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Abstract
In this paper, we investigate numerically the stochastic ABCmodel, a toymodel in the theory of
astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics
(STS). STS characterizes stochastic differential equations (SDEs) by the spectrumof the stochastic
evolution operator (SEO) on elements of the exterior algebra or differential forms over the system’s
phase space,X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the
phenomenon of stochastic chaoswith the spontaneously broken topological supersymmetry that
SEOs of all SDEs possess.We demonstrate the following three properties of the SEO, deduced
previously analytically and fromphysical arguments: the SEO spectra for zeroth and top degree forms
never break topological supersymmetry, all SDEs possess pseudo-time-reversal symmetry, and each
deRham cohomology class provides one supersymmetric eigenstate. Our results also suggest that the
SEO spectra for forms of complementary degrees, i.e., k and dimX−k, may be isospectral.

1. Introduction

The theory of stochastic differential equations (SDEs) has a long history and it providesmany important insights
on natural dynamics influenced by external noise (see, e.g., [1–6] and therein). One of such insights has emerged
recently as a result of the conjecture [7] that the theoretical essence of self-organized criticality [8]may be the
instanton-mediated spontaneous breakdown of topological supersymmetry that all SDEs possess. Further work
in this direction led to the formulation of the supersymmetric theory of SDEs or, for simplicity, of stochastics
(STS) (see, e.g., [9] and therein).

From themathematical point of view, the STS can be looked upon as amember of the cohomological or the
Witten-type topologicalfield theories [10], as a generalization of the Parisi-Sourlas quantization [11, 12] from
the Langevin SDEs to SDEs of any form, and as the application of the concept of the generalized transfer operator
of the dynamical systems theory [13] to SDEs.

From the physical point of view, the importance of STS is in providing the theoretical picture for ‘dynamical
long range order’ (DLRO), knownunder such names as turbulence, chaos, self-organization, pattern formation,
self-organized criticality, complex dynamics etc.Within the STS,DRLO is the spontaneous breakdownof the
topological, BRST, or de Rham supersymmetry. The existence of this supersymmetry in all SDEs is the algebraic
representation of the phase-space continuity of the continuous time dynamics [9].More specifically, two
infinitely close points in the phase space will remain close during the SDE-defined evolution at any configuration
of the stochastic noise. From this perspective, the spontaneous breakdown of topological supersymmetry can be
interpreted as the breakdown of this property in the limit of the infinitely long evolution, represented, of course,
by the non-supersymmetric ground state. In other words, in the limit of the infinitely long evolution, two close
points in the phase spacemay not be close anymore and the systemmay be said to exhibit the butterfly effect and
for this reason identified as chaotic.
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The supersymmetry breaking picture of chaotic behavior generalizes its classical picture fromdynamical
systems theory to stochastic dynamics. Furthermore, this picture provides a rigorous explanation (via the
Goldstone theorem) for the ubiquitous emergent long-range dynamical behavior in nature. Besides the butterfly
effect, this emergent long-range dynamics also includes 1/f noise or the long-termmemory effect and the
Ritcher scale or the power-law statistics of sudden instantonic processes such as earthquakes, solar flares,
neuroavalanches etc.

The centerpiece of the STS is the stochastic evolution operator (SEO) defined on the exterior algebra [14] of
the phase space, which is regarded as theHilbert space of the stochasticmodel. The SEOdescribes the
stochastically averaged SDE-induced actions on thewavefunctions, the elements of thisHilbert space. This
stochastic averaging is possible since theHilbert space as well as the SDE-induced actions on it are linear objects.
In contrast, the operation of stochastic averaging on, say, SDE-defined trajectories cannot be defined in the
general situationwhen the phase space is not a linear space. In thismanner, the SEOpermits to study interplay
between stochastic and dynamical properties of the systems.

One of the important questionswithin the STS is the possible forms that the SEO spectrum can take, as these
encode the system’s characteristics of being chaotic, etc. The key quantity here is the eigenvalue of the fastest
growing eigenmode(s) of SEO, thatmust be identified as the ground state of themodel. The problemof possible
SEO spectra has been recently solved partly in [15] by establishing a connection between the STS and the theory
of kinematic dynamo (KD, see, e.g., [16–19] and therein). TheKD is theweak-magnetic-field limit of themore
general astrophysical phenomenon ofmagnetic dynamos, i.e., the amplification of amagnetic field by amoving
conductingmedium (see, e.g., [20–25] and therein).With the help of this STS-KD connection and using
previous numerical results from theKD theory [16–19], it has been established that SEOswith ground states
with both real and complex eigenvalues are realizable.

The theory of KDdeals, however, only with the non-supersymmetric eigenstates of thefirst and second
degrees, the states that represent respectively the vector potential and the corresponding field tensor of the
magnetic field. As such, the STS-KD connection cannot elucidate on other properties of the SEO. A few
properties deduced previously analytically and fromphysical arguments remain to be proved or at least
demonstrated numerically. Such a numerical demonstration is the goal of the present paper.

Here, we numerically study the SEOof a stochastic ABCmodel, one of the toymodels used inKD theory to
mimic chaoticflows [16]. Our results support the following previously deduced properties of the SEO: (i) the
spectra of the top and the zeroth degrees do not break topological supersymmetry, (ii) each de Rham
cohomology class provides one supersymmetric eigenstate, and (iii) the overall spectra possess pseudo-time-
reversal symmetry. In addition, our results suggest that the SEOwith complementary degrees are isospectral—a
property of SEOs forwhichwe do not have yet a theoretical explanation.

The paper is organized as follows. In section 2, we introduce the SEO for a general-form SDEwithGaussian
white noise. In section 3, we introduce the stochastic ABCmodel, whereas the details of the numerical
realization of its SEO are given in the appendix. In section 4, the properties of the SEO are discussed and
exemplified by the numerical results for the stochastic ABCflowmodel. Section 5 concludes the paper.

2. Stochastic evolutionwithGaussianwhite noise

The following general-form SDE is of our interest:

x= + Q º˙ ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( )x F x e xt t t t t2 . 1a
a1 2

Here and in the following the summation is assumed over the repeated indices; Îx X is a point in the phase
space,X, which is assumed to be a topologicalmanifold; Î( )F x TXx is aflow vector field onX at x;

Î = ¼( )e x TX a, 1,xa is a set of vector fields onXwith a being the parameter running over these vector fields;
ξ a(t) is a set of theGaussianwhite noise variables.

For each configuration of the noise, equation (1) defines the family of trajectories inX. Alternatively, this
family of trajectories can be looked upon as a two-parameter family of diffeomorphisms ofX on itself [9], with
the two parameters being the initial, t, and the final, ¢ >t t , timemoments of temporal evolution,

¢ ( )M X X: . 2t t

These diffeomorphisms induce actions or pullbacks on differential forms,
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Here,Ωk denotes the space of all differential forms of degree k, or k-forms,ψ( k), defined in equation (4) via the
contravariant antisymmetric tensor, y( )

i i
k
... k1

, and thewedge or antisymmetric product of differentials,∧.
Equation (5) is known as the tangentmap.

The action in equation (3) is themost natural construction from themathematical point of view. It can be
looked upon as the formal change of variables in a differential form induced bymaps that are inverse to the
forwardmaps in equation (2). The fact that thesemaps are inverse is reflected in the reversed order of ¢t and t in
equation (3) as compared to that in equation (2). The reason for this seeming reversion of time is discussed in
detail in section 2.1 of [9].

The entire exterior algebra ofX, i.e., the space of the differential forms of all degrees,

W = W
=

( ) ⨁ ( ) ( )X X , 6
k

D
k

0

withD=dimX, is theHilbert space of themodel. The top differential forms ofmaximal degreeD can be
interpreted as the total probability distributions, whereas differential forms of lesser degrees can be looked upon,
at least locally onX, as the conditional probability distributions [26].

The infinitesimal action of the SDE-defined diffeomorphisms can be given via the stochastic flow equation
(SFE),
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where ˆ ( )t denotes the Lie of physical derivative along( )t . The SFE follows immediately from the
understanding of the Lie derivative as of the infinitesimal pullback of the SDE-definedflow. Accordingly, the
finite-time pullback is given as,
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Here  denotes the operation of chronological ordering, which is necessary as in the general case ˆ ( )t ʼs at
different timemoments of the evolution do not commute.

The pullback is a linear operator on a linearHilbert space. Thus, this operator can be averaged over the
configurations of the noise. Such stochastic averaging leads to thefinite-time stochastic evolution operator
(SEO),

* = á ñ¢ ¢
ˆ ( )M , 9t t tt Ns

where brackets denote the stochastic averaging.
For thewhite noise case only, the finite-time SEO can be expressed via the (infinitesimal) SEO, Ĥ , in the

followingmanner,

 =¢
- ¢-ˆ ( )( ) ˆe , 10t t

t t H

so that the infinitesemal evolution of thewavefunctions is given by the following stochastic evolution equation,

y y¶ = -( ) ˆ ( ) ( )t H t . 11t

The explicit formof Ĥ can be readily established using the following definition,

*= D á - ñ-
W -D

ˆ ( ) ˆ ( )( )H t M1 . 12t t t
1

Ns

With the help of equation (8) and the standard expectation values of theGaussianwhite noise variables,
x tá ñ =( ) 0a

1 Ns and x t x t d d t tá ñ = -( ) ( ) ( )a a a a
1 2 Ns

1
1 21 2 1 2 , onefinds that

  = - Qˆ ˆ ˆ ˆ ( )H . 13F e ea a

Our next goal is to discuss the properties of the SEO and exemplify these properties using our numerical results
for the stochastic ABCmodel that we discuss in the next section.
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3. Stochastic ABCmodel

The stochastic ABCmodel on a 3-torus is defined by itsflowvector field and the three ‘Euclidian’ eʼs,

= +
+

= = =

· ( ) · ( )
· ( )

( ) ( ) ( ) ( )

F

e e e

A z z B x x

C y y

sin , cos , 0 0, sin , cos
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1,0,0 , 0,1,0 , 0,0,1 . 14
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T T

T

1
T

2
T

3
T

The vector fields eʼs represent the flatmetric on the 3-torus, for which the diffusion Laplacian is theHodge
Laplacian,

  = -ˆ ˆ [ ˆ ˆ ] ( )†
d d, , 15e ea a

where d= - ¶ ¶ˆ ˆ†
d ı xj

ij i is the so-called co-differential operator (see equation (24) below for the definition
of ı̂j).

Equations (13)–(15) provide the SEOof the stochastic ABCmodel,

= + -ˆ ˆ [ ˆ ˆ ] ( )†
H d dRm , . 16FABC

1
ABC

where the inverse temperature, Rm=Θ−1, is known in theKD theory as themagnetic Reynolds number and it
parametrises physical diffusivity of themagnetic field in units of the turbulent diffusivity of the flow. IfΘ=0,
themagneticfield is perfectly frozen into the flowof the conductingmedium.

The procedure for the construction of the SEOon the square lattice of the 3-torus is described in the
appendix. There, one of the parameters of themodel is the lattice constant, a=2π/N, whereN is the number of
lattice sites in each of the three directions. It is understood that the finer the lattice, or equivalently the larger the
N, themore accurate numerical representations of the SEOone obtains and thus themore trustworthy results
one gets. On the other hand, the computer time taken up by the diagonalization procedure involved in the
spectrum calculation increases dramatically withN. In order tofind balance between accuracy and the
availability of themachine-time resources, we compared the results for differentNʼs.

Infigure 1, the phase diagrams of the stochastic ABCmodel for the four different choices ofN are presented.
As is seen, the phase diagrams forN=30, 35, 40, andN=45 are qualitatively the same. From this observation
we conclude that for this particular range of parameters (0.8<C<1.2 and 1<Rm<30),N=30 already
provides a reasonably good approximation for the SEO. All the subsequent numerical results are therefore
obtained for this particular choice ofN=30.

To improve our confidence in the results withN=30, we compared the value of the real part of the ground
state of themodel withA=B=C=1with the results obtained in [16]. As can be seen infigure 1E, our
methodwithN=30 reproduces the results of [16] qualitatively well. Note that only the situations with
spontaneously broken supersymmetry can be compared (8<Rm<21 andRm>23). The point is that the
employedmethod offinding the ‘fastest growing’ eigenvalue provides zero eigenvalue of the supersymmetric
states for the situationswith unbroken supersymmetry. In [16], on the other hand, only the d̂-exact non-
supersymmetric eigenstates that represent the field tensor of themagnetic field of theKDeffect are considered.
This is the reasonwhy the real part of the ground state eigenvalue of ourmethod coincides with themagnetic
field growth rate in [16] onlywhen the supersymmetry is spontaneously broken and the ground state is the
d̂-exact non-supersymmetric eigenstate of the second degree with the fastest growth rate.

Figure 1. (A)The phase diagramof the stochastic ABCmodel forA=B=1, 0.8<C<1.2, 1<Rm<30, and the grid parameter
N=30. The black and grey areas are the regionswhere the supersymmetry is spontaneously broken by non-supersymmetric ground
states with, respectively, complex and real eigenvalues. Lower case letters (a, b, c, d) indicate the points, the full spectra of which are
presented infigures 2. (B)–(D)The same for grid parametersN=35, 40, and 45, andwithout the separation into the subregions with
the real and complex ground state eigenvalues. (E)The real part of the ground state’s eigenvalue, Re g , forA=B=C=1 and
1<Rm<60. Crosses represent the results fromfigure 1 of [16] read off by eye.
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4. Properties of the SEO

The goal of this section is to discuss the properties of the SEO anddemonstrate themusing the numerical results
obtained for the stochastic ABCmodel.

The SEO is a real operator and consequently its eigenstates are either real or come in complex conjugate pairs
known in the dynamical systems theory as Ruelle-Pollicott resonances. Also, for non-degenerate noise-induced
metric on ( ) ( )x xX e e, a

i
a
j , which is the case for the stochastic ABCmodel, and for non-zero temperature and/or

reciprocal of the Reynolds number, the SEO is elliptic and the real part of its eigenvalues is bounded frombelow.
Both of these properties can be observed infigure 2, where the spectra of the SEO for different parameters of the
stochastic ABCmodel are presented.

An operator with these properties is pseudo-Hermitian [27]. It has the so-called complete bi-orthogonal
eigensystem. Furthermore, the SEOdoes not ‘mix’ differential forms of different degrees, i.e., it conserves the
number of fermions (see below), so that it can be looked upon as a block diagonal operator,

= W  Wˆ ( ˆ ˆ ) ˆ ( )( ) ( ) ( )H H H Hdiag ... , : , 17D k k k0

with each ˆ ( )
H

k
being pseudo-Hermitian. The eigensystem of the SEO can nowbe introduced,

á = á∣ ˆ ∣ ( )( )n H n , 18k
k

k nk

ñ = ñˆ ∣ ∣ ( )( )H n n , 19k
k n kk

dá ñ =∣ ( )n m . 20k k n mk k

Here, kets of the eigenstates are k-forms, yñ º Î W∣nk n
k

k
, and the bras are the differential forms of the

complementary degrees, yá º Î W -∣ ¯nk n
D k

k
, so that the overlap ò y yá ñ º ∣ ¯n nk k X n nk k

does not vanish.

To establish the supersymmetric structure underlying stochastic evolution let us introduce fermionic or
Grassmann anticommuting variables, c c c c cº  º  = -  = -dx dx dx dx dx, ,i i i j i j j i j i etc. In these
newnotations, thewavefunction (4) can be given as,

y y c c=( ) ( ) ( )( ) ( )x x ... . 21k
i i
k i i
... k

k
1

1

Let us also recall the Cartan formula for the Lie derivative,

 =ˆ [ ˆ ˆ ] ( )Fd ı, , 22F
i

i

Figure 2. Spectra of SEO at different parameters of themodel. The grid parameterN=30. The green circled crosses, blue crosses, and
black diamonds represent the boson-fermion pairs of non-supersymmetric eigenstates of, respectively, degrees 0 and 1, 1 and 2, and 2
and 3. Red circles at the origin represent supersymmetric states. (a)A=B=1,C=1.2, Rm=22. The degrees are in the incremental
order (k=0, 1, 2, 3) frombottom to top. The scale is the same everywhere and is given in the k=0 (bottom) spectrum. (Insets)
Supersymmetric states have zero eigenvalues well within the numerical error of calculations. The scale is the same everywhere and is
given in the k=0 (bottom) inset. (b)–(d) SEO spectra forA=B=C=1 and, respectively, Rm=15, 22, and 28. (e)The SEO
spectra forA=B=C=−1 andRm=28. The order of the degrees is reversed (k=3, 2, 1, 0 frombottom to top) for the
comparisonwith (d) as discussed in the text.
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where,

cW  W =
¶
¶

+ˆ ˆ ( )d d
x

: , , 23k k i
i

1

is the exterior derivative or de Rhamoperator, and

c
W  W =

¶
¶

-ˆ ˆ ( )ı ı: , , 24i
k k

i i
1

is the interiormultiplication operator. The commutator in equation (22) denotes bi-graded commutator, which
is an anticommutator if both operators are ‘fermionic’, i.e., have odd number of fermionic operators, and it is a
commutator otherwise. In particular, the bi-graded commutator in equation (22) is an anticommutator.

With the help of the nilpotency property of the exterior derivative,

=[ ˆ [ ˆ ·]] ( )d d, 0, 25

and knowing that the commutatorwith the exterior derivative is a bi-graded differentiation,

= + -[ ˆ ˆ ˆ] [ ˆ ˆ ] ˆ ( ) ˆ [ ˆ ˆ] ( )d AB d A B A d B, , 1 , , 26Adeg

with degA being the degree of an operator defined as the number ofχʼsminus the number of∂/∂χʼs, one
readilyfinds that,

=ˆ [ ˆ ¯̂] ( )H d d, , 27

where,

= - Q¯̂ ˆ ˆ ˆ ( )F ed ı ı . 28e
i

i a
i

i a

Using now the nilpotency property in equation (25), onefinds that the SEO is commutative with the exterior
derivative,

=[ ˆ ˆ ] ( )d H, 0. 29

In otherwords, d̂ is a symmetry of the SEOor rather a supersymmetry because, as it is seen from equation (23), it
kills a commuting or bosonic variable and substitutes it with an anticommuting or fermionic variable.

In physics, symmetries reveal themselves as protected degeneracies of the eigenstates of evolution operators.
More technically, it is said that themultiplets, i.e., the eigenstates corresponding to a degenerate eigenvalue, are
irreducible representations of the corresponding symmetry group. In case of the topological supersymmetry, d̂ ,
themultiplets are the non-supersymmetric doublets or the boson-fermion pairs, i.e., all non-supersymmetric
eigenstates come in pairs of even and odd degrees, Jñ∣ and Jñˆ∣d . It can be shown that all eigenstates with non-
zero eigenvalues are non-supersymmetric as is also seen infigure 2, where the non-supersymmetric pairs of
eigenstates are indicated using the same symbol (circled crosses, crosses, and diamonds).

Some of the eigenstates are supersymmetric singlets such that qñ =ˆ∣d 0 and no state q¢ñ∣ exists such that

q qñ = ¢ñ∣ ˆ∣d . In fact, this property of the supersymmetric eigenstates is nothing else but the requirement for a
state to be non-trivial in de Rham cohomology [14].

All supersymmetric states have strictly zero eigenvalue and each de Rham cohomology class provides one
supersymmetric eigenstate, because otherwise the eigensystemof the SEOwould not be complete, whichwould
be in contradictionwith the idea that elliptic pseudo-Hermitian operators on compact phase spaces have
complete eigensystems [27].

The fact that each deRham cohomology class provides one zero-eigenvalue supersymmetric eigenstate can
be observed infigure 2(a), where insets zoom into the small area around the origin. It is seen that the number of
eigenstates with zero eigenvalue (within the numerical accuracy of our calculations) equals the Betti number of
the same degree, i.e., the number of different de Rham cohomology classes of a given degree [14], which in the
case of 3-torus is 1, 3, 3, 1 for k=0, 1, 2, 3, respectively.

The ground states of themodel are the ones with the fastest ‘growth rate’ according to their temporal
evolution ~ -e tk , i.e., the states with theminimal real part of their eigenvalues.When the zero-eigenvalue
supersymmetric states are the ground states, it is said that the supersymmetry is unbroken. Among the five
spectra presented infigure 2, only (c)has unbroken supersymmetry. For all the other spectra, the ground states
have non-zero eigenvalues, real for (a) and complex for (b), (d), and (e). For these spectra, the topological
supersymmetry is broken spontaneously because the ground states are non-supersymmetric. The phenomenon
of the spontaneous topological supersymmetry breaking can be looked upon as the stochastic generalization of
deterministic chaos, [9]whereas in theKD theory, it corresponds to the existence of the exponentially growing
modes of themagnetic field [15].

It can be shown that allmodels possess pseudo-time reversal symmetry [9]. This is the symmetry of the SEOs
of two SDEs related to each other by the reversal of time,
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= -ˆ ˆ ˆ ˆ ( )TH S H S. 30
1

Here ˆ
TH is the SEOof the SDEwith the reversed flow, F→−F, and reversed noise vector fields, e→−e (the

reversing of eʼs has no effect in equation (13), however), and W  W -Ŝ : k D k is some invertible operator. Any
two operators related by a similarity transformation such as equation (30) are isospectral. Thus,

=
-ˆ ˆ( ) ( )

TH Hspec spec
k D k

. This symmetry of SEO is demonstrated infigures 2(d) and (e), where the spectra of Ĥ
and ˆ

TH are given forA=B=C andRm=28. This isospectrality will be used again in amoment to conclude

that ˆ ( )
H

0
alone never breaks supersymmetry spontaneously, just as ˆ ( )

H
D
.

As alreadymentioned, thewavefunctions of the top (or k= 3) degree represent total probability
distributions. Also, all non-supersymmetric eigenstates of the top degree are d̂-exact, i.e., of the form
J Jñ Î W -ˆ∣d , D 1. This suggests that the integral over such eigenstate overX is zero and, consequently,

somewhere onX these non-supersymmetric eigenstates are negative. This leads to the conclusion that the

supersymmetry cannot be broken spontaneously by the SEOof the top degree ( ˆ ( )
H

D ). Indeed, if it is a non-
supersymmetric eigenstate(s) that has the fastest growing rate inΩD, then an arbitrary total probability
distributionwould becomenegative somewhere onX after a sufficiently long temporal evolutionwhen this non-
supersymmetric ground statewould provide a dominant contribution. Negative total probability distributions,
on the other hand, are unphysical.

Also, since ˆ ( )
TH

D
never breaks topological supersymmetry and, at the same time, it is isospectral to ˆ ( )

H
0
, we

conclude that ˆ ( )
H

0
also never breaks topological supersymmetry spontaneously. The fact that neither ˆ ( )

H
D
nor

ˆ ( )
H

0
break topological supersymmetry spontaneously can be observed in all the spectra presented infigure 2.
At last, our results presented infigure 2 aswell as those obtained but not presented in this paper seemingly

suggest that the SEOof complementary degrees are isospectral, = -ˆ ˆ( ) ( )
H Hspec spec

k D k
. As of thismoment, we

do knowunder what conditions this symmetry of the SEO is present andwhat are itsmathematical and/or
physical origins.

5. Conclusion

In this paper, we numerically investigated the stochastic evolution operator of stochastic ABCmodel. The
following general properties of the stochastic evolution operators, that were knownpreviously, are confirmed:
every de Rham cohomology class provides one supersymmetric eigenstate; the stochastic evolution operators of
the zeroth and top degrees separately never break topological supersymmetry; and stochasticmodels possess
pseudo-time-reversal symmetry. In addition, our results suggest that the stochastic evolution operators of
complementary degreesmay be isospectral.We hope that further work on the STSwill reveal themathematical
and/or physical reasons that stand behind of this symmetry of the stochastic evolution operators.
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Appendix. Explicit construction of the SEOon a lattice

The goal in this appendix is to discuss the construction of the numerical version of the SEO. First, we define the
square lattice,

= =( ) ( )x nx y z n n n, , , , , ,n n n n x y zx y z

where p= -( )x n N2 1n xx
and similar for yʼs and zʼs, and indexes nx, y, z=1,K,N run over the grid in the

corresponding dimensions. The phase space is a 3-torus so that xN+1≡x1 and the same for other dimensions.
The collection of the elementary cubic cells, their faces, edges, and points/vertexes constitute the so-called

cubic CWcomplex. The basis of theHilbert space representing the lattice version of the exterior algebra is the so-
called Poincaré duals of the elements of this cubic CWcomplex (seefigure 3). The Poincaré duals of
submanifolds, in their turn, are the differential forms that are constant functions (with no differentials) on these
submanifolds and that are delta-functional distributions (with differentials) in the transverse directions.
Accordingly,

c c cñ = D D D∣ ( ) ( ) ( ) ( )n x y z a1, , A1n
x

n
y

n
z

x y z
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q c cñ = D D∣ ( ) ( ) ( ) ( )n x y z b2, A1n n
y

n
z

x y z

c q cñ = -D D∣ ( ) ( ) ( ) ( )n x y z c3, , A1n
x

n n
z

x y z

c q cñ = D D∣ ( ) ( ) ( ) ( )n x y y d4, , A1n
x

n n
y

x y y

c q qñ = D∣ ( ) ( ) ( ) ( )n x y z e5, , A1n
x

n nx y z

q c qñ = D∣ ( ) ( ) ( ) ( )n x y z f6, , A1n n
y

nx y z

q q cñ = D∣ ( ) ( ) ( ) ( )n x y z g7, , A1n n n
z

x y z

q q qñ =∣ ( ) ( ) ( ) ( )n x y z h8, , A1n n nx y z

wherewe use fermionic notations for differentials, e.g.,χ x=dx∧, andwe introduced functions

dD = -( ) ( ) ( )x x x , A2n nx x

and

q =
< <- +⎧⎨⎩( ) ( )x a

x x x1, ,

0, otherwise
, A3n

n n1 1
x

x x

with a=2π/N being the lattice constant. FunctionsΔ and θ are defined similarly for the other two dimensions.
The basis of the dualHilbert space is the Poincaré duals of the dual lattice (see figure 3):

q q qá =∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z a1, , A4n n nx y z

c q qá =D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z b2, , A4n
x

n nx y z

q c qá = D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z c3, , A4n n
y

nx y z

q q cá = D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z d4, , A4n n n
z

x y z

q c cá = D D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z e5, , A4n n
y

n
z

x y z

c q cá =-D D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z f6, , A4n
x

n n
z

x y z

c c qá =D D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z g7, , A4n
x

n
y

nx y z

c c cá =D D D∣ ˜ ( ) ˜ ( ) ˜ ( ) ( )n x y z h8, , A4n
x

n
y

n
z

x y z

where functions

dD = - +˜ ( ) ( ( )) ( )x a x x a 2 , A5n nx x

and

q =
- < < +⎧⎨⎩

˜ ( ) ( )x
x a x x a1, 2 2,

0, otherwise
. A6n

n n
x

x x

Again, functions D̃ and q̃ for the other two dimensions are defined similarly.

Figure 3. (left)The square lattice partitions the phase space into a union of 3D cubes. The collection of all the cubes, their faces, edges,
and points/vortexes constitute a cubic CWcomplex of the phase space. The basis of theHilbert space are the Poincaré duals of the
elements of this cubic CWcomplex. The indexes of the kets (1,K, 8), indicated explicitly, correspond to those in equation (A.1). The
dotted cube of thin lines represent the adjacent elementary cell of the dual lattice. a is the lattice constant. (right)ThePoincaré duals of
the cubicCWcomplex of the dual lattice is the basis of the dualHilbert space given in equation (A.4).
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The pairs of functions (A2) and (A6), and (A3) and (A5) are such that,

ò q dD =
p

¢ ¢( ) ˜ ( ) ( )dx x x a, A7n n n n
0

2

x x x x

ò q dD =
p

¢ ¢˜ ( ) ( ) ( )dx x x b. A7n n n n
0

2

x x x x

equations (A.4) can be thought of as the lattice version of theHodge conjugation of equations (A.1)with
respect to the Euclidianmetric on the 3-torus. The basis in equations (A.1) and (A.4) is bi-orthogonal,

d dá ñ =∣ ( )n na b, , . A8n nab1 2
3

1 2

Here, the bra-ket overlap is defined as thewedge product of the r.h.s. of equations (A.1) and (A.4) integrated over
the entireX. For example,

ò

ò ò

ò

c q c

q c q

q q

q

á ñ =- D D

´ D

= D D

´ D =

p p

p

∣ ( ) ( ) ( )

˜ ( ) ˜ ( ) ˜ ( )

( ) ˜ ( ) ( ) ˜ ( )

˜ ( ) ( )

n n x y z

x y z

x x dx y y dy

z z dz

3, 3,

1,

X
n

x
n n

z

n n
y

n

n n n n

n n

0

2

0

2

0

2

x y z

x y z

x x y y

z z

where equations (A.7) have been used.With this understanding and using the concept of the projection
operator,

å= ñá =ˆ ∣ ∣ ˆ ˆ ( )n na a1 , , , 1 1 , A9
n

p
a

p p
,

2

any element of the exterior algebra ofX can be projected onto the latticeHilbert space. For instance, a total
probability distribution, c c cñ =∣ ( )xP P x y z , can be projected onto the sumof the δ-functional distributions,

åñ = ñˆ ∣ ∣ ( )nP P1 1, , A10np
n

with the following self-explanatory coefficients,

ò ò ò=
-

+

-

+

-

+
( )xP dx dy dzP .n

x a

x a

y a

y a

z a

z a

2

2

2

2

2

2

nx

nx

ny

ny

nz

nz

The action of the exterior derivative on the basis states can be established straightforwardly,

ñ = ñ - + ñ

ñ= ñ - + ñ

ñ= ñ - + ñ

ñ= ñ - + ñ + ñ - + ñ

ñ= ñ - + ñ + ñ - + ñ

ñ= ñ - + ñ + ñ - + ñ

ñ= ñ - + ñ + ñ - + ñ + ñ - + ñ

-

-

-

-

-

-

-

ˆ∣ (∣ ∣ )
ˆ∣ (∣ ∣ )
ˆ∣ (∣ ∣ )
ˆ∣ (∣ ∣ ∣ ∣ )
ˆ∣ (∣ ∣ ∣ ∣ )
ˆ∣ (∣ ∣ ∣ ∣ )
ˆ∣ (∣ ∣ ∣ ∣ ∣ ∣ )

n n n e

n n n e

n n n e

n n n e n n e

n n n e n n e

n n n e n n e

n n n e n n e n n e

d a

d a

d a

d a

d a

d a

d a

2, 1, 1, ,

3, 1, 1, ,

4, 1, 1, ,

5, 4, 4, 3, 3, ,

6, 2, 2, 4, 4, ,

7, 3, 3, 2, 2, ,

8, 5, 5, 6, 6, 7, 7, ,

x

y

z

y z

z x

x y

x y z

1

1

1

1

1

1

1

where = =( ) ( )e e1, 0, 0 , 0, 1, 0x y , and = ( )e 0, 0, 1y .

As it should, d̂ acts on the Poincaré duals of the elements of the cubic CWcomplex just as the boundary
operatorwould have acted on these elements. Also, the action of d̂ leaves the basis states within the latticeHilbert
space. In other words, one needs no additional projection because

ñ = ñˆ∣ ˆ ˆˆ ∣ ( )n nd i d i, 1 1 , . A.11P P

In this sense, d̂ is unique. The actions of all the other operators introduced below, e.g., operatorχ x defined next,
do need the projection onto the latticeHilbert space. Therefore, all the operators below are essentially the
projected operators. For example,

c c=ˆ ˆ ˆ ( )1 1 , A.12i
P

i
P

whereχ i in the r.h.s. denotes the conventional fermionic variable of the exterior algebra ofX, whereas the l.h.s.
denotes the same operator projected onto the latticeHilbert space.
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Using the following properties of the functions introduced above,

ò q q d d= +¢ ¢ ¢-( ) ˜ ( ) ( ) ( )( )dx x x
1

2
, A.13n n n n n n 1x x x x x x

it is straightforward to establish the action of operatorχ x on the basis states,

c
c
c
c

ñ = ñ + + ñ
ñ= ñ + + ñ
ñ=- ñ + + ñ
ñ= ñ + + ñ

ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )

n n n e

n n n e

n n n e

n n n e

2, 1, 1, 2,

6, 4, 4, 2,

7, 3, 3, 2,

8, 5, 5, 2.

x
x

x
x

x
x

x
x

The recipe for establishing the above expressions can be demonstrated via the following example,

ò

ò ò

ò

c

q q c c q c q

q q q

q

d d d d

á ¢ ñ

= D D

= D

´ D

= +

p p

p

¢ ¢ ¢

¢ ¢

¢

¢ ¢- ¢ ¢

∣ ∣
˜ ( ) ˜ ( ) ˜ ( ) ( ) ( ) ( )

˜ ( ) ( ) ˜ ( ) ( )

˜ ( ) ( ) )

( )( )

n n

x y z x y z

x x dx y y dy

z z dz

4, 6,

,

x

X
n n n

z x
n n

y
n

n n n n

n n

n n n n n n n n

0

2

0

2

0

2

1

2 1

x y z x y z

x x y y

z z

x x x x y y z z

as follows from equations (A.13) and (A.7).
Similarly, forχ y andχ z one has,

c
c
c
c

ñ = ñ + + ñ

ñ=- ñ + + ñ

ñ= ñ + + ñ

ñ= ñ + + ñ

ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )

n n n e

n n n e

n n n e

n n n e

3, 1, 1, 2,

5, 4, 4, 2,

7, 2, 2, 2,

8, 6, 6, 2.

y
y

y
y

y
y

y
y

and

c
c
c
c

ñ = ñ + + ñ
ñ= ñ + + ñ
ñ=- ñ + + ñ
ñ= ñ + + ñ

ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )
ˆ ∣ (∣ ∣ )

n n n e

n n n e

n n n e

n n n e

4, 1, 1, 2,

5, 3, 3, 2,

6, 2, 2, 2,

8, 7, 7, 2.

z
z

z
z

z
z

z
z

The operator of the flow vector field projected onto the latticeHilbert space is local in both the spatial and
fermionic coordinates,

ñ = ñˆ ∣ ( )∣ ( )n x nF F1, 1, , A.14n
i i

ñ = + ñˆ ∣ ( )∣ ( )n x e nF F2, 2 2, A.15n
i i

x

ñ = + ñˆ ∣ ( )∣ ( )n x e nF F3, 2 3, , A.16n
i i

y

ñ = + ñˆ ∣ ( )∣ ( )n x e nF F4, 2 4, , A.17n
i i

z

ñ = + + ñˆ ∣ ( )∣ ( )n x e e nF F5, 2 2 5, , A.18n
i i

y z

ñ = + + ñˆ ∣ ( )∣ ( )n x e e nF F6, 2 2 6, , A.19n
i i

x z

ñ = + + ñˆ ∣ ( )∣ ( )n x e e nF F7, 2 2 7, , A.20n
i i

y x

ñ = + + + ñˆ ∣ ( )∣ ( )n x e e e nF F8, 2 2 2 8, , A.21n
i i

x y z

where = = =( ) ( ) ( )e e ea a a1, 0, 0 , 0, 1, 0 , 0, 0, 1x y z , are the spatial shifts on the lattice in the direction.
At thismoment, all the necessary operators are defined. The operators can be represented numerically as

sparsematrices, and the lattice SEO can then be constructed as,

= + Q+ +ˆ [ ˆ ˆ ˆ ] [ ˆ ˆ ] ( )†
H d F ı d d, , , A.22i

i

where the interiormultiplication operator, ı̂i, and the co-differential operator, ˆ†
d , aremerely the transpose of

the lattice versions of, respectively, ĉi and d̂ .
Note that the diffusion operator in the lattice SEO (A.22) is essentially theHodge Laplacian. This

substitution is not valid in the general case. It is valid, however, for the ‘Euclidian’ vector fields eʼs in
equation (14).
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