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1 Introduction

For the last two decades, a significant amount of efforts have been devoted to realizing

connections of quantum information theory [1] to geometry and gravity. Within string

theory, the first realization of such a connection is the calculation of black hole entropy

through the counting of black hole microstates for supersymmetric black holes [2].

These connections were put on an even stronger footing with the advent of AdS/ CFT

correspondence [3]. One of the most important and crucial steps forward in this direction

is the holographic realization of entanglement entropy [4, 5]. The entanglement entropy

for an entangling region in a conformal field theory living on the boundary of an asymp-

totically AdS spacetime is proposed to be given by a minimal codimension-two area in the

bulk. The associated bulk hypersurface, also referred to as Ryu-Takayanagi (RT) surface,

is homologous to the boundary entangling region. In two dimensions, this holographic com-

putation of boundary entanglement entropy matches exactly with the direct replica trick

computation in conformal field theory [6]. Subsequently, a direct holographic justification

of the RT formula was provided in [7]. Moreover, the holographic realization of quantum

entanglement is extremely useful in understanding the structure of the dual bulk space-

time. For eternal black holes [8], quantum entanglement was found to have a direct bulk

interpretation in terms of regularity of the horizon [9] which turns out to be an extremely

useful input in understanding the black hole information paradox.

A further concept from quantum information theory recently studied in the context

of holography is the distance between two quantum states. There exist two well-accepted
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ways to define the distance between two generic quantum states, namely (i) the Fisher

information metric and (ii) the Bures metric or fidelity susceptibility [1, 10].

In order to define these, let us consider a generic density matrix σ and perturb it by

some parameter λ which parametrizes the quantum state. Here for simplicity we assume a

one-parameter family of states which however can be generalized for arbitrary number of

parameters. If ρ is the new density matrix corresponding to the fluctuation λ → λ + δλ,

then for nearby states, the density matrix ρ can be expanded as

ρ = σ + (δλ)ρ1 +
1

2
(δλ)2ρ2 + · · · , (1.1)

where for simplicity we have chosen the parametrization in a way such that the initial

state σ coincides with λ = 0. The coefficients ρ1 and ρ2 are of first and second order in

δρ, respectively, with δρ a small deviation from σ. In this case, a distance metric may be

defined by

GF,λλ = 〈δρ δρ〉(σ)
λλ =

1

2
tr

(
δρ

d

d(δλ)
log (σ + δλδρ) |δλ=0

)
. (1.2)

This is known as the Fisher information metric in the literature.

On the other hand, a second notion of the quantum distance between the same two

states is given by the fidelity susceptibility, which is defined by

Gλλ = ∂2
λF , (1.3)

where F is the quantum fidelity defined in terms of the initial and final density matrices σ

and ρ,

F = Tr
√√

σλ ρλ+δλ
√
σλ . (1.4)

For classical states when the density matrices commute, (1.2) and (1.3) become equiv-

alent up to an overall numerical factor. Hence, for classical states, the definition for the

distance between quantum states is unique.

The first holographic computation of the Fisher information metric (1.2) was performed

in [11] using its relation to the second order variation of relative entropy. On the other

hand, the holographic dual of (1.4) was first proposed in [12], but only for pure states

when (1.4) reduces to an inner product between nearby states,

|〈ψλ(x)|ψλ+δλ(x)〉| = 1−G(pure)
λλ (δλ)2 + . . . . (1.5)

Here, G
(pure)
λλ now refers to the fidelity susceptibility for the pure state |ψλ〉. These authors

consider the CFT vacuum state |ψλ〉 dual to pure AdS and deform it by an exactly marginal

perturbation to obtain the state |ψλ+δλ〉. In the dual gravity picture, this corresponds to

a Janus solution, where the pure AdS is deformed by a dilaton [13].

For a holographic CFTd on Rd with marginal deformation of dimension ∆ = d, in [12]

it was shown that1

G
(pure)
λλ =

nd
G

Vol(Vd−1)

εd−1
. (1.6)

1Note that [12] only considers marginal deformations of the ground state and not general massive de-

formations which we shall be considering in what follows. However, later on, we will also consider excited

mixed states due to scalar perturbations and discuss the importance of marginal perturbations.
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Here Vd−1 is the spatial (d−1) dimensional volume at the boundary, G is d+1-dimensional

Newton’s constant and nd an O(1) constant.2 From the field theory point of view, nd/G

is simply proportional to the central charge CT of the CFT considered.

An essential new ingredient of our approach in the present paper is to consider mixed

states. We will consider a mixed state in a bipartite system, where σR,λ and ρR,λ+δλ denote

the reduced density matrices for the subregion R corresponding to a decomposition of the

full Hilbert space Hfull = HR ⊗ HR(c) . In the first part of our work, we will consider a

holographic dual for the Fisher information metric corresponding to a spherical subregion

R in the holographic CFT. On the gravity side, we consider a regularized volume enclosed

by the RT surface, and discuss how it is related to the Fisher information for a mixed state.

For mixed states as defined above, in analogy to (1.4), the reduced fidelity may be

defined by

FR = TrR(c)

√√
σR,λ ρR,λ+δλ

√
σR,λ . (1.7)

In the above, TrR(c) denotes partial tracing over the complementary region R(c). Accord-

ingly, the reduced fidelity susceptibility is given by

GR,λλ = ∂2
λFR . (1.8)

As long as the reduced density matrices in the vacuum and in the excited state are commut-

ing i.e. simultaneously diagonalizable, (1.8) is the same as the Fisher information metric

corresponding to those reduced density matrices. This is automatically true when we deal

with classical states. Hence for this restricted class of states, our proposal also serves as

holographic dual for the reduced fidelity susceptibility.

In [14], in the context of proposing a gravity dual for complexity, Alishahiha proposed

a holographic dual of the reduced fidelity susceptibility (1.8) in terms of the volume en-

closed by the RT surface γ(R). However, this quantity is UV divergent, while the Fisher

information metric for a general mixed state must be finite. Hence, at least for the class

of states for which the two notions of information metric introduced above coincide, this

proposal yields contradiction. In contrast, our proposal predicts a manifestly finite Fisher

information metric. In addition, at least for the above-mentioned restricted class of states,

our proposal gives rise to a UV-finite reduced fidelity susceptibility.

The essential ingredient of our proposal for the holographic dual GR,mm of the re-

duced fidelity susceptibility is to consider the difference of two volumes which yields a

finite expression,

F = Cd(V
(m2) − V (0)) . (1.9)

Here the first volume in the bracket on the right-hand side is evaluated for a second-order

fluctuation about AdS space involving the stess-energy tensor, and the second term at

2Here we have written the factor of Newton’s constant explicitly. In the boundary field theory compu-

tation, it comes from the leading-order term of the boundary two-point function (in the 1/N expansion of

a large N CFT) via Ld−1

G
∝ N2 (L is AdS radius). The matching of bulk and boundary computations of

the fidelity susceptibility in [12] thus only involves the leading-order contribution in Newton’s constant on

both sides. In other words, the fidelity susceptibility computed there in terms of dual gravity quantities, is

only the leading order semiclassical term of the full boundary fidelity susceptibility.
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zeroth order, i.e. for AdS space itself. The fluctuation considered is dual to the energy-

momentum tensor on the field-theory side. The proposal (1.9) modifies the pure-state

volume expression (1.6) in a natural way such as to obtain a finite expression. Cd is a

dimensionless constant which cannot be fixed from first principles on the gravity side.3 We

will determine Cd by comparison with results for the relative entropy [15, 16]. For metric

and marginal perturbations, this coefficient depends only on the spacetime dimension, while

for relevant scalar perturbations also the operator dimension enters.

We suggest that the holographic reduced fidelity susceptibility is obtained by taking

the second order variation of F with respect to m,

GR,mm = ∂2
mF . (1.10)

The definition (1.10), along with the proposal (1.9), ensures that the holographic fidelity

susceptibility is finite, as required for mixed states. GR,mm scales as GR,mm ∝ R2d, with

R the radius of the spherical entangling region in the dual field theory in d spacetime

dimensions. This scaling behaviour is expected, as we discuss below. Moreover, the volume

difference in (1.9) entirely encodes the dependence on the shape of the entangling region.

The particular scaling behaviour GR,mm ∝ R2d also follows from the alternative defi-

nition for Fisher information proposed in [11] in terms of the relative entropy ∆S, which

is a measure of entropic distance between two states. An example is the relative entropy

measuring this distance between a perturbed state and the ground state. The Fisher infor-

mation metric proposed in [11] is given by the second order variation of ∆S measuring the

entropic distance between the ground state of the boundary CFT and the state obtained

by perturbing this ground state by injecting energy. As holographically shown in [15] and

later confirmed in [17, 18] by a direct field theory computation, the relative entropy for this

perturbation scales precisely as R2d for a spherical subregion of radius R, at quadratic order

in energy fluctuations. In fact as discussed in [18], when taking into account a calculational

issue, both the expressions of relative entropy obtained holographically in [15] and from

the field theory computation of [18] match exactly including the prefactor. Consequently,

the Fisher information metric also scales as R2d. Now for the restricted class of states

introduced above, the reduced fidelity susceptibility coincides with the Fisher information

metric. Therefore, for this class of states, the reduced fidelity susceptibility GR,mm also

scales with R2d.

Our proposal of identifying the expression (1.10) with the holographic dual of the

fidelity susceptibility for mixed states, using the renormalized volume proposal (1.9), thus

provides a finite expression with the correct scaling behaviour R2d. This expression encodes

all information about the shape of the entangling region.

As a further example, we also consider the fluctuations caused by the insertion of

a scalar in AdS and compute the corresponding subtracted volume at the quadratic or-

der in the perturbation parameter. We obtain a scaling behaviour of the corresponding

contribution to the Fisher information metric of the form R2∆, where ∆ is the scaling

dimension of the operator dual to the scalar bulk AdS field. This behaviour is again con-

sistent with the quadratic variation of the relative entropy for such fluctuations [15], and

3A similar undetermined coefficient is also present in the pure state proposal of [12], as is seen from

equations (2), (9) and (18) in that paper.
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hence our arguments in support of the conjecture given above apply in this case as well.

This examples thus provides a further support for our holographic proposal for the Fisher

information metric.

In the second part of this work, we argue that the leading 1/N quantum correction

to the Fisher information metric is related to the corresponding quantum correction to

the boundary entanglement entropy. According to [19, 20], this boundary entanglement

entropy correction in turn coincides with the bulk entanglement entropy. Our proposal

thus implies that the leading 1/N quantum correction to Fisher information is related to

the bulk entanglement entropy. This proposal is motivated by providing an argument for

relating the reduced Fisher information to the canonical energy as defined in [21]. Then,

the connection between 1/N quantum correction to canonical energy and the bulk modular

Hamiltonian [20] justifies our proposal.

The bulk entanglement entropy which is seen as the 1/N quantum correction to the

boundary entanglement entropy, is hard to obtain directly from a bulk computation for

a generic bulk state. Therefore, our proposed duality between the bulk entanglement en-

tropy and the 1/N quantum correction to Fisher information can be one first step towards

understanding the quantum nature of the bulk theory. In particular, this connection might

play a pivotal role in understanding the Hilbert space structure of quantum gravity in the

bulk. Consequently, one might further expect this connection to shed some light on the

reconstruction of local bulk fields from boundary CFT operators beyond the semiclassi-

cal limit.

Our paper is organised as follows. In section 2 and section 3 we establish the two pro-

posals mentioned above, namely (A) we discuss a holographic quantity which is associated

to the Fisher information metric and (B) we propose a connection between the leading 1/N

quantum correction to the Fisher information metric and the bulk entanglement entropy.

We conclude in section 4 and discuss some of the consequences of our proposals, as well as

a physical consistency check. We also discuss directions for future work.

2 Proposing a holographic dual for Fisher information metric

For the holographic dual, we consider an asymptotically AdS spacetime using Fefferman-

Graham coordinates. For the boundary CFT, this amounts to considering states whose

density matrix deviates perturbatively from that of the vacuum state, with the change in

the boundary stress tensor playing the role of the perturbation parameter. For this excited

state, we compute the volume under the RT surface corresponding to a spherical entangling

region at the boundary. This volume is generally UV divergent. However, subtracting the

RT volume for the same spherical subregion in the vacuum state yields a finite result. We

propose that the Fisher information metric is given by the second order variation of this

regularized volume with respect to the perturbation parameter. In what follows we will

consider d > 2.4

4The d = 2 case is special in the sense that the perturbative expansion of the regularized volume does

not contain a quadratic term. The reason is that for d = 2, h2(z) in (2.5) vanishes identically and there is

no contribution towards the minimal area surface at the second order in mRd.
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2.1 Stress-tensor perturbations

To elaborate, let us consider a perturbation of AdSd+1 given in Fefferman-Graham coordi-

nates of the form

ds2 =
L2

z2

[
f(z)dz2 +

1

f(z)
dt2 + dρ2 + ρ2dΩ2

d−2

]
, (2.1)

where

f(z) = 1 +mzd . (2.2)

L is the radius of the AdS space-time.

In order to find the minimal RT surface in this perturbed AdS spacetime corresponding

to a ball-shaped entangling region of radius R at the boundary, we proceed by parametrizing

the RT surface as ρ = h(z). Then, on the t = 0 slice the RT area functional takes the form

A = Ld−1Ωd−2

∫ Rt

ε

dz

zd−1
(h(z))d−2

√
f(z) + (h′(z))2, (2.3)

where Ωd−2 is the volume of the unit (d− 2) sphere, given by

Ωd−2 = 2
π
d−1

2

Γ
(
d−1

2

) . (2.4)

Rt is the turning point of the bulk minimal surface.

In order to find the minimal surface, we have to minimize the area functional (2.3) to

solve for h(z). It is hard to solve the equations of motion analytically. We therefore aim

at solving them perturbatively in orders of mRd � 1 and look for a solution of the form

(up to linear order; quadratic order to be done later)

h(z) = h0(z) +mh1(z) . (2.5)

As shown in [22], this gives

h0 =
√
R2
t − z2 ,

h1 =
2Rd+2

t − zd(R2
t + z2)

2(d+ 1)
√
R2
t − z2

. (2.6)

With these ingredients, we now move on to compute the volume under the RT minimal

surface in the bulk. After performing the integrations over the boundary coordinates ρ and

Ω, this is given by

VRT =
LdΩd−2

d− 1

∫ Rt

ε

dz

zd
(h(z))d−1

√
f(z). (2.7)

Our aim is now to compute the variation of this volume order by order in the perturba-

tion mRd.
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2.1.1 At linear order in the stress-energy tensor

From the fundamentals of AdS/CFT duality, we know that there is a relation between

such Fefferman-Graham type expansions of AdS metric and the corresponding expectation

values of boundary stress tensor [23]. In order to find the leading variation in the RT

volume we first expand (2.5) up to leading order in mRd,

h(z) ≈
√
R2 − z2

(
1−m zd(R2 + z2)

2(d+ 1)(R2 − z2)

)
, (2.8)

Inserting (2.8) into (2.7) and expanding individual terms in the integral again, we have

V
(m)

RT ≈ LdΩd−2

d− 1

∫ Rt

ε
dz

(R2 − z2)
d−1

2

zd

(
1−m(d− 1)zd(R2 + z2)

2(d+ 1)(R2 − z2)

)(
1 +

mzd

2

)
. (2.9)

Here the superscript m signifies that this is the volume under the RT surface corresponding

to a perturbed geometry. So as a next step, in order to find the linear variation in m, we

subtract from it the same volume for the unperturbed background of pure AdS obtained

by setting m = 0 in (2.1). This yields

V
(m)

RT − V
(0)

RT ≈ m
LdΩd−2

(d− 1)(d+ 1)

∫ R

ε
dz(R2 − z2)

d−3
2
(
R2 − dz2

)
= 0, (2.10)

where in the first line, we have only kept terms up to order mRd in the integrand. Fur-

thermore, we have replaced Rt by R since the term linear in mRd in Rt gives a quadratic

correction to the volume. This shows that the leading correction to the volume under RT

surface vanishes identically as claimed in [14, 24]. The vanishing of this linear term in m

is also crucial for our proposal (A) to work, as will be seen in the next section.

2.1.2 At quadratic order in the stress-energy tensor

At quadratic order, we have

f(z) = 1 +mzd +
1

4
m2z2d (2.11)

in place of (2.2), where the coefficients of individual terms in the expansion is fixed by

comparing with the Fefferman-Graham expansion of AdS black hole. Now in order to

compute the quadratic O(m2) correction to the RT surface in the bulk, we start with

an ansatz

h(z) = h0(z) +mh1(z) +
m2√
R2
t − z2

h2(z) , (2.12)

with h0 and h1 as given in (2.6).

The equation of minimal surface for h2 is again obtained by extremizing the area

functional (2.3) ,

h′′2(z) +
(d− 1)R2

t

z
(
z2 −R2

t

)h′2(z) + Cd(z) = 0, (2.13)
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with Cd(z) being a complicated function of z. It is very hard to solve (2.13) for general

dimensions. However, as an illustration, we will consider d = 3 when (2.13) can be readily

solved to yield

h2(z) =
1

320

((
160 c1Rt − 11R8

t

)
log(z −Rt)

+
(
59R8

t − 160c1Rt
)

log(Rt + z) + 320c1z −
20R9

t

Rt + z

− 90R7
t z + 34R6

t z
2 − 30R5

t z
3 + 22R4

t z
4 − 9R2

t z
6

2

)
+ c2 . (2.14)

c1 and c2 are integration constants which should be suitably chosen in order to extract the

physical solution. We note from the solution that in order to ensure h2(z)/
√
R2
t − z2 → 0

as z → Rt, we must have

c1 =
11

160
R7
t and c2 =

1

640
R8
t (113− 96 log(2Rt)) . (2.15)

Consequently, the turning point also receives a new contribution at this order of per-

turbation theory and in terms of the radius of the entangling region R is given by

Rt =
3

640
m2R7(29 + 32 log(2))− mR4

4
+R . (2.16)

Now expanding (2.7) up to quadratic order, we find

V
(m2)

RT − V (0)
RT ≈

LdΩd−2

d− 1
Adm2R2d, (2.17)

where in general dimensions, Ad is an involved constant depending on d which we do not

write out explicitly. In particular, for d = 3, (2.17) takes the form

V
(m2)

RT − V (0)
RT ≈

21πL3R6m2

128
. (2.18)

This is the first central result of our paper. We see that we have arrived at a UV-

finite notion of a regularized volume under the RT surface. It is of second order in m.

We will exploit this fact for proposing it as the holographic dual of Fisher information.

We emphasize that the finiteness of the regularized volume defined here is critical for this

proposal. In particular, this ensures a meaningful gravity dual for mixed states.5

We are thus lead to propose that the holographic dual of the Fisher information metric

is given by

GF,mm = Cd∂
2
mF , (2.19)

with

F =
π

3
2d (d− 1) Γ (d− 1)

G2d+1(d+ 1)Γ
(
d+ 3

2

)
LAd

(
V

(m2)
RT − V (0)

RT

)
. (2.20)

5See also [25] and [26] for some recent suggestions on possible regularized quantities which could be

related to complexity.
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Inserting (2.20) back into (2.19) yields

GF,mm = ∂2
mF =

π
3
2dΩd−2Γ (d− 1)

G2d+1(d+ 1)Γ
(
d+ 3

2

)Ld−1R2d . (2.21)

As mentioned before, mRd plays the role of perturbation parameter in the dual bulk

picture, in agreement with the holographic dictionary. The prefactor in (2.20) is chosen in

such a way as to ensure coincidence with the result for relative entropy given in [11, 15].

We discuss the motivation for this matching below in section 2.3. Here we stress that

the result (2.21) has three essential properties: first, it provides a finite result for mixed

states as required; second, it reproduces the correct scaling with R; third, the shape of the

entangling region enters only through the volume.

Note that so far, (2.19) applies only to ball-shaped regions in the CFT. One may also

wish to consider general entangling regions, e.g. strips. In such cases the O(mRd) terms do

not necessarily vanish [24]. However, in principle, one can still define the holographic dual

to Fisher information metric as the second order variation of the regularized RT volume

with respect to the mass parameter, with this parameter playing the role of perturbation

parameter in the dual bulk theory.

2.2 Scalar perturbations

So far we considered perturbations arising from stress-energy tensor deformations of the

ground state. Here we turn to the question whether our proposal is applicable to other

non-trivial states, e.g. states that are deformed from pure AdS due to some matter per-

turbation.6 This will then provide further support for our proposal. Here we consider the

case that the boundary state is perturbed by a scalar operator O∆ of conformal dimension

∆, and show that our proposal for the Fisher metric for mixed states holds in this case

too. We turn to scalar perturbations of the type studied in [15], where a gravity calcula-

tion of relative entropy is provided. The bulk dual of such perturbations correspond to a

scalar field

φ = γO∆z
∆, (2.22)

backreacting on the background geometry. γ is a normalization constant. The generic

perturbations to the linear order in boundary stress tensor and quadratic order in O∆ take

the form [15]

δgµν = azd
∑
n=0

z2nT (n)
µν + z2∆

∑
n=0

z2nσ(n)
µν + . . . , (2.23)

with n denoting the 2n derivatives appearing in the corresponding term and a = 2
d

G
Ld−1 .

The leading order n = 0 term in this derivative expansion is given by

σ(0)
µν = − γ2

4(d− 1)
ηµνO2

∆ ≡ −
1

4
γ2

0O2
∆ηµν , (2.24)

with γ being the same dimensionless normalization constant as in (2.22).

6We are grateful to Nina Miekley for collaborating on the results presented in this subsection.
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In the previous section, we already considered perturbations due to the stress-energy

tensor up to quadratic order. Therefore, in what follows, we will only focus on the case

where the bulk perturbation is due to a scalar field, which means that we only consider the

contribution of the second term in (2.24). Redefining the scalar condensate as ε̃2 = −O2
∆γ

2
0 ,

the metric perturbation takes the form

δgµν =
1

4
ε̃2z2∆ηµν . (2.25)

Now in order to compute correctios to the bulk RT surface up to quadratic O(ε̃2), in a

spirit similar to (2.12), we begin with the ansatz

h(z) = h0(z) + ε̃h1(z) +
ε̃2√

R2
t − z2

h2(z) , (2.26)

However unlike the case of stress-tensor perturbation, now there is no linear contribution

to the perturbation, i.e h1(z) = 0. This is a consequence of the form of perturbation given

in (2.25). h0(z) is the same as in (2.6), i.e,

h0(z) =
√
R2
t − z2 . (2.27)

The equation of minimal surface for h2 is again obtained by extremizing the area func-

tional (2.3) with

f(z) = 1 +
1

4
ε̃2z2∆ . (2.28)

This gives

h′′2(z) +
(d− 1)R2

t

z
(
z2 −R2

t

)h′2(z) +
z2∆

(
R2
t (d−∆− 2) + (∆ + 1)z2

)
4
(
z2 −R2

t

) = 0. (2.29)

Eq. (2.29) can be readily solved to yield

h2(z) =
1

8

−(−d+ ∆ + 2)z2∆+2
3F2

(
1,∆ + 1

2 ,∆ + 1; ∆ + 2,−d
2 + ∆ + 2; z

2

R2
t

)
(∆ + 1)(−d+ 2∆ + 2)

+
(∆ + 1)z2∆+4

3F2

(
1,∆ + 3

2 ,∆ + 2; ∆ + 3,−d
2 + ∆ + 3; z

2

R2
t

)
(∆ + 2)(−d+ 2∆ + 4)R2

t

+ 8

(
C1Rt

(
z

Rt

)d
2F1

(
d− 1

2
,
d

2
;
d+ 2

2
;
z2

R2
t

)
+ C2

)]
, (2.30)

C1 and C2 being the integration constants which can be fixed by demanding that

h2(z)/
√
R2
t − z2 → 0 as z → Rt. While this is hard to implement in general dimen-

sions, this is straightforward for the cases d = 3 and d = 4. Here we shall concentrate on

d = 3 and integer values of ∆ > 1. We have also checked the results for higher dimensions

d for integer values of ∆ > d−2
2 .
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For d = 3, C1 and C2 take the forms

C1 = − ∆R2∆+1
t

6(2∆− 1)(2∆ + 1)
, C2 = −

∆ Γ
(
∆− 1

2

)
R2∆+1
t

24 Γ
(
∆ + 3

2

) . (2.31)

Furthermore, the turning point also receives a correction of the form

Rt = R− ε̃2C2R
2∆+1R−2∆−2

t . (2.32)

Expanding (2.7) up to quadratic order in ε̃, we obtain the difference in volume as

V
(ε̃2)

RT − V
(0)

RT ≈
πL3ε̃2

16
R2∆

(
1

(∆− 1)∆
− 2Γ(∆)

Γ(∆ + 1)
+

2∆(log 16− 2) + 4∆H∆ − 2

4∆2 − 1

)
,

(2.33)

where H∆ is the harmonic number of order ∆. This result generalizes to general dimensions

d, where it becomes

V
(ε̃2)

RT − V
(0)

RT ≈
LdΩd−2

d− 1
Bd,∆ ε̃2R2∆ . (2.34)

Here, Bd,∆ is a complicated dimension-dependent constant which for d = 3 can be read-off

from (2.33).

Thus, in general dimensions and for scalar perturbations, our proposal for the corre-

sponding entries in Fisher information metric in terms of the regulated volume is given by

GF,ε̃ε̃ = ∂2
ε̃F , F = Cd,∆(V

(ε̃2)
RT − V

(0)
RT ) , (2.35)

in analogy to (2.19), with

F =
π

3
2 (d− 1)

(
∆− (d−2)2

2(d−1)

)
Γ
(
∆− d

2 + 1
)

8GΓ
(
∆− d

2 + 5
2

)
LBd,∆

(
V

(ε̃2)
RT − V

(0)
RT

)
. (2.36)

From (2.36) and (2.35), we obtain

GF,ε̃ε̃ = ∂2
ε̃F =

π
3
2 (d− 1)

(
∆− (d−2)2

2(d−1)

)
Γ
(
∆− d

2 + 1
)

8GΓ
(
∆− d

2 + 5
2

) Ld−1Ωd−2R
2∆. (2.37)

This is similar to what we obtained for the correction quadratic in the stress-energy tensor

in (2.21). Here however, the entry into the Fisher information metric corresponds to a

perturbation in a new state parameter ε̃ instead of m. Again we obtain a finite result with

the expected scaling with R, independent of the shape of the entangling region. We have

chosen the prefactor Cd,∆ in (2.35) in such a way that the result for F coincides with the

relative entropy in the presence of scalars given in [15, 16]. For marginal perturbations

for which ∆ = d, the coefficient Cd,∆ depends only on the spacetime dimension, while for

relevant perturbations in particular it depends on the operator dimension ∆ as well.
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2.3 Connection to canonical energy and boundary relative entropy

In a related development, [11] connects the quantum Fisher information corresponding to

perturbations of the CFT vacuum density matrix of a ball-shaped region to the canonical

energy for perturbations in the corresponding Rindler wedge of the dual AdS space-time.

This is obtained by using the definition of boundary relative entropy

S
(bdy)
rel (ρλ′ ||σλ) = Tr (ρ log ρ)− Tr (ρ log σ)

= 〈log ρ〉ρ − 〈log σ〉ρ, (2.38)

which gives

S
(bdy)
rel (ρλ′ ||σλ) = ∆〈H(σ)

R 〉 −∆SEE. (2.39)

The first term on the right-hand side denotes the change in the expectation value of the

modular Hamiltonian HR corresponding to the change in the reduced density matrix. The

modular Hamiltonian corresponding to a reduced density matrix σλ is defined through

σR,λ =
e−HR,λ

Tr(e−HR,λ)
. (2.40)

Here, the second term represents the change in entanglement entropies for the two above-

mentioned states. When the two states in question are perturbatively close to one another,

expanding the density matrix ρλ′ around λ = 0 in (2.39) gives (we have dropped the

superscript (bdy) from the left side of (2.39) to avoid clutter)

GF,λλ = 〈δρ δρ〉(σ)
λλ =

∂2

∂λ2
Srel(ρλ||ρ0), (2.41)

where the left-hand side denotes the Fisher information metric as defined in (1.2). ρ0 = σ

is identified with the CFT vacuum.

Furthermore, the right-hand side of (2.41) is equal to the classical canonical energy in

gravity as defined in [21], i.e,

∂2

∂λ2
Srel(ρλ||ρ0)

∣∣∣
λ=0

= E − 2

∫
Σ
ξµ
∂2Egµν
∂λ2

vν . (2.42)

All quantities on the right-hand side of (2.42) belong to the gravity side of the corre-

spondence. E is the classical canonical energy for the unperturbed vacuum state and can

be expressed as an integral of boundary stress-energy tensor [21],

E =

∫
Σ
ξµ Tµν v

ν , (2.43)

where Σ is any Cauchy slice in the entanglement wedge corresponding to the ball-shaped

entangling region in the boundary. ξ is the conformal Killing vector, v is the volume form

defined as (for a D-dimensional spacetime)

vν =
1

D!

√
g̃ εν,µ1µ2...µDdx

µ1 ∧ dxµ2 · · · ∧ dxµD ,
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and ε being the usual Levi-Civita tensor. Eg denotes gravitational equations of motion

with proper cosmological constant, e.g, for pure gravity in AdS

Egµν =
1

16πG

√
−g
(
Rµν −

1

2
Rgµν +

1

2
Λgµν

)
. (2.44)

For the perturbed AdSd+1 space-time as in (2.1), and for the case when the entangling

region is a sphere, the canonical energy as on the right-hand side of (2.42) may be computed

explicitly. One can also independently compute the second order variation of the relative

entropy, ∂2

∂λ2Srel(ρλ||ρ0). Both calculations were done for d = 2 in [11] and were shown to

match explicitly. In the holographic setup, λ is again identified with the boundary energy

parametrized by m, which appears as a mass parameter in (2.1). In general dimensions,

the second variation of the relative entropy reads [15]

∂2

∂λ2
Srel(ρλ||ρ0) =

π
3
2dΩd−2Γ (d− 1)

G2d+1(d+ 1)Γ
(
d+ 3

2

)Ld−1R2d

= GF,λλ, (2.45)

where in the last line we have used the definition (2.41). The basic ingredients in this

computation is (2.39) and the fact that in this particular case of spherical entangling

region in CFT, the modular Hamiltonian has a local expression in terms of the boundary

stress energy tensor as

HR =

∫
|x|<R

dd−1x
R2 − |x|2

2R
T00 ,

with T00 being the temporal component of the stress-energy tensor in the boundary CFT.

Hence one can vary both the terms in the right hand side of (2.39) up to second order in

mRd which yields (2.45).

A similar conclusion can be drawn for the deformation with scalar condensate presented

in section 2.2 by noting that (2.37) is given by the second order variation of relative

entropy with respect to the state parameter ε̃ defined in (2.28). The final expression (2.37)

matches with the expression for the quadratic variation of the relative entropy with scalar

perturbations, as given in [15]. Moreover, as we also point out later, (2.37) is precisely the

behavior that we expect for bulk canonical energy due to scalar perturbations [16]. This

extends the validity of our proposal to states created by more general perturbations than

those involving the stress-energy tensor.

2.4 Justification from field theory

It is worth mentioning at this point that (2.45) can be independently obtained from a

computation entirely in field theory without referring to dual gravity background. This

was first done in [17] for d = 2 and was generalized to arbitrary dimensions in [18]. In

order to compute the relative entropy Srel(ρ||σ), these authors first employed a replica

trick as in [6]. The relative entropy can be obtained as a limit from the resulting replicated

geometry [27, 28] as

Srel(ρ||σ) = lim
n→1

1

n− 1

(
log Trρn − log Trρσn−1

)
, (2.46)
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where

Sn = log Trρn − log Trρσn−1. (2.47)

Individual contributions to Sn can be obtained by constructing path integrals in the n-cover

manifold corresponding to the replicated geometry. In order to technically achieve this one

needs to go from the CFT on branched cylinder, R × Sd−1 to a CFT on the covering

manifold Sn × Hd−1, Hd−1 being (d − 1) - dimensional hyperbolic space and Sn, a 2πn

periodic circle. This conformal mapping can be thought of as combining two conformal

maps - first a map from R×Sd−1 to a branched sphere Sd
n, and then the second map from

Sd
n to the covering manifold, Σn = Sn ×Hd−1.

Finally using the state-operator map the first term in Sn can be written as

Trρn = Nn
〈
∏n−1
k=0 P (τk)P (τ̃k)〉Σn∏n−1
k=0〈P (τk)P (τ̃k)〉Σ1

. (2.48)

Here the points, τk and τ̃k corresponds to, the t = ∞ and t = −∞ of the k-th Riemann

sheet and P (τk) (P (τ̃k)) denotes local operator insertion at point τk (τ̃k) corresponding

to the state with reduced density matrix ρ. Nn is the normalization constant. A similar

expression can be obtained for the second term in the expression for Sn in (2.47).7

An operator product expansion for the fields on the n-covering manifold is then sub-

stituted in the trace expressions given above. Restricting to the OPE contribution coming

from the stress-energy tensor exchange, namely the identity Virasoro block, we have8

P (τk)P (τ̃k) = 〈P (τk)P (τ̃k)〉Σn
[
1 + CMN

PP (Σn : (τ − τ̃))TMN (τk)
]
. (2.49)

We note again that the stress tensor is holographically dual to the metric perturbation

introduced in (2.2), which justifies the restriction to the stress-tensor OPE contribution.

In the case when the size of the subsystem is small, i.e. when the radius R of the spherical

subregion satisfies R � 1, inserting the OPE contribution into the traces given above

results in a systematic and convergent expansion in Rd. At leading order, the relative

entropy Srel(ρ||σ) scales as

Srel(ρ||σ) ∝ ε2R2d, (2.50)

where ε = 〈P |Ttt|P 〉 is the energy of the system on the cylinder. Using the explicit propor-

tionality constant in (2.50) and the relation between ε and the mass parameter of the black

brane, the authors of [18] showed an exact agreement with the holographic expression for

relative entropy of [15]. Their result provides further justification for (2.45).

Hence, not only do we find our proposal (2.21) to be fully consistent with the expression

for Fisher information metric obtained in (2.45), we now also see that it correctly matches

with a direct field theory calculation as mentioned in the previous paragraph. Moreover,

in the field theory calculation of relative entropy (2.50) and subsequently of Fisher infor-

mation, the coefficient appearing before the crucial R2d behavior agrees with the gravity

7It turns out that the normalization constant Nn is the same for both the terms and therefore we can

set it to 1 without loss of generality
8Furthermore, here it is assumed that the anomaly term is zero, which indeed is the case for odd d. If

the anomaly term is present, TMN in (2.49) needs to be redefined as TMN (τk)− 〈TMN (τk)〉Σn .

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
1

calculation of Fisher information as in (2.45). This also then justifies our choice of prefac-

tors in (2.20) and makes our proposal consistent with the Fisher information calculations

from both sides of holography.

As discussed before, it is worth mentioning again at this point that for a restricted

class of states when the reduced density matrices in the vacuum and in the excited state

are simultaneously diagonalizable - or in other words, when the subregions are maximally

entangled even after perturbation, one should expect, analogous to (2.41),

GR,λλ =
∂2

∂λ2
Srel(ρλ||ρ0), (2.51)

GR,λλ being the reduced fidelity susceptibility defined in (1.8). For these states, our pro-

posal (2.21) also serves as a holographic dual to reduced fidelity susceptibility while (2.20)

can be interpreted as the holographic dual to reduced fidelity.

Let us then briefly summarize our results of this section. We show that there is a

well-defined, finite notion of regularized volume which serves as the holographic dual to

Fisher information for two perturbatively close states. Both of them are in turn related to

the classical canonical energy in the subregion. This set of connections will play a crucial

role for the next part of our paper where we make statements regarding their quantum

counterpart. Here we also noted that for the special class of states, all the above definitions

coincide with the definition of reduced fidelity susceptibility, thus modifying the previously

existing proposal of [14].

3 Fisher information and bulk entanglement

We now turn to the second part of our proposal on relating the 1/N quantum correction

to reduced fidelity susceptibility with bulk entanglement entropy.

3.1 Bulk entanglement entropy and quantum canonical energy

Our investigation of bulk entanglement entropy is motivated by a recent study in [19].

There the authors argue that the 1/N quantum correction to the boundary entanglement

entropy for a boundary subregion R is given by the bulk entanglement between two regions

— the region inside the corresponding RT surface in the bulk and its complement. The

relevant regions are depicted in figure 1. This bulk entanglement entropy can be computed

order by order in Newton’s constant G, using the replica trick in the bulk, [7, 19] as9

Sbulk(R) = Sbulk,cl(R) + Sbulk,q(R), (3.1)

where the first term on the right-hand side of (3.1) scales as 1/G (or equivalently is of order

N2) and corresponds to the minimal area surface term,10 while the second term scales as

9For the cases where we have a U(1) symmetry as for static black holes, it is easier to implement the

replica trick for non-integer n, n being the number of replicated geometries. For more general cases without

any U(1) symmetry, one needs to define the partition function for non-integer n separately [19].
10Note that the motivation of [19] was to connect the bulk entanglement entropy with the quantum

correction of boundary entanglement entropy. So, these authors only studied the Sbulk,q part, which they

refer to as Sbulk−ent.
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R	Rcb	Rc	

A	

B	

Rb	

Figure 1. At the boundary CFTd of the global AdSd+1 cylinder, we have a disc shaped region R

denoted by AB (red line, color online). The dashed (black) line γ represents the RT surface which

divides the bulk region into two subregions Rb and Rc
b. The area of this minimal surface gives the

leading semiclassical term of the total boundary entanglement entropy SEE. The O(G0) term of

bulk entanglement entropy of the region Rb is a measure of the first-order quantum correction term

SEE,q of SEE.

G0 and corresponds to the first quantum correction to the boundary entanglement entropy.

In [19], the quantum correction to the boundary entanglement entropy SEE,q is given

by

SEE,q = Sbulk = −∂n (logZn,q − n logZ1,q)
∣∣
n→1

, (3.2)

where Zn is the bulk partition function of the replicated geometry in the bulk.

Taking these results into account, we now proceed to state our observations. In the

path-integral language, the decomposition of (3.1) can be realized by writing the full bulk

partition function Zbulk as

Zbulk = W bulk +W bulk
eff ,

where W bulk denotes the classical action. This gives the classical part of bulk entanglement

entropy. It is essentially the same minimal area surface term that appears in Wald’s treat-

ment of the first law [29]. W bulk
eff is the one-loop effective bulk action which gives Sbulk,q(R).

In the framework of replicated n-fold geometries ĝn, the full density matrix ρ̂′n is given

in terms of a bulk time dependent Hamiltonian Hτ,full which generates the time translation

along the Euclideanized time τ direction [7]. That is,

ρ̂′n = e−
∫ 2πn
0 Hb,n,full

= e−
∫ 2πn
0 (Hb,n,cl+Hb,n,q) = ρ̂′n,cl · ρ̂′n,q , (3.3)

where the subscripts b, n, cl or q above respectively suggest that the associated Hamiltonian

H is in the bulk, in n-deformed spacetime and it is either classical or quantum (order by

order in the G expansion). These classical and quantum parts give rise to the classical
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and quantum parts of the corresponding bulk entanglement Sbulk. From the above, it is

easy to see for diagonal density matrices that by inserting the expression (3.3) into the

von Neumann bulk entanglement entropy, Sbulk divides into classical and quantum parts

as in (3.1), i.e.

Sbulk =− ∂n
[
log Tr(ρ̂′n,cl)− n log Tr(ρ̂′1,cl)

]
− ∂n

[
log Tr(ρ̂′n,q)− n log Tr(ρ̂′1,q)

]
+ . . .

=Sbulk,cl(R) + Sbulk,q(R) + . . . , (3.4)

where the dots denote terms that are local integrals on the RT surface. When only the

background metric has a non-zero vacuum expectation value, there are two other terms that

in principle can contribute to the O(G0) correction to the boundary entanglement entropy.

These come from a change in area due to the back-reaction on the classical background

and from general higher derivative terms, respectively.11 For our present purpose we do

not consider the higher derivative terms in the bulk action.

Our key observation in this section will be the term-by-term matching of the expan-

sions (3.1) or (3.4) to an analogous expansion of the Fisher information metric, namely,

GF,λλ = GF,cl +GF,q. (3.5)

Once again, the subscripts cl and q denote the classical and quantum parts.

To begin with, let us consider a perturbation of the background metric g(0) of the form

g = g(0) + δg(0) + h. (3.6)

Here we consider two different kinds of perturbations of the bulk metric. h is an O(
√
G)

quantum fluctuation, while δg(0) takes into account the λ variation. Expanding the right-

hand side of (2.44) in powers of λ according to (3.6), and inserting the expansion back

into (2.42), we obtain

∂2

∂λ2
Sbdy

rel (ρλ||ρ0)
∣∣∣
λ=0

= E −
∫

Σ
ξµT grav,(2)

µν (δg(0))vν

−
[∫

Σ
ξµT grav,(2)

µν (h)vν +

∫
Σ
ξµTmatter,(2)

µν (g)vν
]

+ boundary terms . (3.7)

This gives a clean separation of classical and quantum contributions in the Fisher metric

and also the classical and quantum contributions in the leading order canonical energy in

the perturbed background. The first two terms on the right-hand side of (3.7) are classical

(O(1/G)) contributions, with the second term arising from (2.43) upon the second order

variation in δg(0). These two classical terms are the same as the right hand side of (2.42).

The superscript (2) signifies the fact that all the variations are of second order in δg(0) and

h.12 The remaining terms in the bracket are quantum corrections.13 Furthermore, it was

11In addition, counterterms may be necessary to ensure finite entanglement.
12Note that the first order variation in either case vanishes by virtue of linearized equation of motion.
13Also note that the matter part of the stress tensor only appears at the quantum level as classically for

empty AdS, the contribution is identically zero.
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shown that the boundary terms can be taken care of through a suitable choice of gauge as

pointed out in [30].

Now combining (2.41) and (3.7) enables us to schematically write

∂2

∂λ2
Sbdy

rel (ρλ||ρ0)
∣∣∣
λ=0

= GF,λλ

= GF,cl +GF,q, (3.8)

Thus from (2.41) and (3.7), we obtain an expansion of Fisher information metric at

order by order in Newton’s constant and their respective connections with the classical

and quantum part of the canonical energy. Bearing in mind (2.51), for the special case of

commuting density matrices, this also calls for a decomposition analogous to (3.8) for the

reduced fidelity susceptibility, as

∂2

∂λ2
Sbdy

rel (ρλ||ρ0)
∣∣∣
λ=0

= GR,cl +GR,q . (3.9)

In the next subsection, we further develop this connection, where we relate GF,q (and

GR,q for the restricted class of states corresponding to commuting density matrices) to the

bulk modular Hamiltonian and hence to bulk entanglement entropy.

3.2 Canonical energy and bulk modular Hamiltonian

Here we complete our arguments by invoking the fact that the quantum correction to

canonical energy (the bracketed term in the second and third lines of (3.7)) is essentially

the same as the bulk modular Hamiltonian HRbulk that appears as the first quantum

correction to the boundary modular Hamiltonian [20, 31]

HR =
Area(γ)

4G
+HRbulk + . . . . (3.10)

This is the operator equivalent14 of the expansion of boundary entanglement entropy

at order by order in G, namely

SEE =
Area(γ)

4G
+ SEE,q + . . . . (3.11)

Thus the results (3.7), (3.8), (3.9), (3.10), (3.11) clearly suggest that the quantum Fisher

information metric and equivalently the reduced fidelity susceptibility for the mentioned

restricted class of states can indeed be understood as sum of two terms as in (3.5), namely

a leading semiclassical term and a subleading quantum term. In this division we are simply

keeping track of the orders G−1 and G0, respectively.

For example, if we just focus on the quantum part, i.e. the O(G0) part, we see from (3.8)

and (3.7) that

GF,q = −
[∫

Σ
ξµT grav,(2)

µν (h)vν +

∫
Σ
ξµTmatter,(2)

µν (g)vν
]

= SEE,q , (3.12)

14This is possible by noting the connection between the entanglement entropy and the modular Hamil-

tonian via the density matrix as in (2.40).
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where the last quantity arises from the quantum canonical energy and is equal to the

modular Hamiltonian in the bulk Hbulk
R [20, 31].

Thus following the separation in the classical and the quantum parts in (3.7), we

conclude that while the classical part of the Fisher information metric GF,λλ is given by

the classical part of canonical energy in agreement with [11], the quantum part of it can

be thought of as a dual to the bulk modular Hamiltonian. The same conclusion holds for

the reduced fidelity susceptibility, however only for the restricted class of states leading to

commuting density matrices.

Finally, for the excited states discussed above in section 2.2 due to marginal scalar

perturbations, we point out that our second proposal also goes through. This can be

understood by noting the results of [16], who proved that for such perturbations, the Fisher

information becomes canonical energy in the bulk. Of course the connection between Fisher

information and the canonical energy is what enables us to provide a further proof of the

second part of our proposal.

4 Conclusions and outlook

In the first part of this work we have proposed a holographic dual of Fisher information

metric for mixed states. In all the cases that we consider, this is always given by a regu-

larized (i.e. finite) volume contained under the RT surface in the bulk. This also serves as

a holographic dual for the reduced fidelity susceptibility but for a restricted class of states,

namely, when the density matrices commute before and after perturbation, i.e when the

states are effectively classical. At least for this class of states we can compare our result

for a previous proposal for the holographic dual of the reduced fidelity susceptibility given

in [14] in terms of holographic complexity, namely, the leading term in the volume under

the RT surface. However, the proposal given there suffers from the following shortcomings.

As we mentioned before, for classical (or effectively classical) states, fidelity susceptibility

is physically the same as Fisher information, which is defined by the second order variation

of relative entropy. Now relative entropy for a mixed state is always UV-finite. Hence it

is hard to justify that holographic complexity, which is UV-divergent, should be its bulk

dual. UV-convergent behaviour was also advocated from a purely field theory computation

in [27], at least for free theories and conformal field theories with large central charge. Fur-

thermore, the second-order variation of relative entropy was computed explicitly [11, 15],

and its behaviour differs significantly from that of holographic complexity as proposed

in [14]. On the other hand, as we have shown, our proposal for the holographic dual of re-

duced fidelity susceptibility for those states meets both requirements by construction. Our

proposal for the bulk dual is similar in spirit to the recently proposed idea of complexity of

formation [32–34], which measures the relative complexity between two states. One natu-

ral question might then be whether this is also related to the computational complexity as

discussed in [35–37]. In fact, its connection with the relative entropy is reminiscent of the

definitions of complexities used in [38, 39].

One naive intuition to justify the relation to computational complexity comes from

the positivity of both reduced fidelity susceptibility and Fisher information. As already
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mentioned in [40], the identification of Fisher information with the Hollands-Wald canonical

energy [11, 21] implies the positive energy theorem for asymptotically AdS spacetime. Our

result hints at an alternative way to view the derivation of the positive energy theorem

for asymptotically AdS spacetimes in terms of positivity of reduced fidelity susceptibility

for mixed states. A suggestion is to interpret this positivity of canonical energy (in our

case, we consider the canonical energy associated to the bulk Rindler wedge corresponding

to the spherical boundary region R) as the transition from a reference vacuum state to

a more complex excited state. In other words, the monotonically increasing nature of

reduced fidelity susceptibility mimics that of computational complexity. However, a full

justification behind such a connection is yet to be understood. Work in this direction is in

progress and we hope to report on this generalization in near future. In particular, we are

working on a computation within quantum field theory to reproduce the scaling with R2d

as in (2.21) and (2.45) for stress-tensor perturbations. Even within our computation and

proposal, we pointed out various subtleties relating to the difference in coefficients in the

volume-Fisher relation, and it will be interesting to investigate whether we can say more

about them in a better unified manner and concretize our porposal.

The second part of our proposal relates the quantum contribution to Fisher information

or reduced fidelity susceptibility to bulk entanglement. The latter has been argued to be

instrumental in understanding the reconstruction of the bulk points inside an entanglement

wedge in terms of local operators in the boundary CFT through modular evolution [20].

We expect our proposed duality might add an useful component towards a concrete study

in this direction.

There are many other important issues that need to be investigated in future for a

complete understanding of the proposed connections. We already mentioned the quantum

information origin of (mixed state) holographic complexity itself, which is missing so far in

the literature. It will also be interesting to understand how our construction changes for

more complicated boundary states, such as subregions with arbitrary shapes or thermofield

double geometries. A generalization to multi-dimensional parameter space and a covariant

generalization of our proposal also deserve a closer look.
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