
J
H
E
P
1
0
(
2
0
1
8
)
0
2
5

Published for SISSA by Springer

Received: August 12, 2018

Accepted: September 23, 2018

Published: October 4, 2018

Einstein gravity from the N = 4 spinning particle

R. Bonezzi,a,b A. Meyerc and I. Sachsc
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1 Introduction

There are several reasons for considering the worldline approach to field theory and gravity.

For one thing it provides a first-quantized description of spin one fields [1, 2], that allows for

a simple mechanism to compute one-loop one particle irreducible actions (1PI) for Yang-

Mills theory [3–7]. Similarly, trace anomalies and gravitational one-loop effective actions

were derived in the worldline formalism for scalar and spinor loops in [8–11] and for loops of

differential forms in [12, 13]. Furthermore, the field theory ghosts are automatically taken

care of by the worldline ghosts, since gauging the worldline supersymmetries amounts, as in

string theory, to removing unphysical degrees of freedom in spacetime. Indeed, at tree-level

the BRST quantization of the spinning particle naturally produces a BV-action in space

time [14–17]. The fields and anti-fields of variable degree are included by simply relaxing

the worldline ghost number. String field theory is obtained in the same way upon replacing

the worldline by a world sheet [18, 19]. Even for the massless particle, introducing a world

sheet as the complexification of the worldline has advantages since it allows to reorganize

the Feynman amplitudes in an efficient way much simplifying the calculation of scattering

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
0
2
5

amplitudes using world sheet methods [20] and more recently for tree-level amplitudes in

ambitwistor strings [21, 22].

On the other hand, the construction of a manifestly background invariant action along

this line has been a major obstacle in string field theory. There are various reasons for

this: one problem is that we do not know how to couple massive string states to the world

sheet of the string at the non-linear level. In fact, even for the massless fields such as

the graviton and the dilaton the absence of conformal invariance in a general background

renders the construction of the BRST charge problematic (see e.g. [23] for an attempt in

this direction). These problems should be absent for the worldline where neither massive

states nor conformal invariance pose a problem. However, in the case of self-interacting

theories, even for the spinning particle with non-zero spin the BRST charge fails to square

to zero on shell unless suitable constraints are imposed on the representation space. Unlike

for the string, the truncation of the Fock space becomes possible for the spinning particle,

due to the R-symmetry that comes with the extended worldline supersymmetry. In [24]

this program was carried out successfully for Yang-Mills theory described by a worldline

with N = 2 SUSY.1 There, the BRST charge was constructed for an arbitrary Yang-Mills

background and the field equations for the latter were recovered from the nilpotency of Q

on a suitably restricted Fock space with fixed U(1) R-charge, still big enough to contain

all physical degrees of freedom. Furthermore, it was shown that the variation of Q on a

solution of the field equations reproduces a vertex operator for the gluon that produces the

physical state when acting on the Yang-Mills ghost vacuum.

The theory just described can be coupled to off-shell gravity with no further condi-

tions [12]. However, the consistent coupling of the worldline with N = 4 extended SUSY,

needed to include the graviton as a propagating degree of freedom, was so far lacking.2

This is the problem we propose to solve in this note. In particular, we will identify the

correct constraint on the Fock space consistent with the field equations in space-time.3 As

usual, at quantum level we should impose only half of the constraints on the Fock space.

For the SO(4) R-symmetry this can be done by choosing a decomposition of the so(4)

Lie-algebra that maintains manifest covariance only under a u(2)-subalgebra. With this

restriction the graviton is the only propagating degree of freedom in this theory. In this

context it is worthwhile to point out that the truncation of the massless NS-spectrum of

string theory to the pure graviton sector is possible for the worldline, while it is not the

case for string theory, due to the enhancement of the R-symmetry on the worldline.

Nilpotency of Q then requires the background to be Einstein allowing, in particular,

for a cosmological constant of indefinite sign, in agreement with expectations from General

Relativity. Consistent, that is, nilpotent infinitesimal deformations Q = Q0 + V of a

classical background are given by equivalence classes in the adjoint cohomology of Q0 and

1In general, spinning particles with N supersymmetries describe spin N
2

particles in spacetime [25–33]
2In [34] a worldline approach was proposed to describe Einstein gravity at one-loop, but the gauge

structure of the graviton was treated somehow ad hoc directly from the field theory.
3The fact that coupling the N = 2 worldline to gravity is automatically consistent while N = 4 is not,

is easy to understand from the spacetime perspective. Indeed, gluons can propagate in any geometry while

gravitons can propagate only on Einstein spacetimes.
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should thus be isomorphic to the physical states on this background. We find indeed that

upon acting with such V on suitable diffeomorphism ghost states generates the physical

graviton states in the Fock space in analogy with [24] for N = 2.

The organization of this paper is as follows: in section 2 we describe the worldline

theory of the N = 4 spinning particle, together with the possible constraints that can be

imposed on the representation space. In section 3 we review the Dirac quantization and

describe the physical spectrum in flat space, both, in terms of the linearized curvatures as

well as the potentials. The two descriptions are related by a shift in the normal ordering

constant of a U(1) R-current. In section 4 we focus on the BRST quantization. In sec-

tion 5 we construct the BRST charge in a curved metric background and analyze the field

equations implied by the nilpotency of Q. In section 6 we obtain a vertex operator for the

graviton by variation of the BRST charge w.r.t. the background metric and determine the

appropriate ghost state to evaluate the corresponding scattering amplitudes. Some techni-

cal details are referred to the appendices. In particular, the R-symmetry enhancement to

SO(4) is explained in appendix C in term of a twisted dimensional reduction of the world

sheet action.

2 N = 4 supersymmetric spinning particle

Let us start by reviewing the (quantized) graded phase space of the point particle. The

canonical coordinates are (xµ, pµ,Θ
µ
I ) , with µ = 1, .., d a flat spacetime index and I = 1, .., 4

an internal index. They are subject to the commutation relations

[xµ, pν ] = i δµν , {Θµ
I ,Θ

ν
J} = δIJ η

µν . (2.1)

The four hermitian supercharges QI := ΘI · p together with the hamiltonian H := 1
2 p

2 ≡
−1

22 generate the N = 4 worldline supersymmetry algebra

{QI , QJ} = 2 δIJ H , [QI , H] = 0 , (2.2)

with manifest so(4) R-symmetry algebra generated by JIJ := iΘ[I ·ΘJ ] obeying

[JIJ , QK ] = 2iQ[I δJ ]K , [JIJ , JKL] = 4i δ[K[J JI]L] . (2.3)

The Hilbert space for the fermionic algebra is generated from the oscillator variables (omit-

ting spacetime indices) θi := 1√
2
(Θi + iΘi+2) and θ̄i := 1√

2
(Θi − iΘi+2), i = 1, 2, obeying

{θ̄iµ, θνj } = δij δ
ν
µ , {θ̄iµ, θ̄jν} = 0 = {θµi , θ

ν
j } . (2.4)

By choosing a Fock vacuum annihilated by θ̄iµ , an arbitrary state |ψ〉 in the full Hilbert

space is isomorphic to the wave function

ψ(x, θi) =

d∑
m,n=0

ψµ[m]|ν[n](x) θµ11 ...θµm1 θν12 ...θ
νn
2 ∼

⊕
m,n

m

 ⊗ n

{
(2.5)
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where the fermions θ̄iµ act as ∂
∂θµi

. Above we have displayed the spacetime tensor field

content by the Young diagrams on the right hand side. We used the condensed notation

for antisymmetrized indices µ[m] := [µ1...µm] and a vertical bar to separate indices with no

symmetry relations. The supercharges act on wave functions as antisymmetrized gradients

and divergences:

qi = −i θµi ∂µ , q̄i = −i ∂µ ∂

∂θµi
, (2.6)

where the redefinition from QI to (qi, q̄
i) follows immediately from the definitions of θµi

and θ̄iµ . The adjoint operation is defined by the inner product

〈φ , ψ〉 :=

∫
ddx

[
φ∗(x, ∂θi)ψ(x, θi)

]
|θi=0 , (2.7)

which gives q̄i = (qi)
† . The so(4) generators split under the ΘI → (θi, θ̄

i) redefinition

maintaining only manifest covariance under a u(2) subalgebra: JIJ → (J ij , Jij , J̄
ij) with

explicit realization

J ij =

(
N1 − d

2 Y †

Y N2 − d
2

)
, Jij =

(
0 g

−g 0

)
, J̄ ij =

(
0 Tr

−Tr 0

)
(2.8)

where

Ni := θi ·
∂

∂θi
, i not summed, counts indices in column i

Y := θ1 ·
∂

∂θ2
, Young antisymmetrizer 2→ 1 , Y † := θ2 ·

∂

∂θ1
, Young antisymmetrizer 1→ 2

g := θ1 · θ2 , insertion of the metric ηµν , Tr :=
∂2

∂θ1 · ∂θ2
, trace between columns.

(2.9)

In order to describe relativistic (massless in the case at hand) particles, the hamiltonian

has to be gauged in order to ensure the mass-shell condition p2 ≈ 0 . From the worldline

viewpoint it is also clear that the supersymmetries should be gauged in order to have

unitarity. Indeed, in light-cone gauge the local worldline supersymmetries precisely get

rid of the light-cone polarizations Θ±I and allow to construct a manifest unitary spectrum

out of transverse oscillators. The situation for the R-symmetries leaves a much wider

choice. As it can be seen from the operators above, the R-symmetry generators perform

algebraic operations on the spacetime tensors. The larger so(4) subalgebra is gauged, the

less reducible the spacetime spectrum is. It is worth to notice that the shift −d
2 in the

definition of J ii is a quantum ordering effect. The value −d
2 is the only one that does not

introduce a central extension in the so(4) algebra. This condition can be relaxed if we

impose that only a suitable subalgebra annihilates physical states. In this note we will

consider only the case of maximal gauging of the R-symmetry, namely the full so(4) , that

yields an irreducible spectrum containing only the graviton as physical state. The classical

worldline action describing the model, the N = 4 spinning particle, reads

S =

∫
dτ
[
pµẋ

µ + iθ̄iµθ̇
µ
i −

e

2
p2 − iχi θ̄i · p− iχ̄i θi · p− aIJ JIJ

]
, (2.10)
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where e(τ) is the worldline einbein gauging p2 , and playing the role of gauge field for

1D reparametrization invariance. Correspondingly, the four supersymmetries are gauged

by worldline gravitini χi(τ) and χ̄i(τ) , while so(4) , generated by JIJ , is gauged by the

one-dimensional Yang-Mills field aIJ(τ) .

3 Dirac quantization

In this section we review the Dirac quantization of the model by first assuming that the

quantum ordering of the operators J ii does not introduce central terms in the so(4) algebra,

i.e. J ii = Ni− d
2 . This yields the physical spectrum in terms of linearized curvatures obeying

first order differential equations. By changing the constant shift in the quantum operators

J ii it is possible to describe the degrees of freedom in terms of gauge fields, that are necessary

in order to introduce self-interactions. This second option will be described in section 3.2.

3.1 Curvature description

We now proceed to review the Dirac quantization when the entire R-symmetry algebra

so(4) is gauged [31]. In this case all the constraints can be imposed at the quantum level

on the physical state |R〉 . An independent set is given by4(
Ni −

d

2

)
|R〉 = 0 = Y |R〉 , qi |R〉 = 0 , Tr |R〉 = 0 (3.1)

We stress that the shifts on the number operators Ni are the only ones that preserve the full

so(4) at the quantum level. Hence, this model describes a graviton only in d = 4 , to which

we shall restrict at the moment. The first set of constraints imposes gl(d) irreducibility of

the spacetime tensor: after imposing (Ni − d
2) |R〉 = 0 in four dimensions one has

|R〉 ∼ ⊗ = ⊕ ⊕ , (3.2)

where the first diagram corresponds to the spin two Riemann curvature. By enforcing the

Young constraint Y |R〉 = 0 the last two components of (3.2) are projected out, and one is

left with a field with the algebraic symmetries of the Riemann tensor:

R(x, θi) = Rµνλσ(x) θµ1 θ
ν
1θ
λ
2θ

σ
2 ∼ (3.3)

subject to the other constraints that are integrability and tracelessness conditions

∂[µRνλ]σρ = 0 , Rλµλν = 0 , (3.4)

that play the role of equations of motion.5 At this stage one can analyze these equations

purely in terms of curvature. On-shell one has 2Rµνλσ = 0 , that allows to choose a

4The constraint q̄i is automatically satisfied thanks to the (qi,Tr) algebra, H consequently follows, and

g |R〉 = 0 is equivalent to the trace constraint upon double dualization.
5The same geometric field equations in the context of higher-spin gauge theories were derived in [35–37].
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light-cone frame where only p+ is nonzero. Solving the field equations (3.4) the only

non-vanishing components of the curvature are R+i+j , traceless in the transverse indices

ij , that propagate massless spin two degrees of freedom in terms of the linearized Weyl

tensor. Alternatively, one can solve the integrability condition by integrating in the gauge

potential as

Rµνλσ = 4 ∂[µ∂[λhσ]ν] ←→ |R〉 = q1q2 |h〉 , (3.5)

in which case the traceless curvature condition becomes Fierz-Pauli equation for the mass-

less graviton hµν , i.e.

2hµν − 2 ∂(µ∂ · hν) + ∂µ∂νh
λ
λ = 0 , (3.6)

that is nothing but the linearized Ricci tensor around flat space. The field equations in

this form are clearly invariant under linearized diffeomorphisms (spin two gauge symmetry):

δhµν = ∂(µεν) , but we mention that spacetime gauge symmetry arises in this description

only upon integrating in the potential hµν to solve the integrability condition, whereas the

original equations in terms of curvatures have no gauge symmetry.

3.2 Gauge field description

The Dirac quantization reviewed in the last section seems to naturally describe the field

content in a first-order gauge invariant formulation based on linearized curvatures. On the

other hand, light-cone quantization and the covariant path integral display gauge fields in

the spectrum, rather than curvatures. The two descriptions are clearly equivalent at the

free level, while introducing interactions generally prevents the use of curvatures.

To describe the above model in terms of potentials à la Dirac, one has to change the

ordering shift6 in the definition of J ii to J ii = Ni − d−2
2 in any dimension. In this case only

half of the supercharges can annihilate physical states, while the second half will generate

null states, as it is customary in Gupta-Bleuler and string theory old covariant quantization.

Similarly, only half (for conjugated pairs) of the so(4) generators can annihilate physical

states. An independent set of constraints is then given by7(
Ni −

d− 2

2

)
|h〉 = 0 , (Y,Tr) |h〉 = 0 , q̄i |h〉 = 0 , 2 |h〉 = 0 (3.7)

Although the above constraints form a closed subalgebra for any shift J ii = Ni − n , so

that one may try to set n = 1 in any dimension, the corresponding classical algebra is

broken for d 6= 4 and it is not clear how to perform the path integral. More precisely, the

classical counterpart of the number operator constraint is θi · θ̄i = 0 for fixed i . The Dirac

quantization admits then the two descriptions in terms of curvatures or gauge fields as

θi · θ̄i + λ = 0
quantize−→


(
Ni − d

2 + λ
)
|R〉 = 0 gauge invariant curvature description(

Ni − d−2
2 + λ

)
|h〉 = 0 Gupta-Bleuler gauge field description

6The two different normal-ordering constants, d
2

or d−2
2

, depend on whether one prescribes to count the

normal ordering of all fermions or, rather, only the transverse ones.
7We freely switch between 2 and H to denote the hamiltonian constraint.
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so that the desired field content corresponds to λ = d
2−2 . If the entire so(4) classical algebra

is gauged, it suffers a classical anomaly for λ 6= 0 . One could try to avoid the problem by

gauging the classical counterpart of Tr , i.e. θ̄2 · θ̄1 without gauging its conjugate8 θ1 · θ2 ,

but this would break the reality of the classical action.

Restricting to four dimensions one recovers J ii = Ni− 1 that, together with the Young

constraint, is solved by the symmetric tensor h(x, θi) = hµν(x) θµ1 θ
ν
2 . The remaining con-

straints (Tr, q̄i,2) |h〉 = 0 then yield the Fierz-Pauli system

2hµν = 0 , ∂µhµν = 0 , hλλ = 0 (3.8)

for massless spin two in partially gauge fixed form. In the Dirac approach the presence of

gauge symmetry manifests with the appearance of null states in the Hilbert space. These

are physical states with zero norm and vanishing scalar product with all other physical

states, that one can mod out from the physical spectrum. In the present case one can indeed

see that fields of the form hµν = ∂(µεν) are null for εµ transverse and harmonic. Modding

these out one is left with the transverse and traceless polarizations of the graviton hij .

4 BRST quantization

We shall now focus on the BRST quantization of the model, as it will be the starting point

for introducing a curved background in the next section. In the following, we will treat the

R-symmetry so(4) constraints and the SUSY constraints (qi, q̄
i,2) on different footings.

Namely, we will associate ghosts and BRST operator only to the superalgebra

{qi, q̄j} = −δji 2 , {qi, qj} = 0 , {q̄i, q̄j} = 0 , (4.1)

corresponding to spacetime differential constraints. The algebraic so(4) operators instead,

(extended by appropriate ghost contributions,) will be imposed separately as constraints

on the BRST Hilbert space. The reason to proceed this way is twofold: the introduction of

so(4) ghosts would result in a plethora of unnecessary auxiliary fields, and we will show that

the present treatment is equivalent to Dirac quantization. The second, more important,

reason is that the BRST quantization in curved space is consistent only as a cohomology

on the constrained Hilbert space, as it will be shown in the next section.

We thus proceed by assigning the ghost-antighost canonical pair (c, b) to the hamilto-

nian as well as bosonic superghost pairs (γ̄i, βi) and (γi, β̄
i) to the supercharges qi and q̄i ,

obeying canonical commutation relations

{b, c} = 1 , [βi, γ̄
j ] = δji , [β̄j , γi] = δji , (4.2)

with ghost number assignments gh(c, γi, γ̄
i) = +1 and gh(b, βi, β̄

i) = −1 . The BRST dif-

ferential associated to the algebra (4.1) takes the form

Q := c2 + γi q̄
i + γ̄i qi + γ̄iγi b , Q2 = 0 . (4.3)

8The classical anomaly arises from the Poisson bracket {θ̄2 · θ̄1, θ1 · θ2}PB .
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With the hermiticity assignments (γi)
† = γ̄i and (βi)

† = −β̄i , the b and c ghosts being

self-adjoint, one has Q† = Q . In order to impose the so(4) constraints on the BRST wave

function we have to extend them by ghost contributions: JIJ → JIJ as to commute with

the BRST charge Q . Explicitly, we have

J ji := θi · θ̄j + γiβ̄
j − γ̄jβi −

d

2
δji ,

Tr := θ̄1 · θ̄2 + γ̄1β̄2 − γ̄2β̄1 ,

G := θ1 · θ2 + γ1β2 − γ2β1 ,

(4.4)

where the u(2) generators J ji correspond to the number operators for i = j and to the

Young antisymmetrizers for i 6= j as in (2.8).

We choose the ghost vacuum |0〉 to be annihilated by (b, γ̄i, β̄i) , so that a general state

|Ψ〉 in the BRST extended Hilbert space is isomorphic to the wave function Ψ(x, θi |c, γi, βi) ,

on which (b, γ̄i, β̄i) are realized as ( ∂∂c ,−
∂
∂βi
, ∂
∂γi

) . With the given choice of vacuum, the

ghost number of the wave function is unbounded both from above and below,9 and the

operator Q takes the form

Q = c2 + γi q̄
i − qi

∂

∂βi
− γi

∂2

∂βi∂c
. (4.5)

As in any BRST system with a self-adjoint bc-ghost pair, one has 〈0|0〉 = 〈0| bc+ cb |0〉 = 0

and the non-vanishing inner product requires one insertion of the c ghost:

〈0| c |0〉 ∼ 1 . (4.6)

This fixes the ghost number of |0〉 to be −1
2 , but we usually remove this offset and count

ghost number by assigning zero to |0〉 .
The relevant so(4) generators to be imposed as constraints on the BRST Hilbert space

are the number operators J ii (i not summed), the Young antisymmetrizer Y := J 2
1 and

the trace Tr that we will collectively denote Tα := (J ii ,Y, Tr) . When acting on the wave

function Ψ, they take the form

J ii = Nθi +Nγi +Nβi −
d− 2

2
=: Ni −

d− 2

2
,

Y = θ1 ·
∂

∂θ2
+ γ1

∂

∂γ2
+ β1

∂

∂β2
,

Tr =
∂2

∂θ1 · ∂θ2
+

∂2

∂γ1∂β2
− ∂2

∂γ2∂β1
.

(4.7)

Let us stress that, thanks to the choice of vacuum, one has J ii = Ni−1 in four dimensions,

and just imposing (Ni − 1) |Ψ〉 = 0 reduces the infinitely many10 components of Ψ to a

handful of fields with a precise spacetime interpretation, as we shall see next.

9See for instance [38] for the BRST quantization of several worldline models.
10Recall that the ghosts γi and βi are bosonic. We choose a polynomial basis for them, where order by

order the operators Ni are well defined.
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Our BRST system is then defined by

QΨ = 0 , δΨ = QΛ ,

TαΨ = 0 , TαΛ = 0 ,
(4.8)

whose consistency is guaranteed by [Q, Tα] = 0 . This is equivalent to saying that we are

studying the cohomology of Q on the restricted Hilbert space defined by Hred := ker Tα .

The most general state in this subspace can be written as

ker Tα 3 Ψ(x, θi |c, γi, βi) = hµν(x) θµ1 θ
ν
2 +

1

2
h(x) (γ1β2 − γ2β1)− i

2
vµ(x) (θµ1β2 − θµ2β1)c

− i

2
ξµ(x) (θµ1β2 − θµ2β1)

+ h∗µν(x) θµ1 θ
ν
2c+

1

2
h∗(x)(γ1β2−γ2β1)c− i

2
v∗µ(x) (θµ1γ2−θµ2γ1)

− i

2
ξ∗µ(x) (θµ1γ2 − θµ2γ1)c ,

(4.9)

where we denoted h := hλλ and h∗ := h∗λλ . It is possible to assign spacetime parity and

ghost number to the component fields of (4.9) by demanding the entire wave function Ψ

to have total even parity and ghost number zero. By doing so one can interpret Ψ as a

spacetime BV “string field”, that contains the whole minimal BV spectrum plus auxiliary

fields. In (4.9) we have named the component fields accordingly: hµν and h are the graviton

and its trace, vµ is an auxiliary vector and ξµ is the diffeomorphism ghost, the remaining

components being all the corresponding anti-fields.

The BRST closure equation QΨ = 0 at ghost number zero gives

2hµν − ∂(µvν) = 0 , vµ + ∂µh− 2 ∂ · hµ = 0 (4.10)

that, solving for the auxiliary vector, yields the free spin two field equation

2hµν − 2 ∂(µ∂ · hν) + ∂µ∂νh = 0 . (4.11)

The gauge symmetry δhµν = ∂(µεν) is recovered from the ghost number zero component of

δΨ = QΛ , where

Λ = εµ(x) (θµ1β2 − θµ2β1) + · · · . (4.12)

The gauge parameter εµ should not be confused with the ghost ξµ appearing in (4.9)! In-

deed, in the string field interpretation of Ψ , the entire Λ should have overall odd parity and

ghost number −1 , implying from (4.12) that εµ has indeed even parity and ghost number

zero, while ξµ has odd parity and ghost number +1 . The spacetime BRST transforma-

tions (indeed not to be confused with gauge symmetries) can also be obtained from the

first-quantized BRST charge Q as sΨ = QΨ , where s denotes the second-quantized BRST

differential, in fact giving s hµν = ∂(µξν) .
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5 N = 4 point particle in curved background

In this section we are going to couple the model to a background metric gµν(x) taking the

cohomological system (4.8) as a starting point for the deformation. In order to avoid x-

dependent anticommutators in the fermionic sector, we define fermions to carry flat Lorentz

indices, i.e. (θai , θ̄
i a) and we introduce a background vielbein eaµ(x) and torsion-free spin

connection11 ωµab . Covariant derivative operators

∇̂µ := ∂µ + ωµab θ
a · θ̄b , obey [∇̂µ, ∇̂ν ] = Rµνλσ θ

λ · θ̄σ =: R̂#
µν , (5.1)

where any fermion carrying a base vector index is understood as θµi := eµa(x) θai , same for

θ̄i µ . The curved space supercharges and laplacian are defined as12

qi := −i θai eµa ∇̂µ , q̄i := −i θ̄i a eµa ∇̂µ , ∇2 := gµν∇̂µ∇̂ν − gµν Γλµν ∇̂λ (5.2)

and obey

{qi, qj} = −θµi θ
ν
j R̂

#
µν , {q̄i, q̄j} = −θ̄µ iθ̄ν j R̂#

µν , {qi, q̄j} = −δji ∇
2 − θµi θ̄

ν j R̂#
µν ,

[∇2, qi] = i θµi

(
2 R̂#

µν ∇̂ν −∇λR̂
#
λµ −Rµν∇̂

ν
)
,

[∇2, q̄i] = i θ̄µ i
(

2 R̂#
µν ∇̂ν −∇λR̂

#
λµ −Rµν∇̂

ν
)
.

(5.3)

In order to make an ansatz for the deformed BRST operator we assume that

i) it has manifest background diffeomorphism invariance. In particular, spacetime

derivatives are deformed only via minimal coupling (this rules out higher derivative

couplings in the hamiltonian constraint).

ii) the ghost structure is the same as in the free theory (in particular we do not want to

consider higher powers of ghost momenta),

iii) the non-minimal couplings to curvature in the hamiltonian have at most four fermions.

This is due to the fact that the states in the reduced Hilbert space have at most spin

two, making higher order fermionic couplings irrelevant.

Furthermore, consistency of the system (4.8) requires [Q, Tα] = 0 , at least weakly. This,

together with the above assumptions, fixes the most general ansatz to be

Q := cD + ∇ + γ̄iγi b , where

D := ∇2 + α R̂## + ∆R , R̂## := Rµνλσ θ
µ · θ̄ν θλ · θ̄σ ,

∇ := γiq̄
i + γ̄iqi = −i Sµ∇̂µ , Sµ := γ̄iθµi + γi θ̄

µ i .

(5.4)

11It is possible to avoid the introduction of background vielbein and spin connection, at the price of

field-dependent hermiticity relations. For details see appendix A.
12Note that ∇2 acts as the geometric laplacian, the second term in its definition has to be added to

correctly rotate the index of the rightmost ∇̂ .
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For brevity we grouped in ∆R all the couplings involving traces of the Riemann tensor

that, according to the above assumptions, take the form

∆R = a1Rab S
a
cS

cb + a2RS
abSab + a3R , (5.5)

with Sab := 2θ[a · θ̄b] being the Lorentz generators. The above parameters will be fixed to

ensure nilpotency of Q on suitable backgrounds:

Q2 = ∇2 + γ̄ · γD + c [D,∇] . (5.6)

The two obstructions are linearly independent, hence one should demand both ∇2+γ̄·γD =

0 and [D,∇] = 0 . The first term is explicitly given by

∇2 + γ̄ · γD = −1

2
SµSν R̂#

µν + γ̄ · γ
(
α R̂## + ∆R

)
, (5.7)

and one can already see that Q2 is obstructed, on the full Hilbert space, on any interesting

background. However, the BRST cohomology describing the free graviton is defined on the

reduced Hilbert space Hred = ker Tα . In order to evaluate the above expression on ker Tα
we recall, as a preliminary step, that an arbitrary state in kerJ ii has the form

ΦAB(x)ZA1 Z
B
2 + χAB(x)ZA1 Z

B
2 c for ZAi = (θai , γi, βi) ,

and is thus annihilated by any obstruction of the form OABCijk Z̄iAZ̄
j
BZ̄

k
C where OABCijk are

arbitrary operators. The expression (5.7) then becomes

∇2 + γ̄ · γD
kerJ ii= γ̄ · θµ γ · θ̄ν Rµν − γ̄ · γ

(
αRµν θ

µ · θ̄ν −∆R|kerJ ii

)
. (5.8)

To proceed, we notice that the Young condition13 further constrains the ZAi dependence

of the states to
1

2
ΦAB(x)ZAi Z

B
j ε

ij +
1

2
χAB(x)ZAi Z

B
j ε

ij c ,

as can be explicitly seen from (4.9), with εij being the su(2) antisymmetric tensor. Conse-

quently, one has

γ̄ · θµγ · θ̄ν + γ̄ · γ θµ · θ̄ν kerT α
= 0 ,

that gives

∇2 + γ̄ · γD kerT α
= − γ̄ · γ

(
(α+ 1)Rµν θ

µ · θ̄ν −∆R|ker Tα
)
. (5.9)

The second obstruction, evaluated on ker Tα yields

[D,∇] = 2i(1−α)SµR̂#
µν∇̂ν− iSµ∇λR̂

#
λµ+ i(α−1)SµRµν∇̂ν + iαSµ∇µR̂## + [∆R,∇]

ker Tα= 2i(1− α)SµR̂#
µν∇̂ν − iSµ∇λR̂

#
λµ + i(α− 1)SµRµν∇̂ν

+iα
(

2∇λR̂#
λµγ · θ̄

µ − Sµ∇µRνλθν · θ̄λ
)

+ [∆R,∇]|ker Tα . (5.10)

13The trace condition does not constrain the dependence on ZAi .
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The first term above, 2i(1− α)SµRµνλσθ
λ · θ̄σ∇̂ν , involves the full Riemann tensor, thus

fixing α = 1 . Similar terms, namely with the derivative acting through to the right, are

produced by [∆R,∇]|ker Tα and cannot be canceled by other terms. This prevents having

fermions in ∆R , fixing a1 = a2 = 0 and giving

Q2 ker Tα= γ̄ · γ
(
a3R− 2Rµν θ

µ · θ̄ν
)

+ c
{

4i∇[νRλ]µ θ
ν · θ̄λγ · θ̄µ − i

(
∇µRνλ + 2∇[λRν]µ

)
Sµθν · θ̄λ + ia3 S

µ∇µR
}
.

(5.11)

We can thus achieve nilpotency of the BRST charge only on Einstein manifolds, i.e. obeying

Rµν = λ gµν by choosing a3 = 2
d :

Q2 ker Tα= 0 for Rµν = λ gµν , D = ∇2 + R̂## + 2λ . (5.12)

We would like to remark that nilpotency of the BRST operator, that is quantum consistency

of the worldline system, determines Einstein equations for the background in contrast

to string theory where world sheet conformal invariance implies Ricci flatness (modulo

α′ corrections). The worldline theory thus reproduces what is expected from General

Relativity.

In order to display the field equations for the graviton in curved background, one

repeats the same analysis of the previous section by using the deformed BRST charge (5.4)

with the appropriate choice D = ∇2 + R̂## + 2λ , yielding

∇2hµν − 2∇(µ∇ · hν) +∇µ∇νhλλ + 2Wµλνσ h
λσ +

2λ

d− 1

(
gµν h

λ
λ − hµν

)
= 0 , (5.13)

where Wµνλσ is the traceless Weyl tensor. One can verify that the above equation corre-

sponds to the linearization of Rµν(g + h) = λ(gµν + hµν) around an Einstein background

gµν , thus confirming that the spin two self couplings coincide with those of Einstein’s

gravity.

6 Vertex operators and three graviton amplitude

In the worldline formalism, one usually derives vertex operators starting from an interacting

lagrangian L , that is expanded around its free part L0 in powers of the background fields

fluctuations. The (linear) vertex operator W0 is then defined as

W0 := (L − L0)|linear in BG fields . (6.1)

In general non-linear vertices, defined by higher order terms in (L− L0) , are also needed,

in order to take care of diagrams with multiple legs joining at a single point (pinching

vertices). In our present setting, that is hamiltonian BRST, one can define the interacting

gauge fixed hamiltonian by H := {Q, b} , from which one can derive the vertex operator.

This is sufficient to compute one-particle irreducible diagrams at one-loop, since in that

case the worldline is naturally associated to the loop, from which external states stick out as
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vertex operators. Treating tree-level amplitudes, however, is in general more complicated.

Especially for self-interacting theories like pure Yang-Mills and gravity, all internal and

external lines are of the same species, and there is no natural worldline to be found. For a

given tree-level diagram one has thus to choose an appropriate line connecting two external

states to be the worldline. By doing so one is selecting two external states to be at the

(asymptotic) endpoints of the worldline, to be specified by the boundary conditions of the

path integral, while the other external states are carried by the vertex operators discussed

above. The corresponding diagram is thus given by the expectation value

〈f |T{W0,1(τ1)
n−2∏
k=2

∫
dτkW0,k(τk)} |i〉 (6.2)

where |i〉 and |f〉 label the two external states that are chosen to be at the worldline

endpoints. As displayed above, vertex operators in general have to be integrated over the

worldline. This is easily understood, as they come from deformations of the action. In

other terms, more akin to string theory, their positions are moduli that must be integrated

over. One vertex operator (the W0,1(τ1) above), however, has to be fixed to an arbitrary

position in order to fix the leftover invariance under rigid translations of the worldline.

This is the point particle analogue of fixing three vertex operators in string theory at tree-

level, to remove the conformal Killing symmetries left after gauge fixing. In BRST Hilbert

space language, this is equivalent to the fact that the inner product between conformal

vacua needs three ghost insertions to be nonzero: 〈0| c−1c0c1 |0〉 ∼ 1 whose point particle

analogue is in fact 〈0| c |0〉 ∼ 1 . One obvious difference is that in string theory conformal

invariance implies an operator-state correspondence so that all the external states can be

treated on equal footing as vertex operators attached to a vacuum worldsheet. In the

RNS superstring there is an extra subtlety in that two of the three unintegrated vertex

operators should be in picture −1 , while the third unintegrated vertex and the integrated

ones should be in picture zero. This suggests that a similar mechanism may be at work

for the point particle [24], such that the initial and final states in (6.2) can be obtained by

vertex operators acting on the vacuum, such that 〈f | ... |i〉 = 〈0|Vf ...Vi |0〉 . To explore this

idea for the model at hand14 we shall return to the hamiltonian BRST treatment.

Following [24, 39, 40], let us consider a first-quantized system with interacting15 BRST

charge Q , and expand it around its free part as

Q = Q0 + V . (6.3)

Nilpotency of the full BRST charge yields for the vertex

{Q0, V }+ V 2 = 0 , (6.4)

while the part of V linear in fluctuations, that we denote V0 , is closed with respect to the

free BRST charge: {Q0, V0} = 0 . Suppose now that the BRST Hilbert space contains a

14In [24] this analysis was performed for the case of N = 2 spinning particle in a Yang-Mills background,

analogous to the open string.
15Typically this describes a point particle interacting with background spacetime fields.
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vacuum
∣∣0̃〉 , usually different from the Fock vacuum |0〉 for ghosts, that is also a physical

state16 and has ghost number −1. Acting with V0 on this vacuum will thus produce a

physical state at ghost number zero:

|V 〉 := V0

∣∣0̃〉 ⇒ Q0 |V 〉 = 0 , δ |V 〉 = Q0 |Λ〉 , (6.5)

the gauge invariance descending from V0 ∼ V0 + [Q0,Λ] with Λ a ghost number minus one

operator parameter. The correspondence sketched by (6.5) works directly for the case of

the N = 2 spinning particle on a Yang-Mills background: the “physical state” vacuum is∣∣0̃〉 := β |0〉 where |0〉 is the Fock vacuum and β the first-quantized antighost creator.17

In the string field interpretation of the N = 2 BRST Hilbert space,
∣∣0̃〉 corresponds to a

constant Yang-Mills ghost. The corresponding linear vertex operator, defined from Q =

Q0 + V0(A) +O(A2) reads (see [24] for details)

V0 = c
[
2A · p− 4i ∂µAν θ

[µθ̄ν]
]
−
(
γθ̄µ + γ̄θµ

)
Aµ =: cWI +WII (6.6)

in background Lorentz gauge ∂ · A = 0 . When acting on the vacuum
∣∣0̃〉 it produces the

physical vector state: V0

∣∣0̃〉 = Aµ θ
µ |0〉 while containing information about the integrated

vertex as well: the WII part of the vertex, that creates the vector from the YM ghost

vacuum, corresponds to the picture −1 vertex of the open string18 with WI corresponding

to the picture zero.

For N = 4 the situation is more complicated. Let us consider the expansion of the

background vielbein around flat space as eaµ = δaµ+ẽaµ . Since the introduction of the vielbein

itself is a mere technical point (see appendix A for details), we can choose a local Lorentz

frame where the antisymmetric part of the fluctuation vanishes: ẽ[µν] := δa[µẽν]a = 0

yielding hµν := 2 δa(µẽν)a = 2 ẽµν for the metric fluctuation or, equivalently, eaµ = δaµ+ 1
2 h

a
µ ,

where now we switch between flat and curved indices with δaµ . The linear vertex operator

V0 = (Q−Q0)linear in h and ẽ , (6.7)

resulting from the expansion of (5.4) reads

V0 = c
(
−hµν∂µ∂ν + (ωµab ∂

µ + ∂µ ωµab) θ
a · θ̄b − ηµσΓνµσ∂ν +Rabcdθ

a · θ̄b θc · θ̄d
)

+ i
((
γ̄ · θc + γ · θ̄c

)
ẽµc ∂µ −

(
γ̄ · θµ + γ · θ̄µ

)
θa · θ̄bωµab

)
= c

(
hµνpµpν − 2i ∂[νhλ]µ p

µθν · θ̄λ − 2
(
∂[λ∂[µhν]σ]

)
θµ · θ̄ν θλ · θ̄σ

)
− 1

2

(
γ̄ · θµ + γ · θ̄µ

)
hµν p

ν + i
(
γ̄ · θµ + γ · θ̄µ

)
∂[νhλ]µθ

ν · θ̄λ =: cWI +WII ,

(6.8)

where we used ∂µhµν = ηµνhµν = 0 . We recall (see appendix A) that the relation between

partial derivatives and momenta is given by ∂µ = i g1/4pµ g
−1/4 = i pµ − 1

4 ∂µh
λ
λ + O(h2)

that reduces to ∂µ = i pµ at the linearized level for a traceless graviton, thus yielding (6.8).

16For the case at hand this entails, besides being in the cohomology of Q0 , to be in the kernel of Tα .
17The BRST Hilbert space for N = 2 coincides with a single sector of the N = 4 case considered here,

i.e. (θµi , γi, βi)→ (θµ, γ, β) , same for the barred operators.
18The difference in the ghost dependence with respect to open string theory depends both on the choice

of vacuum |0〉 and in the smaller Killing group of the point particle.
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Contrary to the Yang-Mills case, in the N = 4 Hilbert space Hred there is no scalar

physical vacuum. Let us instead consider the vector state lying at ghost number −1 ,

corresponding to the diffeomorphism ghost:

|ξ〉 := ξµ (θµ1β2 − θµ2β1) |0〉 , (6.9)

that, in order to be in the cohomology of Q0 , has to be a Killing vector of flat spacetime:

∂(µξν) = 0 . We will now restrict the graviton fluctuation to be a plane wave: hµν = εµν e
ik·x

with k · εµ = εµµ = 0 . The vertex operator V0 = cWI +WII thus reduces to

WI = εµν

(
pµpν − kσSνσpµ −

1

2
kσkρS

σµSνρ
)
eik·x,

WII = −1

2
εµν (Sνpµ + kσS

µSσν) eik·x,

(6.10)

where we recall that Sµ = γ̄ · θµ + γ · θ̄µ and Sµν = 2θ[µ · θ̄ν]. For a given on-shell graviton

state with polarization εµν and momentum kµ one can choose a constant vector ξµ obeying

ξ · εµ = 0 and ξ · k = 1 . By acting on such state (6.9) with WII one obtains

WII |ξ〉 = εµν

(
ξ · k θµ1 θ

ν
2 − 2ξνkσθ

σ
[1θ

µ
2]

)
eik·x |0〉

= εµνθ
µ
1 θ

ν
2e
ik·x |0〉 = |h〉 .

(6.11)

It is thus possible to use the BRST deformation to obtain a graviton state out of its own

ghost. Contrary to the Yang-Mills case, however, one cannot use the ghost state as a viable

vacuum since it breaks Lorentz invariance and is not universal, being a different vector for

each graviton.

According to the above discussion, an n-graviton tree-level world line diagram is

given by

〈
h(1)

∣∣∣T{V (2)
n−1∏
i=3

∫
dτiW

(i)
I }

∣∣∣h(n)
〉

=
〈
ξ(1)
∣∣∣T{V (1)V (2)

n−1∏
i=3

∫
dτiW

(i)
I V (n)}

∣∣∣ξ(n)
〉
.

(6.12)
Applying the above formula to the three point function one obtains〈
h(3)

∣∣∣V (2)
∣∣∣h(1)〉 =

〈
ξ(3)
∣∣∣T{V (3)V (2)V (1)}

∣∣∣ξ(1)〉
=

Tr
(
ε(2) · ε(1)

) (
k1 · ε(3) · k1

)
+Tr

(
ε(3) · ε(2)

) (
k2 · ε(1) · k2

)
+Tr

(
ε(3) · ε(1)

) (
k3 · ε(2) · k3

)
−2
(
k1 · ε(3) · ε(1) · ε(2) · k1+k2 · ε(3) · ε(2) · ε(1) · k2+k3 · ε(1) · ε(3) · ε(2) · k3

)


= ε(1)µαε(2)νβε(3)σγ
(
k1σηµν + k2µηνσ + k3νησµ

) (
k1γηαβ + k2αηβγ + k3βηγα

)
.

(6.13)

On-shell, the contractions of the exponentials in the plane waves give a factor of one. This

is in agreement with the on-shell three-graviton vertex in Einstein gravity. In order to

develop an efficient formalism to compute tree-level graviton scattering with this model, it

would be interesting to adapt the so-called worldgraph approach of [24, 41], that should

result in simpler “Feynman rules” compared to the standard worldline computations. As
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for the implementation of the constraints Tα |Ψ〉 = 0 in the path integral, it is not a

problem for tree-level amplitudes: since the gauge fixed hamiltonian commutes with the

constraints, a worldline with an asymptotic state in Hred = ker Tα will keep it in Hred

throughout its evolution. On the other hand, for one-loop amplitudes and higher the

situation is different, as the worldline loop corresponds to a trace over the full Hilbert

space. It is thus necessary to find the correct way to perform the projection on the Hilbert

space, i.e. construct the appropriate one-loop measure for the path integral, that should

be related to the R-symmetry gauging used in [30, 33, 42].

7 Conclusions

It is well known that the N = 4 spinning particle describes free gravitons in Minkowski

spacetime. Despite the obvious existence of non-linear self-interacting gravity, it was so

far not known how to couple the N = 4 worldline action to a curved background, due to

curvature obstructions that break the supersymmetry algebra.

Inspired by the work of [24] for Yang-Mills, in this note we have coupled the N = 4

spinning particle to background gravity at the level of hamiltonian BRST. The coupling has

manifest background diffeomorphism invariance at the full non-linear level. We then showed

that quantum consistency of the worldline model, which amounts to nilpotency of the BRST

operator, requires the gravitational background to satisfy Einstein’s equations. Similarly to

what happens in the case ofN = 2 coupled to Yang-Mills [24], it is necessary to truncate the

N = 4 Fock space to have a consistent coupling. We also found that infinitesimal variations

of the BRST operator around a classical solution produce an unintegrated, picture zero

operator which generates an asymptotic graviton state when acting on a diffeomorphism

ghost state. Furthermore, the simplest world graph with 3 vertex operators reproduces the

3-graviton coupling in General Relativity. As such, the N = 4 spinning particle serves as a

useful toy model for a background independent formulation of string field theory. Indeed,

given a manifestly background independent BRST quantization of the worldline this BRST

charge can, in principle, be integrated to obtain the homological vector field of the space

of fields which, in turn, can be taken as a starting point for the BV quantization.

An interesting extension of the present work is to relax the constraint on the Hilbert

space to subalgebras of so(4) which should give rise to the complete massless sector of the

NS-sector of string teory, including the Kalb-Ramond field Bµν as well as the dilaton and

their coupling to the background fields through deformations of the BRST charge that

preserve a suitable subgroup of the SO(4) R-symmetry. We will return to this problem in

a forthcoming work.

Another interesting question is the inclusion of spacetime supersymmetry. While it

seems difficult to realise this in the RNS formalism adopted here, it is conceivable that this

can be done by coupling the pure spinor worldline (see e.g. [43, 44]) to external fields.
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A Flat vs curved fermions & hermiticity

In worldline applications in curved space it is customary, when worldline RNS19 oscillators

are present, to introduce spacetime background vielbein and spin connection, even though

there are no spacetime fermions, and treat the oscillators as spacetime flat Lorentz vectors,

just as it happens for spacetime gamma matrices in curved space. This is mostly to avoid

x-dependent commutation relations between the oscillators. It is nonetheless viable to use

curved base indices and avoid the introduction of background vielbeins. In the following

we explicitly present the mapping between the two formalisms in the case of a particle

model with N = 2s supersymmetries.

A.1 Flat fermions

Here we consider a d-dimensional target spacetime manifold M endowed with a vielbein20

eaµ(x) and torsion-free spin connection ωµab(x) . The graded phase space has coordinates

(pµ, x
µ, θai , θ̄

a i) with i = 1, ...,N/2 fermionic oscillator families (N = 4 for the model used

in the paper). The symplectic current

Θ := pµẋ
µ + i θ̄iaθ̇

a
i (A.1)

induces the quantum (anti)-commutation relations

[xµ, pν ] = i δµν , {θai , θ̄b j} = δji η
ab , (A.2)

the other (anti)-commutators being zero. The states in the Hilbert space, that are subject

to suitable physical state conditions, are isomorphic21 to wave functions ψ(x, θi) that consist

of spacetime multiforms, as explicitly displayed in (2.5) for the present case of N = 4 . In

the following discussion the number of fermion families is immaterial and we often use a

vector state (pertinent to N = 2) |A〉 ∼ Aa θ
a ≡ Aµ e

µ
a θa for examples. The covariant

inner product is defined by

〈V ,W 〉 :=

∫
ddx
√
g V ∗a W

a (A.3)

19Borrowing from string theory language, we simply mean worldline oscillators, either fermionic or

bosonic, that are spacetime vectors.
20The metric and the Christoffel symbols descend in the obvious way with gµν = eaµ eν a .
21One can consider the usual Fock space realization of the fermionic algebra, by choosing a vacuum |0〉

obeying θ̄a i |0〉 = 0 and identify (hiding all indices) ψ...(x)θ...θ |0〉 ∼ ψ(x, θ)
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for vectors, which generalizes to multi-forms22

〈χ , φ〉 := cs,n

∫
ddx
√
g χ∗a1[n1]...as[ns]

φa1[n1]...as[ns] . (A.4)

In the fermionic Hilbert space this coincides with the Fock inner product, giving (θai )† = θ̄a i

while the metric determinant in (A.4) yields the identification

g1/4pµ g
−1/4 = −i∂µ (A.5)

for a self-adjoint momentum operator p†µ = pµ . Covariant momenta and derivative opera-

tors are defined as

πµ := pµ − i ωµab θa · θ̄b , ∇̂µ := i g1/4πµ g
−1/4 = ∂µ + ωµab θ

a · θ̄b (A.6)

and obey π†µ = πµ , ∇̂†µ = −(∇̂µ + Γλµλ) with respect to the above inner product. The

supercharges

qi := −iθai eµa ∇̂µ , q̄i := −iθ̄a i eµa ∇̂µ (A.7)

are related by the adjoint operation: (qi)
† = q̄i and the self-adjoint covariant laplacian reads

∇2 := gµν∇̂µ∇̂ν − gµνΓλµν∇̂λ ≡
1
√
g
∇̂µ gµν

√
g ∇̂ν . (A.8)

A.2 Curved fermions

In this case we will only introduce a metric gµν(x) on the target space manifold, together

with its Levi-Civita connection. The coordinates of the graded phase space are chosen as

(pµ, x
µ, θµi , θ̄

i
µ) . The symplectic current

Θ := pµẋ
µ + i θ̄iµθ̇

µ
i (A.9)

gives the non vanishing (anti)-commutators

[xµ, pν ] = i δµν , {θµi , θ̄
j
ν} = δji δ

µ
ν , (A.10)

where the independent fermionic momentum is the covector θ̄iµ , while θ̄µ i := gµν(x) θ̄iν .

Tensors in the wave functions now carry base curved indices, e.g. |A〉 ∼ Aµ θ
µ and the

natural inner product becomes

〈V ,W 〉 :=

∫
ddx
√
g V ∗µWµ ≡

∫
ddx
√
g gµνV ∗µ Wν , (A.11)

with obvious generalization to multi-forms. The adjoint operation on fermions now involves

the spacetime metric:

(θµi )† = gµν(x)θ̄iν , (A.12)

consistently with (A.11). The partial derivative is again related to the momentum operator

by g1/4pµ g
−1/4 = −i∂µ but, by taking the adjoint of the relation [pµ, θ

ν
i ] = 0 , consistency

with (A.12) implies that

p†µ = pµ + i ∂µgνλ θ
ν · θ̄λ , (A.13)

22We remind that a multi index a[n] stands for [a1...an] antisymmetrized with strength one.
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as it can also be deduced from (A.11). The covariant momenta, derivatives and super-

charges are defined by

πµ := pµ + iΓλµν θ
ν · θ̄λ , ∇̂µ := i g1/4πµ g

−1/4 = ∂µ − Γλµν θ
ν · θ̄λ ,

qi := −iθµi ∇̂µ , q̄i := −iθ̄iµ gµν ∇̂ν
(A.14)

and still obey π†µ = πµ , ∇̂†µ = −(∇̂µ + Γλµλ) and (qi)
† = q̄i with respect to (A.11). Corre-

spondingly, the covariant laplacian

∇2 := gµν∇̂µ∇̂ν − gµνΓλµν∇̂λ ≡
1
√
g
∇̂µ gµν

√
g ∇̂ν (A.15)

is self adjoint.

Mapping the two. The map between the two realizations starts from the obvious re-

definition of the fermionic oscillators23

θµi = eµa(x) θai , θ̄iµ = eµa(x) θ̄a i . (A.16)

The transformation between momenta can be found by the requirement

[pflat
µ , θai ] = 0 , [pcurved

µ , θνi ] = 0 (A.17)

provided (A.16). This fixes

pcurved
µ = pflat

µ − i ∂µeν a θν · θ̄a , (A.18)

that is consistent with the hermiticity properties displayed above and preserves the sym-

plectic current:

Θ := pcurved
µ ẋµ + i θ̄iµθ̇

µ
i = pflat

µ ẋµ + i θ̄iaθ̇
a
i , (A.19)

thus providing a canonical transformation in the graded phase space. Given the above

redefinitions, covariant momenta and derivatives coincide, namely πcurved
µ = πflat

µ , ∇̂curved
µ =

∇̂flat
µ and hence so do the supercharges and covariant laplacian.

B so(4) algebra

In this subsection we provide a detailed calculation of the algebra of so(4) R-symmetry

generators. We define the full (physical fields and ghost fields) so(4) generators in the

following way,

JIJ = iΘµ
[IΘJ ]µ − 2iB[IΓJ ], (B.1)

where I ∈ {1, 2, 3, 4} . The ΘI are fermionic fields which obey the anticommutation relation

{Θµ
I ,ΘJν} = δIJδ

µ
ν , the BI and ΓI are bosonic ghosts satisfying the commutation relation,

[BI ,ΓJ ] = 2δIJ . The so(4) generators satisfy the following commutation relation:

[JIJ ,JKL] = i (δJKJIL − δJLJIK − δIKJJL + δILJJK) . (B.2)

23Notice that, in a path integral formulation, the Jacobians cancel from the measure and Dθ̄aDθ
a ≡

Dθ̄µDθ
µ.
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It is more convenient to work with a complex basis by definig

θµi =
1√
2

(
Θµ
i + iΘµ

i+2

)
, θ̄iµ =

1√
2

(Θµi − iΘµi+2) ,

βi =
1

2
(Bi + iBi+2) , β̄i =

1

2
(Bi − iBi+2) ,

γi =
1

2
(Γi + iΓi+2) , γ̄i =

1

2
(Γi − iΓi+2) ,

(B.3)

where i ∈ {1, 2}. The commutation relations in this basis are,

{θµi , θ̄
j
ν} = δµν δ

j
i , [βi, γ̄

j ] = [β̄j , γi] = δji , (B.4)

where all the other commutation relations vanish. We define a new set of generators built

out from the old JIJ generators in the following way,

J 1
1 ≡ −J13 = θ1θ̄

1 + γ1β̄
1 − β1γ̄

1 − d

2
+ 1 = N1 −

d

2
+ 1,

J 2
2 ≡ −J24 = θ2θ̄

2 + γ2β̄
2 − β2γ̄

2 − d

2
+ 1 = N2 −

d

2
+ 1,

Y ≡ −1

2
(i (J12 + J34) + J14 + J23) = θ1θ̄

2 + γ1β̄
2 − β1γ̄

2,

Y† ≡ −1

2
(−i (J12 + J34) + J14 + J23) = θ2θ̄

1 + γ2β̄
1 − β2γ̄

1,

Tr ≡ −1

2
(iJ12 − iJ34 − J23 + J14) = θ̄1θ̄2 − β̄1γ̄2 + β̄2γ̄1,

G ≡ −1

2
(iJ12 − iJ34 + J23 − J14) = θ1θ2 − β1γ2 + β2γ1.

(B.5)

The commutation relations among the new generators are,

[Tr,G] = N1 +N2 − d+ 2, [N1,Y] = Y, [N2,Y†] = Y†, [Y,Y†] = N1 −N2,

[Tr,N1] = [Tr,N2] = Tr, [N1,G] = [N2,G] = G,
(B.6)

where all the other commutation relations vanish.

C From string to particle — NS sector

We consider the reduction from the Polyakov string to the point particle. Since the point

particle admits the NS spectrum we consider the Polyakov action in the NS-NS sector. We

start from the world sheet action with z = e−iω, where ω = σ1 + iσ2,

√
α′Xµ (z, z̄) = xµ0 − i

α′

2
pµ ln |z|2 + i

(
α′

2

) 1
2 ∑
m∈Z′

1

m

(
αµm
zm

+
α̃µm
z̄m

)

≡ α′√
2
φµ
(
σ2
)

+ i

(
α′

2

) 1
2 ∑
m∈Z′

1

m

(
αµm
(
σ2
)
eimσ

1
+ α̃µm

(
σ2
)
e−imσ

1
)
.

(C.1)

The NS fermion has no zero mode on the cylinder due to its antisymmetry. To circumvent

this problem we perform a twisted compactification. One way to do this is to start with
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the expansion of ψ on the complex plane, that is,

ψµ (z) =
∑

r∈Z+ 1
2

ψµr

zr+1/2
, ψ̃µ (z̄) =

∑
r∈Z+ 1

2

ψ̃µr

z̄r+1/2
, (C.2)

The extra 1
2 in the exponent in the expansion of the fermion in (C.2) comes from the

transformation from the cylinder to the complex plane, since ψ takes values in the spinor

bundle, K
1
2 . To continue, twist ψ (and ψ̃) so that ψ becomes a scalar on the world sheet.

After mapping back to the cylinder we then have,

ψµ
(
σ1, σ2

)
=

∑
r∈Z+ 1

2

ψµr
(
σ2
)
ei(r+1/2)σ1

, ψ̃µ
(
σ1, σ2

)
=

∑
r∈Z+ 1

2

ψ̃µr
(
σ2
)
e−i(r+1/2)σ1

.

(C.3)

This twist is also indicated by the fact that in the worldline formulation ψ is viewed as

a scalar. Note, that the twist breaks the world sheet diffeomorphisms which mix the σ1

and σ2 directions. We allow this diffeomorphism breaking since in the worldline the σ1

direction is absent. The reduced action then becomes,

S =
1

4π

∫ (
2

α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
dzdz̄

=
i

2

∫ (
∂2φ

µ∂2φµ + eσ
2
ψµ1/2∂2ψµ−1/2 + eσ

2
ψ̃µ1/2∂2ψ̃µ−1/2

)
dσ2 + . . .

(C.4)

where the ellipsis indicates higher excitation modes and ∂2 means a derivative with respect

to σ2. Note that while ψ1/2 is the hermitian conjugate of ψ−1/2 w.r.t. the bpz inner product

it is not the hermitian conjugate with respect to the natural inner product for the reduced

action. We then define,
θµ1 ≡ ψ

µ
−1/2, θµ2 ≡ ψ̃

µ
−1/2,

θ̄µ1 ≡ ie
σ2
ψµ1/2, θ̄µ2 ≡ ie

σ2
ψ̃µ1/2,

(C.5)

and changing σ2 = iτ we find, for the lowest excitation modes,

S =
1

2

∫ (
∂τφ

µ∂τφµ + θ̄µi∂τθiµ
)
dτ, (C.6)

where i = 1, 2.
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