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1 Introduction

The low-energy effective field theory of explicit string theory models is an important in-

gredient in attempts to make contact between string theory and phenomenology. In this

paper we consider a subsector of the low-energy effective theory of 4-dimensional toroidal

type IIB orientifolds with minimal supersymmetry, consisting of the kinetic terms of the

diagonal untwisted Kähler moduli (i.e. the moduli determining the volumes of the three
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T2-factors of the internal space) and the 4-dimensional dilaton.1 These fields play an im-

portant role in many approaches to model building and the goal of the present work is to

gain a better understanding of this sector at string 1-loop order. In particular we focus on

two questions:

• What is the Kähler potential of the untwisted Kähler moduli and the 4-dimensional

dilaton at 1-loop, consistent with N = 1 supersymmetry and shift symmetries?

• What are the 1-loop field redefinitions of these fields?

The necessity for a field redefinition at 1-loop order arises because in general the metric

on the sigma model target space ceases to be manifestly Kähler, i.e. it ceases to be given

by the second derivative of a real function with respect to the original (complex) field

variables, once 1-loop corrections to the metric are taken into account.2 Consequently, it

is also impossible to read off the structure of the Kähler potential without first finding a

field basis for which the Kählerness of the metric is manifest. Thus, the two points above

are intimately related and have to be solved simultaneously.

The need for field redefinitions in the context of (toroidal) type IIB orientifolds has

also been observed at disk level (i.e. at order eΦ relative to the leading form of the field

definitions, where Φ is the dilaton). This is due to the presence of the open string sector and

can either be inferred by an analysis of the kinetic terms resulting from a Kaluza-Klein

reduction of the coupled supergravity and DBI actions [3–8], by analyzing the physical

gauge couplings [9–12] or by considering the transformation of the field variables under

discrete shifts of the open string fields [13, 14]. Almost all the field redefinitions of the

untwisted Kähler moduli and the dilaton observed in these papers vanish, however, when

the open string scalars are set to zero.3 Field redefinitions can also already arise at sphere

level and disk level from α′-corrections. Examples of this were discussed in [15–17]. We

will, however, restrict our analysis to field redefinitions arising at string 1-loop order.

Field redefinitions at string 1-loop order (i.e. at order e2Φ relative to the leading form

of the field definitions) were discussed much less in the literature. A well-known example

arises for the dilaton in the heterotic string which was first discussed in [18]. Examples in

the context of type I and type II models (even though with N = 2 supersymmetry) were

discussed in [3, 15, 19]. To our knowledge, 1-loop field redefinitions in type II orientifolds

with N = 1 supersymmetry have not been studied so far.

The importance of the first point of the above list for string model building should

be rather obvious. String loop corrections to the Kähler potential were discussed in the

context of moduli stabilization (see [20–23] for examples in type IIB compactifications)

and in approaches to inflation within string theory, cf. [24] for an overview. For instance,

loop corrections play an important role in fibre inflation, introduced in [25]. However, also

the second point might have interesting phenomenological consequences. Redefinitions

1For many toroidal orientifolds, only the diagonal Kähler moduli survive in the untwisted sector. How-

ever, especially for Z3- and Z4-orientifolds and also some Z6-orientifolds, one has h1,1
untw.>3, cf. table 20 in [1].

2We wonder if this could be dealt with by redefining the vertex operators at loop-level, as in section 7.6.3

in [2].
3The field redefinition discussed in [11] is an exception.
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of Kähler moduli by open strings were instrumental in attempts to embed inflation into

string theory, cf. [26], and the redefinition of the volume moduli at 1-loop level (even though

including blow-up modes) could have some noticeable effect on the phenomenology of the

Large Volume scenario, cf. [27].

Our strategy is to derive and solve general constraints arising from N = 1 supersym-

metry (i.e. from the fact that the moduli metric is Kähler), from axionic shift symmetries

of the moduli metric and, finally, from a well motivated ansatz for the moduli metric

(cf. (4.3), (4.4), (4.23) and (4.24) below). This allows us to determine the general structure

of the Kähler potential and the field redefinitions of the untwisted Kähler moduli and the

dilaton, compatible with the above three constraints. This analysis does not allow us to

fix certain coefficients whose determination requires explicit string calculations (which we

leave for future work). In spirit, our analysis bears some similarity to the strategy followed

in [15]. There the authors also determined general constraints on the form of the metric of

the universal hypermultiplet in type II compactifications, arising from N = 2 supersym-

metry and shift symmetries. To fix the final form of the metric a string calculation was

necessary. Also in their case, supersymmetry required a redefinition of the volume modulus

at 1-loop order, where it mixes with the 4-dimensional dilaton.

The determination of the 1-loop Kähler potential for the untwisted Kähler moduli

and the dilaton in certain N = 1 type IIB orientifolds (a Z2 × Z2- and a Z′6-orientifold)

was already undertaken in [19, 28] and our findings concerning the Kähler potential are

consistent with the earlier results. However, our results are more general, as they are valid

for an arbitrary 4-dimensional toroidal type IIB orientifold with minimal supersymmetry.4

Moreover, our findings for the field redefinitions are new. Like the present paper, also [19]

determined the general structure of the Kähler potential for the models under scrutiny

(except for the N = 2 case of type I compactified on T2 × K3, where the additional

supersymmetry fixed also the coefficient of the 1-loop correction to the Kähler potential).

The analysis of the Z′6-orientifold was based on T-duality arguments which did not fix

certain coefficients in the Kähler potential and, in particular, it did not give any hint

towards the field redefinitions required at 1-loop level. The field redefinitions, on the other

hand, are important ingredients in the final determination of the 1-loop Kähler potential

as they can lead to the absorption or additional generation of 1-loop contributions to the

moduli kinetic terms. Hence, we consider our results concerning the Kähler potential as a

nice check of the consistency of [19].

Thus, even though partial results in certain individual models were available in the

literature, our findings allow for a more rigorous and general understanding of the 1-loop

structure of the moduli Kähler potential (in the mentioned subsector of the fields). Our

results show how the fields should be redefined in order for the different terms in the moduli

metric to be consistent withN = 1 supersymmetry and axionic shift symmetries. Moreover,

our results indicate clearly which quantities in the low-energy effective action one would

4We are always using the language of type IIB orientifolds with D9/D5-branes. However, our final results

for the 1-loop field redefinitions and the correction to the Kähler potential should also be valid for type IIB

orientifolds with D3/D7-branes, with the appropriate definitions of the tree level moduli fields. This will

be discussed further at the end of section 2.
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have to calculate via string amplitudes in order to fix the undetermined coefficients in the

Kähler potential and the field redefinitions. This paves the way for a complete determina-

tion of the Kähler potential at 1-loop by concrete string amplitude calculations. Somewhat

surprisingly, we found that only very few quantities have to be calculated by string theory

in order to determine the 1-loop correction to the Kähler potential (for instance, for ZN
orientifolds a single component of the moduli metric in Einstein frame is sufficient). This

is due to the fact that the (super)symmetries of the low-energy effective action lead to

relations between different components of the moduli metric which considerably simplify

the task of determining the 1-loop correction to the Kähler potential.

The organization of the paper is as follows. In section 2 we begin with a review of

some relevant aspects of the low-energy effective action of toroidal type IIB orientifolds,

focusing on the kinetic terms and on the definition of the field variables for which the

metric on moduli space is Kähler at tree-level (always in the subsector of fields that we are

considering, cf. the beginning of this introduction). In section 3 we then discuss the general

framework for obtaining the field redefinitions and the form of the Kähler potential at 1-

loop order, imposing supersymmetry and axionic shift symmetries. We use this framework

in sections 4.1 and 4.2 in order to obtain the general structure of the contributions to the

Kähler potential and the field redefinitions arising from the N = 1 and N = 2 sectors

of an arbitrary 4-dimensional toroidal type IIB orientifold with minimal supersymmetry.

Section 4.3 contains an observation on the structure of the field redefinitions and the

corrections to the Kähler potential. We apply the results of section 4 to the example of

the Z′6-orientifold in section 5. Finally, we end with concluding remarks in section 6. The

appendix contains some technical aspects of our calculations and also an application of our

methods to the N = 2 theory of type I compactified on T2 ×K3.

2 String 1-loop effective action

We consider the kinetic terms of the 4-dimensional dilaton and the volume moduli of the

three 2-tori in an arbitrary 4-dimensional and minimally supersymmetric toroidal type IIB

orientifold, together with their axionic partners. At tree-level and in Einstein-frame they

look like5

S4 =
1

κ2
4

∫
d4x
√−g

1

2
R−

3∑
i,j=0

(
G

(0)
titj

∂µti∂
µtj +G

(0)

c
(0)
i c

(0)
j

∂µc
(0)
i ∂µc

(0)
j

)+ . . . . (2.1)

5In this paper superscripts (0) and (1) denote tree-level quantities and string 1-loop corrections, respec-

tively. The reader might wonder why we include a superscript (0) only for the c-variables and not for the

t-variables in (2.1). The reason is the following: in section 3 we are going to discuss possible redefinitions

of the Kähler variables (i.e. the variables for which the scalar metric is given by the second derivative of a

Kähler potential). This might become necessary at 1-loop order if the corrected metric can not be written

anymore as the second derivative of a corrected Kähler potential with respect to the tree-level variables.

However, whereas the c(0)-variables are in fact the real parts of the Kähler variables at tree-level, the

t-variables are not their imaginary parts. These are rather given by the τ (0)-variables introduced below

in (2.17). Hence it is the τ -variables that are going to be redefined at 1-loop order and not the t-variables

and, thus, we do not have to indicate their tree-level form with a superscript (0).
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Here, κ2
4 is the 4-dimensional gravitational constant, t0 denotes the 4-dimensional dilaton,

t0 = Φ4 , (2.2)

and the ti (i ∈ {1, 2, 3}) are the volumes of the 2-tori of the toroidal N = 1-orientifold,

measured with the string frame metric. The tree-level metric for these fields is [3, 29]

G
(0)
t0t0

= 1 , G
(0)
titj

=
1

4t2i
δij , i, j ∈ {1, 2, 3} . (2.3)

As mentioned in the introduction, we focus on field-redefinitions induced by string 1-loop

effects and, thus, for most part of the paper we do not consider any α′-corrections to the

tree-level metric, as the one of [30]. Including those would lead to additional terms in the

1-loop field redefinitions which are doubly suppressed, in gs and the inverse overall volume

V−1.6 The fields c(0) arise from the RR-sector; c
(0)
0 is the scalar dual to the 2-form field

Cµν (with 4-dimensional indices) and the c
(0)
i (i ∈ {1, 2, 3}) are the components of the RR

2-form C2 with indices along the ith torus. The metric G
(0)

c
(0)
i c

(0)
j

is diagonal and will be

given below (in (2.25)).

We stress that, at tree-level, it is the form of the action in Einstein-frame given in

equation (2.1) that one obtains by comparing with the string S-matrix elements at sphere

level when using the conventional form of the vertex operators for the graviton and dilaton

V (k, ε) = − 2

α′
εµν

(
i∂Xµ +

1

2
α′k · ψ ψµ

)(
i∂̄Xν +

1

2
α′k · ψ̃ ψ̃ν

)
eik·X(z,z̄) , (2.4)

where the polarisation tensor εµν is given by

ε(h)
µν = ε(h)

νµ , ε(h)
µν η

µν = 0 = kµε(h)
µν , (graviton) (2.5)

ε(D)
µν =

1√
2

(ηµν − kµk̄ν − k̄µkν) , kµε(D)
µν = 0 (dilaton) (2.6)

with an auxiliary vector k̄µ that satisfies k̄2 = 0 and k̄ · k = 1, cf. eq. (16.9) in [31]. This

fact is due to the choice of the vertex operators given above, which generate states that

are orthogonal to each other at tree-level, as explicitly shown e.g. in section 16.3 of [31].

In (2.5) h stands for the graviton and in (2.6) D denotes the fluctuations of the dilaton,

D ∼ Φ4 − Φ4 , (2.7)

where, as usual, the constant background value of the dilaton, Φ4, determines the loop

counting parameter, gs = eΦ4 .

6In order to avoid misunderstandings, let us reiterate that α′-corrections can not only contribute to the

1-loop field redefinitions but can also induce field redefinitions already at tree level, as in [15–17]. These tree

level field redefinitions would not be doubly suppressed. However, we only consider 1-loop field redefinitions

in this paper.
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Now, to the tree-level action (2.1) we add 1-loop corrections that one could again

obtain by matching with string S-matrix elements, i.e.7

S4 =
1

κ2
4

∫
d4x
√−g

1

2

(
1 + e2Φ4 δE

)
R−

3∑
i,j=0

(
G

(0)
titj

+ e2Φ4 G
(1)
titj

)
∂µti∂

µtj

−
3∑

i,j=0

(
G

(0)

c
(0)
i c

(0)
j

+ e2Φ4 G
(1)

c
(0)
i c

(0)
j

)
∂µc

(0)
i ∂µc

(0)
j

+ . . . . (2.8)

In (2.8), we allowed for non-trivial off-diagonal metric components G
(1)
titj and G

(1)

c
(0)
i c

(0)
j

. A

few words concerning the perturbative expansion are in order here. One might wonder

about corrections to the Einstein-Hilbert term and the sigma model metric from the disk

or projective plane. From the momentum expansion of the closed string 2-point functions

in [34] and in appendix A.2. of [35] it seems a priori that there are no corrections at this

order (as there are no terms in the amplitudes at quadratic order in the momenta). On the

other hand, in [36] it was conjectured that there is an ε10ε10R
4-term in the type I theory

in 10 dimensions at disk level. Upon dimensional reduction this should lead to a disk level

correction to the Einstein-Hilbert term in 4 dimensions, cf. [37]. It is a very interesting

question how to resolve this apparent conflict. However, we will not pursue this any further

in this paper.

After performing the Weyl rescaling

gµν → Ω2gµν (2.9)

with Ω2 =
(
1 + e2Φ4 δE

)−1
, (2.8) turns into the Einstein frame action. Up to 1-loop order

(hence ignoring any (∂ ln Ω)2 terms, which are of order O(e4Φ4)) it reads

S4 =
1

κ2
4

∫
d4x
√−g

1

2
R−

3∑
i,j=0

(
G

(0)
titj

+G
(1)
titj

)
∂µti∂

µtj

−
3∑

i,j=0

(
G

(0)

c
(0)
i c

(0)
j

+G
(1)

c
(0)
i c

(0)
j

)
∂µc

(0)
i ∂µc

(0)
j

+ . . . (2.10)

7We should mention that in writing down (2.8) we made an assumption, i.e. that the 1-loop 3-point

function of two gravitons and a dilaton is not vanishing (leading to the dilaton dependence of the 1-

loop correction of the Einstein-Hilbert term). The corresponding amplitude at sphere level vanishes after

summing over all kinematical factors and using (2.5) and (2.6), cf. section 16.3 in [31]. However, the

kinematical factors at 1-loop level and to order O(k2) can be different from the ones at sphere level, given

that some of the vertex operators have different picture number. This happens for instance for the 3-point

function of gravitons for which the kinematical factor at 1-loop, given in equation (3.2) of [32], differs from

the one at sphere level, cf. equation (16.105) in [31]. Moreover, there can be additional contributions at

1-loop arising from terms which a priori are of order O(k4) after contraction of the worldsheet fields and

which become of order O(k2) only due to pinching singularities in the integration over the vertex operator

positions. An example where this kind of contribution was crucial in order to get the complete kinematical

structure of the Einstein-Hilbert term at 1-loop, can be found in [33].
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with

G
(1)
titj

= e2Φ4

(
G

(1)
titj − δE G

(0)
titj

)
, (2.11)

G
(1)

c
(0)
i c

(0)
j

= e2Φ4

(
G

(1)

c
(0)
i c

(0)
j

− δE G(0)

c
(0)
i c

(0)
j

)
. (2.12)

On the other hand, one could perform a Weyl rescaling gµν → e−2(Φ4−Φ4) gµν in (2.8),

which then becomes

S4 =
1

κ̃2
4

∫
d4x
√−g

[
1

2

(
e−2Φ4 +δE

)
R+3

(
e−2Φ4−δE

)
∂µΦ4∂

µΦ4−3 ∂µ (δE)∂µΦ4 (2.13)

−
3∑

i,j=0

(
e−2Φ4G

(0)
titj

+G
(1)
titj

)
∂µti∂

µtj−
3∑

i,j=0

(
e−2Φ4G

(0)

c
(0)
i c

(0)
j

+G
(1)

c
(0)
i c

(0)
j

)
∂µc

(0)
i ∂µc

(0)
j

]
+. . . ,

where we used

κ4 = gsκ̃4 = eΦ4 κ̃4 . (2.14)

The action (2.13) is the conventional string-frame action, having the correct dilaton-

counting for the tree and 1-loop metrics. We mention in passing that

κ̃−2
4 = (2π

√
α′)6κ−2

10 = (πα′)−1 . (2.15)

It is the metric of the variables ti that one has direct access to via string scattering

amplitudes.8 However, in order to make the Kähler structure of the resulting metric

manifest (i.e. the fact that the sigma model metric can be expressed as the second derivative

of a Kähler potential), one has to use different variables. The need for changing from the

string theory field variables to supergravity field variables in order to put the Lagrangian

into the standard supergravity form was first discussed in the context of the heterotic

string, cf. [43, 44]. In our case, the kinetic terms of the tree-level action become manifestly

Kähler when using the coordinates

T
(0)
i = c

(0)
i + iτ

(0)
i , (2.16)

where the τ
(0)
i are defined via [29]

τ
(0)
0 = e−t0

√
t1t2t3 , τ

(0)
1 = e−t0

√
t1
t2t3

, τ
(0)
2 = e−t0

√
t2
t1t3

, τ
(0)
3 = e−t0

√
t3
t1t2

. (2.17)

8The most direct and simplest way to calculate the 1-loop corrections G
(1)

and δE in (2.8) would be via

2-point functions, using a procedure to relax momentum conservation which was introduced in [38]. It is

based on the fact that momentum conservation has a very different origin in string theory than on-shellness.

Whereas the latter is required for consistency by BRST symmetry, the former only arises after integrating

over the zero modes of the string coordinates and one could postpone this integration until the very end of

the calculation. For type II orientifolds the procedure of [38] was used to calculate the 1-loop contributions

to the Einstein-Hilbert term in [3, 32, 39–41] and to scalar metrics in [19, 28, 42]. If one does not want to

rely on relaxing momentum conservation, one would have to calculate a 4-point function of two scalars and

two gravitons in order to read off the 1-loop correction to the scalar metric. Such a string 4-point function

would also include wave function renormalization diagrams of the external legs and, thus, according to [37]

it would actually directly calculate the 1-loop correction to the metric in Einstein frame, i.e. (2.11).
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This can be inverted to give

e2t0 =
1√

τ
(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

, (2.18)

ti = τ
(0)
i

√√√√ τ
(0)
0

τ
(0)
1 τ

(0)
2 τ

(0)
3

, i ∈ {1, 2, 3} . (2.19)

The fields (2.16) are the dilaton and the (diagonal, untwisted) Kähler moduli of the tree-

level supergravity action.

As shown in appendix A, the metric for the variables ti can be expressed through the

τ
(0)
i via

3∑
i,j=0

[
G

(0)
titj

+G
(1)
titj

]
∂µti∂

µtj =
3∑

i,j=0

(
G

(0)

τ
(0)
i τ

(0)
j

+G
(1)

τ
(0)
i τ

(0)
j

)
∂µτ

(0)
i ∂µτ

(0)
j (2.20)

with

G
(0)

τ
(0)
i τ

(0)
j

(τ (0)) =
δij

4(τ
(0)
i )2

, (2.21)

G
(1)

τ
(0)
i τ

(0)
j

(τ (0)) =
Y

(1)
ij

τ
(0)
i τ

(0)
j

=

(
ATX(1)A

)
ij

τ
(0)
i τ

(0)
j

, (2.22)

where the matrices A and X(1) are given by

A =
1

2


−1 −1 −1 −1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 (2.23)

and

X(1) =



G
(1)
t0t0
4 ,

t1G
(1)
t0t1
2 ,

t2G
(1)
t0t2
2 ,

t3G
(1)
t0t3
2

t1G
(1)
t0t1
2 , t21G

(1)
t1t1

, t1t2G
(1)
t1t2

, t1t3G
(1)
t1t3

t2G
(1)
t0t2
2 , t1t2G

(1)
t1t2

, t22G
(1)
t2t2

, t2t3G
(1)
t2t3

t3G
(1)
t0t3
2 , t1t3G

(1)
t1t3

, t2t3G
(1)
t2t3

, t23G
(1)
t3t3

 . (2.24)

Let us also mention here that at tree-level one has [3]

G
(0)

c
(0)
i c

(0)
j

(τ (0)) = G
(0)

τ
(0)
i τ

(0)
j

(τ (0)) =
δij

4(τ
(0)
i )2

. (2.25)

The explicit form of Y (1) can be found in (A.9)–(A.18) of appendix A. As an example

of how the metric in τ -variables looks like, let us take a closer look at G
(1)

τ
(0)
3 τ

(0)
3

, for instance.
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It is given by

G
(1)

τ
(0)
3 τ

(0)
3

(τ (0)) =
Y

(1)
33

(τ
(0)
3 )2

=

(
ATX(1)A

)
33

(τ
(0)
3 )2

(2.26)

=
1

4(τ
(0)
3 )2

[
G

(1)
t0t0

4
+ t1G

(1)
t0t1

+ t2G
(1)
t0t2
− t3G(1)

t0t3
+ t21G

(1)
t1t1

+ t22G
(1)
t2t2

+ t23G
(1)
t3t3

+ 2t1t2G
(1)
t1t2
− 2t1t3G

(1)
t1t3
− 2t2t3G

(1)
t2t3

]
(2.27)

=
e2Φ4

4(τ
(0)
3 )2

[
G

(1)
t0t0

4
+
(
t1G

(1)
t0t1 + t2G

(1)
t0t2 − t3G

(1)
t0t3

)
+

3∑
i=1

(
t2iG

(1)
titi

)
+ 2

(
t1t2G

(1)
t1t2 − t1t3G

(1)
t1t3 − t2t3G

(1)
t2t3

)
− δE

]
. (2.28)

In the third equality we used (2.11). The final result has to be understood as a function of

τ
(0)
i (using (2.18) and (2.19)). Equation (2.28) expresses the metric component G

(1)

τ
(0)
3 τ

(0)
3

in

terms of the metric components G
(1)
titj and the correction to the Einstein-Hilbert term δE,

all of which are directly calculable via string 2-point functions, cf. footnote 8.

Some comments are in order here. In [19, 28] a different strategy for calculating the

1-loop corrections to the moduli metric was followed. To understand this, we first observe

that the tree-level fields τ
(0)
i can also be expressed through the 10-dimensional dilaton Φ10.

Using eΦ10 = et0
√
t1t2t3 one easily verifies that (2.17) can be written as

τ
(0)
0 = e−Φ10t1t2t3 , τ

(0)
1 = e−Φ10t1 , τ

(0)
2 = e−Φ10t2 , τ

(0)
3 = e−Φ10t3 . (2.29)

In [19, 28] the value for Φ10 was fixed. In that case the vertex operator for τ
(0)
i is the

same as the one for ti, up to a constant rescaling by e−Φ10 . It is these vertex operators

for τ
(0)
i that were used in [19, 28] to calculate the metric for the τ

(0)
i . For the example

of G
(1)

τ
(0)
3 τ

(0)
3

(given in (2.26)–(2.28)), effectively this amounts to calculating G
(1)
t3t3 instead.

However, note that all the terms in the square bracket receive the same moduli dependence

from a given orbifold sector and a given worldsheet topology (i.e. annulus A, Möbius M,

Klein bottle K or torus T ).9 Thus, the procedure of [19, 28] allows one to calculate the

right moduli dependence for the metric of the τ
(0)
i but one can not calculate the correct

coefficients in this way. In [19] the coefficients were left undetermined and only in the N = 2

case of a T2 × K3-compactification (cf. appendix E below) the explicit coefficient of the

Kähler potential could be obtained indirectly using the higher amount of supersymmetry

(cf. appendix D in [19]). It is one goal of the present paper to present formulas indicating

which combination of string 2-point functions one would have to calculate in order to fix

the explicit coefficients in the 1-loop Kähler potential (and the 1-loop field redefinitions).

Moreover, note that we are always using the language of type IIB orientifolds with

D9/D5-branes. However, our final results for the 1-loop field redefinitions and the cor-

9This will become clear in sections 4.1 and 4.2, cf. (4.5) and (4.27) together with the notation of (4.25).
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rection to the Kähler potential should also be valid for type IIB orientifolds with D3/D7-

branes, using τ
(0)
0 = e−Φ10 and τ

(0)
i = e−Φ10 t1t2t3

ti
instead of (2.29).

3 Field redefinition and Kähler potential at 1-loop level:

general framework

In this section we would like to discuss the general strategy to obtain the 1-loop field

redefinition and the 1-loop correction to the Kähler potential, once the corrections to the

moduli metric and the Einstein-Hilbert term have been calculated, cf. (2.8).10 As mentioned

before, at tree-level the moduli metric is Kähler with the Kähler coordinates (2.16) and

Kähler potential

K(0)(T (0), T̄ (0)) = −
3∑
i=0

ln
(
T

(0)
i − T̄ (0)

i

)
. (3.1)

In principle one could now proceed to calculate the 1-loop corrections to the moduli metric

using the well known vertex operators for ti and c
(0)
i and express these (after a Weyl-

rescaling to the Einstein frame, cf. (2.10)) in terms of c
(0)
i and τ

(0)
i , using (2.18) and (2.19),

cf. (2.20).11 The result for the kinetic terms would then look like

Lkin ∼ −
3∑

i,j=0

(
G
c
(0)
i c

(0)
j

(τ (0))∂µc
(0)
i ∂µc

(0)
j +G

τ
(0)
i τ

(0)
j

(τ (0))∂µτ
(0)
i ∂µτ

(0)
j

)
+ . . . , (3.2)

where G = G(0) + G(1). The metric components have to be independent of c(0) due to its

perturbative shift symmetry.12 Moreover, (parity even) amplitudes with a single RR-vertex

operator vanish and, thus, there is no mixed term of the form G
c
(0)
i τ

(0)
j

. In general, the

moduli metric in (3.2) will not be Kähler anymore for the coordinates (2.16) and, in that

case, one can not directly read off the corrections to the Kähler potential from the metric.

Rather, one has to find 1-loop corrected variables

Tj = cj + iτj = c
(0)
j + c

(1)
j (c(0), τ (0)) + i

(
τ

(0)
j + τ

(1)
j (c(0), τ (0))

)
, (3.3)

which are not holomorphically related to (2.16) and for which the metric in (3.2) becomes

Kähler, i.e.

Lkin ∼ −
3∑

i,j=0

∂2K

∂Ti∂T̄j
∂µTi∂

µT̄j + . . . , (3.4)

10This strategy and the results for the Z′6 orientifold of section 5 below were partly already summarized

in [45].
11Note that for c

(0)
0 one would first have to calculate the kinetic term and a possible Chern-Simons term

for Cµν and then dualize. Alternatively, one may be able to use the vertex operator for the RR 6-form C6

with only internal indices.
12We do not consider any non-perturbative corrections, neither on the world-sheet nor in space-time,

which might break this shift symmetry to a discrete subgroup.
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where the Kähler potential K includes a 1-loop correction K(1), i.e.

K(T, T̄ ) = K(0)(T, T̄ ) +K(1)(T, T̄ ) . (3.5)

Note that K(0)(T, T̄ ) in (3.5) takes the same form as in (3.1), but with T
(0)
i replaced by

the corrected variables Ti. A priori, the 1-loop corrections to c
(0)
j and τ

(0)
j might depend

on both the c(0)s and the τ (0)s, but due to the shift symmetry of the c(0)s one can actually

restrict the ansatz for the field redefinition to

cj = c
(0)
j , τj = τ

(0)
j + τ

(1)
j (τ (0)) . (3.6)

Let us go through the argument for this. It contains two steps. In a first step, we argue

that one can choose Kähler coordinates such that the c(1)s and τ (1)s do not depend on the

c(0)s so that the corrected Tj still fulfill

Tj
c
(0)
k →c

(0)
k +ak−→ Tj + aj (3.7)

like at tree-level. Assume we found some Kähler coordinates (3.3) which do not fulfill this.

Then under infinitesimal shifts c
(0)
k → c

(0)
k + ak, which should correspond to symmetries of

the Kähler manifold, these Kähler variables would transform according to

δTj = aj +
∑
k

(
∂c

(1)
j

∂c
(0)
k

+ i
∂τ

(1)
j

∂c
(0)
k

)
ak ≡ aj +

∑
k

fjk(T )ak , (3.8)

where in the last step we defined the functions fjk(T ). These have to depend holomorphi-

cally on the Kähler variables T , given that symmetries of a Kähler manifold are described

by holomorphic Killing vectors in order to preserve the complex structure (cf. section 13.4

in [46], for instance). Note that the functions fjk are suppressed by a factor g2
s , as they

arise at 1-loop level. One could now define new variables

T ′j = Tj −
∑
k

∫ Tk

dT̃k fjk(T̃ ) = c
(0)
j + (c′j)

(1) + i
(
τ

(0)
j + (τ ′j)

(1)
)
, (3.9)

which are also valid Kähler coordinates, as the coordinate change is holomorphic. However,

the new coordinates transform under infinitesimal shifts c
(0)
k → c

(0)
k + ak according to

δT ′j = δTj −
∑
k

fjk(T )δTk = aj +O(g4
s) , (3.10)

i.e. (c′)(1)s and (τ ′)(1)s do not depend on the c(0)s. Thus, we can now focus on field

redefinitions of the form

Tj = cj + iτj = c
(0)
j + c

(1)
j (τ (0)) + i

(
τ

(0)
j + τ

(1)
j (τ (0))

)
, (3.11)

for which (3.7) is still satisfied.
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In a second step we show that the c(1)s can actually be set to zero. Due to the symmetry

of the theory under shifts (3.7), the Kähler potential can only depend on the imaginary

parts of the T s, i.e.

K(T, T̄ ) = K(τ) . (3.12)

This implies

∂2K

∂Ti∂T̄j
∂µTi∂

µT̄j =
1

4

∂2K

∂τi∂τj
(∂µci∂

µcj + ∂µτi∂
µτj) (3.13)

or in other words

Gciτj = 0 , (3.14)

Gτiτj =
1

4

∂2K

∂τi∂τj
= Gcicj . (3.15)

On the other hand, expressing the Lagrangian (3.2) in terms of the new variables by

substituting c
(0)
i = ci − c(1)

i (τ (0)) and τ
(0)
i = τi − τ (1)

i (τ (0)) into (3.2), we obtain

Lkin ∼ −
∑(

Gcicj∂µci∂
µcj + 2Gciτj∂µci∂

µτj +Gτiτj∂µτi∂
µτj
)
, (3.16)

where13

Gciτj = −
∑
k

[
G

(0)

c
(0)
i c

(0)
k

(τ) ∂τj

(
c

(1)
k

)]
= −

∂τj

(
c

(1)
i

)
4τ2
i

, (3.17)

Gτiτj = G
τ
(0)
i τ

(0)
j

(τ)−
∑
k

τ
(1)
k

∂

∂τk

(
G

(0)

τ
(0)
i τ

(0)
j

(τ)

)
−
∑
k

[
G

(0)

τ
(0)
i τ

(0)
k

(τ) ∂τj

(
τ

(1)
k

)
+ (i↔ j)

]

=
δij
4τ2
i

+G
(1)

τ
(0)
i τ

(0)
j

(τ) +
τ

(1)
i

2τ3
i

δij −
1

4

∂τj
(
τ

(1)
i

)
τ2
i

+
∂τi

(
τ

(1)
j

)
τ2
j

 , (3.18)

Gcicj = G
c
(0)
i c

(0)
j

(τ)−
∑
k

τ
(1)
k

∂

∂τk

(
G

(0)

c
(0)
i c

(0)
j

(τ)

)
=

δij
4τ2
i

+G
(1)

c
(0)
i c

(0)
j

(τ) +
τ

(1)
i

2τ3
i

δij . (3.19)

Comparing (3.17) with (3.14) we see that the c(1)s can also not depend on the τs and, thus,

can be chosen to vanish (a constant shift amounts to a holomorphic field redefinition). This

completes the proof that we can restrict the field redefinitions to the form (3.6).

We can now use (3.15), (3.18) and (3.19) in order to derive conditions on the 1-loop

corrections to the field variables and the Kähler potential, τ (1) and K(1). Concretely, the

equations for the τ (1)s are

∂τj

(
τ

(1)
i

)
2τ3
i

= ∂τi

(
G

(1)

c
(0)
i c

(0)
j

(τ)

)
− ∂τj

(
G

(1)

c
(0)
i c

(0)
i

(τ)

)
for i 6= j , (3.20)

∂τi

(
τ

(1)
i

)
2τ2
i

= G
(1)

τ
(0)
i τ

(0)
i

(τ)−G(1)

c
(0)
i c

(0)
i

(τ) (3.21)

13Note that in G(1) and in terms involving c(1) or τ (1) we can interchange τ (0) and τ to 1-loop order. The

same holds true for the 1-loop correction to the Kähler potential K(1).
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and the equation for K(1) is

1

4

∂2K(1)(τ)

∂τi∂τj
= G

(1)

c
(0)
i c

(0)
j

(τ) +
τ

(1)
i

2τ3
i

δij (3.22)

or

1

4

∂2K(1)(τ)

∂τi∂τj
= G

(1)

c
(0)
i c

(0)
j

(τ) for i 6= j , (3.23)

1

4

∂2K(1)(τ)

∂τi∂τi
= G

(1)

c
(0)
i c

(0)
i

(τ) +
τ

(1)
i

2τ3
i

. (3.24)

Note that the right hand sides of (3.20) and (3.21), which source the field redefinitions,

measure the “non-Kählerness” of the 1-loop metric, expressed in terms of τ
(0)
i and c

(0)
i .

Eq. (3.22) follows directly from (3.15) and (3.19) and eq. (3.21) is a consequence of

Gcicj = Gτiτj and (3.18) and (3.19) which imply

1

4

∂τj
(
τ

(1)
i

)
τ2
i

+
∂τi

(
τ

(1)
j

)
τ2
j

 = G
(1)

τ
(0)
i τ

(0)
j

(τ)−G(1)

c
(0)
i c

(0)
j

(τ) . (3.25)

Eq. (3.21) follows when choosing i = j. Finally, eq. (3.20) follows easily from (3.22) and

the identity

∂

∂τj

(
∂2K(1)(τ)

∂τi∂τi

)
=

∂

∂τi

(
∂2K(1)(τ)

∂τi∂τj

)
. (3.26)

To sum up, equations (3.20) and (3.21) should be solved to find the field redefinitions

τ
(1)
i (τ) and the 1-loop Kähler potential K(1) is then obtained by integrating (3.22) once

the τ
(1)
i (τ) are known. One comment is in order here. Naively, it appears as if one needs to

determine the correction to the metric of the axions in order to obtain the field redefinitions

and the 1-loop correction to the Kähler potential. A knowledge of the 1-loop correction to

the metric of the τ
(0)
i alone seems not sufficient. However, we will discuss in a moment that

the metric components are not all independent but rather have to obey some consistency

conditions. Using a particular ansatz for the form of the 1-loop corrections to the moduli

metric, we will see in section 4.1 and 4.2 that knowledge of the 1-loop correction to the

metric of the τ
(0)
i is actually sufficient.

In order for the solutions of the above equations (3.20)–(3.22) to exist, there are consis-

tency conditions on the loop corrections G(1). Concretely, we find the following independent

conditions:

τi

[
∂τiG

(1)

c
(0)
i c

(0)
j

(τ)− ∂τj G
(1)

c
(0)
i c

(0)
i

(τ)

]
+ (i↔ j) = 2

[
G

(1)

τ
(0)
i τ

(0)
j

(τ)−G(1)

c
(0)
i c

(0)
j

(τ)

]
(i 6= j) ,

(3.27)

∂τkG
(1)

c
(0)
i c

(0)
j

(τ) = ∂τiG
(1)

c
(0)
j c

(0)
k

(τ) = ∂τjG
(1)

c
(0)
k c

(0)
i

(τ) (i 6= j 6= k) , (3.28)

τ2
i

∂

∂τj

[
G

(1)

c
(0)
i c

(0)
i

(τ)−G(1)

τ
(0)
i τ

(0)
i

(τ)

]
=

∂

∂τi

[
τ3
i

(
∂τj G

(1)

c
(0)
i c

(0)
i

(τ)− ∂τi G
(1)

c
(0)
i c

(0)
j

(τ)

)]
(i 6= j) .

(3.29)
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Eq. (3.27) follows from (3.20) (plus the one with (i ↔ j)) and (3.25), eq. (3.28) can be

inferred from (3.22) with i 6= j and from the invariance of
∂3(K(1)(τ))
∂τi∂τj∂τk

under permutation

of the derivatives, and eq. (3.29) arises from (3.20)–(3.21) with properly taken derivatives

and using ∂τi∂τj

(
τ

(1)
i

)
= ∂τj∂τi

(
τ

(1)
i

)
. The 1-loop metric corrections G(1) must satisfy the

consistency conditions (3.27)–(3.29) otherwise one can not express the metric via a Kähler

potential with appropriate Kähler coordinates at 1-loop order.

4 Concrete computations

In order to proceed further, we now have to make an ansatz for the field dependence of the

1-loop corrected moduli metric. We will do so in the following sections, separately for the

contributions of the N = 1 and N = 2 sectors (N = 4 sectors do not contribute due to the

high supersymmetry). The final results for the field redefinitions and 1-loop correction to

the Kähler potential will then be the sum of the contributions from the N = 1 and N = 2

sectors, i.e.

τ
(1)
i = τ

(1)
i

∣∣∣
N=1

+ τ
(1)
i

∣∣∣
N=2

(4.1)

and

K(1) = K
(1)
N=1 +K

(1)
N=2 . (4.2)

4.1 N = 1 sectors

N = 1 sectors are all that one needs for odd N orientifold models, while even N orientifold

models also contain N = 2 sectors in addition to N = 1 sectors. Those will be discussed

in the next section.

In N = 1 sectors, the moduli dependence of 1-loop corrections to the metric (in

Einstein frame) is simple and given by

G
(1)

τ
(0)
i τ

(0)
j

(τ (0)) = αij
e2Φ4

τ
(0)
i τ

(0)
j

=
αij

τ
(0)
i τ

(0)
j

√
τ

(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

, (4.3)

G
(1)

c
(0)
i c

(0)
j

(τ (0)) = βij
e2Φ4

τ
(0)
i τ

(0)
j

=
βij

τ
(0)
i τ

(0)
j

√
τ

(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

, (4.4)

where we used e2Φ4 = e2t0 = (τ
(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3 )−1/2 (see (2.18)). Here αij and βij (obviously

symmetric under exchange of the indicies) are moduli-independent constants, which can be

fixed by calculating 1-loop amplitudes for a specific orientifold model (hence these constants

are model dependent), cf. [28] for an example.

The moduli dependence of (4.3) and (4.4) can be easily understood. It comes entirely

through the loop counting factor involving the dilaton and through the normalization

factors of the vertex operators (which is the same as at tree-level). Let us first consider (4.3)

in order to discuss the τ (0)-dependence a bit more in detail. In string theory one would

naturally use the vertex operators for the ti (with i ∈ {0, 1, 2, 3}) and the graviton in order
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to calculate G
(1)
titj and δE, cf. (2.8). For the N = 1 sector contributions to these quantities,

the scaling with the volume moduli ti (for i ∈ {1, 2, 3}) arises solely from the normalization

of the vertex operators. The vertex operators of the graviton and of the 4-dimensional

dilaton t0 are independent of any volume moduli, cf. (2.4), whereas the vertex operators

for the ti (with i ∈ {1, 2, 3}) are proportional to t−1
i , cf. equation (3.30) in [35] (note that

their ImT corresponds to our t). Thus, we infer the scaling

δE = const. , G
(1)
titj ∼

1

titj
, G

(1)
t0ti ∼

1

ti
, G

(1)
t0t0 = const. , i, j ∈ {1, 2, 3} . (4.5)

From this scaling behavior, the τ (0)-dependence of (4.3) can be inferred by using (2.11) and

changing the coordinates from t to τ , cf. (2.22)–(2.24). In (4.4) the factor (τ
(0)
i τ

(0)
j )−1 arises

due to the normalization of the vertex operators for c
(0)
i . This normalization is fixed by

supersymmetry and has to be chosen such that it reproduces the tree-level metric (2.25).

Namely, given that the metric (2.25) could be calculated by a sphere amplitude of two

axions and a graviton, we see that the vertex operators for c
(0)
i have to contain a factor

of (τ
(0)
i )−1.

We now substitute (4.3)–(4.4) (with the replacement τ
(0)
i → τi in the arguments,

which is allowed to 1-loop order) into the equations given in the previous section to find

the field redefinitions τ
(1)
i and Kähler potential K(1). Moreover, using the consistency

conditions (3.27)–(3.29), we note that the αs and the βs are not independent.

First, condition (3.28) gives

βij = βjk = βik ≡ β for i 6= j 6= k . (4.6)

Using this, conditions (3.29) and (3.27) give

αii =
1

2
(βii + 3β) (4.7)

and

αij =
1

4
(βii + βjj)−

β

2
for i 6= j , (4.8)

respectively. The above non-trivial three conditions must be fulfilled in order for Kähler

coordinates to exist. Relations (4.7)–(4.8) can be inverted to give

β =
1

4
(αii + αjj − 2αij) , (4.9)

βii =
1

4
(5αii − 3αjj + 6αij) (4.10)

with j 6= i. Since (4.9) holds for any i 6= j, it implies

α11 + α22 − 2α12 = α11 + α33 − 2α13 = α00 + α11 − 2α01 =

= α00 + α22 − 2α02 = α00 + α33 − 2α03 = α22 + α33 − 2α23. (4.11)

Note that (4.6)–(4.10) lead to non-trivial predictions of relations among the N = 1 sector

contributions to NSNS and RR 1-loop 2-point amplitudes. As anticipated in the last
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section, (4.9) and (4.10) show that indeed the consistency conditions are strong enough to

fix the 1-loop corrections to the metric of the axions in terms of the corresponding 1-loop

corrections to the metric of the τ
(0)
i , at least for N = 1 sectors (we will see a similar result

for the N = 2 sectors in the next section).

Now, using (4.3)–(4.4), we can find the 1-loop field redefinitions τ
(1)
i and the cor-

rection to the Kähler metric/potential from (3.20)–(3.21) and (3.23)–(3.24), respectively.

We obtain

τ
(1)
i

∣∣∣
N=1

=
4(αii − βii) τi√

τ0τ1τ2τ3
= 4(αii − βii) τi e2t0 = (−αii + 3αjj − 6αij) τi e

2t0 (j 6= i) ,

(4.12)

where in the second equality we used (2.18) (interchanging τ with τ (0), cf. footnote 13) and

in the last equality we used (4.10). The Kähler metric (3.23)–(3.24) reads

∂2K(1)(τ)

∂τi∂τj
=

4β

τiτj
√
τ0τ1τ2τ3

if i 6= j , (4.13)

∂2K(1)(τ)

∂τi∂τi
=

4(2αii − βii)
τ2
i

√
τ0τ1τ2τ3

=
12β

τ2
i

√
τ0τ1τ2τ3

. (4.14)

In the last equality we used (4.7). One can check that the above expressions fulfill inte-

grability conditions, so that we can integrate them to obtain the 1-loop correction to the

Kähler potential from N = 1 sectors as

K
(1)
N=1 =

16β√
τ0τ1τ2τ3

=
4(αii + αjj − 2αij)√

τ0τ1τ2τ3
(j 6= i) , (4.15)

where we used (4.9) in the last equality. It is easy to see that the Kähler potential above

reproduces the metric in (4.13) and (4.14). Note that it is possible to express both τ
(1)
i

and K
(1)
N=1 entirely in terms of αs (i.e. G

(1)

τ
(0)
i τ

(0)
j

) using (4.9)–(4.10), without invoking βs

(i.e. G
(1)

c
(0)
i c

(0)
j

).

We would now like to express the results (4.12) and (4.15) in terms of the quantities that

one actually calculates with string amplitudes, i.e. δE and the components of G
(1)

, cf. (2.8).

To this end, let us first investigate what (4.11) entails. From (2.22) and (4.3), we have

αij = e−2t0Y
(1)
ij = e−2t0

(
ATX(1)A

)
ij
. (4.16)

Here X(1) and A are given by (2.24) and (2.23), respectively, while Y
(1)
ij is given

by (A.9)–(A.18). Inserting (A.9)–(A.18) into (4.16), constraints (4.11) can be solved

(using (A.19)–(A.24)) to give

t21G
(1)
t1t1

= t22G
(1)
t2t2

= t23G
(1)
t3t3

, G
(1)
t1t2

= G
(1)
t1t3

= G
(1)
t2t3

= 0 , (4.17)

which implies (from (2.11))

t21G
(1)
t1t1 = t22G

(1)
t2t2 = t23G

(1)
t3t3 , G

(1)
t1t2 = G

(1)
t1t3 = G

(1)
t2t3 = 0 . (4.18)
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These imply non-trivial relations between 2-point amplitudes of volume moduli of different

tori which have to hold for N = 1 sectors. Then from (4.9), (4.16), (A.19)–(A.24)

and (2.11) we have

β =
e−2t0 t21G

(1)
t1t1

2
=

1

8

(
4t21G

(1)
t1t1 − δE

)∣∣∣
N=1

. (4.19)

Here the subscript N = 1 indicates that we are just looking at the contributions to G
(1)

and δE arising from N = 1 sectors. From (4.17) it is obvious that the apparent asymmetry

between the three tori in (4.19) is an artifact of an arbitrary choice and one could have

chosen G
(1)
t2t2 or G

(1)
t3t3 in order to express β. Note that the right hand side of (4.19) is

actually constant in view of the scaling (4.5).

Plugging (4.19) into (4.15) we obtain for the contribution to the Kähler potential from

N = 1 sectors

K
(1)
N=1 =

2
(

4t21G
(1)
t1t1 − δE

)∣∣∣
N=1√

τ0τ1τ2τ3

= 2 e2Φ4

(
4t21G

(1)
t1t1 − δE

)∣∣∣
N=1

= 8 t21 G
(1)
t1t1

∣∣∣
N=1

. (4.20)

In the second and the last equality we used (2.18) and (2.11), respectively.14 Using (4.12)

together with (4.16), (4.17) and (A.9)–(A.18), we obtain the field redefinitions as

τ
(1)
0

∣∣∣
N=1

= e2Φ4

(
3∑
j=1

t2j G
(1)
tjtj +

3∑
j=1

tjG
(1)
t0tj −

1

4
G

(1)
t0t0 −

1

2
δE

)∣∣∣∣∣
N=1

τ0 , (4.21)

τ
(1)
i

∣∣∣
N=1

= e2Φ4

(
3∑
j=1

t2j G
(1)
tjtj −

3∑
j=1

tjG
(1)
t0tj + 2tiG

(1)
t0ti −

1

4
G

(1)
t0t0 −

1

2
δE

)∣∣∣∣∣
N=1

τi (i 6= 0) .

(4.22)

Here we also used (2.11) in order to express the results in terms of the quantities di-

rectly calculable via string amplitudes. Note that the quantities in the brackets of (4.21)

and (4.22) are moduli-independent constants for N = 1 sectors, cf. (4.5).

4.2 N = 2 sectors

4.2.1 Ansatz for the moduli dependence

In the case of N = 2 sectors, besides the normalization of the vertex operators and the loop

(dilaton) factor, there are additional moduli dependences (in comparison with (4.3)–(4.4)),

14We emphasize that K(1) given in (4.20) is to be understood as a function of the corrected variables τ ,

even though the second and last line in (4.20) depend on ti which are related to the tree-level variables τ (0)

via (2.18)–(2.19), see footnote 13. The same will be the case for the N = 2 sectors, e.g. in (4.73).
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coming from Kaluza-Klein (KK) or winding states. We make the following ansatz for the

moduli dependence of the N = 2 sector contributions to the moduli metric:

G
(1)

τ
(0)
i τ

(0)
j

(τ (0)) =
∑
N = 2
sectors

e2Φ4
α

(m,l)
ij (Ul)t

m
l

τ
(0)
i τ

(0)
j

=
∑
N = 2
sectors

α
(m,l)
ij (Ul)t

m
l

τ
(0)
i τ

(0)
j

√
τ

(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

, (4.23)

G
(1)

c
(0)
i c

(0)
j

(τ (0)) =
∑
N = 2
sectors

e2Φ4
β

(m,l)
ij (Ul)t

m
l

τ
(0)
i τ

(0)
j

=
∑
N = 2
sectors

β
(m,l)
ij (Ul)t

m
l

τ
(0)
i τ

(0)
j

√
τ

(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

. (4.24)

Obviously βij and αij are symmetric with respect to i↔ j. Some remarks concerning the

notation are in order. First, each N = 2 sector gets contributions from momentum/winding

states along a particular torus which is denoted by l ∈ 1, 2, 3 in (4.23) and (4.24). In

this way the dependence on the volume tl and the complex structure Ul of the lth torus

appears. The functions α
(m,l)
ij and β

(m,l)
ij result from summing over infinite towers of such

KK or winding states and are typically given by (sums of) Eisenstein series. Note that tl
depends on τ

(0)
i via (2.19). Second, the index m takes on the following values:

m = −1 (for closed string winding state exchange) ,

m = 1 (for closed string KK state exchange) . (4.25)

The t- and τ (0)-scaling in (4.23) can be motivated as follows. Like for the contribution

from N = 1 sectors, in string theory one would use the vertex operators for the ti (with

i ∈ {0, 1, 2, 3}) and the graviton in order to calculate G
(1)
titj and δE. The N = 2 sector

contributions to these quantities can be decomposed as

δE =
∑
N = 2
sectors

δE(m,l) , G
(1)
titj =

∑
N = 2
sectors

G
(1)(m,l)
titj . (4.26)

The t- and τ (0)-dependence of (4.23) is equivalent to the scaling

δE(m,l) ∼ tml , G
(1)(m,l)
titj ∼ tml

titj
, G

(1)(m,l)
t0ti ∼ tml

ti
, G

(1)(m,l)
t0t0 ∼ tml , i, j ∈ {1, 2, 3} .

(4.27)

This equivalence could be inferred by interchanging the coordinates τ and t (cf. (2.22)–

(2.24)) and using (2.11). The denominators in (4.27) can again be understood from the

normalization of the vertex operators, as for the N = 1 sector contributions. Apart from

these denominators, the only volume modulus that the quantities δE and G
(1)(m,l)
titj (for

i ∈ {0, 1, 2, 3}) can depend on is tl, as this is the only volume modulus on which the KK

and winding sums in the string amplitude depend on. Thus, our task is to motivate the

scaling of tl in (4.27).
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Example:
V⌧I

V⌧J

V⌧I

V⌧J
massive 
KK-/winding-
state 

N = 2

1

2

massive 
KK-/winding-

states

N = 2

�2

�1

Figure 1. Only BPS states contribute in N = 2 sectors. In the string theory picture on the left,

V1 and V2 are the vertex operators of any of the moduli and Φ1 and Φ2 are the corresponding fields

in the field theory picture on the right. Moreover, the crosses on the right hand side stand for the

D-brane or O-plane backgrounds.

For δE(m,l) and G
(1)(m,l)
t0t0 the tl-scaling follows from the calculation in [41]. That paper

only considered the 2-point function of gravitons, but concerning the scaling with the

volume moduli the calculation for the dilaton would proceed completely analogously, given

that the vertex operators only differ by the (volume independent) polarization tensors,

cf. (2.4)–(2.6).

For G
(1)(m,l)
titj with i = j = l the scaling in (4.27) follows from the calculation in [19]. The

scaling of tl is directly related to the power of the worldsheet parameter in the integrand

of the string amplitude (the same holds true for the graviton and dilaton amplitudes).

The reason for the fact that the worldsheet parameter only appears with a simple power

(besides a simple exponential factor from the KK/winding sum) is that the corrections to

the metric from N = 2 sectors arise (in the closed string channel) due to the exchange of

BPS states. The heavy string oscillators do not contribute and, thus, the integrand of the

string amplitude does not contain any theta-functions after spin structure summation, cf.

(2.64) in [19]. For the same reason we expect the integrand of the string amplitude (after

spin structure summation) to be given by a simple power of the worldsheet parameter for

the other cases as well (i.e. i, j 6= l). Our ansatz (4.23) then amounts to the assumption

that this simple power is the same for all i, j ∈ {0, 1, 2, 3}.
Alternatively, from a field theory perspective the other cases differ from the case

i = j = l only by the 3-point vertices coupling the moduli to the massive BPS-states,

cf. the right hand side of figure 1. Thus, our ansatz (4.23) amounts to the assumption

that the vertices for the fields ti with i 6= l have the same tl-dependence as the vertex for

tl.
15 We leave a verification of this assumption to future work and here content ourselves

with the remark that this assumption will allow us to reproduce the complete structure

of the Kähler potential, found in [19] for the Z′6 orientifold using T-duality arguments, cf.

section 5 below.

Now, assuming (4.23), the form of (4.24) then follows from the constraints (3.27)

and (3.29). This is shown explicitly in appendix B.

15Two comments are in order here concerning this statement. In the field theory language we interpret

the denominators in (4.27) (arising from the normalization of the vertex operators in the string theory

calculation) as coming from the normalization of the fields and not from the interaction vertex. Moreover,

note that some of the interaction vertices might actually be zero.
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Based on the above arguments, we have the following sector-decompositions for the

1-loop corrections to the metric components coming from N = 2 sectors:

G
(1)

τ
(0)
i τ

(0)
j

(τ) =
∑
N = 2
sectors

G
(1)|(m,l)
τ
(0)
i τ

(0)
j

(τ) , G
(1)

c
(0)
i c

(0)
j

(τ) =
∑
N = 2
sectors

G
(1)|(m,l)
c
(0)
i c

(0)
j

(τ) (4.28)

with

G
(1)|(m,l)
τ
(0)
i τ

(0)
j

(τ) =
α

(m,l)
ij (Ul) t

m
l

τiτj
√
τ0τ1τ2τ3

=
α

(m,l)
ij (Ul)

τiτj(τ0τl)
(1−m)

2

·
(

τl
τ1τ2τ3

) (1+m)
2

, (4.29)

G
(1)|(m,l)
c
(0)
i c

(0)
j

(τ) =
β

(m,l)
ij (Ul) t

m
l

τiτj
√
τ0τ1τ2τ3

=
β

(m,l)
ij (Ul)

τiτj(τ0τl)
(1−m)

2

·
(

τl
τ1τ2τ3

) (1+m)
2

, (4.30)

where we used (2.19). We make an analogous decomposition of the field redefinitions τ
(1)
i

and the 1-loop corrections to the Kähler potential, i.e.

τ
(1)
i

∣∣∣
N=2

=
∑
N = 2
sectors

τ
(1)|(m,l)
i (τ) , (4.31)

K
(1)
N=2(τ) =

∑
N = 2
sectors

K(1)|(m,l)(τ) . (4.32)

Then the equations (3.20)–(3.21) and (3.23)–(3.24) hold for each N = 2 sector (specified

by (m, l)) separately.

In the following we would like to follow the strategy again that allowed us to express

the field redefinitions and the correction to the Kähler potential from N = 1 sectors. Thus,

let us pause a moment to recap the steps we took there:

• Use the consistency conditions (3.27)–(3.29) in order to constrain the βs and αs and

relate the non-vanishing βs to the αs.

• Use (3.20)–(3.21) and (3.23)–(3.24) in order to obtain the field redefinitions and

corrections to the Kähler potential in terms of the αs, employing also the relations

between βs and αs found in step 1.

• Express the result of the second step via G
(1)

and δE, using the constraints on the

αs resulting from the first step.

4.2.2 Constraints on α and β from the consistency conditions

Let us introduce indices as

a, b ∈ {0, l} , (4.33)

I, J ∈ {1, 2, 3} \ {l} . (4.34)
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I and J refer to the tori transversal to lth torus (i.e. to the torus along which a KK/winding

sum arises). This separation of the indices obviously depends on the selection of N = 2

sector. Now plugging (4.29) and (4.30) into the consistency conditions (3.27)–(3.29) to get

the constraints on α and β, we obtain (with a 6= b and I 6= J):

• m = −1 sector (closed string channel winding sum):

β(−1,l)
aa = α(−1,l)

aa , (4.35)

β
(−1,l)
ab =

1

2

(
α(−1,l)
aa + α

(−1,l)
bb

)
− α(−1,l)

ab , (4.36)

β
(−1,l)
II = 2α

(−1,l)
aI , (4.37)

β
(−1,l)
aI = 0 , (4.38)

β
(−1,l)
IJ = 0 , (4.39)

α
(−1,l)
aI = α

(−1,l)
bI , (4.40)

α
(−1,l)
II = 0 , (4.41)

α
(−1,l)
IJ = 0 . (4.42)

• m = 1 sector (closed string channel KK sum):

β
(1,l)
II = α

(1,l)
II , (4.43)

β
(1,l)
IJ =

1

2

(
α

(1,l)
II + α

(1,l)
JJ

)
− α(1,l)

IJ , (4.44)

β(1,l)
aa = 2α

(1,l)
aI , (4.45)

β
(1,l)
aI = 0 , (4.46)

β
(1,l)
ab = 0 , (4.47)

α
(1,l)
aI = α

(1,l)
aJ , (4.48)

α(1,l)
aa = 0 , (4.49)

α
(1,l)
ab = 0 . (4.50)

Note that the m = 1 conditions can be obtained from the m = −1 conditions by

replacing a↔ I and b↔ J .

4.2.3 Field redefinitions and Kähler potential

We now solve the equations for the field redefinitions and the correction to the Kähler

potential, (3.20)–(3.21) and (3.23)–(3.24), using the relations (4.35)–(4.50) wherever appli-

cable. We relegate the calculational details to appendix C.
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For the field redefinitions we obtain

τ (1)|(−1,l)
a (τ) =

2
(
α

(−1,l)
bb − 2α

(−1,l)
ab

)
τb

, (4.51)

τ
(1)|(−1,l)
I (τ) =

2τI

(
α

(−1,l)
II − 2α

(−1,l)
aI

)
τ0τl

=
−4τI α

(−1,l)
aI

τ0τl
, (4.52)

τ (1)|(1,l)
a (τ) =

2τa

(
α

(1,l)
aa − 2α

(1,l)
aI

)
τIτJ

=
−4τa α

(1,l)
aI

τIτJ
, (4.53)

τ
(1)|(1,l)
I (τ) =

2
(
α

(1,l)
JJ − 2α

(1,l)
IJ

)
τJ

(4.54)

with a 6= b and I 6= J .

Let us turn to (3.23)–(3.24), which give for each sector (m, l)

1

4

∂2K(1)|(m,l)(τ)

∂τi∂τj
= G

(1)|(m,l)
c
(0)
i c

(0)
j

(τ) if i 6= j , (4.55)

1

4

∂2K(1)|(m,l)(τ)

∂τi∂τi
= G

(1)|(m,l)
c
(0)
i c

(0)
i

(τ) +
τ

(1)|(m,l)
i (τ)

2τ3
i

. (4.56)

These equations are solved by (cf. appendix C for more details)

K(1)|(−1,l)(τ) =
2
(
α

(−1,l)
aa + α

(−1,l)
bb − 2α

(−1,l)
ab

)
τaτb

=
4β

(−1,l)
ab

τaτb
, (4.57)

K(1)|(1,l)(τ) =
2
(
α

(1,l)
II + α

(1,l)
JJ − 2α

(1,l)
IJ

)
τIτJ

=
4β

(1,l)
IJ

τIτJ
. (4.58)

Recall our notation for the indices: a 6= b ∈ {0, l} and I 6= J ∈ {1, 2, 3} \ {l}. The total

N = 2-contribution to the Kähler potential is the sum of all the N = 2-sectors as given

in (4.32).

From the consistency conditions, we have found constraints on α
(m,l)
ij , (4.40)–(4.42)

and (4.48)–(4.50). Here we will investigate what these constraints imply for the metric

components and use our findings in order to express the field redefinitions and the correc-

tions to the Kähler potential in terms of G and δE.

From (2.22) and (4.23), we have

α
(m,l)
ij = e−2t0

(
t−ml

)
Y

(1)|(m,l)
ij , (4.59)

where Y
(1)|(m,l)
ij is the (m, l)-sector component of Y

(1)
ij , i.e.

Y
(1)
ij =

∑
N = 2
sectors

Y
(1)|(m,l)
ij . (4.60)
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Now we solve the constraint equations (4.40)–(4.42) and (4.48)–(4.50), using (A.9)–

(A.18). For the (m, l) sector we find

t2l G
(1)|(m,l)
tltl

= −G
(1)|(m,l)
t0t0

4
+mtlG

(1)|(m,l)
t0tl

, (4.61)

t2I G
(1)|(m,l)
tI tI

= t2J G
(1)|(m,l)
tJ tJ

= −mtItJG
(1)|(m,l)
tI tJ

, (4.62)

mG
(1)|(m,l)
t0tI

= 2tlG
(1)|(m,l)
tltI

. (4.63)

Using (2.11), the relations (4.61)–(4.63) for the Einstein-frame metrics can be expressed

in terms of G and δE, i.e. the quantities which are directly calculable via string 2-point

amplitudes. This results in

t2l G
(1)|(m,l)
tltl

= −G
(1)|(m,l)
t0t0

4
+mtlG

(1)|(m,l)
t0tl

+
δE(m,l)

2
, (4.64)

t2I G
(1)|(m,l)
tI tI

= t2J G
(1)|(m,l)
tJ tJ

=
δE(m,l)

4
−mtItJG

(1)|(m,l)
tI tJ

for I 6= J , (4.65)

G
(1)|(m,l)
t0tI

= 2mtlG
(1)|(m,l)
tltI

. (4.66)

Plugging (4.59) into (4.36) and (4.44), and using (A.19)–(A.24) with (4.61)–(4.63),

we have

β
(−1,l)
0l = 2 e−2t0tlt

2
I G

(1)|(−1,l)
tI tI

= 2 t1t2t3G
(1)|(−1,l)
tI tJ

, (4.67)

β
(1,l)
IJ = 2 e−2t0t−1

l t2I G
(1)|(1,l)
tI tI

= −2 t−1
l tItJ G

(1)|(1,l)
tI tJ

. (4.68)

Thus, from (4.57)–(4.58) we obtain the contributions to the Kähler potential,

K(1)|(−1,l)(τ) =
8 t1t2t3G

(1)|(−1,l)
tI tJ

τ0τl
= 8 e2Φ4tItJG

(1)|(−1,l)
tI tJ

, (4.69)

K(1)|(1,l)(τ) = − 8 tItJ G
(1)|(1,l)
tI tJ

tlτIτJ
= − 8 e2Φ4tItJG

(1)|(1,l)
tI tJ

(4.70)

with I, J ∈ {1, 2, 3} \ {l} and I 6= J . The second equalities follow from (2.18) and (2.19).

It may be more useful to express the Kähler potential in terms of diagonal metric com-

ponents, rather than off-diagonal components. That is, (4.69) and (4.70) can be written,

using (4.65), as

K(1)|(−1,l)(τ) =
2tl

(
4t2IG

(1)|(−1,l)
tI tI

− δE(−1,l)
)

τ0τl
, (4.71)

K(1)|(1,l)(τ) =
2t−1
l

(
4t2IG

(1)|(1,l)
tI tI

− δE(1,l)
)

τIτJ
(4.72)

with I, J ∈ {1, 2, 3} \ {l} and I 6= J . Note that the numerators above are independent of

ti as can be inferred using (4.27). More compactly the above can be written as

K(1)|(m,l)(τ) = 2 e2Φ4

(
4t2IG

(1)|(m,l)
tI tI

− δE(m,l)
)

= 8 t2I G
(1)|(m,l)
tI tI

(4.73)
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with any I ∈ {1, 2, 3} \ {l}. In the second equality we used (2.11). Note that the above

is of the same form as the contribution from N = 1 sectors, cf. (4.20).16 Actually, any

4-dimensional toroidal ZN orientifold with minimal supersymmetry has one torus which is

orthogonal to the KK/winding direction in every N = 2 orbifold sector. In the notation

of table 2 in [29], this is the first torus. In that case it follows from (4.20) and (4.73) that

the complete 1-loop correction to the Kähler potential is determined by the combination

4t21G
(1)
t1t1 − δE, i.e.

K(1) = 2e2Φ4

(
4t21G

(1)
t1t1 − δE

)
= 8t21G

(1)
t1t1

for ZN models. (4.74)

4.3 An observation on the structure of the field redefinitions and the

corrections to the Kähler potential

Before applying our results to a concrete example in the following section, we would like to

make a general comment about the structure of the field redefinitions and the corrections

to the Kähler potential. The tree-level Kähler potential (3.1) can be expressed in terms of

the corrected variables τ according to

K(0)(T (0), T̄ (0)) =−
3∑
i=0

ln
(
T

(0)
i −T̄

(0)
i

)
=− ln

[
16τ

(0)
0 τ

(0)
1 τ

(0)
2 τ

(0)
3

]
=− ln

[
16

3∏
i=0

(
τi−τ (1)

i

)]

=K(0)(T, T̄ )+
τ

(1)
0

τ0
+
τ

(1)
1

τ1
+
τ

(1)
2

τ2
+
τ

(1)
3

τ3
+higher orders . (4.75)

Comparing this with (3.5), we see that if it turns out that

3∑
i=0

τ
(1)
i

τi
= K(1)(τ) (4.76)

then the 1-loop correction to the Kähler potential could be interpreted as being generated

solely from expressing the tree-level Kähler potential (3.1) in terms of the corrected Kähler

variables, as was assumed in the analysis of [27]. Whether this really happens depends

on the explicit form of the field redefinitions and the corrections to the Kähler poten-

tial (including the exact coefficients to be determined by string theory), but it is already

interesting to notice that the field redefinitions have the right structure for this to have

a chance to work out. This can be seen from (4.12) and (4.15) for the N = 1 sectors

and (4.51)–(4.54) and (4.57)–(4.58) for the N = 2 sectors. Using these equations (and the

constraints (4.11)) the conditions (4.76) can be expressed in terms of αs, resulting in

α01 + α12 + α23 + α30 = 0 , (4.77)

α
(−1,l)
01 + α

(−1,l)
02 + α

(−1,l)
03 = 0 , (4.78)

α
(1,l)
IJ + α

(1,l)
0I + α

(1,l)
lI = 0 , with I 6= J ∈ {1, 2, 3} \ l . (4.79)

16(4.20) could have been written in terms of any one of the 3 tori, rather than in terms of the first one.

(4.73) in the case of N = 2 has the same form as (4.20), but is restricted to a direction orthogonal to the

KK/winding direction.
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Upon using (4.16), (4.59), (A.10)–(A.12), (A.14)–(A.15), (A.17) and (2.11) and imposing

the constraints (4.18) and (4.64)–(4.66), the conditions (4.77)–(4.79) can be solved by

4t21G
(1)
t1t1

∣∣∣
N=1

= G
(1)
t0t0

∣∣∣
N=1

(4.80)

for the N = 1 sectors and

4t2IG
(1)|(m,l)
tI tI

= G
(1)|(m,l)
t0t0 with I ∈ {1, 2, 3} \ l (4.81)

for the N = 2 sectors. Thus, the assumption of [27] mentioned above is equivalent to

the conditions (4.80) and (4.81), which are verifiable by direct string calculations. As

mentioned below (4.73), in the case of a ZN orientifold the first torus never supports KK

or winding states in N = 2 sectors and, thus, in that case one can summarize the two

conditions (4.80) and (4.81) by the very simple condition17

4t21G
(1)
t1t1 = G

(1)
t0t0 for ZN models . (4.82)

5 Application: Z′
6 orientifold

Let us take the example of the Z′6 orientifold with twist vector v = (1
6 ,−1

2 ,
1
3) and work out

the explicit form of the field redefinitions and Kähler potential, using the results obtained

above. The Z′6 orientifold has both N = 1 and N = 2 sectors. The moduli dependence of

the field redefinitions and the correction to the Kähler potential from N = 1 sectors was

given above in equations (4.12) and (4.15) (with constant αs and βs). These results can also

be expressed in terms of quantities calculable via string amplitudes, cf. (4.20)–(4.22). For

the contributions from N = 2 sectors we can read off the moduli dependence from (4.51)–

(4.54) and (4.57)–(4.58) for the field redefinitions and the correction to the Kähler potential,

respectively. For the Z′6 orientifold, the N = 2 sectors are (m, l) = {(1, 2), (−1, 2), (−1, 3)}
(cf. table 3 in [41]), which means α(±1,1) = 0 and α(1,3) = 0, so that the field redefinitions

and the correction to the Kähler potential read

τ
(1)
0

∣∣∣
N=2

=
2
(
α

(−1,2)
22 − 2α

(−1,2)
02

)
τ2

+
2
(
α

(−1,3)
33 − 2α

(−1,3)
03

)
τ3

− 4τ0 α
(1,2)
03

τ1τ3
, (5.1)

τ
(1)
1

∣∣∣
N=2

= −4τ1 α
(−1,2)
01

τ0τ2
− 4τ1 α

(−1,3)
01

τ0τ3
+

2
(
α

(1,2)
33 − 2α

(1,2)
13

)
τ3

, (5.2)

τ
(1)
2

∣∣∣
N=2

=
2
(
α

(−1,2)
00 − 2α

(−1,2)
02

)
τ0

− 4τ2 α
(−1,3)
02

τ0τ3
− 4τ2 α

(1,2)
23

τ1τ3
, (5.3)

τ
(1)
3

∣∣∣
N=2

= −4τ3 α
(−1,2)
03

τ0τ2
+

2
(
α

(−1,3)
00 − 2α

(−1,3)
03

)
τ0

+
2
(
α

(1,2)
11 − 2α

(1,2)
13

)
τ1

(5.4)

17Note that condition (4.82) is meant to hold for each sector, i.e. 4t21G
(1)
t1t1

∣∣∣
N=1

= G
(1)
t0t0

∣∣∣
N=1

for the N = 1

sectors and 4t21G
(1)|(m,l)
t1t1 = G

(1)|(m,l)
t0t0 for the N = 2 sectors.
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and

K
(1)
N=2 =

2
(
α
(−1,2)
00 +α

(−1,2)
22 −2α

(−1,2)
02

)
τ0τ2

+
2
(
α
(1,2)
11 +α

(1,2)
33 −2α

(1,2)
13

)
τ1τ3

+
2
(
α
(−1,3)
00 +α

(−1,3)
33 −2α

(−1,3)
03

)
τ0τ3

.

(5.5)

Again these results can also be expressed in terms of quantities calculable via string am-

plitudes. Using (4.73) for the Kähler potential results in

K
(1)
N=2 = 8t21

[
G

(1)|(−1,2)
t1t1

+G
(1)|(1,2)
t1t1

+G
(1)|(−1,3)
t1t1

]
= 2e2Φ4

(
4t21G

(1)
t1t1 − δE

)∣∣∣
N=2

. (5.6)

The field redefinitions can also be expressed explicitly in terms of G and δE. The result is

rather lengthy and we give the details in appendix D.

Let us finally collect all the results for the Z′6 orientifold, including both N = 1 and

N = 2 sectors, and using the relation

α
(m,l)
ij ∼ E2(−mU−ml ) , E2(U) ≡

∑
(m,n) 6=(0,0)

(Im(U))2

|m+ nU |4 (5.7)

between the αs and the non-holomorphic Eisenstein series E2, which is known from explicit

string calculations, cf. [19, 41] for instance.18 For the field redefinitions (expressed in terms

of uncorrected fields τ (0), cf. footnote 13) we have

τ
(1)
0 = a1

√√√√ τ
(0)
0

τ
(0)
1 τ

(0)
2 τ

(0)
3

+ a2
E2(U2)

τ
(0)
2

+ a3
τ

(0)
0 E2(−1/U2)

τ
(0)
1 τ

(0)
3

+ a4
E2(U3)

τ
(0)
3

, (5.8)

τ
(1)
1 = a5

√√√√ τ
(0)
1

τ
(0)
0 τ

(0)
2 τ

(0)
3

+ a6
τ

(0)
1 E2(U2)

τ
(0)
0 τ

(0)
2

+ a7
E2(−1/U2)

τ
(0)
3

+ a8
τ

(0)
1 E2(U3)

τ
(0)
0 τ

(0)
3

, (5.9)

τ
(1)
2 = a9

√√√√ τ
(0)
2

τ
(0)
0 τ

(0)
1 τ

(0)
3

+ a10
E2(U2)

τ
(0)
0

+ a11
τ

(0)
2 E2(−1/U2)

τ
(0)
1 τ

(0)
3

+ a12
τ

(0)
2 E2(U3)

τ
(0)
0 τ

(0)
3

, (5.10)

τ
(1)
3 = a13

√√√√ τ
(0)
3

τ
(0)
0 τ

(0)
1 τ

(0)
2

+ a14
τ

(0)
3 E2(U2)

τ
(0)
0 τ

(0)
2

+ a15
E2(−1/U2)

τ
(0)
1

+ a16
E2(U3)

τ
(0)
0

(5.11)

and for the Kähler potential of the dilaton and the untwisted metric moduli (including

also the complex structure U2 of the second torus, which is also a modulus field in the

18In writing down (5.7) we assumed for simplicity that all the D5-branes are sitting at the origin of the

second torus. Otherwise the functions α (and β) would be more complicated, involving also the distances

between different D5-branes along the second torus. If all the D5-branes are sitting at the origin of the

second torus the tadpoles are not cancelled locally and we neglected backreaction effects in (5.7). Of

course, the formulas (5.1)–(5.5) are equally valid for other D5-brane configurations, just that the α
(m,2)
ij

would involve sums of Eisenstein series similar to formula (D.35) in [47] (which is in the T-dual frame

though and includes also the T-dual of Wilson-lines on the D9-branes).
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low-energy effective action)

K =− ln(T0 − T̄0)− ln[(T1 − T̄1)(T2 − T̄2)(T3 − T̄3)]− ln[(U2 − Ū2)]

− b1χζ(3)

√
(T1 − T̄1)(T2 − T̄2)(T3 − T̄3)

(T0 − T̄0)3

+ b2
E2(U2)

(T0 − T̄0)(T2 − T̄2)
+ b3

E2(−1/U2)

(T1 − T̄1)(T3 − T̄3)
+ b4

E2(U3)

(T0 − T̄0)(T3 − T̄3)

+ b5
1√

(T0 − T̄0)(T1 − T̄1)(T2 − T̄2)(T3 − T̄3)
, (5.12)

where we also included the α′-correction from sphere level [30] in the second row (the

b1-term). All the coefficients ai in (5.8)–(5.11) and bi in (5.12) are constants that have

to be determined by comparing to concrete string theory calculations (and some of them

might actually turn out to be zero). For the ai this can be done by employing (4.21)–

(4.22) and (5.1)–(5.4) together with the formulas of appendix D. The coefficients b2, . . . , b5

can be obtained using (4.20) and (5.6). Note that determining the 1-loop corrections

to the Kähler potential K is in general much simpler than determining the 1-loop field

redefinitions and only requires to calculate the combination 4t21G
(1)
t1t1 − δE, cf. (4.74). For

the field redefinitions, the first terms of (5.8)–(5.11) each arise from the N = 1 sectors of

A,M,K and T , whereas the further terms arise from N = 2 sectors of A,M and K. The

last term of (5.8) (i.e. the one proportional to a4) is the analog of the field redefinition

discussed by [3] in the context of a T2×K3-compactification (cf. appendix E). In the Kähler

potential (5.12), the terms in the third row arise from the N = 2 sectors of A,M and K
and the term in the last row has its origin in the N = 1 sectors of A,M,K and T .

6 Summary and outlook

In this paper we have considered the field redefinitions and the Kähler potential at string

1-loop for a particular class of string theory models (4-dimensional toroidal type IIB ori-

entifolds with N = 1 supersymmetry) and for a particular subsector of fields (the 4-

dimensional dilaton and the diagonal untwisted Kähler moduli, i.e. the Kähler moduli

related to the volumes of the three 2-tori).

The redefinitions of the field variables are required by supersymmetry, in order to

make the Kähler structure of the scalar metric manifest at 1-loop order. In addition to

supersymmetry we made use of perturbative axionic shift symmetries and a particular

ansatz for the form of the 1-loop corrections to the metric which is suggested by concrete

string calculations. These constraints allowed us to obtain the general structure of the field

redefinitions and simultaneously of the Kähler potential at 1-loop order. The explicit form

of the field redefinitions and the Kähler potential (i.e. with the exact coefficients) would

now, in a second step, require more concrete input from string theory, via string scattering

amplitudes.

The most important results concerning the general structure of the 1-loop field re-

definitions can be found in equations (4.12) and (4.51)–(4.54) for the contributions from
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N = 1 and N = 2 sectors, respectively. The notation for the N = 2 sectors is explained

below (4.24) and at the beginning of section 4.2.2. Moreover, the αij of the N = 1 sec-

tors are constants to be determined by string theory and the α
(m,l)
ij of the N = 2 sectors

are functions of the complex structure and are given by (sums of) Eisenstein series with

coefficients again to be determined by string theory. Concerning the general structure of

the Kähler potential, our results are given in (4.15) and (4.57)–(4.58), for the contribu-

tions from N = 1 and N = 2 sectors, respectively. We then applied these formulas to the

Z′6-orientifold in section 5. We would like to emphasize, though, that our general results

about the 1-loop field redefinitions and the corrections to the Kähler potential hold for an

arbitrary 4-dimensional toroidal type IIB orientifold with N = 1 supersymmetry.

The general structure of the Kähler potential in the case of the Z′6-orientifold is not

new and was already given in [19]. Here we derived it in a very different way, confirming

the moduli dependence inferred in [19] via T-duality arguments. Our method has several

advantages. First, it is very general, applicable to any 4-dimensional toroidal type IIB

orientifold with minimal supersymmetry and it can also be easily generalized to the case

of N = 2 supersymmetry, cf. appendix E. We always used the language of an orientifold

with D9/D5-branes, but the results for the 1-loop field redefinitions and the corrections

to the Kähler potential can be interpreted for the case of D3/D7-branes as well, cf. the

comments at the end of section 2.19 Second, our method allows us to obtain also the general

structure of the field redefinitions. Third, the 1-loop field redefinitions and corrections

to the Kähler potential can straightforwardly be expressed in terms of quantities that

are directly calculable via string scattering amplitudes (i.e. δE and G
(1)
titj appearing in

the effective action (2.8)). We consider these expressions another important outcome of

our analysis. They are given by (4.20) and (4.73) for the contributions to the Kähler

potential from N = 1 sectors and N = 2 sectors, respectively, and by (4.21)–(4.22) for the

contributions to the field redefinitions from N = 1 sectors. The N = 2 sector contributions

to the field redefinitions, expressed in terms of δE and G
(1)
titj , are more complicated and

even though our formulas allow us to obtain them for an arbitrary toroidal orientifold, we

only worked out the explicit expressions for the Z′6-orientifold in appendix D.

Thus, our expressions indicate how one can fix the undetermined constants in the

formulas for the general structure of the field redefinitions and the Kähler potential via

string amplitudes. This task is simplified by the fact that the consistency conditions from

supersymmetry and shift symmetry impose relations between different metric components

and, thus, between different string amplitudes, cf. (4.18) forN = 1 sectors and (4.64)–(4.66)

for N = 2 sectors. In particular, and interestingly, certain off-diagonal terms of the volume

moduli metric have to be non-vanishing at 1-loop level in order to have a non-vanishing

contribution to the Kähler potential from N = 2 sectors, cf. (4.69) and (4.70). We expect

at least some of these contributions to be non-vanishing, namely if the two different volume

moduli couple to the same string states, cf. figure 1. For instance, for the Z′6-orientifold

19It was argued in [23] that in models with D7-branes there can be additional 1-loop contributions to the

Kähler potential (not covered by our metric ansatz), albeit for compactifications that do not correspond

to free conformal field theories (thus, excluding the toroidal orientifolds discussed in our paper), that have

localized string tree-level corrections to the Einstein-Hilbert term and that have local tadpoles.
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the k = 3 sector is formally identical to the T2×K3-orientifold discussed in [3] (and below

in appendix E), for which it is known that the 1-loop contribution to the Kähler potential

is non-vanishing. Furthermore, the consistency conditions (3.27)–(3.29) (together with our

metric ansatz (4.23)) allowed us to fix the 1-loop corrections to the Einstein-frame metric

of the axions (the c-fields) from those to the Einstein-frame metric of the volume moduli

and dilaton. This is remarkable as the computation of the c-c amplitudes is very difficult

in general.

We stress again that our analysis shows that it is much simpler to calculate the form

of the Kähler potential than the form of the field redefinitions. Even though the field

redefinitions are indispensable for the derivation of the Kähler potential, it is possible to

obtain the form of the Kähler potential without having to compute the field redefinitions

explicitly. For instance in the case of a ZN -orientifold the complete 1-loop correction to

the Kähler potential of the diagonal untwisted Kähler moduli and the dilaton is given

by K(1) = 8t21G
(1)
t1t1

, which involves the 1-loop correction to the t1-t1 component of the

scalar field metric in Einstein-frame, cf. (4.74). Thus, in order to obtain the full 1-loop

correction to the Kähler potential one only has to calculate δE and G
(1)
t1t1 , cf. (2.11). This

is a huge simplification compared to the eleven different quantities appearing in the metric

component Gτ3τ3 for instance, cf. (2.28), given that it is in general not easy to compute

even a single of these quantities.

There are further interesting directions to pursue in order to generalize or follow up

on our results. First of all, even though we focused on 1-loop corrections to the field

redefinitions and to the Kähler potential, it is an interesting question whether there are

already corrections at the level of Euler number χ = 1 (i.e. from the disk and the projective

plane) which do not vanish for vanishing open string scalars. In [36] an indirect argument

based on heterotic-type I duality was given, suggesting a correction to the 4-dimensional

Einstein-Hilbert term at this level (i.e. a term ∼ eΦ4δE(χ=1)R in the language of (2.8)).

After a Weyl transformation this would entail a disk-level contribution to the moduli metric

in the Einstein-frame, following the same steps that led from (2.8) to (2.10) (with (2.11)

and (2.12)). In the light of this it would be interesting to revisit the question whether there

could also be a correction to the moduli metric in (2.8) at χ = 1. As mentioned before,

naively the momentum expansion of the disk 2-point function of 2 closed string volume

moduli seems to indicate that there is none, given that there is no term to quadratic

order in the momenta in such an expansion, cf. appendix A.2. of [35]. On the other hand,

this naive argument would also indicate the absence of a correction to the 4-dimensional

Einstein-Hilbert term at disk level (using the momentum expansion of the graviton 2-point

function of [34]), whereas the indirect argument of [36] seems to suggest the existence of

exactly such a term.

In addition, several generalizations of our method suggest themselves. For instance,

it would be interesting to try to incorporate also tree-level α′-corrections or corrections

from backreaction in case the tadpoles are not cancelled locally. Moreover, in view of

potential applications of the 1-loop field redefinitions to the Large Volume scenario, along

the lines discussed in [27], it would be worthwhile to incorporate also Kähler moduli from
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the twisted sector (i.e. blow-up modes) into the analysis. Finally, it would be interesting

to have an independent check for the field redefinitions that we found. For T3 of the

Z′6-orientifold, for instance, this would be feasible by calculating the gauge coupling of

the D5-branes, wrapped around the third torus, at Euler number χ = −1 (which is also

sometimes called genus 3/2 order). The gauge kinetic function should be holomorphic in

the corrected variable T3, including the 1-loop correction (5.11). It should be possible to

check this building on earlier work on genus 3/2 amplitudes, such as [48–53].
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A Change of variables from t to τ (0)

In order to perform the change of variables from t to τ (0), it is convenient to introduce two

sets of coordinates as

x0 = 2t0, xi = ln ti, i ∈ {1, 2, 3} , (A.1)

yi = ln τ
(0)
i , i ∈ {0, 1, 2, 3} . (A.2)

Using (2.18) and (2.19) one easily verifies that the relation between the x and y coordinates

is linear, 
x0

x1

x2

x3

 = A


y0

y1

y2

y3

 (A.3)

with A being a constant orthogonal matrix given by (2.23). Note that

ATA = I4 , (A.4)

where I4 is the 4-dimensional identity matrix.
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The kinetic terms of the t-moduli in the Einstein-frame action (2.10) can be expressed

in terms of x and y coordinates (we use the compact notation dxidxj = −∂µxi∂µxj) as

−
3∑

i,j=0

[
G

(0)
titj

+G
(1)
titj

]
∂µti∂

µtj

=

[
1+G

(1)
t0t0

4

]
d(2t0)d(2t0)+2

3∑
i=1

(
tiG

(1)
t0ti

2

)
d(2t0)d(ln ti)+

3∑
i,j=1

titj

[
G

(0)
titj

+G
(1)
ij

]
d(ln ti)d(ln tj)

=

[
1+G

(1)
t0t0

4

]
dx0dx0+2

3∑
i=1

(
tiG

(1)
t0ti

2

)
dx0dxi+

3∑
i,j=1

titj

[
G

(0)
titj

+G
(1)
titj

]
dxidxj

≡
3∑

i,j=0

Xijdxidxj =

3∑
i,j=0

(
X

(0)
ij +X

(1)
ij

)
dxidxj

=
3∑

i,j=0

(
ATXA

)
ij
dyidyj =

3∑
i,j=0

[
AT
(
X(0)+X(1)

)
A
]
ij
dyidyj

≡
3∑

i,j=0

Yijdyidyj =

3∑
i,j=0

(
Y

(0)
ij +Y

(1)
ij

)
dyidyj

=
3∑

i,j=0

(
Yij

τ
(0)
i τ

(0)
j

)
dτ

(0)
i dτ

(0)
j =

3∑
i,j=0

(
Y

(0)
ij

τ
(0)
i τ

(0)
j

+
Y

(1)
ij

τ
(0)
i τ

(0)
j

)
dτ

(0)
i dτ

(0)
j

≡
3∑

i,j=0

G
τ
(0)
i τ

(0)
j

dτ
(0)
i dτ

(0)
j =

3∑
i,j=0

(
G

(0)

τ
(0)
i τ

(0)
j

+G
(1)

τ
(0)
i τ

(0)
j

)
dτ

(0)
i dτ

(0)
j . (A.5)

Here

X00 =
1+G

(1)
t0t0

4
, X0i =

tiG
(1)
t0ti

2
, Xij = titj

[
G

(0)
titj

+G
(1)
titj

]
with i, j ∈{1,2,3} (A.6)

and (using G
(0)
titj

= δij/(4t
2
i ) for i, j ∈ {1, 2, 3})

X(0) =
I4

4
, X(1) =



G
(1)
t0t0
4 ,

t1G
(1)
t0t1
2 ,

t2G
(1)
t0t2
2 ,

t3G
(1)
t0t3
2

t1G
(1)
t0t1
2 , t21G

(1)
t1t1

, t1t2G
(1)
t1t2

, t1t3G
(1)
t1t3

t2G
(1)
t0t2
2 , t1t2G

(1)
t1t2

, t22G
(1)
t2t2

, t2t3G
(1)
t2t3

t3G
(1)
t0t3
2 , t1t3G

(1)
t1t3

, t2t3G
(1)
t2t3

, t23G
(1)
t3t3

 , (A.7)

Y (0) = ATX(0)A = AT
(
I4

4

)
A =

I4

4
= X(0) , Y (1) = ATX(1)A . (A.8)
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Concretely Y
(1)
ij =

(
ATX(1)A

)
ij

reads

Y
(1)

00 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
− t2G(1)

t0t2
− t3G(1)

t0t3
+ t21G

(1)
t1t1

+ t22G
(1)
t2t2

+ t23G
(1)
t3t3

+

+2t1t2G
(1)
t1t2

+ 2t1t3G
(1)
t1t3

+ 2t2t3G
(1)
t2t3

)
, (A.9)

Y
(1)

01 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
+ t21G

(1)
t1t1
− t22G(1)

t2t2
− t23G(1)

t3t3
− 2t2t3G

(1)
t2t3

)
, (A.10)

Y
(1)

02 =
1

4

(
G

(1)
t0t0

4
− t2G(1)

t0t2
− t21G(1)

t1t1
+ t22G

(1)
t2t2
− t23G(1)

t3t3
− 2t1t3G

(1)
t1t3

)
, (A.11)

Y
(1)

03 =
1

4

(
G

(1)
t0t0

4
− t3G(1)

t0t3
− t21G(1)

t1t1
− t22G(1)

t2t2
+ t23G

(1)
t3t3
− 2t1t2G

(1)
t1t2

)
, (A.12)

Y
(1)

11 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
+ t2G

(1)
t0t2

+ t3G
(1)
t0t3

+ t21G
(1)
t1t1

+ t22G
(1)
t2t2

+ t23G
(1)
t3t3

−2t1t2G
(1)
t1t2
− 2t1t3G

(1)
t1t3

+ 2t2t3G
(1)
t2t3

)
, (A.13)

Y
(1)

12 =
1

4

(
G

(1)
t0t0

4
+ t3G

(1)
t0t3
− t21G(1)

t1t1
− t22G(1)

t2t2
+ t23G

(1)
t3t3

+ 2t1t2G
(1)
t1t2

)
, (A.14)

Y
(1)

13 =
1

4

(
G

(1)
t0t0

4
+ t2G

(1)
t0t2
− t21G(1)

t1t1
+ t22G

(1)
t2t2
− t23G(1)

t3t3
+ 2t1t3G

(1)
t1t3

)
, (A.15)

Y
(1)

22 =
1

4

(
G

(1)
t0t0

4
+ t1G

(1)
t0t1
− t2G(1)

t0t2
+ t3G

(1)
t0t3

+ t21G
(1)
t1t1

+ t22G
(1)
t2t2

+ t23G
(1)
t3t3

−2t1t2G
(1)
t1t2

+ 2t1t3G
(1)
t1t3
− 2t2t3G

(1)
t2t3

)
, (A.16)

Y
(1)

23 =
1

4

(
G

(1)
t0t0

4
+ t1G

(1)
t0t1

+ t21G
(1)
t1t1
− t22G(1)

t2t2
− t23G(1)

t3t3
+ 2t2t3G

(1)
t2t3

)
, (A.17)

Y
(1)

33 =
1

4

(
G

(1)
t0t0

4
+ t1G

(1)
t0t1

+ t2G
(1)
t0t2
− t3G(1)

t0t3
+ t21G

(1)
t1t1

+ t22G
(1)
t2t2

+ t23G
(1)
t3t3

+2t1t2G
(1)
t1t2
− 2t1t3G

(1)
t1t3
− 2t2t3G

(1)
t2t3

)
. (A.18)

From here we easily verify

Y
(1)

00 + Y
(1)

11 − 2Y
(1)

01 = t22G
(1)
t2t2

+ t23G
(1)
t3t3

+ 2t2t3G
(1)
t2t3

, (A.19)

Y
(1)

22 + Y
(1)

33 − 2Y
(1)

23 = t22G
(1)
t2t2

+ t23G
(1)
t3t3
− 2t2t3G

(1)
t2t3

, (A.20)

Y
(1)

00 + Y
(1)

22 − 2Y
(1)

02 = t21G
(1)
t1t1

+ t23G
(1)
t3t3

+ 2t1t3G
(1)
t1t3

, (A.21)

Y
(1)

11 + Y
(1)

33 − 2Y
(1)

13 = t21G
(1)
t1t1

+ t23G
(1)
t3t3
− 2t1t3G

(1)
t1t3

, (A.22)

Y
(1)

00 + Y
(1)

33 − 2Y
(1)

03 = t21G
(1)
t1t1

+ t22G
(1)
t2t2

+ 2t1t2G
(1)
t1t2

, (A.23)

Y
(1)

11 + Y
(1)

22 − 2Y
(1)

12 = t21G
(1)
t1t1

+ t22G
(1)
t2t2
− 2t1t2G

(1)
t1t2

. (A.24)
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B Moduli dependence of G
(1)

c
(0)
i c

(0)
j

in N = 2 sectors

Here we prove (4.24) from (4.23), using the constraints (3.27) and (3.29). To this end, we

start with a more general form of (4.23) and (4.24) (with the replacements τ
(0)
i → τi, cf.

footnote 13) as20

G
(1)

τ
(0)
i τ

(0)
j

=
α̂ij(U, t)

τiτj
√
τ0τ1τ2τ3

, (B.1)

G
(1)

c
(0)
i c

(0)
j

=
β̂ij(U, t)

τiτj
√
τ0τ1τ2τ3

. (B.2)

Let us plug these expressions into the constraints (3.27)–(3.29), which then reduce to

(i 6= j 6= k)

2α̂ij = (Di +Dj) β̂ij −Dj β̂ii −Di β̂jj , (B.3)

Dk β̂ij = Di β̂jk = Dj β̂ki , (B.4)

DiDj β̂ii =
(
D2
i − 1

)
β̂ij −Dj α̂ii , (B.5)

respectively. Here we introduced the operator Di which is defined as

Di ≡ −
1

2
+ τi

∂

∂τi
. (B.6)

Note that the operator Di given in (B.6) preserves the form of any power function of

the τ -variables that is acted on by Di. This is to say that a power function of τs is an

eigenfunction of the Di operators and different power functions do not mix with each other

under the action of Di operators. (Note that the eigenvalue might be zero, which is the case

for instance for τ
1/2
i since Diτ

1/2
i = 0.) Equations (B.3) and (B.5) can be used to derive

(Di +Dj) β̂ij = 2DiDj α̂ij −D2
j α̂ii −D2

i α̂jj for i 6= j . (B.7)

This follows by acting with DiDj on (B.3) and then using (B.5) acted on by Dj (and also

the expression obtained by interchanging i↔ j in the latter).

Now we specify the form of α̂ij in (B.1) according to our ansatz (4.23) in the main

text, i.e. (for arbitrary i and j)

α̂ij(U, t) =
∑
m=±1

3∑
l=1

α
(m,l)
ij (Ul) · tml

=
∑
m=±1

3∑
l=1

α
(m,l)
ij (Ul) ·

(
τ0τl
τIτJ

)m/2
with I 6= J ∈ {1, 2, 3} \ {l} . (B.8)

20By dilaton counting for 1-loop corrections in comparison with the tree-level metric (∼ O
(
1/τ2

)
) one

sees that α̂ij and β̂ij in (B.1)–(B.2) can not depend on the dilaton t0, but can depend at most on ti (with

i ∈ {1, 2, 3}) and the complex-structure moduli U .
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In the second line we expressed tl in terms of τ using (2.19) (again replacing τ (0) → τ

according to footnote 13). We want to use (B.8) in (B.7) and (B.5) in order to show that

their solutions β̂ are of the same form as (B.8), i.e. (for arbitrary i and j)

β̂ij =
∑
m=±1

3∑
l=1

β
(m,l)
ij (Ul) · tml . (B.9)

This then shows that our ansatz (4.24) follows directly from (4.23) once the con-

straints (3.27) and (3.29) are imposed.

To this end we first use the fact that the string 1-loop corrections from N = 2 sectors

can only depend non-trivially on the volume and complex structure of the torus along which

the KK/winding sum arises (up to the trivial moduli dependence from the loop counting

factor and the normalization factors of the vertex operators). Thus, we have (for arbitrary

i and j)

β̂ij(U, t) =

3∑
l=1

β̂
(l)
ij (Ul, tl) . (B.10)

Note that

Di f(tl) = −f(tl)

2
+Ali

∂ f(tl)

∂ (ln tl)
, (B.11)

where we used the chain rule

∂f(tl)

∂(ln τi)
= Ali

∂f(tl)

∂ (ln tl)
, (B.12)

with

Ali =
∂(ln tl)

∂(ln τi)
(B.13)

being the (l, i) element of matrix A given in (2.23), cf. (A.3). (Note that l ∈ {1, 2, 3} and

i ∈ {0, . . . , 3}.)
Now we solve (B.7) to obtain the off-diagonal β̂ij . First, from the property of the Di

operators mentioned below (B.6) one can easily verify that (B.7) has a particular solution

of the form (B.9) (this also requires some relations between the β
(m,l)
ij and α

(m,l)
ij , which are

discussed in the main text, see section 4.2.2). On the other hand, (B.7) is a linear inhomo-

geneous differential equation and its general solution is given by the sum of a particular

solution and the general solution to the homogeneous equation. Using (B.10) and (B.11)

the homogeneous part of (B.7) is given by

(Ali +Alj) tl
∂β̂

(l)
ij (tl)

∂tl
= β̂

(l)
ij (tl) for i 6= j . (B.14)

This equation holds for all l separately. It is easy to see, using (2.23), that this has the

solutions β̂
(l)
ij (tl) = c t±1

l for Ali + Alj = ±1 (and β̂
(l)
ij (tl) = 0 for Ali + Alj = 0) with c

being an integration constant. This shows that the ansatz (B.9), for i 6= j, is sufficient to

describe the general solution of the constraint (B.7).
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Now let us turn to the diagonal components β̂ii which are constrained by (B.5). We

follow the same steps as above for the off-diagonal components, using (B.9) for β̂ij (with

i 6= j) and (B.10) for β̂ii. It is easy to see that the particular solution of the inhomogeneous

equation (B.5) is of the form (B.9). Now we solve the homogeneous part of (B.5), i.e.

DiDj β̂ii = 0. Using (B.10) and (B.11) this can be written as

4 t2l
∂2β̂

(l)
ii

∂t2l
AliAlj + tl

∂β̂
(l)
ii

∂tl
(4AliAlj − 2Ali − 2Alj) + β̂

(l)
ii = 0 for i 6= j , (B.15)

which again holds for each l separately. Using (2.23), one can see that the possible

solutions of the above homogeneous equation are β̂
(l)
ii (tl) =

{
tl(c1 + c2 log tl), t

−1
l (c3 +

c4 log tl), c5 t
−1
l + c6 tl

}
for (Ali, Alj) =

{
(1

2 ,
1
2), (−1

2 ,−1
2), otherwise

}
, respectively, where

c1, . . . , c6 are integration constants. Now for fixed indices l and i, the value of Ali is fixed.

Then we are free to choose the index j in such a way that either Alj = 1/2 or −1/2

in (B.15), and both values of Alj should give the same solution β̂
(l)
ii (tl) since (B.15) should

hold for any j different from i. If Ali = 1/2, there are choices for the index j ( 6= i) such that

(Ali, Alj) = (1
2 ,

1
2) or (Ali, Alj) = (1

2 ,−1
2). Thus, we obtain β̂

(l)
ii (tl) = tl(c1 + c2 log tl) =

c5 t
−1
l + c6 tl. This implies c1 = c6 and c2 = 0 = c5, so that we obtain β̂

(l)
ii (tl) = c tl

when Ali = 1/2. Analogously one can obtain β̂
(l)
ii (tl) = c t−1

l when Ali = −1/2. Again

we see that the ansatz (B.9), for i = j, is sufficient to describe the general solution of the

constraint (B.5). Thus we have proved (B.9) (i.e. (4.24)) for arbitrary i and j.

C Details of calculations for N = 2 sectors

In this appendix we fill in some calculational details that we left out in the derivation

of (4.51)–(4.54) and (4.57)–(4.58).

Let us begin with the derivation of the field redefinitions. Consider (3.21), which reads

for the (−1, l)- and (1, l)-sectors

∂
(
τ

(1)|(−1,l)
i (τ)

)
∂τi

=
2
(
α

(−1,l)
ii − β(−1,l)

ii

)
τ0τl

, (C.1)

∂
(
τ

(1)|(1,l)
i (τ)

)
∂τi

=
2
(
α

(1,l)
ii − β(1,l)

ii

)
τl

τ1τ2τ3
, (C.2)

where we used (4.29) and (4.30). Splitting the indices according to (4.33) and (4.34) gives

∂
(
τ

(1)|(−1,l)
a (τ)

)
∂τa

=
2
(
α

(−1,l)
aa − β(−1,l)

aa

)
τ0τl

= 0 , (C.3)

∂
(
τ

(1)|(−1,l)
I (τ)

)
∂τI

=
2
(
α

(−1,l)
II − β(−1,l)

II

)
τ0τl

=
−4α

(−1,l)
aI

τ0τl
, (C.4)

∂
(
τ

(1)|(1,l)
a (τ)

)
∂τa

=
2τl

(
α

(1,l)
aa − β(1,l)

aa

)
τ1τ2τ3

=
−4α

(1,l)
aI

τIτJ
, (C.5)

∂
(
τ

(1)|(1,l)
I (τ)

)
∂τI

=
2τl

(
α

(1,l)
II − β

(1,l)
II

)
τ1τ2τ3

= 0 , (C.6)
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where I 6= J in (C.5) and we used (4.35), (4.37) and (4.41), (4.45) and (4.49) and (4.43),

respectively. These equations have the solutions

τ (1)|(−1,l)
a (τ) = C(−1,l)

a (τ̂a) , (C.7)

τ
(1)|(−1,l)
I (τ) = C

(−1,l)
I (τ̂I)−

4τIα
(−1,l)
aI

τ0τl
, (C.8)

τ (1)|(1,l)
a (τ) = C(1,l)

a (τ̂a)−
4τaα

(1,l)
aI

τIτJ
, (C.9)

τ
(1)|(1,l)
I (τ) = C

(1,l)
I (τ̂I) . (C.10)

Here again I 6= J in (C.9) and C
(m,l)
i (τ̂i) are “integration” constants with respect to τi (i.e.

∂C
(m,l)
i
∂τi

= 0). They are determined from (3.20). For the terms arising from closed string

winding states, (3.20) leads to

∂
(
τ

(1)|(−1,l)
a

)
∂τb

= 2τ3
a

[
∂τa

(
G

(1)|(−1,l)

c
(0)
a c

(0)
b

(τ)

)
− ∂τb

(
G

(1)|(−1,l)

c
(0)
a c

(0)
a

(τ)
)]

(C.11)

=
1

τ2
b

[
−4β

(−1,l)
ab + 2β(−1,l)

aa

]
=

1

τ2
b

[
−2α

(−1,l)
bb + 4α

(−1,l)
ab

]
, (C.12)

∂
(
τ

(1)|(−1,l)
a

)
∂τI

= 2τ3
a

[
∂τa

(
G

(1)|(−1,l)

c
(0)
a c

(0)
I

(τ)

)
− ∂τI

(
G

(1)|(−1,l)

c
(0)
a c

(0)
a

(τ)
)]

(C.13)

=
1

τIτb

[
−4β

(−1,l)
aI

]
= 0 , (C.14)

∂
(
τ

(1)|(−1,l)
I

)
∂τa

= 2τ3
I

[
∂τI

(
G

(1)|(−1,l)

c
(0)
I c

(0)
a

(τ)

)
− ∂τa

(
G

(1)|(−1,l)

c
(0)
I c

(0)
I

(τ)

)]
(C.15)

=
τI
τ2
a τb

[
−2β

(−1,l)
aI + 2β

(−1,l)
II

]
=

τI
τ2
a τb

[
4α

(−1,l)
aI

]
, (C.16)

∂
(
τ

(1)|(−1,l)
I

)
∂τJ

= 2τ3
I

[
∂τI

(
G

(1)|(−1,l)

c
(0)
I c

(0)
J

(τ)

)
− ∂τJ

(
G

(1)|(−1,l)

c
(0)
I c

(0)
I

(τ)

)]
(C.17)

=
τI

τJτ0τl

[
−2β

(−1,l)
IJ

]
= 0 . (C.18)

Here a 6= b and I 6= J and we used (4.35)–(4.42). Moreover, for the contributions from

closed string Kaluza-Klein modes we have

∂
(
τ

(1)|(1,l)
a

)
∂τb

= 2τ3
a

[
∂τa

(
G

(1)|(1,l)
c
(0)
a c

(0)
b

(τ)

)
− ∂τb

(
G

(1)|(1,l)
c
(0)
a c

(0)
a

(τ)
)]

(C.19)

=

(
τa
τb

)(
τl

τ1τ2τ3

)[
−2β

(1,l)
ab

]
= 0 , (C.20)

∂
(
τ

(1)|(1,l)
a

)
∂τI

= 2τ3
a

[
∂τa

(
G

(1)|(1,l)
c
(0)
a c

(0)
I

(τ)

)
− ∂τI

(
G

(1)|(1,l)
c
(0)
a c

(0)
a

(τ)
)]

(C.21)

=

(
τa
τI

)(
τl

τ1τ2τ3

)[
−2β

(1,l)
aI + 2β(1,l)

aa

]
=

τa
τ2
I τJ

[
4α

(1,l)
aI

]
, (C.22)
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∂
(
τ

(1)|(1,l)
I

)
∂τa

= 2τ3
I

[
∂τI

(
G

(1)|(1,l)
c
(0)
I c

(0)
a

(τ)

)
− ∂τa

(
G

(1)|(1,l)
c
(0)
I c

(0)
I

(τ)

)]
(C.23)

=

(
τI
τa

)(
τl

τ1τ2τ3

)[
−4β

(1,l)
aI

]
= 0 , (C.24)

∂
(
τ

(1)|(1,l)
I

)
∂τJ

= 2τ3
I

[
∂τI

(
G

(1)|(1,l)
c
(0)
I c

(0)
J

(τ)

)
− ∂τJ

(
G

(1)|(1,l)
c
(0)
I c

(0)
I

(τ)

)]
(C.25)

=

(
τI
τJ

)(
τl

τ1τ2τ3

)[
−4β

(1,l)
IJ + 2β

(1,l)
II

]
=

1

τ2
J

[
−2α

(1,l)
JJ + 4α

(1,l)
IJ

]
. (C.26)

Again a 6= b and I 6= J and we used (4.43)–(4.50). Comparing (C.7)–(C.10) with (C.11)–

(C.26) we obtain

C(−1,l)
a =

2
(
α

(−1,l)
bb − 2α

(−1,l)
ab

)
τb

, (C.27)

C
(−1,l)
I = 0 , (C.28)

C(1,l)
a = 0 , (C.29)

C
(1,l)
I =

2
(
α

(1,l)
JJ − 2α

(1,l)
IJ

)
τJ

(C.30)

with a 6= b and I 6= J .21 Plugging this into (C.7)–(C.10) leads to the formulas for the field

redefinitions given in the main text, i.e. (4.51)–(4.54).

For the Kähler potential, let us start with the diagonal components of the Kähler

metric. Using (4.56) together with (4.51)–(4.54), (4.35)–(4.50) and (4.30), we obtain the

conditions

1

4

∂2K(1)|(−1,l)(τ)

∂τa∂τa
=
α

(−1,l)
aa + α

(−1,l)
bb − 2α

(−1,l)
ab

τ3
a τb

, (C.31)

1

4

∂2K(1)|(−1,l)(τ)

∂τI∂τI
= 0 , (C.32)

1

4

∂2K(1)|(1,l)(τ)

∂τa∂τa
= 0 , (C.33)

1

4

∂2K(1)|(1,l)(τ)

∂τI∂τI
=
α

(1,l)
II + α

(1,l)
JJ − 2α

(1,l)
IJ

τ3
I τJ

. (C.34)

The off-diagonal components are obtained from (4.55), again together with (4.35)–(4.50)

and (4.30), and the only non-vanishing conditions are

1

4

∂2K(1)|(−1,l)(τ)

∂τa∂τb
=
α

(−1,l)
aa + α

(−1,l)
bb − 2α

(−1,l)
ab

2τ2
a τ

2
b

, (C.35)

1

4

∂2K(1)|(1,l)(τ)

∂τI∂τJ
=
α

(1,l)
II + α

(1,l)
JJ − 2α

(1,l)
IJ

2τ2
I τ

2
J

. (C.36)

Obviously, all these equations can be solved by the results given in (4.57) and (4.58).

21Of course, we could add arbitrary constants to (C.27)–(C.30), but these would just amount to holo-

morphic field redefinitions.
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D Details concerning field redefinitions of the Z′
6 orientifold

Using (4.59) and (A.9)–(A.18) with the constraints (4.64)–(4.66), the τ -independent (but

Ul-dependent) coefficients appearing in the field redefinitions (5.1)–(5.4) read

2
(
α
(−1,2)
22 −2α

(−1,2)
02

)
= t2

(
−3δE(−1,2)

2
+6t21G

(1)|(−1,2)
t1t1 +t1G

(1)|(−1,2)
t0t1 +t2G

(1)|(−1,2)
t0t2 +t3G

(1)|(−1,2)
t0t3

)
,

(D.1)

2
(
α
(−1,3)
33 −2α

(−1,3)
03

)
= t3

(
−3δE(−1,3)

2
+6t21G

(1)|(−1,3)
t1t1 +t1G

(1)|(−1,3)
t0t1 +t2G

(1)|(−1,3)
t0t2 +t3G

(1)|(−1,3)
t0t3

)
,

(D.2)

4α
(1,2)
03 = t−12

(
− δE

(1,2)

2
+
G

(1)|(1,2)
t0t0

2
−t1G

(1)|(1,2)
t0t1 −t2G

(1)|(1,2)
t0t2 −t3G

(1)|(1,2)
t0t3

)
, (D.3)

4α
(−1,2)
01 = t2

(
− δE

(−1,2)

2
+
G

(1)|(−1,2)
t0t0

2
−t1G

(1)|(−1,2)
t0t1 +t2G

(1)|(−1,2)
t0t2 +t3G

(1)|(−1,2)
t0t3

)
,

(D.4)

4α
(−1,3)
01 = t3

(
− δE

(−1,3)

2
+
G

(1)|(−1,3)
t0t0

2
−t1G

(1)|(−1,3)
t0t1 +t2G

(1)|(−1,3)
t0t2 +t3G

(1)|(−1,3)
t0t3

)
,

(D.5)

2
(
α
(1,2)
33 −2α

(1,2)
13

)
= t−12

(
−3δE(1,2)

2
+6t21G

(1)|(1,2)
t1t1 +t1G

(1)|(1,2)
t0t1 −t2G

(1)|(1,2)
t0t2 −t3G

(1)|(1,2)
t0t3

)
,

(D.6)

2
(
α
(−1,2)
00 −2α

(−1,2)
02

)
= t2

(
−3δE(−1,2)

2
+6t21G

(1)|(−1,2)
t1t1 −t1G

(1)|(−1,2)
t0t1 +t2G

(1)|(−1,2)
t0t2 −t3G

(1)|(−1,2)
t0t3

)
,

(D.7)

4α
(−1,3)
02 = t3

(
− δE

(−1,3)

2
+
G

(1)|(−1,3)
t0t0

2
+t1G

(1)|(−1,3)
t0t1 −t2G

(1)|(−1,3)
t0t2 +t3G

(1)|(−1,3)
t0t3

)
,

(D.8)

4α
(1,2)
23 = t−12

(
− δE

(1,2)

2
+
G

(1)|(1,2)
t0t0

2
+t1G

(1)|(1,2)
t0t1 −t2G

(1)|(1,2)
t0t2 +t3G

(1)|(1,2)
t0t3

)
, (D.9)

4α
(−1,2)
03 = t2

(
− δE

(−1,2)

2
+
G

(1)|(−1,2)
t0t0

2
+t1G

(1)|(−1,2)
t0t1 +t2G

(1)|(−1,2)
t0t2 −t3G

(1)|(−1,2)
t0t3

)
,

(D.10)

2
(
α
(−1,3)
00 −2α

(−1,3)
03

)
= t3

(
−3δE(−1,3)

2
+6t21G

(1)|(−1,3)
t1t1 −t1G

(1)|(−1,3)
t0t1 −t2G

(1)|(−1,3)
t0t2 +t3G

(1)|(−1,3)
t0t3

)
,

(D.11)

2
(
α
(1,2)
11 −2α

(1,2)
13

)
= t−12

(
−3δE(1,2)

2
+6t21G

(1)|(1,2)
t1t1 −t1G

(1)|(1,2)
t0t1 −t2G

(1)|(1,2)
t0t2 +t3G

(1)|(1,2)
t0t3

)
.

(D.12)

E N = 2 model: T2 ×K3

In this appendix we apply the same method as in the main text to a genuine N = 2

compactification, i.e. type I on T2 × K3. That case is more constrained via the higher
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supersymmetry and the results for the Kähler potential and for the structure of the field

redefinitions are already known from the work of [3, 19] (whose approaches differ from ours).

Concretely, we consider the K3 manifold at the Z2-orbifold point, i.e. K3 = T4/Z2.

Obviously, there are no N = 1 sectors and the only N = 2 sector has (m, l) = (−1, 1) in

the notation of the main text, cf. section 4.2.1, meaning that it arises from closed string

winding states.

In this case, there are three relevant moduli, the 4-dimensional dilaton, called φ4 in [3],

the volume of the T2, called
√
G and the volume of the K3, called ω4. Both of these volumes

are measured with the 10-dimensional string-frame metric. In order to make contact to

the notation of the main text, we rename

t0 ↔ φ4, t1 ↔
√
G, t2 ↔ ω2 . (E.1)

Out of these three fields, one can form the imaginary parts of two vector multiplet scalars,

called S2 and S′2 in [3], as well as the 6-dimensional dilaton φ6, which sits in a hypermul-

tiplet. Again, in order to make contact to the notation of the main text, we rename these

fields according to

τ
(0)
0 ↔ S2 = e−φ4G1/4ω2 = e−t0t

1/2
1 t2 , (E.2)

τ
(0)
1 ↔ S′2 = e−φ4G1/4ω−2 = e−t0t

1/2
1 t−1

2 , (E.3)

τ
(0)
2 ↔ e−2φ6 = e−2φ10ω4 = e−2t0t−1

1 (E.4)

or equivalently

e2t0 =
1√

τ
(0)
0 τ

(0)
1 τ

(0)
2

, (E.5)

t1 = τ
(0)
1

√√√√ τ
(0)
0

τ
(0)
1 τ

(0)
2

, (E.6)

t2 =

√√√√τ
(0)
0

τ
(0)
1

. (E.7)

The real parts of the complex vector multiplet scalars S and S′ are given by the scalar dual

to Cµν and the scalar arising from the components of C2 along the torus T2, respectively.

We will denote these two scalars as c0 and c1. The argument of the main text for the

non-redefinition of these scalars at 1-loop also holds in this genuine N = 2 theory.

The form of the kinetic terms of t0, t1, t2 and c0, c1 in the different frames is exactly as

in (2.8), (2.10) and (2.13), with the obvious adjustment for the range of the summations,

and the metrics are again related by (2.11) and (2.12). The main difference from the N = 1

case considered in the main text is the tree-level kinetic term of t2 which is given by

G
(0)
t2t2

=
1

2t22
(E.8)

in contrast to the 1
4t22

of equation (2.3). This is consistent with the kinetic term of ω in

(3.1) of [3], obtained there by direct dimensional reduction.
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E.1 Change of variables from t to τ

The change of variables from ti to τ
(0)
i in the kinetic terms proceeds along the same lines

as described in appendix A for the case of an N = 1 orientifold. Concretely we start by

introducing

x0 = 2t0, xi = ln ti, i ∈ {1, 2} , (E.9)

yi = ln τ
(0)
i , i ∈ {0, 1, 2} . (E.10)

The relation between the x and y coordinates is now

x0

x1

x2

 = A

y0

y1

y2

 , (E.11)

with A being the constant matrix given by

A =
1

2

−1 −1 −1

1 1 −1

1 −1 0

 . (E.12)

The change of variables from ti to τ
(0)
i in the kinetic terms follows exactly the steps

given in (A.5). The only difference is that the sums only run until 2 instead of 3 and the

occuring matrices are now given by

X(0) =
1

4

1 0 0

0 1 0

0 0 2

 , X(1) =


G

(1)
t0t0
4

t1G
(1)
t0t1
2

t2G
(1)
t0t2
2

t1G
(1)
t0t1
2 t21G

(1)
t1t1

t1t2G
(1)
t1t2

t2G
(1)
t0t2
2 t1t2G

(1)
t1t2

t22G
(1)
t2t2

 , (E.13)

Y (0) = ATX(0)A =
1

4

1 0 0

0 1 0

0 0 1/2

 , Y (1) = ATX(1)A . (E.14)

The resulting moduli metrics are

G
(0)

τ
(0)
i τ

(0)
j

(τ (0)) =
Y

(0)
ij

τ
(0)
i τ

(0)
j

=

(
ATX(0)A

)
ij

τ
(0)
i τ

(0)
j

, (E.15)

G
(1)

τ
(0)
i τ

(0)
j

(τ (0)) =
Y

(1)
ij

τ
(0)
i τ

(0)
j

=

(
ATX(1)A

)
ij

τ
(0)
i τ

(0)
j

(E.16)

– 40 –



J
H
E
P
0
8
(
2
0
1
8
)
0
1
9

and the concrete forms of Y
(1)
ij =

(
ATX(1)A

)
ij

are

Y
(1)

00 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
− t2G(1)

t0t2
+ t21G

(1)
t1t1

+ t22G
(1)
t2t2

+ 2t1t2G
(1)
t1t2

)
, (E.17)

Y
(1)

01 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
+ t21G

(1)
t1t1
− t22G(1)

t2t2

)
, (E.18)

Y
(1)

11 =
1

4

(
G

(1)
t0t0

4
− t1G(1)

t0t1
+ t2G

(1)
t0t2

+ t21G
(1)
t1t1

+ t22G
(1)
t2t2
− 2t1t2G

(1)
t1t2

)
, (E.19)

Y
(1)

02 =
1

4

(
G

(1)
t0t0

4
− t2G

(1)
t0t2

2
− t21G(1)

t1t1
− t1t2G(1)

t1t2

)
, (E.20)

Y
(1)

12 =
1

4

(
G

(1)
t0t0

4
+
t2G

(1)
t0t2

2
− t21G(1)

t1t1
+ t1t2G

(1)
t1t2

)
, (E.21)

Y
(1)

22 =
1

4

(
G

(1)
t0t0

4
+ t1G

(1)
t0t1

+ t21G
(1)
t1t1

)
. (E.22)

E.2 Field redefinitions and Kähler potential

Given that τ2 is part of a hypermultiplet, it does not couple to any of the vector multiplets,

in particular not to τ0, τ1 and U1 (all τs being 1-loop corrected). We now argue that this

implies that the field redefinitions of τ0 and τ1 are independent of τ2 and, thus, we can focus

on the subset of fields τ0 and τ1 when discussing their field redefinitions and the resulting

Kähler potential. The argument for this is as follows. Given that the only N = 2 sector

has (m, l) = (−1, 1), according to (4.29) the correction to the τ (0)-metric takes the form

G
(1)

τ
(0)
i τ

(0)
j

(τ) =
αij(U1)

τiτjτ0τ1
, i, j ∈ {0, 1, 2} . (E.23)

If this were non-vanishing for a combination of j = 2 with i = 0 and/or i = 1, according

to (3.18) there would have to be a mixing of τ2 with τ0 and/or τ1 in the 1-loop field

redefinition so that the metric of the corrected field variables respects the factorization of

the moduli metric into hypermultiplets and vector multiplets. For the sake of concreteness,

let us assume that G
(1)

τ
(0)
1 τ

(0)
2

6= 0 and that the redefinition of τ1 depends on τ2. According

to (E.23), G
(1)

τ
(0)
1 τ

(0)
2

also depends on τ0 and U1. Equation (3.18) implies that also the field

redefinition of τ1 has to depend on τ0 and U1 in order to cancel the off-diagonal contribution

G
(1)

τ
(0)
1 τ

(0)
2

. However, in that case one would obtain a τ2-dependence in the metric of the vector

multiplets, for instance in the component

G
(1)
τ1U1

= G
(1)

τ
(0)
1 U1

− ∂U1τ
(1)
1

4τ2
1

, (E.24)
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given that G
(1)

τ
(0)
1 U1

does not depend on τ2, cf. appendix C in [19]. This, however, is not

compatible with the factorization of the moduli space and, thus, we conclude that the field

redefinition of τ0 and τ1 can not depend on τ2.22

Thus, we now concentrate on the subset of fields given by τ0 and τ1. Plugging (E.23)

(for i, j ∈ {0, 1}) and

G
(1)

c
(0)
i c

(0)
j

(τ) =
βij(U1)

τiτjτ0τ1
, i, j ∈ {0, 1} (E.25)

into (3.27) and (3.29) leads to the relations

α00 = β00 , α11 = β11 (E.26)

and

β01 =
1

2
(α00 + α11 − 2α01) . (E.27)

The conditions (3.28) are empty (since we only have two different indices).

Now let us solve equations (3.20) and (3.21). Using αii = βii in (3.21) we have

∂τ
(1)
i (τ)

∂τi
= 0 (E.28)

and then, using also (E.26) and (E.27), equation (3.20) can be integrated to give

τ
(1)
i =

2(αjj − 2αij)

τj
with i 6= j (E.29)

or more explicitly

τ
(1)
0 =

2(α11 − 2α01)

τ1
, (E.30)

τ
(1)
1 =

2(α00 − 2α01)

τ0
. (E.31)

Using this and (E.26) and (E.27), equations (3.24) and (3.23) can be solved by

K(1) =
2(α00 + α11 − 2α01)

τ0τ1
. (E.32)

In (E.30)–(E.32) all the U1-dependent coefficients αij are proportional to the non-

holomorphic Eisenstein series E2 (given in (5.7)), i.e.

αij ∼ E2(U1) , (E.33)

22Two comments are in order: first, for this argument we assume that there is no τ2-dependent redefinition

of U1, as that might lead to a cancellation of the τ2-dependence in G
(1)
τ1U1

. However, such a field redefinition

was also not required for the N = 1 theories discussed in the main text. Second, we mention that there

is actually an example where a tree-level vector multiplet scalar (the overall volume modulus) has to be

redefined at 1-loop by a tree-level hypermultiplet scalar (the 4-dimensional dilaton), cf. eq. (2.2) in [15].

The difference to our case at hand is that for [15] the correction term in the redefinition of the overall

volume modulus only depends on the 4-dimensional dilaton and not on any other vector multiplet scalars

so that the above argument does not apply.
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cf. [19]. The structure of the field redefinitions (E.30) and (E.31) was already discussed

in [3] and [19], respectively. Note that the results (E.30)–(E.32) agree with the contributions

from the (k = 3)-sector of the Z′6-orientifold to τ
(1)
0 , τ

(1)
3 and K(1), cf. (5.1), (5.4) and (5.5).

This is due to the fact that the (k = 3)-sector of the Z′6-orientifold is formally identical

with the T2×T4/Z2-orientifold, just that the third torus of the Z′6-model plays the role of

the untwisted T2 of the T2×T4/Z2-model (i.e. we have to make the replacement t
Z′6
3 ↔ there

1

and the (m, l) = (−1, 1)-sector at hand corresponds to the (m, l) = (−1, 3)-sector of the

Z′6-orientifold).

Finally, the correction to the Kähler potential can be expressed in terms of the quan-

tities calculable via string amplitudes. Using

αij = e−2t0t1Y
(1)
ij . (E.34)

(cf. (4.59)), (E.17)–(E.19), (E.2)–(E.3) and (2.11) we obtain for the Kähler potential

K(1) = 2t22G
(1)
t2t2

= 2e2t0

(
t22G

(1)
t2t2 −

δE

2

)
. (E.35)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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[31] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer (2013)

[INSPIRE].

[32] I. Antoniadis, R. Minasian and P. Vanhove, Noncompact Calabi-Yau manifolds and localized

gravity, Nucl. Phys. B 648 (2003) 69 [hep-th/0209030] [INSPIRE].

[33] K. Förger, B.A. Ovrut, S.J. Theisen and D. Waldram, Higher derivative gravity in string

theory, Phys. Lett. B 388 (1996) 512 [hep-th/9605145] [INSPIRE].

[34] A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes, Nucl. Phys. Proc.

Suppl. 55 (1997) 118 [hep-th/9611214] [INSPIRE].
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