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Membrane sculpting by curved DNA origami
scaffolds
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Petra Schwille 1

Membrane sculpting and transformation is essential for many cellular functions, thus being

largely regulated by self-assembling and self-organizing protein coats. Their functionality is

often encoded by particular spatial structures. Prominent examples are BAR domain proteins,

the ‘banana-like’ shapes of which are thought to aid scaffolding and membrane tubulation. To

elucidate whether 3D structure can be uncoupled from other functional features of complex

scaffolding proteins, we hereby develop curved DNA origami in various shapes and stacking

features, following the presumable design features of BAR proteins, and characterize their

ability for membrane binding and transformation. We show that dependent on curvature,

membrane affinity and surface density, DNA origami coats can indeed reproduce the activity

of membrane-sculpting proteins such as BAR, suggesting exciting perspectives for using

them in bottom-up approaches towards minimal biomimetic cellular machineries.
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The curvatures of biological membranes vary strongly, from
predominantly flat in the plasma membrane to highly
curved in the endoplasmatic reticulum or in the Golgi

apparatus. The transformation of membranes from one shape to
another, for example during cell division, belongs to the most
fundamental processes in living cells. Numerous factors that
regulate membrane curvature have been identified, with scaf-
folding proteins being the most obvious ones1–3. An important
class of scaffolding proteins which presumably imprint their
shape on lipid membranes is the BAR (Bin/Amphiphysin/Rvs)
domain superfamily4, 5. When dimerized, BAR proteins form
characteristic banana-shaped scaffolds that induce and stabilize
membrane curvature through electrostatic and hydrophobic
interactions4–6. Several BAR proteins were shown to tubulate
membranes in vitro7–10. BAR proteins presumably rely on their
curved shape for their activity: different types of BAR modules
adopt folds with different degrees of curvature4, 5. By using BAR
domains as model proteins11, 12, recent studies emphasized the
relevance of physical-chemical foundations for membrane bend-
ing. From the minimalistic perspective of bottom-up synthetic
biology13, 14, it is tempting to speculate about the simplest way to
induce specific membrane curvatures, and thus engineer a
minimal membrane sculpting machinery de novo. The goal of
this work is to mimic structural and functional features of BAR
domain proteins by rationally designed DNA origami objects
(Supplementary Fig. 1), in order to decipher the essential prop-
erties of artificial scaffolds for curving lipid membranes.

Programmable self-assembly with DNA origami may be
employed to produce a variety of two-dimensional and three-
dimensional structures on the nanometer-scale, including objects
with custom curvature15–19. This molecular toolkit now serves as
the starting point for our goal of constructing membrane-
sculpting machinery from the bottom-up. DNA origami has been
previously employed to create nanoscale channels in lipid
membranes20, 21 and to guide the assembly of nanoscale lipid
compartments22–25. In contrast to DNA origami nanocages24, 25

that template small liposomes via detergent removal, our
designed origami structures act on preexisting cell-sized vesicles,
imitating the mechanism of action of protein coats. Subsequently,
in this work, we achieve the transformation of membrane shape
on much larger scales, reminiscent of deformations observed in
cells2, 3.

Taking inspiration from the different degrees of curvature
covered by BAR domain proteins, three DNA origami designs
(20-helix bundles with hexagonal lattice; Supplementary Figs. 2–4
and Supplementary Tables 1–3) were here developed (Fig. 1): (i) a
‘semi-circle’ named HALF (origami H) with curvature (C) ≈ 21.7
μm−1; (ii) a ‘quarter-circle’ named QUARTER (origami Q) with
C ≈ 11.6 μm−1 and (iii) a ‘stick’ named LINEAR (origami L) with
C ≈ 0 (Fig. 1a–c and Supplementary Fig. 5). Despite their fivefold
increased length when compared to BAR proteins (∼110 nm vs. ∼
20 nm, respectively), these origami structures (H, Q and L) mimic
the typical shapes of highly-curved BAR/N-BAR dimers, mod-
erately curved F-BAR dimers and flat PinkBAR/I-BAR dimers,
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Fig. 1 BAR-mimicking DNA origami nanoscaffolds. a Structures of origami L (linear), Q (quarter) and H (half), which mimic the shape of I-BAR, F-BAR and
BAR/N-BAR domains, respectively. b Corresponding negative-stain TEM images of the folded curved nanostructures. c The angle of curvature and
respective radius of origami structures Q and H (84 and 46 nm, respectively) were experimentally determined from TEM images (n= 110–130). d
Schematic representation of marked positions on the top convex (T0–T7), bottom concave (B0–B7), lateral sides (L0–L13, R0–R13) and tips used on the
nanoscaffolds (here origami Q) for attaching fluorophores, membrane-anchoring moieties or oligomerizing staples. Scale bars: 100 nm
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respectively (Fig. 1a and Supplementary Fig. 1). Each design
further includes positions at the different curved facets for
attaching fluorophores, membrane-anchoring moieties or for
oligomerizing the objects laterally (Fig. 1d and Supplementary
Notes). Thereupon, we studied the interaction of the DNA
origami-based scaffolds with lipid model systems and demon-
strate the ability for membrane bending in vitro. We determined
quantitatively the requirements in terms of shape, membrane-
attachment and oligomerization needed for a synthetic scaffold to
induce specific membrane curvature. As we explore reconstitu-
tion assays with model membranes similar to the ones employed
for studying scaffolding proteins in vitro8–10, direct comparison
with the mechanism of action of BAR domain proteins can be
drawn.

Our results demonstrate that DNA nanotechnology has
reached the degree of sophistication to reproduce complex bio-
logical functionality, which has so far been thought to be reserved
for proteins. We show that structure- and function-specific DNA
origami devices, biomimetic of proteins targeting and remodeling
biological membranes, can be rationally designed and recon-
stituted into cell-sized model membrane environments. This
opens up exciting perspectives for bottom-up synthetic biology
approaches, as even more complex fundamental biomimetic
nanosystems, such as protein-less membrane trafficking and
protocell division machineries, may be within reach.

Results
Efficient binding of curved DNA origami to membranes. We
assessed the interaction of curved DNA nanostructures with lipid
membranes, mainly giant unilamellar vesicles (GUVs) composed
of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), via fluor-
escence confocal microscopy (Fig. 2). Incorporation of 7 ×
Atto488-modified staples on positions T0-6 enabled fluorescence
detection of the origami structures (Fig. 1d). Similarly to what
was described elsewhere26, bare DNA origami structures lacking
membrane anchors were adsorbing to lipid bilayers in the pre-
sence of 20 mM MgCl2 (Supplementary Fig. 6). We avoided such
unspecific membrane attachment (Supplementary Fig. 7) and
ensured long-term stability of the nanostructures27 with an
imaging buffer containing 5 mM MgCl2 and 300 mM NaCl in

which the Na+ outcompetes membrane-adsorbed divalent
cations via a counterion release mechanism to break up Mg2+

promoted interactions between DNA and the phospholipids28, 29.
To achieve side-specific binding of the curved DNA origami
structures to lipid membranes, we tested various methods
including neutravidin-mediated attachment21, 30 of biotinylated
origami H to biotinylated lipids (Supplementary Fig. 8a) and
covalent attachment24, 31 of thiolated origami H to maleimide-
modified lipids (Supplementary Fig. 8b). However, preferred
membrane anchors were oligonucleotides linked to a cholesteryl
moiety via a tetraethylene glycol spacer (TEG-chol), as they have
been already extensively characterized32 and allowed for a steady
binding of nanostructure H to lipid bilayers (Supplementary
Fig. 9) in comparison to the other approaches.

In order to enhance attachment of curved DNA origami
scaffolds to model membranes and avoid steric hindrance
(Supplementary Figs. 10–12), we placed TEG-chol moieties at
the distant 5′-end of 18 bps-long linker sequences extending from
the origami backbone (anchor orientation called TC5). Placing
the anchors closer to the origami backbone, i.e., at the proximal
3′-end of the linker sequences (Supplementary Fig. 10a and
Supplementary Fig. 11d–f), or shortening the linker length from
18 to 9 bps (Supplementary Fig. 12b, d), severely reduced binding
of nanostructures H and Q to membranes. This effect was
particularly prevalent for membrane binding through the concave
origami surface.

Since anchor accessibility plays a decisive role for attaching
DNA origami structures to lipid membranes33, we further
evaluated how number and positioning of TC5 anchors along
the concave origami facet may influence binding of nanostruc-
tures H and Q to GUVs. When single TC5 anchors were
introduced (Supplementary Fig. 13b–d and h–j), no significant
attachment of our curved nanoscaffolds to membranes was
observed (Supplementary Fig. 14). In contrast, when three TC5
anchors were incorporated (Supplementary Fig. 13e–f and k–l),
membrane affinity was significantly increased, especially if the
anchors were placed at positions B0, B3 and B6 (combination
from here on called X3) (Fig. 2c and Supplementary Fig. 13f, l).
Using negative-stain TEM imaging, we further corroborated the
attachment of construct Q3 to lipid vesicles (Fig. 2e).
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Fig. 2 Binding of curved origami structures to lipid model membranes. Interaction of the BAR-mimicking curved origami structures (labeled with Atto488;
green) with DOPC model membranes (labeled with DOPE-Atto655; red) assessed using confocal microscopy and TEM. Bare DNA origami nanostructures
(Q0) did not interact with GUVs, as observed on GUVs imaged at the equatorial plane by confocal microscopy (a) and on MLVs by negative-stain
TEM (b). Incorporation of three TEG-chol moieties at the distal 5′-end of 18 bps-long linker sequences extending from the origami backbone (structure
Q3), rendered optimal binding of the DNA origami structures to lipid bilayers (c, e). After incubation for at least 1 h with origami structure Q3 (d), circa 18
% of the GUVs presented outwards lipidic tubules (marked by arrows). Scale bars: (b, e) 100 nm; (a, c, d) 10 µm
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Taken together, we identified some of the major requirements
for efficiently attaching curved origami structures to lipid bilayers
and we observed indications of curvature-mediated deformations
of membranes induced by the F-BAR mimicking structure Q3
(Fig. 2d and Supplementary Fig. 13m). Notably, incubation of
GUVs with Q3 for at least 1 h led to the appearance of outwards
tubular deformations within a significant fraction of vesicles
(~18%; 22 out of 121 GUVs); deformations similar to the
positively curved tubules reported for several F-BAR
proteins7, 8, 10, 34.

Membrane deformations as a function of DNA origami cur-
vature. As different classes of BAR domains curve membranes in
distinct manners4, we further investigated whether the appear-
ance of membrane deformations, as reported in Fig. 2d, can be
correlated with the direction and degree of curvature of our BAR-
mimicking DNA origami structures. Membrane tension has been
previously implicated in influencing the assembly of BAR domain
proteins35, 36. To provide a controllable trigger for assessing
vesicle deformations, we lowered the membrane tension by

increasing osmolarity of the outer buffer in 10%. Subsequently,
shape variations of the deflated GUVs were monitored.

After the hyperosmotic stress, lipid vesicles without
membrane-bound DNA origami (no origami in solution or
incubated with nanostructures lacking cholesteryl anchors)
rapidly regained their spherical shape, suffering only minor
shrinkage or blebbing (Supplementary Fig. 16h–j and Supple-
mentary Movie 1). Bursting events were seldom (~13%; 5 out of
40 GUVs). For vesicles incubated with a structure lacking
curvature (L3), a comparable effect was observed (Fig. 3a and
Supplementary Fig. 15i, j), independently of the total DNA
origami concentration.

Remarkably, moderately curved origami quarter-circles (Q)
displaying a concave membrane-binding surface were able to
trigger tubulation of GUVs upon hyperosmotic shock (Fig. 3b
and Supplementary Movie 2). As seen for structure Q3, this
process depended on the total origami concentration. At Q3
concentrations ≤3 nM, most vesicles presented no significant
deformations, with only a minor fraction (~18%) displaying
outwards tubules (43 out of 244 GUVs). By contrast, at Q3
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Fig. 3 Triggering of membrane deformations depends on the degree of curvature of the BAR-mimicking DNA nanoscaffolds. DNA origami structures
(labeled with Atto488; green) of varying curvature (L3, Q3 and H3; here at 5 nM bulk concentration) were incubated with DOPC GUVs (labeled with
DOPE-Atto655; red) for at least 1 h. After membrane binding was achieved, the surface tension of the GUVs was lowered by applying a hyperosmotic
stress (10% increase in buffer osmolarity) and consequent changes in vesicle shape were monitored. No significant changes in vesicle shape were
observed with membrane-bound origami L3 (a) and H3 (c). Vesicles covered with the moderately curved structure Q3 presented long tubular outward
structures upon hyperosmotic stress (b; marked by arrows). Similarly, membrane interaction of origami Q variants displaying three cholesteryl anchors on
different curved facets was further investigated. Strong binding to GUVs was achieved for all nanostructures, independently of the facet where anchors are
localized (d–f). Upon vesicle deflation, the concave structure (Q3) triggered outwards membrane tubules (d; marked by arrows); the convex structure
(QI3) triggered evagination/invagination-type of deformation (e; marked by arrows); and the structure with null curvature (QR3) led to no significant
changes in vesicle shape (f). Scale bars: 5 µm
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concentrations ≥5 nM, ~70% of all GUVs (128 out of 189)
displayed outwards tubules (Supplementary Fig. 19a–d and
Supplementary Fig. 15k–m). If additional cholesteryl moieties
were used on the concave surface (as observed for Q7 with 7 ×
TC5), due to the increase in hydrophobicity and consequently
enhanced membrane binding, lower total concentrations of DNA
origami were able to induce membrane tubulation (Supplemen-
tary Fig. 19i–l and Supplementary Fig. 17g–i). Indeed, most
vesicles incubated with Q7 (97 out of 191 GUVs) displayed
tubular deformations at concentrations ≥2 nM.

In the same way, we investigated origami Q constructs
displaying either a convex membrane-binding interface (QI3;
anchors at top positions T0, T3, and T6), or a flat membrane-
binding interface perpendicular to the curvature (QR3; anchors at
lateral positions R0, R6, and R12). For the latter (QR3), no
significant membrane deformations were observed upon osmotic
trigger (Fig. 3f; Supplementary Fig. 16m, n and Supplementary
Movie 3), consistent with the results reported for the non-curved
structure L3 (Fig. 3a and Supplementary Fig. 15i, j). For structure
QI3 with convex membrane-binding interface, on the other hand,
~60% of the vesicles (55 out of 92 GUVs; at 5 nM QI3) presented
evagination/invagination-type shallow deformations upon hyper-
osmotic stress (Fig. 3e; Supplementary Fig. 16k–l and Supple-
mentary Movie 4). Such deformations effectively contrasted with
the outward tubules observed for structure Q3 (Fig. 3b, d) and
were somewhat reminiscent of the negatively curved membrane
deformations reported for inverted I-BAR domains37, 38.

Contrary to the origami Q structures, the more curved origami
half-circle (H) structures with concave membrane-binding inter-
face were not capable of inducing the formation of tubular
deformation on GUVs (Fig. 3c): neither at high H3 total
concentrations (Supplementary Fig. 15n–p), nor for H7 display-
ing enhanced membrane binding (Supplementary Fig. 17j–l). For
instance, with the exception of seldom vesicle bursting (~15%; 20
out of 134 GUVs) and minor flaccid deformations (~10%; 14 out
of 134 GUVs), vesicles incubated with H3 (~75%; 100 out of 134
GUVs) remained spherical upon osmotic change and did not
display any tubular deformations. Adsorption of these highly
curved origami structures to DOPC vesicles seemed therefore
insufficient to overcome the energetic barrier required for
bending a flat membrane into a positively curved tube. Indeed,
assuming a typical bending modulus for lipid bilayers of ~10−19 J,
the estimated energy cost for bending a flat membrane segment of
surface area (A) ~1800 nm2 (corresponding to the surface area of
our DNA origami scaffolds) into a membrane tube with R ≈ 46
nm (radius of curvature fitting origami H) is ~38 kBT, based on
the area-difference elasticity (ADE) model of membrane
bending39, 40 (equation 3). For origami Q (R ≈ 84 nm), however,
the estimated membrane bending cost is ∼11 kBT, ~3.5-fold lower
than structure H and comparable with the membrane bending
costs expected for a BAR domain protein (amphiphysin: 9 kBT,
for R ≈ 11 nm and A ≈ 23 nm2)41.

Taken together, our data show a clear connection between the
curvature of the membrane-binding interface of our BAR-
mimicking DNA-based scaffolds and the resulting membrane
deformations (e.g. tubulation, invagination, etc.).

Hierarchical oligomerization of curved DNA origami scaffolds.
Self-assembly of membrane scaffolding proteins into higher-order
structures was suggested to play an important role in the
mechanism of action of BAR domains7, 10. Both lateral and tip-
to-tip linear intermolecular interactions were described to stabi-
lize their assembly into protein lattices7, 10. To test the influence
of such higher-order linkages, we designed variants of curved
DNA origami Q that could oligomerize, similar to BAR proteins,

tip-to-tip (Supplementary Fig. 18b–d) and laterally (Supplemen-
tary Fig. 18e). Overall, four constructs capable of multimerizing in
solution were created: origami Q-E5 (Supplementary Fig. 18b),
Q-E7 (Supplementary Fig. 18c) and Q-E13 (Supplementary
Fig. 18d) able to linearly multimerize from the tips forming arc-
like oligomers of tunable size; plus origami Q-S14 (Supplemen-
tary Fig. 18e) able to multimerize laterally forming sheet-like
oligomers. Constructs Q-E5/7/13 possess 2 × 5, 7 and 13 blunt
ends at defined helices, enabling intermolecular stacking at the
origami tips. Construct Q-S14, on the other hand, displays 2 × 14
TATATA overhangs, enabling complementary lateral interactions
along the origami sides.

Subsequently, we tested whether the inclusion of those
polymerizing staples would enhance the ability of origami Q3
with concave membrane-binding interface to produce tubular
membrane deformations on GUVs upon deflation. Altogether, no
significant differences in terms of total bulk concentration
required to induce tubulation of vesicles were observed for
constructs with or without tip-to-tip oligomerizing staples (i.e.,
structures Q3-E5/7/13 vs. Q3, respectively; Supplementary
Fig. 18g–i and Supplementary Fig. 20). In contrast, for the
construct with lateral oligomerizing staples (Q3-S14), lower bulk
concentrations were required for inducing membrane tubulation
upon osmotic stress (Supplementary Fig. 19e–h and Supplemen-
tary Fig 18j). Indeed, ~70% of the vesicles incubated with Q3-S14
presented tubular deformations at concentrations ≥3 nM (135 out
of 193 GUVs). Likewise, inclusion of lateral polymerizing
overhangs on origami QI3 with convex membrane-binding
interface (i.e., QI3-S14) also affected the generation of membrane
deformations (Supplementary Fig. 21). Here while most vesicles
displayed evagination-type membrane deformations upon hyper-
osmotic stress (Supplementary Fig. 21e, f), ~15% of vesicles (36
out of 244 GUVs; at 5 nM QI3-S14) additionally presented
inward tubules (Supplementary Fig. 21d, g) resembling protrud-
ing nanotubes described for convex I-BAR proteins42, 43; which
could not be observed for the structure QI3 lacking lateral
overhangs. Incubation with lower bulk concentrations of QI3-S14
(i.e., 2 nM), on the other hand, did not promote significant
membrane deformations, similar to what was observed for convex
structure Q-I3 lacking polymerizing overhangs (Supplementary
Fig. 16k).

In summary, our data indicate that in particular the presence of
lateral interactions influences the ability of curved membrane-
bound DNA origami to deform membranes. However, this effect
seems to be of minor significance, as structures having additional
membrane anchors but lacking polymerization strands (i.e., Q7;
Supplementary Fig. 19i–l), were able to deform lipid vesicles as
efficiently (in terms of total origami concentrations required) as
the structures with polymerization strands (i.e., Q3-S14).

Membrane density and binding affinity of curved DNA ori-
gami. Our results so far strongly suggest that a critical membrane
density of curved nanostructures is required for triggering
membrane bending. To test this hypothesis, variable surface
densities of our BAR-mimicking DNA-based scaffolds to DOPC
GUVs were quantitatively investigated at equilibrium (after
overnight incubation), by fluorescence imaging and single
molecule detection.

Apparent membrane dissociation constants at equilibrium (Kd

± s.d.) were obtained for L3, Q3, and H3 structures by fitting the
fluorescence intensity values on the surface of GUVs44 as a
function of bulk concentration to a Langmuir isotherm
(equation 1): Kd (L3)= 0.39 ± 0.07 nM (ntotal= 288 GUVs; n=
131–157 GUVs per fit, 2 repeats), Kd (Q3)= 0.68 ± 0.18 nM
(ntotal= 277 GUVs; n= 83–100 GUVs per fit, 3 repeats) and Kd
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(H3)= 2.0 ± 0.6 nM (ntotal= 106 GUVs; n= 48–58 GUVs per fit,
2 repeats). Thus, for the same combination of cholesteryl anchors,
increasing curvature of the DNA nanoscaffolds from flat (C ≈ 0)
to highly curved (C ≈ 21.7 μm−1) prompted a fivefold weaker
binding to flat freestanding membranes (Fig. 4b and Supplemen-
tary Fig. 24).

By image analysis, we further quantified the efficiencies of
vesicle tubulation by the curved DNA origami Q3 nanostructures
(Fig. 4d; ntotal= 445 GUVs, n= 78–108 GUVs per origami
concentration). When compared to the results obtained at a
shorter incubation period (Fig. 2c, d and Fig. 3), after overnight
incubation lower origami bulk concentrations and no additional
osmotic perturbation were required to achieve high yields of
membrane tubulation. At equilibrium, >80% of vesicles (154 out
of 185 GUVs) presented tubular deformation for Q3 bulk
concentrations ≥0.5 nM (value close to Kd). Despite slightly
increased membrane affinities (lower Kd values; Supplementary
Fig. 24) when compared to structure Q3, structures with
increased numbers of anchors (Q7) or with polymerizing
overhangs (Q3–S14) yielded similar membrane tubulation
efficiencies (Supplementary Fig. 25).

As the number of fluorescent particles is proportional to the
fluorescence intensity, we performed additional FCS measure-
ments in order to calibrate the measured fluorescence values and
recover the corresponding densities of membrane-bound DNA
origami at the surface of GUVs44 (see calibration curve in
Supplementary Fig. 22). Considering the average fluorescence
intensities of single DNA origami structures, for Q3 with

moderate curvature, we estimated 50 ± 20 particles per μm2

bound to GUVs (n= 51) to be sufficient for initiating tubulation,
and 90 ± 20 particles per μm2 (n= 50 GUVs) for almost all
vesicles (>80%) to present tubules (representative curve depicted
in Fig. 4a and confocal images in Fig. 4c). At these surface
densities, our curved nanoscaffolds cover 9–16 % of the total
membrane surface area. Interestingly, this surface fraction
matches the previously reported coverage required for BAR
domains to induce membrane deformations on model mem-
branes (2–4× higher than for amphiphysin9). Flat structure L and
highly curved structure H, on the contrary, were not capable of
inducing membrane tubulation on GUVs even at surface
coverages ≥100 particles per µm2 (Supplementary Fig. 23),
promoting at best flaccid membrane deformations analogous to
the non-spherical shapes previously reported for flat PinkBAR
domains45. For structure L3, due to its ‘zero’ curvature, no
tubulation was to be expected. For highly curved structures H3
and H7, a simple energetic cost-benefit analysis estimates the
apparent free energies of membrane adhesion (ΔG= RTlnKd, –20
kBT and –21.5 kBT, respectively) to be clearly insufficient to allow
for membrane bending (38 kBT). For the moderately curved
origami structure Q3, to the contrary, membrane adhesion (–21.1
kBT) is strong enough to compensate for the energetic cost of
membrane bending (11 kBT), hence enabling tubular deforma-
tions to be generated.

Finally, we investigated the ultrastructure of membrane tubules
decorated with origami Q3 at high surface densities (i.e., after
overnight incubation of GUVs with 5 nM Q3), using cryo-
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Fig. 4 Tubulation of flat membranes depends on surface density of membrane-bound curved origami Q. Fluorescence intensities of membrane-bound DNA
origami (labeled with 3 × Atto-488 dyes) at equilibrium (incubated overnight) were extracted using image analysis and represented as a function of total
bulk concentration (a; here depicted for one independent set of measurements with Q3). Representative confocal images at the equatorial plane for
membrane-bound Q3 nanostructures are depicted in c. Membrane binding of the DNA nanostructures was quantitatively investigated by fitting the data to
a Langmuir isotherm (equation 1), enabling the determination of apparent membrane dissociation constants Kd ( ± s.d.): L3 (ntotal= 288 GUVs; n= 131–157
GUVs per fit, 2 repeats), Q3 (ntotal= 277 GUVs; n= 83–100 GUVs per fit, 3 repeats) and H3 (ntotal= 106 GUVs; n= 48–58 GUVs per fit, 2 repeats) (b).
ΔGbinding was calculated via ΔG= RTlnKd. Regarding efficiencies of membrane tubulation (d), high yields ( > 80%) were retrieved for Q3 bulk
concentrations≥ 0.5 nM, or, upon conversion to surface densities, for ≥90 membrane-bound DNA origami particles per μm2 (as illustrated in c). Scale
bars: 10 µm. Error bars in b correspond to s.d.
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electron microscopy (cryo-EM). From the confocal images
(Fig. 5a), the grown tubules appeared homogenously covered
with membrane-bound fluorescently labeled Q3. Further cryo-
EM imaging (Fig. 5b) confirmed that the surface of the membrane
tubules was densely covered with DNA nanostructures, prefer-
entially aligning perpendicularly to the long axis of the tubular
structures. Additionally, the recovered tubular diameter (220 ± 70
nm; ntotal= 35 parallel cross-sections, 4 membrane tubules) was
in good agreement with the predictions based on the objects
curvature (~170 nm; Fig. 1a–c).

Discussion
This work demonstrates that curvature generation and topolo-
gical transformation of biological membranes, as required for
many cellular functions, can be achieved in a well-controlled
fashion by curved synthetic scaffolds made of DNA. The action of
these scaffolds may be tuned by varying shape, density, mem-
brane affinity, and the propensity for self-assembly of the scaf-
folds on membrane surfaces. In contrast to earlier work exploring
the deformation of membranes by flat nanostructures46, 47, con-
certed lateral oligomerization by self-assembly plays only a minor
role for the specific membrane transforming activity by curved
DNA-based scaffolds. Moreover, in spite of producing larger
tubular deformations than BAR domains, our curved structures
operate at similar membrane bending energy levels. We have
established three main requirements for the induction of tubular
membrane deformations (Fig. 5c) by scaffolding elements: cur-
vature, membrane affinity and surface density. Remarkably, we
provide direct proof that the curvature of membrane associating
macromolecular objects plays a decisive role, helping us under-
stand the minimal physical–chemical laws underlying membrane
deformations.

In this manuscript, we validate the usage of custom-designed
DNA origami as a tool to overcome the limited predictability of
engineered proteins. The ability of our developed structures to
precisely control local membrane curvature will have great impact
in the investigation of all kinds of biological membrane shaping
phenomena. For example, sequential binding of proteins involved

in deformation cascades (e.g., clathrin-mediated endocytosis48,
FtsZ-mediated bacterial division49) depends on the degree of
curvature locally displayed by membranes. In this regard, BAR-
mimicking DNA origami scaffoldings could allow detailed
investigation of such proteins on model membranes or even
cells50, as a function of local curvature.

Altogether, our work has great significance for the growing
field of bionanoengineering, opening up an avenue of research in
synthetic biology. Our present achievements add exciting per-
spectives towards minimal biomimetic cellular machineries,
involved in membrane shaping and beyond; pushing the limits of
nanotechnology into cellular biology. As we laid down new
foundations on manipulating DNA origami in lipid environ-
ments, design of even more elaborate DNA origami supramole-
cular assemblies targeting lipid membranes (e.g., artificial clathrin
coated pits, enzymatic membrane complexes), and novel
approaches for developing hybrid DNA-lipid-based drug delivery
vehicles directed towards biological membrane barriers, will
hence likely emerge in the near-future.

Methods
Materials. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC), cholesterol from ovine wool, 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] (MPB-
DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)
(Biotin-DOPE) were purchased from Avanti Polar Lipids (Alabaster, AL, USA).
Atto655-DOPE was acquired from AttoTEC GmbH (Siegen, Germany) and
DiIC18(5) (DiD) from Thermo Fischer Scientifics (Waltham, MA, USA). Single-
stranded M13mp18 scaffold plasmid (p7249) was supplied from Bayou Biolabs
(Metairie, LA, USA), as well prepared by Florian Praetorius using high-cell-density
fermentation of Escherichia coli in stirred-tank bioreactors according to refer-
ence51. High purity salt free (HPSF) purified staple oligonucleotides for origami
preparation, as well as 5′-Atto488, 5′-Alexa488 and 3′Biotin-TEG-functionalized
oligonucleotides (all HLPC-purified) were purchased from Eurofins Genomics
(Ebersberg, Germany). 5′/3′-Chol-TEG and 3′-Thiol-Modifier-C3 S-S-
functionalized oligonucleotides (all HPLC purified) were acquired from Sigma-
Aldrich (Taufkirchen, Germany).

Design and production of the DNA origami nanoscaffolds. The DNA origami
structures employed throughout this work consisted in a 20-helix bundle with
hexagonal lattice. As described in the main text, three curved designs were here

100 nm100 nm

DOPC + 0.05% DOPE-Atto655
Origami + Atto488

5 μm 5 μm

a b

c

Fig. 5 Ultrastructure of lipid nanotubes decorated with DNA origami Q. a From confocal images, the membrane tubules obtained from GUVs (labeled with
DOPE-Atto655; red) upon overnight incubation with structure Q3 (labeled with Atto488) appeared homogeneously covered with membrane-bound DNA
origami. b Further cryo-EM imaging confirmed that the surface of the membrane tubules (black arrows) is densely covered with curved DNA
nanostructures perpendicularly aligned along the long axis. c Based on the cryo-EM electron microscopy observations and radius of curvature of
nanostructure Q3, a schematic representation of a lipid nanotube decorated with DNA origami Q is here depicted. Scale bars: (a) 5 µm; (b)100 nm
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developed: origami H (curvature C ≈ 21.7 μm−1; curvature angle θ ≈ 131°; radius of
curvature R ≈ 46 nm; Supplementary Fig. 4; Supplementary Table 3), origami Q
(C ≈ 11.6 μm−1; θ ≈ 73°; R ≈ 84 nm; Supplementary Fig. 3; Supplementary Table 3)
and origami L (C ≈ 0; Supplementary Fig. 2; Supplementary Table 1). Those
structures were based on the M13 p7249 plasmid and designed using CaDNAno52

(Supplementary Figs. 2–4). Initial 3D models (Supplementary Fig. 1) were pre-
dicted using CanDo17, 19. Each design further included marked positions for
attaching fluorophores, membrane-anchoring moieties or oligomerizing staples
(Fig. 1d). More precisely, 7 sites on the bottom (concave) and top (convex) facets of
the DNA origami (B0-B6 and T0-T6, respectively), plus 14 sites on the left and
right facets (L0-L13 and R0-R13, respectively) were defined. This strategy allowed
us to manipulate the functionality of the origami structures by exchanging the
staple sequences at those defined external positions with functionalized counter-
parts (Supplementary Notes), without compromising the shape of the nanos-
tructures stabilized by the core staples. The edges of each of the 20 helical bundles,
usually kept as single-stranded segments to avoid blunt end interactions, could be
similarly hybridized with functionalized staples. Folding of all the DNA origami
structures was performed in a one-pot reaction mix33. Briefly, 20 nM p7249
plasmid and 200 nM staple oligonucleotides were mixed in a 5 mM Tris-HCl, 1
mM EDTA, 20 mM MgCl2, pH 8.0 buffer (folding buffer). Thermal annealing was
performed over a cooling cycle scheme from 65 to 60 °C in 1 h and from 59 to 40 °
C in 40 h, on a Eppendorf Mastercycle Pro (Hamburg, Germany) or Bio-Rad
Tetrad 2 (München, Germany) thermal cycler. Purification of the folded structures
from the excess of staple strands was performed using size-exclusion centrifugal
filtration with Amicon Ultra 100 kDa MWCO filters (Merck Millipore, Darmstadt,
Germany) or PEG precipitation53 using a buffer consisting of 5 mM Tris-HCl, 1
mM EDTA, 5 mM MgCl2, 300 mM NaCl, pH 8.0 (imaging buffer). Bulk con-
centrations of DNA origami were determined via fluorescence spectroscopy using a
Jasco FP-8500 spectrofluorometer (Tokyo, Japan)33. Correct assembly of the folded
nanostructures was evaluated by agarose gel electrophoresis17, 33 (Supplementary
Fig. 5), negative-stain transmission electron microscopy (TEM)17, 54 (Fig. 1b and
Supplementary Fig. 5) and atomic force microscopy (AFM)33 (Supplementary
Fig. 5).

Preparation of lipid membranes for fluorescence microscopy. Supported lipid
bilayers (SLBs) were obtained via fusion of small unilamellar vesicles deposited on
top of freshly cleaved mica, as described elsewhere55. Giant unilamellar vesicles
(GUVs), the preferred membrane model system utilized throughout this work,
were produced by electroformation in PTFE chambers with Pt electrodes33, 56. Six
microliter of lipid mixture (2 mgmL−1 in chloroform) was spread onto two Pt
wires and dried in a desiccator for 30 min. The chamber was filled with 350 μL of
an aqueous solution of sucrose. An AC electric field of 2 V (RMS) was applied at a
frequency of 10 Hz for 1.5 h, followed by 2 Hz for 0.75 h. Unless otherwise stated,
vesicles composed of DOPC, containing additional 0.005 mol% (for FCS experi-
ments) or 0.05 mol% (for confocal imaging) Atto655-DOPE, were electroformed in
an aqueous solution of sucrose iso-osmolar compared to imaging buffer (~ 575
mOsm kg−1). Experiments were carried out in 40 µL MatriCal 384-multiwell plates
with # 1.5 glass bottom thickness (Brooks Life Science Systems, Spokane, WA,
USA). Prior usage, wells were freshly plasma cleaned, then passivated with bovine
serum albumin (Sigma-Aldrich) or PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf,
Switzerland). Typically, 3 µL of the GUV suspension (pre-diluted at least 1:10 in
iso-osmolar sucrose solution) were mixed with 18 µL DNA origami solution at a
final 0.5–10 nM concentration diluted in imaging buffer. Unless otherwise stated,
samples were incubated for at least 1 h at room temperature. Hyperosmotic stress
of GUVs incubated with DNA origami structures was achieved by gently adding 3
µL of a glucose solution diluted in imaging buffer (1000 mOsm kg−1) into the
imaging chambers.

Typically, at least two independent sets of measurements were performed for
evaluating a specific experimental condition under confocal microscopy (see
following section). Overall, for the characterization of the type of membrane
anchor (Supplementary Figs. 8–10), an average n ≈ 15 vesicles was analyzed per
each sample (ntotal= 277 GUVs). For the characterization of the number, position
and linker length required for cholesteryl-functionalized DNA origami structures
(Fig. 2a, c, d and Supplementary Figs. 11–14), an average n ≈ 26 vesicles was
analyzed per each sample (ntotal= 1023 GUVs). For the membrane deformation
assays triggered upon hyperosmotic stress (Fig. 3 and Supplementary Figs 15–21),
an average n ≈ 42 vesicles was analyzed per each sample concentration (ntotal=
2352 GUVs). For the determination of the binding coefficients (Fig. 4a, b and
Supplementary Figs. 23, 24), an average n ≈ 13 vesicles was analyzed per each
sample concentration (ntotal= 975 GUVs). Finally, for the determination of the
tubulation efficiencies after overnight incubation (Fig. 4c, d and Supplementary
Fig. 25), an average n ≈ 22 vesicles was analyzed per each sample concentration
(ntotal= 860 GUVs).

Laser scanning confocal fluorescence microscopy. Confocal imaging was per-
formed on a commercial laser scanning microscope LSM 780 with a ConfoCor3
unit (Zeiss, Jena, Germany) using a water immersion objective (C-Apochromat,
40 × /1.2W UV–VIS–IR, Zeiss, Jena, Germany). Samples were excited with the 488
nm line of an Ar-ion-laser (for Atto488 and Alexa488 excitation) or with the 633
nm line of a He–Ne laser (for Atto655 and DiD excitation). To avoid the effect of

polarization selection in excitation of the GUVs, an achromatic λ/4 plate (Edmund
Optics, Barrington, NJ, USA) was installed in the excitation beam path. Images
were typically recorded at the equatorial planes of GUVs, utilizing a 1 Airy unit
pinhole, 512 × 512 pixel resolution and a scan rate of 3.15 μs per pixel. Further image
analysis was performed using the ImageJ software (http:// rsb.info.nih.gov/ij/).

As fluorescence signal measured using confocal microscopy is proportional to
the number of fluorescent molecules in the confocal volume, fluorescence intensity
of membrane-bound DNA origami was determined in order to infer membrane
affinities of different nanostructures and assess particle densities on membranes
(see FCS section). For this purpose, GUVs incubated overnight (4 °C) with
different bulk concentrations of DNA origami, ranging from 0.01 to 50 nM, were
imaged at the equatorial plane and the corresponding fluorescence intensities
extracted from the confocal images using a semi-automated Matlab-based
software44. As illustrated in Fig. 4a and Supplementary Fig. 23, apparent membrane
dissociation constants at equilibrium (Kd; Fig. 4b and Supplementary Fig. 24) for
the different DNA origami nanostructures were then determined by fitting the
fluorescence intensities of membrane-bound origami (I) as a function of total DNA
origami concentrations in bulk (Cbulk) to a Langmuir isotherm9:

I ¼ Imax= 1þ Kd=Cbulkð Þ; ð1Þ

Fluorescence correlation spectroscopy. Fluorescence correlation spectroscopy
(FCS) measurements were carried out as described in our recent publication33,
using the LSM 780/ConfoCor 3 system mentioned above. Briefly, the laser line with
wavelength of 488 nm for Atto488 excitation was used at low laser power (<1.2
μW) to avoid photobleaching and fluorescence saturation effect57. The radius of the
waist of the FCS detection volume, r0 (207 ± 7 nm), was calibrated using a fluor-
escent dye (Alexa488) with known diffusion coefficient (D) in water (D (Alexa488)
= 414 μm2 s−1 at 25.0 ± 0.5 °C)58 and corrected for the working temperature at the
objective (27.5 ± 1.0 °C)57,59,60. FCS on membranes was performed at the upper
pole of a GUV with a diameter of at least 20 μm (which is large enough to neglect
membrane curvature within the detection spot size). Particle numbers, N, (and
consequently, surface densities, σ) of the BAR-mimicking DNA nanostructures
were obtained from the analysis of the autocorrelation functions, using the freely
available data analysis software PyCorrFit version 0.8.261. In order to eliminate the
contribution of rotational diffusion to the correlation curves, DNA origami
structures labeled at positions T2-4 were used33. Furthermore, as virtually no
unbound DNA origami was detected in solution, and its potential contribution to
FCS curves was negligible, a one-component two-dimensional diffusion model56, 57

was used (equation 2) to analyze the obtained correlation curves, as it was done in
previous studies of membrane-bound DNA origami particles33, 62, 63.

GðτÞ ¼ 1
N

1
1þ τ

τD

; ð2Þ

Here N is the number of particles in the 2D detection volume, and τD is the FCS
diffusion time, which is determined by the translational diffusion coefficient D and
the size of the 2D Gaussian detection volume r0 as follows: τD ¼ r20=ð4DÞ.

Knowing the origami length, L= 110 nm, surface densities of membrane-bound
particles σ (σ ¼ N=ðπr20Þ; expressed in particles per µm2) could be easily converted
to the reduced surface densities ρ= σL2 62. At higher surface densities (ρ > 0.2),
crowding effects resulted in progressively stronger deviations from the one-
component 2D diffusion model used to describe the translational Brownian motion
of the Atto488-labeled DNA origami particles62. As particle density is proportional
to the fluorescence intensity, average surface densities of membrane-bound DNA
origami could be estimated at a high-density regime (ρ > 0.2) from the fluorescence
intensity data obtained via confocal microscopy. Shortly, a calibration curve was
obtained (Supplementary Fig. 22b) from the linear fit of the fluorescence intensity
of membrane-bound DNA origami determined by confocal microscopy for single
GUVs (n= 45) and the respective surface densities of membrane-bound DNA
origami determined by FCS in the valid density regime (ρ < 0.2—Supplementary
Fig. 22a).

Atomic force and transmission electron microscopies. Atomic force microscopy
(AFM) imaging of structures L0, Q0, and H0, deposited on top of freshly cleaved
mica, was performed on a Nanowizard Ultra (JPK, Berlin, Germany) using the
high-speed AC mode with USC-F0.3-k0.3 cantilevers (Nanoworld, Neuchâtel,
Switzerland)33. The cantilever oscillation was turned to a frequency of 100–150
kHz, the amplitude kept below 10 nm. Scan rate was set to 5–25 Hz and setpoints
close to 7-8 nm were utilized. Analysis of the AFM images was performed using
JPK SPM Data Processing (version 5.1.4) and Gwyddion (version 2.30).

Negative-stain transmission electron microcopy (TEM) imaging was performed
on a Philips CM100 transmission electron microscope operated at 100 kV17, 54.
Images were recorded with an AMT 4 × 4 Megapixel CCD camera. Typically, 3 µL
of folded DNA origami nanostructures were adsorbed on glow-discharged
formvar-supported carbon coated Cu400 TEM grids (Science Services, Munich,
Germany) and stained using a 2% aqueous uranyl formate solution containing 25
mM sodium hydroxide. For the experiments involving multimellar vesicles (MLV),
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4 nM of origami Q0 or Q3 were pre-incubated for 30 min with DOPC MLV (at 0.5
mM lipid concentration) before deposition on the EM grids and negative staining.

For cryo-electron microscopy (cryo-EM), 5 nM Q3 was pre-incubated overnight
in a tube with DOPC GUVs. Samples were then adsorbed for 4 min on glow-
discharged lacey carbon grids (Plano, Wetzlar, Germany) and vitrified by plunge
freezing the grid in liquid ethane. Imaging was performed on a Titan Halo electron
microscope (FEI, Eindhoven, Netherlands), equipped with a Falcon II camera and
a Gatan 626 cryo holder (Pleasanton, CA, USA). The microscope was operated at
300 kV, with a magnification of ×45,000, giving a pixel size of 0.237 nm at the
specimen level. Data were collected using SerialEM, at nominal −3 µm target
defocus with an electron dose of 20 e−Å−2. Tubular diameter (average ± s.d.) was
obtained analyzing ntotal= 35 parallel cross-sections along four Q3-decorated
membrane tubules.

Estimation of the energetic costs for membrane bending. The energy required
for membrane bending by curved DNA origami scaffolds Q and H and a BAR
domain protein were calculated using the Area-difference Elasticity (ADE)
model39, 40. This model, based on the classical Helfrich-Canham-Evans elastic
membrane model (spontaneous curvature model)64, takes into consideration the
finite thickness of the lipid bilayer and consequent additional penalty arising from
the area difference between its two leaflets upon bending (i.e., negatively curved
leaflet being compressed, while positively curved leaflet being expanded). The ADE
model describes bending energy (εbe) as:

εbe ¼ κ
1
2

Z
dA C1 þ C2 � C0ð Þ2 þ α

2
π

AD2
ΔA� ΔA0ð Þ2

� �
; ð3Þ

where κ is the bending modulus of DOPC bilayers (23.1 kBT)65, A is the area of
the membrane segment, C1 and C2 are the principal curvatures (for a membrane
tube, C1 ¼ 1=R and C2 ¼ 0). C0 is spontaneous curvature of the membrane, which
relates to the intrinsic curvature of the lipid molecules. For a homogenous non-
asymmetric bilayer, C0= 0. In the second term, ΔA is the differential monolayer
area (determined by the difference in number of molecules of the outer and the
inner monolayers) and ΔA0 its value at equilibrium. D corresponds to the
membrane thickness. α ¼ κ=κ, with κ being the non-local bending rigidity
modulus. α is estimated to be in the order of unity and the approximation
α ¼ 3=π66 was used.

Data availability. Data supporting the findings of this manuscript are available
from the corresponding author upon reasonable request.
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