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We report the observation of ϒð2SÞ → γηbð1SÞ decay based on an analysis of the inclusive photon
spectrum of 24.7 fb−1 of eþe− collisions at the ϒð2SÞ center-of-mass energy collected with the Belle
detector at the KEKB asymmetric-energy eþe− collider. We measure a branching fraction of
B½ϒð2SÞ → γηbð1SÞ� ¼ ð6.1þ0.6þ0.9

−0.7−0.6 Þ × 10−4 and derive an ηbð1SÞ mass of 9394.8þ2.7þ4.5
−3.1−2.7 MeV=c2, where

the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater
than 7 standard deviations, constituting the first observation of this decay mode.

DOI: 10.1103/PhysRevLett.121.232001

Bottomonium is the system consisting of a b and b̄
quark bound by the strong force [1]. The heavy b quark
mass allows this system to be described by nonrelativistic
field theory, in addition to phenomenological and lattice
methods. eþe− colliders can directly produce excited
bottomonium states ϒ, whose radiative decays access the
lowest-energy spin-singlet bottomonium state ηbð1SÞ. The
properties of the ground state are expected to be reliably
theoretically calculable. Study of the ηbð1SÞ can further our
understanding of the nature of quantum chromodynamics
(QCD) in the nonperturbative regime.
The ηbð1SÞ was discovered by the BABAR experiment in

ϒð3SÞ → γηbð1SÞ decay [2]. Further evidence was provided
by BABAR inϒð2SÞ → γηbð1SÞ decay [3] and subsequently
by the CLEO experiment [4]. These analyses studied the
inclusive photon spectrum from ϒ decays to measure the
ηbð1SÞ mass (mηbð1SÞ) and production branching fractions
based on the photon line associated with the hindered M1
radiative transition. In contrast, subsequentmηbð1SÞ measure-
ments from the Belle experiment have used hbðnPÞ →
γηbð1SÞ decays produced via ϒð5SÞ → πþπ−hbðnPÞ [5]
and ϒð4SÞ → ηhbð1PÞ [6], where n ¼ 1 and 2. By meas-
uring the recoil mass against πþπ−γ and the mass difference
between the πþπ− and πþπ−γ, and η and ηγ, recoil masses,

the Belle experiment was able to make a complementary
measurement of mηbð1SÞ. Other recent measurements have
offered compelling but circumstantial information [7,8].
A striking feature of these results is thatBABAR andCLEO

find mηbð1SÞ ¼ 9391.1� 2.9 MeV=c2, whereas Belle mea-
sures 9401.6� 1.7 MeV=c2. This discrepancy is at the level
of 3.1 standard deviations (σ). This may be due to experi-
ment-specific systematic effects or perhaps line shape dis-
tortion in the M1 transition analogous to J=ψ → γηcð1SÞ
[9,10]. There are a large number of ηbðnSÞ (where n ¼ 1
and 2) mass and width predictions from phenomenological
quarkonium potential models, nonrelativistic QCD, and
lattice calculations [11]. Theory predictions of the branching
fractions vary widely for ϒð2SÞ → γηbð1SÞ decays in the
range of ð2–20Þ × 10−4 [12], and the single experimental
measurement is ð3.9� 1.5Þ × 10−4 [3]. Further ηbð1SÞ
measurements are necessary for resolving these issues and
reducing the experimental uncertainty in order to discrimi-
nate between competing theoretical predictions.
In this Letter, we report a new measurement of ϒð2SÞ →

γηbð1SÞ decay. By examining the inclusive photon spectrum,
we identify the energy peak associated with this radiative
transition and use it to determine mηbð1SÞ and the branching
fraction B½ϒð2SÞ → γηbð1SÞ�. This analysis is based on
24.7 fb−1 of eþe− collision data at theϒð2SÞ center-of-mass
(c.m.) energy collected with the Belle detector at the KEKB
asymmetric-energy eþe− collider [13]. This data set is
equivalent to ð157.8� 3.6Þ × 106 ϒð2SÞ events [14], the
largest such sample currently in existence.
The Belle detector is a large-solid-angle magnetic spec-

trometer consisting of a silicon vertex detector (SVD), a
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50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter (ECL) comprised of CsI(Tl) crystals. All these
are located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. The ECL is divided into
three regions spanning θ, the angle of inclination in the
laboratory framewith respect to the direction opposite the eþ
beam. The ECL backward end cap, barrel, and forward end
cap cover ranges of −0.91 < cos θ < −0.65, −0.63 <
cos θ < 0.85, and 0.85 < cos θ < 0.98, respectively.
An iron flux return located outside of the magnet coil is
instrumented with resistive plate chambers to detect K0

L
mesons and muons. The detector is described in detail
elsewhere [15]. The data collected for this analysis used
an inner detector system with a 1.5 cm beam pipe, a four-
layer SVD, and a small-cell inner drift chamber.
A set of event selection criteria is chosen to enhance the

ηbð1SÞ signal while reducing backgrounds from poorly
detected photons, π0 decays, nonresonant production, and
other ϒ decays. These criteria are determined by maxi-
mizing the figure of merit S=

ffiffiffiffiffiffiffiffiffiffiffiffi

Sþ B
p

(where S and B are
the number of expected signal and background events,
respectively) for each variable under consideration in an
iterative fashion. A subset of ∼5% of the total ϒð2SÞ data
is used as the control sample for optimizing the selection.
To avoid potential bias, these events are discarded from
the final analysis. Large Monte Carlo (MC) samples of
simulated ϒð2SÞ → γηbð1SÞ events are used as the signal
input, assuming the branching fraction from Ref. [3] and
ηbð1SÞ decaying to a pair of gluons. Particle production and
decays are simulated using the EVTGEN [16] package, with
PHOTOS [17] for modeling final-state radiation effects,
and PYTHIA [18] for inclusive bb̄ decays. The interactions
of the decay products with the Belle detector are modeled
with the GEANT3 [19] simulation toolkit.
This analysis studies radiative bottomonium transitions

based on the energy spectrum of the photons in each event.
Photon candidates are formed from clusters of energy
deposited in crystals grouped in the ECL. Clusters are
required to include more than a single crystal. The ratio of
the energy deposited in the innermost 3 × 3 array of
crystals compared to the complete 5 × 5 array centered
on the most energetic crystal is required to be greater than
or equal to 0.925. Clusters must be isolated from the
projected path of charged tracks in the CDC, and the
associated electromagnetic shower must have a width of
less than 6 cm. Because of increased beam-related back-
grounds in the forward end cap region and insufficient
energy resolution in the backward one, we consider only
clusters in the ECL barrel region for this analysis, reducing
the geometric acceptance by approximately half.
The inclusive photon sample is drawn from events

passing a standard Belle definition for hadronic decays.
This requires at least three charged tracks, a visible energy

greater than 20% of the c.m. beam energy (
ffiffiffi

s
p

), and a total
energy deposition in the ECL between 0.2

ffiffiffi

s
p

and 0.8
ffiffiffi

s
p

.
We consider the cosine of the angle θT between the

photon and the thrust axis calculated in the eþe− c.m. frame
as a discriminant. In a given event, the thrust axis is
calculated based on all charged particle tracks and photons
except the candidate photon. For continuum background
events, the photon direction tends to be aligned or anti-
aligned along the thrust axis, whereas the distribution for
signal events is isotropic. Therefore, to reduce this back-
ground, we require j cos θT j < 0.85.
To remove backgrounds from π0 → γγ decays, each

photon candidate is sequentially paired with all remaining
photon candidates in the event and vetoed if the resulting
invariant mass (Mγγ) is consistent with that of a π0 (mπ0)
[20]. In order to improve the purity and reduce combina-
torial background, a requirement on the minimum energy
of the second photon (Eγ2) is applied. We require Eγ2 >
60 MeV, and jMγγ −mπ0 j > 15 MeV=c2.
The resulting spectrum of photon energies in the c.m.

frame (E�
γ ) is shown inFig. 1. Below200MeV, there are three

prominent peaks related to ϒð2SÞ → γχbJ¼0;1;2ð1PÞ [21]
transitions. The region of interest for this analysis is
300 < E�

γ < 800 MeV,where six components are expected.
Photons from the ϒð2SÞ → γηbð1SÞ signal transition
will produce a peak in this distribution near 600 MeV.
Direct production of ϒð1SÞ via initial-state radiation
(ISR), eþe−γISR → ϒð1SÞ, results in a second peak at
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FIG. 1. E�
γ distribution from the data for the photons passing the

selection criteria. The visible peaking structures are due to
radiative transitions to and from the χb0;1;2ð1PÞ states. This
analysis is concerned with the 300 < E�

γ < 800 MeV region,
indicated by vertical lines. Because of its relative size, an
ϒð2SÞ → γηbð1SÞ signal expected near 600 MeV is not seen
at this scale.
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E�
γ ∼ 547 MeV. A series of three peaks due to χbJð1PÞ →

γϒð1SÞ transitions are centered at ∼391, ∼424, and
∼442 MeV. These peaks are Doppler broadened, because
the χbJð1PÞ states originate from ϒð2SÞ → γχbJð1PÞ
decays, and are therefore not at rest in the c.m. frame to
which we boost the photon energy for this analysis. As such,
they also overlap one another. These peaking features are all
found above a very large, smooth, inclusive photon back-
ground that diminishes as the energy increases.
The line shape parameters and efficiencies are deter-

mined from the MC samples. The ηbð1SÞ and χbJð1PÞ
transitions are described by a variation on the Crystal Ball
function [22]: a bifurcated Gaussian with individual
power-law tails on either side. We assume a natural width
for the ηbð1SÞ of Γηbð1SÞ ¼ 10þ5

−4 MeV [20]. A Gaussian
with a low-side power-law tail [22] is used to model the
ISR-produced ϒð1SÞ signal. The underlying background
line shape is parametrized by an exponential function with
a sixth-order polynomial. This was selected based on the
best fit of 1.7 fb−1 of continuum background data collected
at an energy 30 MeV below the ϒð2SÞ resonance.
With the above selection criteria, our efficiency (ϵ) for

the peaking processes ranges from 26% to 32%, depending
on the mode (Table I). The hadronic and photon selections
are nearly completely efficient for the signal, while the
thrust axis and π0 veto requirements reduce ϵ by ∼80% and
∼85%, respectively. The photon energy resolution in the
c.m. frame varies from approximately 8 to 12 MeV. Both
quantities increase with energy.
The photon energy scale and resolution are verified with

multiple independent control samples. The Belle ϒð2SÞ
data were collected in two separate time periods with
different operating characteristics. We apply an energy
scale adjustment in order to ensure correspondence of
the χbJð1PÞ → γϒð1SÞ transition energies in both of the
periods. To account for differences between the MC
simulation and data, we fit the energy spectrum with the
MC-determined line shapes for the ϒð2SÞ → γχbJð1PÞ and
χbJð1PÞ → γϒð1SÞ transitions, allowing the energy scale
and resolution to vary in order to reproduce the expected E�

γ

values [20] of the χbJð1PÞ peaks in the data. We linearly
extrapolate the measured energy scale shift and resolution
broadening to the ηbð1SÞ energy region and correct the
expected signal line shape accordingly.

We perform a binned maximum-likelihood fit to data in
the region of 300 < E�

γ < 804 MeV including all six
peaking components and the exponential background.
The yields, energy peak values, and background polyno-
mial coefficients are allowed to vary. In χbJð1PÞ → γϒð1SÞ
transitions, we find the J ¼ 0 component, known to be
suppressed compared to the J ¼ 1 and 2 transitions, to be
absorbed into the other nearby peaks. We fix the J ¼ 0
peak position in the fit and measure a yield consistent with
zero. The results of the fit are shown in Fig. 2 and
summarized in Table I. Branching fractions are calculated
by dividing the yield by the MC-determined efficiency and
number of ϒð2SÞ events [ð149.6� 3.4Þ × 106 with the
optimization sample excluded]. The value for χbJð1PÞ
modes includes the ϒð2SÞ → γχbJð1PÞ transition. The
goodness of fit is given by a χ2 per degrees of freedom
of 261.5=237, giving a p value of 0.132.
We consider three categories of systematic uncertainties

in this analysis: those related to energy calibration, fit
parametrization, and all other uncertainties. These are listed
in Table II and are summed in quadrature.
As a verification of the energy calibration, we consider a

complementary method based on the photon energy in the
laboratory frame, similar to previous Belle studies [5,6].
We derive Eγ-dependent corrections to the photon energy
according to the comparison between MC simulations and
data for D�0 → D0ðK�π∓Þγ, inclusive η → γγ, and exclu-
sive χb1;2ð1PÞ → γϒð1SÞðμþμ−Þ decays. After applying
these corrections, only a small remaining resolution broad-
ening, taken as a systematic uncertainty, is required to be
applied to the related E�

γ values to best reproduce the
χbJð1PÞ → γϒð1SÞ transitions in the data. The ηbð1SÞ
results obtained by these two independent methods agree
closely (within 0.2 MeV), providing confidence in our
assessment of the energy calibration.
Measurement of the ISR peak position is used to estimate

the uncertainty of the ηbð1SÞ transition energy. For this
purpose, we adopt the symmetrized combination of the
statistical uncertainty from the fit and contributions from
the world average ϒ mass uncertainties [20]. This value is
greater than the maximal difference obtained by repeating
the analysis under both energy calibration methods and
while varying the derived calibration parameters within
�1σ, providing the most conservative bound on this
uncertainty.

TABLE I. Summary of results. Yield is expressed in thousands of events, with statistical uncertainty only. B
represents the relevant branching fraction and E�

γ the corrected transition energy.

Mode Yield ð103Þ ϵ (%) B (%) E�
γ (MeV)

χb1ð1PÞ → γϒð1SÞ 964� 8 26.4 2.45� 0.02þ0.11
−0.15 423.1� 0.1� 0.5

χb2ð1PÞ → γϒð1SÞ 503� 6 28.9 1.17� 0.01þ0.06
−0.07 442.1� 0.2þ0.5

−0.6

ISR ϒð1SÞ 29.2þ2.9
−3.2 30.0 � � � 547.2þ0.6þ1.3

−2.3−3.2

ϒð2SÞ → γηbð1SÞ 28.8þ2.6
−3.2 31.6 ð6.1þ0.6þ0.9

−0.7−0.6 Þ × 10−2 606.1þ2.3þ3.6
−2.4−3.4
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Alternative parametrizations of the ηbð1SÞ transition line
shape are considered by refitting the data using a Breit-
Wigner functional form, including the case with additional
E�3
γ corrections suggested for some quarkonium transitions

[10]. The latter leads to a þ2.6 MeV shift in the inter-
pretation of the ηbð1SÞ transition energy. The fit is repeated
with higher-order E�

γ contributions considered, but their
relative strength cannot be resolved in this analysis and lead
to a small additional systematic uncertainty. We account for
uncertainty in the natural ηbð1SÞ width by refitting the data
according to MC samples generated with the nominal value
varied by �1σ [20]. By comparing χ2 goodness-of-fit
results under a variety of different assumed values in this
range, we verify that our data are consistent with this
nominal value. We vary the background shape by changing

the degree of the polynomial in the exponential to five and
seven and refitting the data. We also repeat the fit with the
background shape fixed to the parameters determined by
using only the ISR and ηbð1SÞ sidebands: 300 < E�

γ <
500 MeV and 650 < E�

γ < 800 MeV. The fit is repeated
with a χb0ð1PÞ yield fixed to the expected value, and the
difference in results from its effect on the background shape
is taken as a systematic uncertainty. The systematic effects
of fitting with a finer binning of 1 MeV and with an
extended range to 900 MeV are also considered.
We assign an overall photon reconstruction efficiency

uncertainty of 2.8% based on previous Belle studies of
photons in a similar energy range [23]. The uncertainty
on the number of ϒð2SÞ events was determined from a
study of hadronic decays to be 2.3% [14]. We repeat the
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FIG. 2. The inclusive photon spectrum after subtraction of the background component of the fit. The black curve indicates the fit to the
data, and the gray curves indicate the individual signal components. The χb1;2ð1PÞ → γϒð1SÞ transitions at ∼424 and ∼442 MeV are
dominant. The inset contains the same information with the scale chosen to highlight the ISR and ηbð1SÞ signal peaks, appearing at
∼550 and ∼600 MeV, respectively.

TABLE II. Summary of systematic uncertainties, divided into those affecting the photon-energy measurement and
the overall branching fractions.

E�
γ (MeV) Branching fraction (%)

Effect χb1ð1PÞ χb2ð1PÞ ISR ηbð1SÞ χb1ð1PÞ χb2ð1PÞ ISR ηbð1SÞ
E�
γ calibration �0.5 �0.5 þ1.2

−2.2 �2.5 þ0.1
−0.0

þ0.1
−0.0

þ1.9
−0.0

þ1.1
−0.0

Γηbð1SÞ �0.0 �0.0 þ0.2
−0.0 �0.3 þ0.2

−0.1
þ0.0
−0.2

þ1.1
−0.0

þ9.9
−4.5

Signal shape �0.0 �0.0 þ0.3
−0.4

þ2.6
−1.0

þ0.0
−0.1

þ0.0
−0.1

þ1.2
−0.2

þ10.6
−0.1

Background shape þ0.1
−0.0

þ0.2
−0.0

þ0.1
−2.0

þ0.0
−2.1

þ0.7
−0.1

þ0.1
−0.2

þ18.6
−1.7

þ7.5
−2.2

Bin=range þ0.0
−0.2

þ0.0
−0.4

þ0.4
−0.5

þ0.0
−0.5

þ0.0
−1.3

þ2.7
−0.0

þ1.6
−0.0

þ0.0
−4.9

N½ϒð2SÞ� � � � � � � � � � � � � �2.3 �2.3 �2.3 �2.3

γ efficiency � � � � � � � � � � � � �2.8 �2.8 �2.8 �2.8

Selection criteria � � � � � � � � � � � � þ2.4
−4.8

þ2.4
−4.8

þ2.4
−4.8

þ2.4
−4.8

Total �0.5 þ0.5
−0.6

þ1.3
−3.2

þ3.6
−3.4

þ4.4
−6.1

þ5.1
−6.0

þ18.7
−5.7

þ15.3
−9.2
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measurement of the χb1;2ð1PÞ transitions with each selec-
tion criterion excluded in turn and take the difference as the
systematic uncertainty related to our modeling of the
efficiency. Derived quantities related to masses and
expected c.m. energies use the world average values and
their associated uncertainties [20].
The corrected peak E�

γ values of the χb1;2ð1PÞ transitions
are in good agreement with the world average values (in
parentheses) [20]: 423.1� 0.1 (423.0� 0.5) and 442.1�
0.2 (441.6� 0.5) MeV, where the experimental uncertain-
ties are statistical only. For the χb1;2ð1PÞ → γϒð1SÞ
branching fractions, we measure ð2.45� 0.02þ0.11

−0.15Þ%
and ð1.17� 0.01þ0.06

−0.07Þ%. These values are consistent with
the average of the most recent directly measured values
from CLEO [24] and BABAR [7,25]: ð2.40� 0.08Þ%
and ð1.33� 0.05Þ%. A significant peak from ISR ϒð1SÞ
events is observed with a corrected E�

γ value of
547.2þ0.6þ1.3

−2.3−3.2 MeV, in agreement with the expectation of
547.2� 0.4 MeV [20]. The measured ISR signal yield is
ð29.2þ2.9þ5.4

−3.2−0.9 Þ × 103 events. This corresponds to the expect-
ation of ð27� 3Þ × 103 events based on the second-order
calculation from Ref. [26] and our photon efficiency and
ECL angular coverage.
We measure ð28.8þ2.6þ4.2

−3.2−2.2 Þ × 103 ϒð2SÞ → γηbð1SÞ
events, equivalent to a branching fraction of
ð6.1þ0.6þ0.9

−0.7−0.6 Þ × 10−4. This is in agreement with the most
recent lattice QCD calculation of ð5.4� 1.8Þ × 10−4 [12].
This value is compatible with the previous BABAR meas-
urement of ð3.9� 1.5Þ × 10−4 [3]. We measure a transition
energy of E�

γ ¼ 606.1þ2.3þ3.6
−2.4−3.4 MeV, to be compared with

609.3þ5.0
−4.9 MeV in the similar decay mode in BABAR. If we

consider a transition line shape proportional to E�3
γ , unlike

previous analyses of the M1 radiative transition [2–4],
the interpretation of the data produces a mass measurement
of mηbð1SÞ ¼ 9394.8þ2.7þ4.5

−3.1−2.7 MeV=c2. This is in agreement
with the current world average value of 9399.0�
2.3 MeV=c2 [20]. This is between previous Belle hb-based
measurements [5,6] and those from radiative ϒ decays
[2–4], consistent with the former at the level of 1.2σ and
0.7σ for the latter. The statistical significance of this
measurement is estimated to be 8.4σ, determined from
the difference in the likelihood between the results with and
without an ηbð1SÞ component included. Even after con-
sidering yield-related systematic uncertainties, the signal
significance exceeds 7σ. This result represents the first
significant observation of the ϒð2SÞ → γηbð1SÞ decay
mode. We look forward to additional dedicated bottomo-
nium data samples from the Belle II experiment to mitigate
energy scale uncertainties and provide greater ability to
interpret radiative M1 transition line shape effects.
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