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ton is generated through the Brout-Englert-Higgs (BEH) mechanism and one of the four

scalar fields used is that of mimetic gravity. The mass term is not of the Fierz-Pauli type

and the constraint eliminates the Boulware-Deser ghost which is absent to all orders. We

perform a detailed analysis using the methods of cosmological perturbation theory and

consider quantum fluctuations of the degrees of freedom of massive graviton and mimetic
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nonlinear corrections become comparable to the linear terms already at a length scale of

order m−
1
2 . Thus, at smaller scales they become strongly coupled and the graviton remains

with two transverse degrees of freedom which get strongly coupled only at Planck scale.

The mimetic field behaves as cold particles of half of the graviton mass and could well

explain the source of dark matter in our universe. In the weakly coupled domain mimetic

matter is completely decoupled from the massive graviton.
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1 Introduction

The problem of finding a consistent theory of massive gravity has recently attracted con-

siderable interest. It is by now well established that the simplest way of giving mass to

the graviton without explicit breaking of diffeomorphism invariance is by employing four

scalar fields, which acquire vacuum expectation values [1–3]. As a result the scalar fields

are absorbed making the graviton massive on Minkowski background. However, four scalar

fields have generically four degrees of freedom and only three of them are needed to provide

mass to the graviton. Out of four scalar fields, used to preserve global Lorentz invariance,

one field must be taken with negative kinetic energy and if its perturbations around a

spontaneously broken symmetry background propagates then there would appear a ghost

mode leading to inconsistency of the theory. By adopting the Fierz-Pauli (FP) term for

the mass [4] one can vanish the kinetic term for these perturbations, so that the dangerous

mode disappears in the linear approximation. Generically it reappears again and starts

to propagate on a nontrivial background and is known as nonlinear Boulware-Deser (BD)

ghost [5]. There was recently an attempt to extend the FP-term to higher orders in such a

way as to avoid the propagation of this field to all orders on a nontrivial background. The

resulting theory which might avoid the non-linear BD-ghost is rather unambiguous and its

action is given by an infinite expansion of a square root function [6] which can be simplified

and rewritten as a quadratic one by making use of auxiliary fields [7]. However, in some

particular backgrounds, the ghost mode nevertheless gets excited, raising a question about

consistency of the theory [8, 10].

One can wonder whether it is possible to have a ghost-free massive gravity which is

not very restricted and well behaved to all higher orders? We will show in this paper that

this can be easily achieved in mimetic gravity [9], with non Fierz-Pauli mass term, where
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we use the constrained scalar field imitating Dark Matter as one of the four fields needed

to realize Brout-Englert-Higgs (BEH) mechanism for the graviton mass.

2 BEH-mechanism for massive gravity

In BEH-mechanism for massive gravity a central role is played by four scalar fields φA (xµ) ,

A = 0, 1, 2, 3, which in the broken symmetry phase, in Minkowski space-time, acquire

vacuum expectation values 〈
φA
〉

= δAµ x
µ ≡ xA. (2.1)

Note that the vacuum state is degenerate and the different vacua are related by Poicnare

transformations. From the auxiliary induced metric HAB = gµνφA,µφ
B
,ν , where φA,µ ≡

∂φA

∂xµ ,

it is convenient to build the diffeomorphism invariant set of scalars

h̄AB = HAB − ηAB, (2.2)

and use them to give mass to the graviton. Here ηAB = (1,−1,−1,−1) is the auxiliary

Minkowski metric. Let us consider the small perturbations of the scalar fields around

broken symmetry phase

φA = xA + χA, (2.3)

which induce small metric perturbations

gµν = ηµν + hµν . (2.4)

Then

h̄AB = hAB + ∂AχB + ∂BχA + hAνχB,ν + hBνχA,ν + ηµνχA,µχ
B
,ν + hµνχA,µχ

B
,ν , (2.5)

where hAB ≡ δAµ δ
B
ν h

µν , ∂AχB ≡ ηAνχB,ν , η
Aν ≡ δAµ η

µν , hAν = δAµ h
µν etc. The scalars

h̄AB are diffeomorphism invariant and by an appropriate choice of coordinate system xµ

we can impose four gauge conditions on fourteen functions χA and hµν out of which they

are built. For instance, in so called unitary gauge where χA = 0, h̄AB coincides with the

metric perturbations hµν . Thus, it is clear that h
AB

can be used to construct, in a gauge

invariant way, the mass term for the graviton via BEH-mechanism. For instance, a theory

with the action

S =

∫
d4x
√
−g
[
−1

2
R+

m2

8

(
h̄2 − h̄ABh̄AB

)]
, (2.6)

where h̄ = h̄AA and we use the units in which 8πG = 1, describes massive gravity with FP-

mass term in broken symmetry phase. Note that contraction of capital indices guarantees

the invariance of the theory with respect to a particular choice of the vacuum in a huge

landscape of degenerate vacuum states related by Poincare transformations.

One can easily see why the Fierz-Pauli combination is so special by considering a

decoupling limit when the metric perturbations hµν vanish. In this case the mass term

m2

8

(
α · h̄2 − h̄ABh̄AB

)
, (2.7)
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where α is a numerical coefficient, becomes (up to total derivative)

m2

2

(
−1

4
FABFAB + (α− 1)

(
∂Aχ

A
)2

+O
(
χ3
))

(2.8)

with FAB = ∂AχB − ∂BχA. It is clear that unless α = 1, the theory with Lagrangian (2.8)

describes four fields one of which is inevitably a ghost. Only the choice of the mass

combination h̄2 − h̄ABh̄AB insures that the term
(
h̄00
)2
, that provides dynamics to the

ghost field χ0, is absent in the Lagrangian and χ0 becomes similar to the gauge potential

A0 in Maxwell theory, which corresponds to the first term in (2.8). However, if one considers

the propagation of the fields in a curved background (for instance induced by an external

source) with metric gµν = ηµν + hµν , then the contribution

h̄2 = 2h̄iih̄
0
0 + . . . = 2hii

(
χ̇0
)2

+ . . . , (2.9)

due to the higher order terms in (2.5) induces a propagator for χ0, thus resurrecting the

nonlinear BD-ghost in non-trivial background even for FP mass term. One can try to get

rid of the nonlinear ghost by adding to the action (2.6) higher order terms h̄3, h̄h̄ABh̄AB, . . .

and such strategy leads to a nearly unambiguous theory with action [6]:

S =

∫
d4x
√
g

[
−1

2
R+

m2

2

(
S2 − SABSAB

)]
, (2.10)

where

SAB =

√
ηAB + h̄AB − ηAB. (2.11)

To second order in h this theory reduces to FP theory. In higher orders it is represented

by an infinite series in h̄ and only with the help of auxiliary vierbein type fields the square

root in (2.11) can be given in finite form and the theory becomes quadratic in S [7]. The

theory (2.10) looks promising from the point of view of keeping the field χ0 non-dynamical

to all orders. However, it was shown in [7, 8] that the term h̄0ih̄0i, which is already present

in FP-term, as part of the quadratic term hAνχB,ν in (2.5), gives the following contribution

to the action

h̄0ih̄0i = h0ih0i
(
χ̇0
)2

+ . . . (2.12)

which is not canceled by higher order terms. Thus, in some backgrounds the field χ0

starts to propagate again and there is no guarantee that this mode would not induce a

ghost in an arbitrary background. A reader could wonder whether it is possible to choose

a gauge h0i = 0 where the term (2.12) is absent. It was shown in [8, 10] that in this

gauge the propagating χ0 mode reappears in a more complicated way. This is why the

question about ghost free massive gravity remains yet open. In this paper we address the

following questions:

• Is it in principle possible to construct ghost free theory which will describe massive

graviton with five degrees of freedom in Minkowski background ?

• Must the FP mass term be necessarily always used in massive gravity?
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3 Mimetic non Fierz-Pauli massive gravity

As we have seen above the problem in massive gravity is that the field φ0 becomes dynamical

by itself and thus inevitably leads to the appearance of linear or nonlinear ghost. The idea

we exploit in this paper is to use in BEH-mechanism the mimetic field [9] as one of four

fields responsible for the appearance of the graviton mass. This field φ0 always obeys the

constraint

gµν∂µφ
0∂νφ

0 = 1, (3.1)

and in a synchronous coordinate system serves as time coordinate, so that the generic

solution of (3.1) is

φ0 = t+A (3.2)

where A is a constant of integration. Combined with the longitudinal mode of gravity

it leads to the appearance of mimetic matter which can well imitate the observed Dark

Matter in the Universe [9, 11]. The remaining three scalar fields can provide three extra

degree of freedom needed for the massive graviton. Thus, in such theory we are guaranteed

to have no ghosts to any order in perturbation theory. It happens that in this case the

mass term for the graviton is unambiguously fixed. It is not of the Fierz-Pauli type and

the action of the corresponding theory is

S =

∫
d4x
√
g

[
−1

2
R+

m2

8

(
1

2
h̄2 − h̄ABh̄AB

)
+ λ

(
gµν∂µφ

0∂νφ
0 − 1

)]
. (3.3)

The mass term has a relative coefficient of −1
2 between the h̄2 and h̄ABh̄AB terms. The

mimetic constraint term does not violate the Lorentz invariance of the ground state because

it is obviously invariant with respect to the transformation φ0 → φ̃0 = Λ0
Bφ

B for φB =

δBµ x
µ. Variation of this action with respect to the metric gµν gives the following modified

Einstein equations

Gµν = 2λ∂µφ0∂νφ
0 − m2

8

(
1

2
h̄2 − h̄ABh̄AB

)
δµν

+
m2

2

(
1

2
h̄∂µφA∂νφ

A − h̄AB∂µφA∂νφB
)
, (3.4)

where Gµν = Rµν − 1
2Rδ

µ
ν is the Einstein tensor and we recall that capital indices are raised

and lowered with the help of the auxiliary metric ηAB, while for Greek indices the space-

time metric gµν is used. Variation with respect to the scalar fields φA leads to

∂µ

(
√
g

[
m2

2

(
1

2
h̄∂µφA − h̄AB∂µφB

)
+ 2λδA0 ∂

µφ0
])

= 0. (3.5)

Finally the constraint (3.1), which follows by varying with respect to λ, takes the sim-

ple form

h̄00 = 0. (3.6)

In the next section we will analyze linear perturbations in this model in component form,

using the methods of cosmological perturbation theory [12]. An explicitly covariant study

of these perturbations is given in a separate publication [13].
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4 Graviton on Minkowski background

We first study the linearized theory considering small metric perturbations in Minkowski

background, that is, assuming

gµν = ηµν + hµν , (4.1)

and |hµν | � 1. Correspondingly the scalar fields deviate from their vacuum expectations

values by χA, that is,

φA = xA + χA. (4.2)

To explicitly reveal the true physical degrees of freedom of the massive graviton it is conve-

nient to use the methods of cosmological perturbation theory and classify the perturbations

with respect to irreducible representations of the spatial rotation group [12]. The metric

component h00 behaves as a scalar under rotations and it is convenient to denote it as

h00 = 2φ, (4.3)

where φ is a 3-scalar. The space-time components h0i behaves as a 3-vector that can be

written as a sum of a longitudinal and transverse parts:

h0i = B,i + Si, (4.4)

where B,i = ∂B
∂xi

and Si has zero divergence, that is, ∂iSi = 0. Finally hij can be decom-

posed as

hij = 2ψδij + 2E,ij + Fi,j + Fj,i + h̃ij , (4.5)

with ∂iFi = 0 and the transverse traceless part h̃ij satisfies four conditions ∂ih̃ij = 0,

h̃ii = 0, leaving us with two polarizations for the massless graviton in General Relativity.

Thus, the perturbations can be classified as scalar perturbations described by φ, ψ, B, and

E, vector perturbations corresponding to Si and Fi and tensor perturbations h̃ij . In the

linear approximation they are completely decoupled and thus can be studied separately.

In General Relativity in empty space the scalar and vector perturbations vanish and they

are induced entirely by matter. In our theory, which can be treated as Einstein theory

with extra scalar fields, these perturbations are due to the small perturbations χA, which

in turn can be decomposed as:

χ0 = χ0, χi = χ̃i + π,i (4.6)

where ∂iχ̃
i = 0. It is obvious that χ0 and π excite scalar modes, while χ̃i is responsible for

vector perturbations. The remaining coordinate freedom

x0 → x0 + ξ0, xi → xi + ξi = xi + ζ,i + ξ̃i (4.7)

with ∂iξ̃
i = 0, allows us to impose four gauge conditions. Two of them, which are due

to the freedom in choosing ξ0 and ζ refer to the scalar perturbations sector, where for

instance two out of seven functions φ, ψ,B, E, χ0, π and λ can be taken to vanish. Often

it is very convenient to impose the Newtonian gauge conditions B = E = 0, which selects
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the coordinate system with explicit Newtonian limit of General Relativity. The coordinate

freedom due to transverse ξ̃i leave the gauge freedom for the vector perturbations and we

can set either Si or Fi to be equal to zero. The transverse traceless part of the metric h̃ij
is gauge invariant.

Keeping in equations (3.4) only those terms which contain the first order terms in

perturbations, these equations are simplified to

G0
0 ' 2λ+

m2

4
h̄ll, (4.8)

G0
i ' −

m2

2
h̄0i , (4.9)

Gik '
m2

2

(
1

2
h̄llδ

i
k − h̄ik

)
, (4.10)

where we took into account that λ, which is due to mimetic matter, is a first order quantity

in perturbations and h̄00 = 0 thanks to constraint (3.6).

Scalar perturbations. We fix the gauge by taking B = E = 0. In this gauge the metric

takes the form

ds2 = (1 + 2φ)dt2 − (1− 2ψ) δikdx
idxk, (4.11)

where φ is the Newtonian gravitational potential. As follows from (2.5) we have to first

order in perturbations

h̄00 = −2φ+ 2χ̇0, h̄0i = χ0
,i − π̇,i, h̄ik = 2ψδik + 2π,ij , (4.12)

where dot denotes derivative with respect to time t. Taking into account that in this gauge

(see, [12]):

G0
0 = 2∆ψ, G0

i = 2ψ̇,i, G
i
k = (φ− ψ),ik − (2ψ̈ + ∆ (φ− ψ))δik, (4.13)

and substituting the expressions above into (4.8)–(4.10) we obtain

∆ψ = λ+
m2

4
(3ψ + ∆π) , (4.14)

ψ̇ = −m
2

4

(
χ0 − π̇

)
, (4.15)

from 0− 0 and 0− i equations. The off diagonal i 6= k components of (4.10) give

φ− ψ = −m2π, (4.16)

while taking the trace we obtain

3ψ̈ + ∆ (φ− ψ) +
m2

4
(3ψ + ∆π) = 0. (4.17)

The constraint equation (3.6), when linearized, takes the form

φ = χ̇0, (4.18)

– 6 –
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and together with equations (4.14)–(4.17) are enough to determine the five unknown vari-

ables φ, ψ, λ, χ0 and π. Differentiating (4.15) and using (4.18) and (4.16) we have

ψ̈ = −m
2

4

(
χ̇0 − π̈

)
= −m

2

4

(
ψ −m2π − π̈

)
. (4.19)

Substituting this expression in (4.17) and taking into account (4.16) we derive the closed

form equation for π :

π̈ −∆π +m2π = 0. (4.20)

Considering a plane-wave with wave-number ~k the solution of this equation is

πk = (Ak sinωt+Bk cosωt) ei
−→
k ·−→x , ω2 = k2 +m2, (4.21)

where Ak and Bk are constants of integration. Using (4.20) we can rewrite (4.19) as

ψ̈ +
m2

4
ψ =

m2

4
∆π (4.22)

and substituting (4.21) in the right hand side of this equation we solve it to obtain

ψ = C
(
xi
)

sin
mt

2
+D

(
xi
)

cos
mt

2
+

m2k2

4k2 + 3m2
(Ak sinωt+Bk cosωt) ei

−→
k ·−→x , (4.23)

where C
(
xi
)

and D
(
xi
)

are further space dependent constants of integration describ-

ing the contribution of mimetic matter to the gravitational potential ψ. It then follows

from (4.16) that

φ = ψ −m2π

= C
(
xi
)

sin
mt

2
+D

(
xi
)

cos
mt

2
− 3m2ω2

4k2 + 3m2
(Ak sinωt+Bk cosωt) ei

−→
k ·−→x . (4.24)

From equation (4.15) one obtains

χ0 = π̇ − 4

m2
ψ̇

= − 2

m

(
C
(
xi
)

cos
mt

2
−D

(
xi
)

sin
mt

2

)
+

3m2ω

4k2 + 3m2
(Ak cosωt−Bk sinωt) ei

−→
k ·−→x .

(4.25)

Finally we solve for λ from equation (4.14) to get

λ =

(
4− 3m2

4

)(
C
(
xi
)

sin
mt

2
+D

(
xi
)

cos
mt

2

)
(4.26)

Having determined that the scalar mode of massive graviton is represented by the field π

satisfying (4.20), we note that λ is entirely decoupled from π and obeys the equation

λ̈+
m2

4
λ = 0, (4.27)

– 7 –



J
H
E
P
0
6
(
2
0
1
8
)
0
6
2

which describes massive mimetic matter. The contribution of this mimetic matter to the

gravitational potentials is

φ = ψ = C
(
xi
)

sin
mt

2
+D

(
xi
)

cos
mt

2
. (4.28)

To find the normalized independent quantization variables we need to calculate the action

for the scalar perturbations. Let us first expand the action (3.3) to second order in scalar

perturbations in the conformal Newtonian gauge, where B = E = 0,

S =

∫
d4x

[
− 3ψ̇2 − ψ4ψ + 2φ4ψ + 2λ

(
χ̇0 − φ

)
− m2

4

(
χ̇0 − φ

)2
+
m2

2

(
χ̇0 − φ

)
(3ψ + 24π)

+
m2

4

(
3ψ2 + 2ψ4π −4π4π

)
+
m2

4

(
χ0 − π̇

)
,i

(
χ0 − π̇

)
,i

]
(4.29)

Variation of this action with respect to λ gives the constraint φ = χ̇0, which when substi-

tuted in the action (4.29) reduces it to

S =

∫
d4x

[
−3ψ̇2−ψ4ψ + 2χ̇04ψ+

m2

4

(
3ψ2+2ψ4π−4π4π +

(
χ0 − π̇

)
,i

(
χ0 − π̇

)
,i

)]
(4.30)

Next, as a result of variation with respect to χ0 we obtain the constraint (4.15), and this

allows us to express χ0 and χ̇0 in terms of ψ and π,

S =

∫
d4x

[
ψ̇

(
−3 +

44
m2

)
ψ̇ − ψ4ψ − 2π̇4ψ̇ +

m2

4

(
3ψ2 + 2ψ4π −4π4π

)]
(4.31)

The fields ψ and π have mixed propagators. To diagonalize this action we substitute

ψ =

(
4− 3m2

4

)−1(
λ+

m2

4
4π
)
, (4.32)

that follows from 0 − 0 equation (4.14). After some algebra one finds that the action

separates in terms of π and λ,

S = − 1

2

∫
d4x4π

(
2m2

3m2 − 44

)(
∂20 −4+m2

)
4π

+
1

2

∫
d4xλ

(
32

m2 (3m2 − 44)

)(
∂20 +

m2

4

)
λ, (4.33)

where one should understand 4 to be −k2 for the plane-wave modes with the wave-number
~k. This shows that the correctly normalized modes of the corresponding quantum fields are√

2m2

3m2 + 4k2
k2πk,

√
32

m2 (3m2 + 4k2)
λk, (4.34)
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for the graviton and mimetic matter. The typical amplitude of minimal quantum fluctu-

ations of the properly normalized fields (4.34) in scales L ∼ 1
k is of order

(
k3

ωk

) 1
2

(see, for

instance, formula (4.34) in [14]). Therefore, taking into account that ωk =
√
k2 +m2 for

π mode and ωk = 1
2m for λ mode we infer from (4.34) that the minimal level of quantum

fluctuations in scales L� m−1 for π and λ are

δπL ' m−1, δλL '
(m
L5

) 1
2
. (4.35)

As it follows from (4.32) and (4.16) they induce the corresponding metric perturbations

of order

δφL ∼ δψL ' m2δπL ' m, (4.36)

and

δφL = δψL ' L2δλL '
(m
L

) 1
2
, (4.37)

for the scalar graviton mode and mimetic matter, respectively. Thus the metric pertur-

bations due to the quantum fluctuations of the scalar modes always remain much smaller

than unity up to the Planckian scales. Note that we work in Planck units where all con-

stants are set to unity and in dimensional units the right hand side, for instance in (4.37),

is
(

m
mPl

) 1
2
(
lPl
L

) 1
2
, where mPl and lPl are the Planck mass and Planck length respectively.

The sign of kinetic energy for the field π is positive and this field is not a ghost, while,

as follows from (4.33), the apparent contribution to the energy density of mimetic field

from the mode with k � m,

− 4

m2k2

(
λ̇2 +

m2

4
λ2
)
, (4.38)

is negative and looks singular as m2 → 0. However, a propagator for λ does not include

a Laplacian. Therefore, λ̇ ∝ mλ, and hence the singularity 1
m2 in (4.38) is canceled.

Moreover, for the mimetic matter the main contribution to the energy density is linear in

λ, so that the total energy density is

εmim ' λ−
λ2

k2
, (4.39)

where the second negative term just account for the negative contribution of gravitational

self-interaction to the total energy density. This second term is smaller than the first

term for λ� k2. When λ becomes of order k2 then we immediately see from (4.34) that ψ

becomes of order unity and linear perturbation theory breaks down. To clarify the situation

further let us consider in Minkowski space a ball of radius R filled by dust at rest with local

energy density λ. Then the gravitational potential far away from the ball is determined by

the mass of the ball which in the leading order can be estimated as M0 ' λR3. However,

in the next order, the negative gravitational energy of self interaction of matter within the

ball, which is of order −M2
0
R , also contributes to the mass observed far away from the ball.

The resulting mass measured by a far away observer is

Mobs 'M0 −
M2

0

R
. (4.40)
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If the observer would forget about contribution of negative gravitational energy to the total

mass he would conclude that the energy density within the ball is

εobs '
Mobs

R3
' λ−R2λ2. (4.41)

Taking into account that k ' R−1 this explains the origin of negative energy contribution

to the mimetic matter energy density. When the second term in (4.41) becomes com-

parable with the first one we first get semi-closed worlds and finally when the negative

self-interaction energy exactly compensates the internal mass one obtains the closed uni-

verse with zero total energy with respect to an observer in asymptotically Minkowski space

(see, for example, [15, page 109] for details).

Vector perturbations. Let us now turn to vector perturbations taking the gauge Fi = 0,

so that the metric becomes

ds2 = dt2 + 2Sidx
idt− δikdxidxk. (4.42)

As follows from (2.5), (4.5) and (4.6), we have, to linear order in perturbations,

h̄00 = 0, h̄0i = −Si + ˙̃χi, h̄ik = −χ̃k,i − χ̃i,k, (4.43)

where as we recall χ̃i = −χ̃i and both Si and χ̃i are transverse. Taking into account that

in the gauge Fi = 0:

G0
0 = 0, G0

i =
1

2
∆Si, Gik = −1

2
(Ṡi,k + Ṡk,i), (4.44)

(see, [12]) equations (4.9) and (4.10) reduce to

∆Si = m2
(
Si − ˙̃χi

)
, (4.45)

Ṡi,k + Ṡk,i = −m2 (χ̃i,k + χ̃k,i) , (4.46)

while equation (4.8) is satisfied identically. As follows from (4.45)

Si =
m2

m2 −∆
˙̃χi, (4.47)

and this, after being substituted in (4.46), gives(
¨̃χi,k + ¨̃χk,i

)
−∆ (χ̃i,k + χ̃k,i) +m2 (χ̃i,k + χ̃k,i) = 0, (4.48)

or, equivalently,
¨̃χi −∆χ̃i +m2χ̃i = 0. (4.49)

This equation describes two vector modes of the massive graviton. The action for the

vector modes can be obtained by expanding (3.3) to second order in perturbations:

S =
1

4

∫
d4x

[
Si,kSi,k +m2

((
˙̃χi − Si

) (
˙̃χi − Si

)
− χ̃i,kχ̃i,k

)]
. (4.50)
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Variation of this action with respect to Si gives us constraint equation (4.45), and upon

substituting (4.47), the action reduces to

S = −1

2

∫
d4x

[
χ̃i

(
m2∆

2 (∆−m2)

)(
∂20 −∆ +m2

)
χ̃i

]
. (4.51)

From this we deduce that the properly normalized modes for the vector perturbations are√
m2∆

2 (∆−m2)
χ̃i. (4.52)

Thus for plane-wave perturbations with momentum k ' L−1 � m the typical minimal

quantum fluctuations in scales L is of order

δχ̃L '
1

mL
. (4.53)

Taking into account that δ ˙̃χL ' δχ̃L
L we infer from (4.47) that the corresponding metric

perturbations are

δSiL ' m (4.54)

Tensor perturbations. The tensor perturbations h̃ij satisfy four extra conditions

∂ih̃ij = 0 = h̃ii. They are gauge invariant and describe two degree of freedom of the graviton

which have become massive. The equation for h̃ij immediately follows from (4.10),(
∂20 −∆ +m2

)
h̃ij = 0, (4.55)

and the corresponding action is

S = −1

8

∫
d4x

[
h̃ij
(
∂20 −∆ +m2

)
h̃ij

]
. (4.56)

The canonical quantization variable is h̃ij and hence the typical amplitude of quantum

fluctuations for tensor modes in scales L is of order

δh̃ij '
1

L
, (4.57)

for L� m−1. They become of order unity at Planck scale lPl ' 10−33 cm where they enter

non-perturbative quantum gravity strong coupling regime and linearized theory ceases to

be applicable. Although the amplitude of quantum scalar and vector metric perturbations

is scale independent δψL ' δSL ' m and remains small even at the Planck scale, these

perturbations nevertheless enter the strong coupling regime at the energy scale which is

much below the Planck scale, that is, well before the tensor modes (see next section).

Thus we have shown in this section that the theory with action (3.3) describes on

a Minkowski background a massive graviton with five degrees of freedom. According to

little (rotation) group representations they can be thought of as consisting of one scalar

degree of freedom described by π, two vector degrees of freedom χ̃i and two tensor modes

h̃ij . In addition we have a massive mimetic matter described by λ which, in the linear

approximation, completely decouples from the massive graviton. These results are valid

only when the higher order corrections to the linearized equation are negligible. In the

next section we determine the range of applicability of the linearized theory.
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5 Strong coupling and massless limit

Scalar modes. To determine at which scales the nonlinear corrections to the linearized

equations become important we need to calculate the next order terms in equations (3.4).

Because the resulting expressions are too cumbersome even to second order, we will keep

in the formulae only those terms which can become comparable to linear terms assuming

that the gravitational potentials φ and ψ are much smaller than unity and considering

perturbations with k2 � m2. In the left hand side of equations (3.4) it is enough to keep

only the linear terms because under the assumptions stated above all terms of order φ2,

ψ2 are small compared to the linear terms. Keeping in h̄00, defined in (2.5), only terms to

second order in perturbations we have

0 = h̄00 = −2
(
φ− χ̇0

)
+ 4

(
φ− 1

2
χ̇0

)2

− χ0
,iχ

0
,i (5.1)

It is clear that O
(
φ2
)

terms are always much smaller than φ and can be skipped. The

term 4φχ̇0 is much smaller than χ̇0 for φ� 1 and hence can be neglected in h̄00. Therefore,

keeping only relevant terms to second order in perturbations, the constraint h̄00 = 0 becomes

− 2φ+ 2χ̇0 +
(
χ̇0
)2 − χ0

,iχ
0
,i ' 0. (5.2)

For linear perturbations we can express φ, ψ and χ0 in terms of the independent fields π

and λ using (4.21)–(4.26):

φ = χ̇0 = −3m2ω2π + 4λ

4k2 + 3m2
' −3m2

4
π − λ

k2
, (5.3)

ψ =
m2k2π − 4λ

4k2 + 3m2
' m2

4
π − λ

k2
, (5.4)

χ0 =
3m4π̇ + 16λ̇

m2 (4k2 + 3m2)
' 3m2

4k
π +

2

mk2
λ, (5.5)

where to simplify the formulae in the second equality we considered perturbations with

scales L ' k−1 � m−1 and therefore skipped all subleading corrections proportional to
m2

k2
. Moreover in (5.5) we estimated the time derivatives as λ̇ ' m

2 λ and π̇ ' kπ. It

is clear that the
(
χ̇0
)2

term in (5.2) is of order φ2 and can be neglected compared to

the last term, which in the domain of applicability of the linear theory would signal us

when the linearized equations fail. Namely, this happens at scales where χ0
,iχ

0
,i ∼

(χ0)
2

L2

becomes comparable with φ given in (5.3). The contributions of quantum fluctuations to

the gravitational potential from the scalar mode of the graviton π and mimetic matter λ

are given by (4.36) and (4.37) respectively. Therefore we can easily see that for π mode the

linearized approximation for constraint (5.2) remains always valid for these perturbations.

For mimetic mode the last term in (5.2) starts to exceed the linear term at L ≤ m−
3
5 when

δλL becomes of order m2 and in case of mimetic matter the linear approximation fails for

the constraint h̄00 = 0.
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Now we calculate higher order corrections to equations (4.14)–(4.17). Equation (4.14)

becomes

∆ψ = λ+
m2

4

[
(3ψ + ∆π) + π̇,iπ̇,i +

3

2
π,ikπ,ik −

1

2
(∆π)2 − χ0

,iπ̇,i −
1

2
χ0
,iχ

0
,i

]
+O

(
λχ̇0, ψ2, ψ∆π, . . .

)
, (5.6)

where we have assumed that the gravitational potentials ψ, φ are much smaller than unity.

We have neglected in (5.6) the higher order terms in metric dependence in both sides of

Einstein equations as well as higher order terms such as ψ∆π etc. because they are always

smaller than the corresponding linear terms. Considering perturbations with wavelength

L� m−1 and taking into account (5.3)–(5.5) we can estimate the various quadratic terms

in (5.6) as

π̇,iπ̇,i ∼ π,ikπ,ik ∼ (∆π)2 ∼ π2

L4
; χ0

,iπ̇,i ∼
λπ

mL
; χ0

,iχ
0
,i ∼

λ2L2

m2
, (5.7)

where we kept only the leading terms. For quantum fluctuations we have

π2

L4
∼ m2

(mL)4
;

λπ

mL
∼ m2

(mL)7/2
;

λ2L2

m2
∼ m2

(mL)3
. (5.8)

These nonlinear terms have to be compared to the linear terms in the brackets on the right

hand side of equation (5.6)

∆π ∼ π

L2
∼ m

(mL)2
; ψ ∼ L2λ ∼ m

(mL)1/2
, (5.9)

where the first term is entirely due to the contribution of π mode of the graviton and the

main contribution to the second term comes from mimetic matter. Because mL � 1, the

term π2

L4 dominates among nonlinear corrections for quantum fluctuations and is entirely

due to the scalar mode π of the massive graviton. It becomes comparable to ∆π at the scale

Lstr
π ∼ m−

1
2 , (5.10)

and for L ≤ Lstr
π the scalar mode of the graviton becomes strongly coupled and decouples

from the two transverse degree of freedom which, in contrast, only becomes strongly coupled

at Planck scale . Among the two contributions from mimetic matter the second term in (5.8)

is obviously larger than the third term and becomes comparable with the linear term ψ

given in (5.8) at the scale

Lstr
mim ∼ m−

2
3 , (5.11)

where the quantized mimetic matter becomes strongly coupled. This scale is larger than

the scale ∼ m−
3
5 found above, where nonlinear corrections to the constraint h̄00 = 0 become

important. Hence the mimetic mode gets in the strongly coupled regime when δλL is yet

smaller than m2. Notice that at scale ∼ m−
3
5 the smallest last term in (5.8) becomes of order

ψ given in (5.9). Equation (4.15) gets modified by the dominant nonlinear corrections as

ψ̇,i = −m
2

4

[(
χ0 − π̇

)
,i
−∆πχ0

,i + 2χ0
,kπ,ik + ∆ππ̇,i − 3π,ikπ̇,k

]
+ λχ0

,i + . . . (5.12)
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For quantum fluctuations the nonlinear terms inside the brackets become comparable with

the linear ones at Lstr
π ∼ m−

1
2 both for the scalar mode π and quantum mimetic matter.

The last term in this equation λχ0
,i becomes of order m2χ0

,i at scales L ∼ m−
3
5 when the

amplitude of quantum fluctuation of δλ would reach the value m2. However, as we have

seen above the linearized approximation for mimetic matter fails before, at Lstr
mim ∼ m−

2
3 .

The higher order corrections to i− k components of Einstein equations have the same

structure as in (5.6) and hence do not lead to any further restrictions on the linear per-

turbation theory. Thus, the scalar mode of the graviton π gets strongly coupled at length

scales of order m−
1
2 and at smaller scales the massive graviton loses this degree of freedom.

Vector modes. For the vector perturbations equations (4.45) and (4.46), taking into

account the relevant quadratic terms, become

∆Si = m2
[
(Si − ˙̃χi) + 2 ˙̃χkχ̃k,i + ˙̃χkχ̃i,k

]
, (5.13)

Ṡi,k + Ṡk,i = −m2

[
(χ̃i,k + χ̃k,i) + ˙̃χi ˙̃χk − δik ˙̃χm ˙̃χm − χ̃i,mχ̃k,m − 2χ̃m,iχ̃m,k

−χ̃i,mχ̃m,k − χ̃k,mχ̃m,i + δik

(
χ̃l,mχ̃l,m +

1

2
χ̃m,lχ̃l,m

)]
, (5.14)

where we have omitted the quadratic terms S2
i , Si

˙̃χi, Smχ̃i,m because the metric perturba-

tions Si are always much smaller than unity. For plane-wave perturbations with momentum

k ' L−1 � m these quadratic terms in (5.13), (5.14) can be estimated as χ̃2

L2 and these

become comparable with the linear terms χ̃
L when χ̃

L ∼ 1. For the minimal quantum fluc-

tuations χ̃ ∼ 1
mL (see (4.53)) and hence vector modes of the massive graviton come in the

strong coupling regime at the same scale as the scalar mode π

Lstr
χ̃ ∼ m−

1
2 . (5.15)

Thus, for L� m−
1
2 the massive graviton loses three out of five degrees of freedom and the

two remaining transverse degrees of freedom continue to propagate as if the graviton would

be massless. One can easily check that these two degrees of freedom are not influenced

much by scalar and vector degrees of freedom via nonlinear corrections because the metric

perturbations they induce always remain much smaller than unity. The transverse degrees

of freedom become strongly coupled only at the Planck scale. When mass of the graviton

vanishes, the strong coupling scale for scalar and vector modes goes to infinity and the

graviton has only two propagating degrees of freedom as it must be.

6 Static gravitational field by external source

Let us consider the spherically symmetric field created by the mass M . In General Rel-

ativity the metric far away from the source (at distance r) can be written in the linear

approximation as

ds2 = (1 + 2φ)dt2 − (1− 2ψ) δikdx
idxk, (6.1)

where

φ = ψ = φN = − M

8πr
, (6.2)

is the Newtonian gravitational potential (in units 8πG = 1).
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In massive gravity this potential is modified at distances r � m−1 where it decays

exponentially fast. However, more nontrivial is that for the case of Fierz-Pauli mass term

Bianchi identities inevitably enforce the scalar curvature perturbations to vanish in the

linear order [5]:

δR = 2∆ (2ψ − φ) = 0, (6.3)

from which it follows that φ = 2ψ. The bending of light measures the sum of two poten-

tials φ + ψ, that must be equal to 2φN . Hence, the gravitational potential φ determining

for instance the motion of the planets must be in this case equal to 4
3φN , independently

of the mass of the graviton, in contradiction with experiment. This is known as vDVZ

discontinuity which survives in the linearized theory even in the limit when the mass of

the graviton goes to zero [16, 17]. The resolution to this apparent contradiction was found

by Vainshtein who showed that the scalar mode of the massive graviton which gives extra
1
3φN contribution to the gravitational potential φ gets strongly coupled at the scale RV ,

where the linearized approximation for this mode fails and the result of General Relativity

is restored in the leading order for r < RV [18]. Depending on the nonlinear extension

of Fierz-Pauli mass term, the Vainshtein scale RV changes in the interval from
(
M
m4

) 1
5

to
(
M
m2

) 1
3 (see, for example, [19–21], and references there). When mass of the graviton

goes to zero, Vainshtein scale grows to infinity and thus the range of scales with vDVZ

discontinuity disappears.

In the theory considered here the mass term is not of FP type and vDVZ discontinuity

does not arise even at linearized level. In the presence of an external source of mass M,

among equations (4.14)–(4.18), describing the linearized scalar mode of massive graviton,

only equation (4.14) gets modified as

∆ψ =
m2

4
(3ψ + ∆π) + λ+

1

2
T 0
0 , (6.4)

where T 0
0 = Mδ3 (x) . In the consideration above this equation was used only to find λ for

a given ψ and π. In turn the solution for ψ and π is given in (4.21) and (4.23) and remains

unchanged. First of all let us note that π completely decouples from mimetic matter and

the gravitational field induced by a central source because T 0
0 comes only in combination

with λ and only in equation (4.14). Therefore we can set π = 0 assuming that the constants

of integration in (4.21) vanish. Then as follows from (4.23) and (4.24)

φ = ψ = C
(
xi
)

sin
mt

2
+D

(
xi
)

cos
mt

2

= F
(
xi
)

cos

(
mt

2
+ α

(
xi
))

. (6.5)

It is interesting to note that in case of massive mimetic gravity the static solutions for the

static source do not exist in the linearized version of the theory. The gravitational potential

oscillates with a frequency proportional to the mass of the graviton. Of course on time

scales t� m−1 the potential does not change too much. Considering t� m−1 and scales

r � m−1 we can estimate the constant of integration in (6.5) in the presence of source T 0
0
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from (6.4) to get

φ = ψ ' − 1

8π cosα

(
M

r
+

2

r

∫ r

λd3x

)
cos

(
mt

2
+ α

)
, (6.6)

and as follows from (4.15)

χ0 = − 4

m2
ψ̇ ' − 1

4πm cosα

(
M

r
+

2

r

∫ r

λd3x

)
sin

(
mt

2
+ α

)
(6.7)

Clearly these solutions are approximate solutions valid only for t� m−1. Keeping this in

mind we will find the range of the scales where the linear approximation used to get them

fails because of nonlinear corrections. From (5.2) and (5.6) it is clear that this happens when

χ0
,iχ

0
,i becomes of order φ = ψ. Neglecting the contribution of mimetic matter in (6.6), (6.7)

and taking as a rough estimate

ψ ∼ M

r
, χ0

,iχ
0
,i ∼

(
χ0
)2

r2
∼ M2

m2r4
, (6.8)

we see that these terms become comparable at

rstr ∼
(
M

m2

) 1
3

(6.9)

and for r < rstr the nonlinear term χ0
,iχ

0
,i cannot be neglected. Thus the linearized ap-

proximation used to derive the non-static solutions (6.6), (6.7) is not valid for r < rstr.

Moreover as follows from (5.12)

ψ̇,i =

(
λ− m2

4

)
χ0
,i, (6.10)

and hence when λ becomes comparable with m2 the linearized 0 − i equations fail. One

can see that this equation allows static solution for λ = m2/4. In this case the contribu-

tion of mimetic matter to the gravitational potential in (6.6) becomes comparable to the

contribution of the source of mass M at scales rstr ∼
(
M
m2

) 1
3 .

Thus, at scales r < rstr we find that the solution of the equation for central source is

static and corresponds to

φ = ψ = φN

(
1 +O (1)

(
r

rstr

)3)
, (6.11)

where the corrections due to the contribution of induced mimetic matter rapidly decrease

towards the smaller scales. On large scales, for m−1 > r > rstr the static source produces

the time dependent oscillating solution

φ = ψ ' O (1)φN cos

(
mt

2
+ α

)
. (6.12)

These time dependent oscillations are due to the induced mimetic matter which surrounds

the static source.
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7 Summary

It is a rather interesting theoretical challenge to try to construct a theory of massive

gravity free of obvious flaws in which, on Minkowski background, the graviton behaves like

a massive particle. This is the main motivation for this work. Generically the five degrees

of freedom of a massive graviton are accompanied by an extra ghost degree of freedom

which propagates already at the linear level unless the mass term is taken to be in the

Fierz-Pauli form [4]. For the FP term the dangerous mode remains non-dynamical in the

linear approximation but generically reappears as nonlinear Boulware-Deser ghost [5] on

non-trivial (different from Minkowski) backgrounds. There is a claim in the literature that

there exists a nearly unambiguous higher order extension of the FP theory in which such

ghost is absent on most of the non-trivial backgrounds [6]. However, as we have shown

in [8, 10], the ghost field can still reappear on some backgrounds . In this paper we have

addressed the following questions:

• Is it possible to have a rather simple theory of massive gravity, which remains ghost

free irrespective of its nonlinear extension?

• Can we have non FP mass term and nevertheless avoid the appearance of a ghost?

As we have shown in this paper the answer to both questions is positive. The only

way to generate the graviton mass without explicitly spoiling diffeomorphism invariance is

to use the BEH mechanism with four scalar fields. In this case, in the broken symmetry

phase, the three scalar fields donate their degrees of freedom to the graviton which thus

gets a total of five degrees of freedom and acquires mass. The fourth field, if unrestricted,

becomes a ghost and even for the Fierz-Pauli mass form still propagates on some non-

trivial backgrounds. We have proposed to use the constrained mimetic scalar instead of this

dangerous field. This field becomes dynamical and can imitate dark matter when combined

with the longitudinal mode of gravity. In mimetic massive gravity its behavior is slightly

modified and mimetic matter still well imitates cold dark matter. Thus, the dangerous

mode is avoided and instead we get a good candidate for dark matter irrespective of the

nonlinear extension of the theory. The inevitable consequence of using mimetic field, which

is always in broken symmetry phase, is the need to use non Fierz-Pauli type mass term, with

a relative coefficient of −1
2 between the h̄2 and h̄ABh̄

B
A terms instead of −1. Only in this case

we obtain a massive graviton in the broken symmetry phase. This graviton is completely

decoupled from mimetic matter in the linear approximation and vDVZ discontinuity is

completely avoided. Out of the five degrees of freedom, three degrees due to the scalar

fields get in the strongly coupled regime at the same scale Lstr ∼ m−
1
2 and at L < Lstr

the graviton has only two transverse degrees of freedom which become strongly coupled at

Planck scale. This is quite different from the case of FP mass term where these scales are

different for the scalar and vector modes. The other interesting feature of the theory is that

the gravitational potential produced by a mass M is static only at scales L < rstr ∼
(
M
m2

) 1
3

while at larger distances it oscillates with frequency m
2 and thus vanishes, being averaged

over the time scales t > m−1.
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