÞ decays.

DOI: 10.1103/PhysRevLett.121.052003

The Ω− comprises three strange quarks. Its excited states
have proved difficult to find. The Particle Data Group
(PDG) [1] lists only one of them, the Ωð2250Þ, in its
summary tables, and it has a mass almost 600 MeV=c2

higher than that of the ground state. In addition, the particle
listings detail two other states for which the evidence of
existence is considered to be “only fair,” and they are at
even higher masses. The gap in the spectrum is surprising,
as there are negative-parity orbital excitations of many
other baryons approximately 300 MeV=c2 above their
respective ground states, and the quark model [2–5],
Skyrme model [6], and lattice gauge theory [7] all predict
a JP ¼ 1

2
− and JP ¼ 3

2
− pair of excited Ω− states with

masses in the 2000 MeV=c2 region.
A particular feature of Ω− baryons are their zero isospin

which means that Ω�− → Ω−π0 decays are highly sup-
pressed, and this restricts the possible decays of excited
states, with the largest expected decay mode for low-
lying states being ΞK. Such decays are analogous to the
Ω0

c → Ξþ
c K− decays recently discovered by the LHCb

Collaboration [8] and confirmed soon after by the Belle
Collaboration [9].
In this Letter, we present the results of a search for Ω�−

using a data sample of eþe− annihilations, corresponding to
an integrated luminosity of 980 fb−1, recorded by the Belle
detector [10] operating at the KEKB asymmetric-energy
eþe− collider [11]. The analysis concentrates on data taken
with the accelerator energy tuned for the production of the
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ resonances, with integrated
luminosities of 5.7, 24.9, and 2.9 fb−1, respectively. The
decays of these narrow resonances proceed via gluons, and
it has long been known that they contain an enhanced
baryon fraction compared with continuum eþe− → qq̄
events [12–14].

We search for excited Ω− decays into Ξ0K− and Ξ−K̄0

[15], with subsequent decays into Ξ− → Λπ−, Ξ0 → Λπ0,
K̄0 → πþπ−, Λ → pπ−, and π0 → γγ. An excited Ω−

would be expected to decay strongly, and, because of
isospin symmetry, with almost equal branching fractions,
into the above two decay modes, and they would likely
dominate the decays of any Ω�− with a mass between the
ΞK and Ξð1530ÞK thresholds.
The Belle detector was a large solid-angle spectrometer

comprising six subdetectors: the silicon vertex detector
(SVD), the 50-layer central drift chamber (CDC), the
aerogel Cherenkov counter (ACC), the time-of-flight scin-
tillation counter (TOF), the electromagnetic calorimeter
(ECL, divided into the barrel ECL in the central region and
the forward and backward end caps at smaller angles with
respect to the beam axis), and the K0

L and muon detector.
A superconducting solenoid produces a 1.5 T magnetic
field throughout the first five of these subdetectors. The
detector is described in more detail in Ref. [10]. Two inner
detector configurations were used. The first comprised a
2.0 cm radius beam pipe and a 3-layer SVD and the second
a 1.5 cm radius beam pipe and a 4-layer SVD and a small-
cell inner CDC.
Charged particles π�, K−, and p are selected using the

information from the tracking (SVD, CDC) and charged-
hadron identification (CDC, ACC, TOF) systems combined
into a likelihood Lðh1∶h2Þ ¼ Lh1=ðLh1 þ Lh2Þ, where h1
and h2 are p, K, and π as appropriate. Kaon candidates are
defined as those with LðK∶πÞ > 0.9 and LðK∶pÞ > 0.9,
which is approximately 83% efficient. For protons, the
requirements are Lðp∶πÞ > 0.2 and Lðp∶KÞ > 0.2, while
for charged pions Lðπ∶pÞ > 0.2 and Lðπ∶KÞ > 0.2; these
requirements are approximately 99% efficient.
The π0 candidates are reconstructed from two neutral

clusters detected in the ECL, each consistent with being
due to a photon and having an energy greater than 30 MeV
in the laboratory frame (for those in the end cap calorim-
eter, the energy threshold is increased to 50 MeV).
Candidate ΛðK0

SÞ decays are made from pπ−ðπþπ−Þ
pairs with a production vertex significantly separated from
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the average interaction point (IP) and a reconstructed
invariant mass within 3.5 ð5.0Þ MeV=c2 of the peak values.
Each Ξ− candidate is reconstructed by combining a Λ

candidates with a π− candidate. The vertex formed from
these two is required to be at least 0.35 cm from the IP, to be
a shorter distance from the IP than the Λ decay vertex, and
to signify a positive Ξ− flight distance. The Ξ0 → Λπ0
reconstruction is complicated by the fact that the π0 has
negligible vertex position information. Combinations of Λ
and π0 candidates are made, and then, assuming the IP to be
production point of the Ξ0, the sum of the Λ and π0

momenta is taken as the momentum vector of the Ξ0

candidate. The intersection of this trajectory with the
reconstructed Λ trajectory is then found, and this position
is taken as the decay location of the Ξ0 hyperon. The π0 is
then remade from the two photons using this location as its
point of origin. The reconstructed invariant mass of the π0

candidate must be within 10.8 MeV=c2 of the nominal mass
(approximately 94% efficient). To reduce the large combi-
natorial background, the momentum of the π0 candidate is
required to be greater than 200 MeV=c. Combinations are
retained if they have a decay location of the Ξ0 indicating a
positive Ξ0 path length of greater than 2 cm but less than the
distance between theΛ decay vertex and the IP. The refitting
of the π0 at the reconstructed Ξ0 decay vertex improves the
Ξ0 mass resolution by around 15%.
The resultant invariant mass plots for the Ξ0 and Ξ−

candidates are shown in Fig. 1. The red vertical arrows
indicate the limits of the reconstructed invariant masses of
the candidates retained for further analysis, which are �5.0
and �3.5 MeV=c2 around the central values of the Ξ0 and
Ξ− mass peaks, respectively, which are each approximately
95% efficient. For the Ξ0, the value of the mass peak is
1.3155 GeV=c2 and is higher than the PDG [1] value of
1.31 486� 0.00 020 GeV=c2. This difference is later used
in the estimate of the systematic uncertainty of the Ω�−
resonance mass measurement.
The Ξ0 and Ξ− candidates are kinematically constrained

to their nominal masses [1] and then combined with K− and
K0

S candidates, respectively. The two particle combinations
are kinematically constrained to come from a common
vertex at the IP, and the χ2 of this is required to be consistent
with the daughters being produced by a common parent. For
the Ξ0K− case, if there is more than one candidate with the
same Λ and K− but a different π0, the one with the higher π0

momentum is kept and others discarded to avoid double
counting. This occurs around 3% of the time.
Figure 2 shows the Ξ0K− and Ξ−K0

S invariant mass
distributions in data taken at the ϒð1SÞ;ϒð2SÞ, and ϒð3SÞ
resonance energies. Excesses are present in both distribu-
tions at around 2.01 GeV=c2. It should be noted that real
Ξ0K− combinations have three units of strangeness
and are therefore highly suppressed. In contrast, Ξ−K0

S

combinations may have one unit of strangeness and thus
have a larger combinatorial background.
A simultaneous fit applied to the two distributions is

shown in Fig. 2 and uses fitting functions where the signal
functions are Voigtian functions (Breit-Wigners convolved
with a Gaussian resolution functions) and the background
functions second-order Chebyshev polynomials. The
masses and intrinsic widths of the two Voigtian functions
are kept the same. The resolution functions are obtained
from Monte Carlo (MC) events, generated using EVTGEN

[16] with the Belle detector response simulated using the
GEANT3 [17] framework, and parametrized as Gaussian
distributions with widths of 2.27 MeV=c2 for Ξ0K− and
1.77 MeV=c2 for Ξ−K0

S. The fit is made to the binned
invariant mass distributions with a large number of small
bins, using the maximum-likelihood method. A convenient
test of the goodness-of-fit is the χ2 per degree of freedom
(χ2=d:o:f.) for the distribution plotted in 2.5 MeV=c2 bins.
The signal yields, mass, intrinsic width, and χ2=d:o:f:
resulting from this fit are listed in Table I. We calculate
the statistical significance of the signal by excluding the
peaks from the fit, finding the change in the log-likelihood
(Δ½lnðLÞ�) and converting this to a p-value taking into
account the change in d.o.f. This is then converted to an
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FIG. 1. Reconstructed invariant mass distributions, using all
Belle data, of (a) Λπ0 and (b) Λπ− combinations after all
requirements. The arrows show the mass windows used for Ξ0

and Ξ− identification.
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effective number of standard deviations nσ, and for this
simultaneous fit, we find nσ ¼ 8.3.
Table I also lists results obtained from fitting to each of

the two distributions separately. The signals in the Ξ0K−

and Ξ−K0
S mass distributions have significances of nσ ¼6.9

and nσ ¼ 4.4, respectively, and have statistically compat-
ible masses and widths.
We have performed a series of checks to confirm the

stability of the signal peak. Reasonable changes to the
selection criteria of the daughter particles produce changes
in the signal yield consistent with statistics. It would be
surprising if an Ω�− were not also produced in continuum
eþe− → qq̄ events. In Fig. 3, we present mass distributions
as in Fig. 2 but for the remainder of the Belle data, which
comprise a total of 946 fb−1 taken mostly at the ϒð4SÞ
energy but also in the continuum below and above this
energy as well as at the ϒð5SÞ. For the fits shown in Fig. 3,
we use second-order Chebyshev background functions
together with signal functions with mass and width fixed
to the values found in the ϒð1S; 2S; 3SÞ data. Both
distributions show excesses in the signal region, and their
statistical significances are listed in Table I.

Taking into account the detection efficiency of the two
modes, we use the results of the simultaneous fit to the
ϒð1S; 2S; 3SÞ data to calculate the branching fraction ratio
R ¼ ½BðΩ�− → Ξ0K−Þ=BðΩ�− → Ξ−K̄0Þ� ¼ 1.2 � 0.3,
where statistical uncertainties dominate. With perfect iso-
spin symmetry, this ratio would be 1, but the isospin mass
splitting of the Ξ and K doublets will lead to an increase of
up to approximately 15% depending on the spin associated
with decay. The obtained value of R is consistent with the
expectation.
The significance of the observation is largely unaffected

by systematic uncertainties associated with the limited
knowledge of the resolution and momentum scale of the
detector. However, the use of different background func-
tions can change the significance values. If we replace the
background functions by third-order Chebyshev polyno-
mials, the significance of the signal in the simultaneous fit
is reduced to nσ ¼ 7.2. We take this value as the signal
significance including systematic uncertainties. We also
investigated the possibility of a further signal at around a
mass of 1.95 GeV=c2 where the data show an excess of
events. This excess is not statistically significant (nσ < 3),
and its inclusion in the fit makes a negligible change to the
significance of the signal at 2.012 GeV=c2.
The dominant systematic uncertainty of the mass meas-

urement is that due to the masses of the Ξ0 and Ξ− hyperons,
which enter almost directly into the calculation of the Ω�−
mass. Conservatively, we take the difference between the
reconstructed Ξ0 mass and the PDG value 0.6 MeV=c2. The
Belle charged-particle momentum scale is very well under-
stood, and the uncertainty in the Ω�− mass measurement
due to this is much smaller than 0.6 MeV=c2. Similarly,
changing the fit function to a relativistic Breit-Wigner has
negligible effect on the mass value.
MC simulation is known to reproduce the resolution of

mass peaks within 10% over a large number of different
systems. The resultant systematic uncertainty in Γ from this
source is �0.37 MeV. Changing the background shapes to
third-order Chebyshev polynomials changes the measured
value of Γ by 1.6 MeV, and this is the dominant contributor
to the systematic uncertainty of the width.
The theoretical models [2–7] predict a JP ¼ 1

2
− and

JP ¼ 3
2
− pair of excited Ω− states in this mass region but

with large differences in their mass predictions. Our value
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FIG. 2. The (a) Ξ0K− and (b) Ξ−K0
S invariant mass distributions

in data taken at theϒð1SÞ;ϒð2SÞ, andϒð3SÞ resonance energies.
The curves show a simultaneous fit to the two distributions with a
common mass and width.

TABLE I. The results of fits to the data shown in Fig. 2. The uncertainties shown are statistical only.

Data Mode Mass (MeV=c2) Yield ΓðMeVÞ χ2=d:o:f: nσ

ϒð1S; 2S; 3SÞ Ξ0K−, Ξ−K0
S 2012.4� 0.7 242� 48, 279� 71 6.4þ2.5

−2.0 227=230 8.3
(simultaneous)

ϒð1S; 2S; 3SÞ Ξ0K− 2012.6� 0.8 239� 53 6.1� 2.6 115=114 6.9
ϒð1S; 2S; 3SÞ Ξ−K0

S 2012.0� 1.1 286� 87 6.8� 3.3 101=114 4.4

Other Ξ0K− 2012.4 (fixed) 209� 63 6.4 (fixed) 102=116 3.4
Other Ξ−K0

S 2012.4 (fixed) 153� 89 6.4 (fixed) 133=116 1.7

PHYSICAL REVIEW LETTERS 121, 052003 (2018)

052003-5



is, in general, closer to the those for the JP ¼ 3
2
− state. We

also note that an Ω�− with JP ¼ 3
2
− is restricted to decay to

ΞK via a dwave, whereas a state with JP ¼ 1
2
− could decay

via an s wave. Thus, the rather narrow width observed
implies that the 3

2
− identification is more likely.

In summary, we have reported the observation of a new
resonance, which we identify as an excitedΩ− baryon, found
in the decay modes Ω�− → Ξ0K− and Ω�− → Ξ−K0

S. The
measured mass of the resonance is [2012.4� 0.7 ðstatÞ�
0.6 ðsystÞ� MeV=c2, and its width Γ [6.4þ2.5

−2.0 ðstatÞ � 1.6
ðsystÞ MeV]. This new resonance has a mass
340 MeV=c2 higher than the ground state, and thus helps
fill the large gap in theΩ− spectrum between the ground state
and thealreadyobserved excited states. It is foundprimarily in
the decay of the narrow resonances ϒð1SÞ, ϒð2SÞ,
and ϒð3SÞ.
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FIG. 3. The (a) Ξ0K−, (b) Ξ−K0
S invariant mass distributions in

data taken at energies other than ϒð1SÞ;ϒð2SÞ, and ϒð3SÞ
resonance energies. The curves show the result of independent
fits to the two distributions with masses and widths fixed to those
found by the fit shown in Fig. 2.
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