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1 Introduction

Dualities are a key aspect of quantum field and string theory, as they connect seemingly
different theoretical settings and can be very useful tools for approaching otherwise inac-
cessible problems. An important example for such dualities is target space or T-duality of
two-dimensional o-models. In its simplest and most rigorous setting the duality maps two
toroidal fibre bundles as target spaces to each other. This duality is based on the global
abelian isometries of the target spaces, hence called abelian T-duality, and extends to the
quantum theory (for reviews see [1, 2]). On the classical level, the reasoning behind this
does not only work for (U(1))%isometries of the target space, but also for a generic global
group isometry, although the dual model does not possess this isometry anymore. This is
known as non-abelian T-duality [3].

Kliméik and Severa [4, 5] found a (non-isometric) generalisation of this setup, which
also admits a version of target space duality named Poisson-Lie T-duality. The correspond-
ing o-models, called Poisson-Lie o-models in the following, are the objects of study of this
article and can be put into the form

1 1
S = /d% (670,90 [ ——— ) (g'0_9)"
2 ’ GOiBO +11(g) ab

with Lie group G-valued fields g, a Poisson bivector II(¢g) on G and constant matrices
G, By, describing metric and B-field evaluated at the identity of G. The basic algebraic
structure of this o-model is a Lie bialgebra, given as a so-called Manin triple, 9 = g ® g~,

where g is the d-dimensional Lie algebra of G and g* is the dual algebra to g determined by
the Poisson structure II. The Lie bialgebra 9 admits an O(d, d)-metric corresponding to the
canonical pairing of g g* and is defined by the fact, that this O(d, d)-metric is Ad-invariant.
G-isometric models and their non-abelian T-duals are obtained from the above action by
choosing 0 to be semi-abelian (g or g* is abelian). The toroidal models admitting standard
abelian T-duality are of course also contained by choosing 0 to be abelian.

Non-abelian and Poisson-Lie T-duality does in general not extend to the quantum level
and in some cases even spoils conformal invariance [6-12]. Nonetheless the study of the
corresponding o-models revealed underlying geometric structures and was also successfully
used as a solution generating technique in supergravity [13-19].

Moreover (non-)abelian T-duality became of interest not only as generating technique
in the context of supergravity solutions, but was also useful in the field of integrable



models. Non-abelian T-duality and the algebraic structures behind Poisson-Lie o-models
inspired different kinds of integrable deformed o-models, namely A- and Yang-Baxter de-
formations [20-22]. The latter seem to be closely related to certain non-abelian T-duality
transformations in general [23-28]. In particular for so-called abelian r-matrices one repro-
duces (-shifts of (abelian) T-duality [29]. A clarification of the appropriate generalisation
of this statement to the non-abelian case was one of the motivations of this article and
we will comment on this aspect extensively. But also in general, the study of dualities of
two-dimensional integrable o-models and their geometric and algebraic description should
be useful to reveal the symmetries behind integrability there.

This paper aims to introduce techniques of abelian T-duality also in context of its
non-abelian generalisation. This includes the investigation of generalised fluxes of the
connected backgrounds, the above mentioned application to integrable deformations and
the systematic study of a duality group, which motivates to look for a double field theory
making such a duality group manifest.

Results and overview. After setting up our conventions and reviewing basics of T-
duality and Lie bialgebras, we revisit the definition [4] of the non-abelian T-duality (NATD)
group to a Poisson-Lie o-model associated to the Lie bialgebra d = g &, g*

NATD group(?) = {Manin triple decompositions of 0}

and motivate it from the construction of the Poisson-Lie o-model from a doubled o-model.
The central observation of this article is, that the elements of this group are vector space
automorphisms ¢ of 0, preserving the O(d, d)-metric and the algebraic closure of g and g*,

[p(8), v(9)] C ¢(g), [p(a), p(87)] C (")

and that we can thus analyse this group with help of the usual decomposition of an O(d, d)-
transformation into factorised dualities, B-shifts, S-shifts and G L-transformations fulfilling
these additional closure conditions. This gives insights into (at least parts of) the duality
group. The analysis shows that the above definition seems to be too narrow in some cases
— this is demonstrated by constructing the non-abelian T-dual of a principal chiral model
w.r.t. a subgroup. A less restrictive version of the Poisson-Lie o-model and the NATD
group is proposed, where closure of g resp. ¢(g) is not required anymore, such that the
above example it contained. For B- and [-shifts of O(d,d) to lie in the NATD group
they have to fulfil non-trivial conditions, depending on the algebraic structure of 0. In
some simple cases we can directly construct the corresponding transformations from the
o-model, although generically this is not possible. One of these cases is a setting which
admits a general version of a generalised Buscher procedure for S-transformations, already
introduced in [27, 28].

After reviewing generalised fluxes (H, f, Q, R) we demonstrate that Poisson-Lie o-
models are non-trivial realisations of a string in a generalised flux background. Subse-
quently we are able to interpret the Bianchi identities of these generalised fluxes in our
special case — f€,; are Lie algebra structure constants — in terms of Lie algebra cohomol-
ogy of g and show that the non-geometric Q-flux can be interpreted as structure constants



of a (Lie) algebra dual to g, with its non-associativity (violation of its Jacobi identity)
described by an R-flux. In terms of Lie algebra cohomology on g the non-geometric part
of Poisson-Lie o-models is described by

Qe H'(g,gNg), SRe[0]e€ H (g, gNgAg),

generalising the abelian case, studied in [30].

The previous considerations resemble ones in double field theory and generalised ge-
ometry. In particular the construction of the Poisson-Lie o-model from a doubled o-model
has the geometric interpretation of a projection onto Dirac subbundles of the Lie bialgebra
respectively its group, the so-called Drinfel’d double. We comment on different splitting
structures defining such Dirac decompositions, analyse a few candidates for these — almost
para-complex and symplectic structures — and comment on their integrability, which is
analogue to the algebraic closure conditions on the non-abelian T-duality group.

Finally we include an interpretation of Yang-Baxter deformed backgrounds as non-
geometric flux backgrounds and also a proof of equivalence between homogeneous Yang-
Baxter deformations and (-shifts of this non-abelian T-duality group.

For the convenience of the reader we include an appendix with basic notions of
(Chevalley-Eilenburg) Lie algebra cohomology and an overview between the connection
of solutions to Yang-Baxter equations and Lie bialgebras.

2 Poisson-Lie T-duality and o-models

2.1 Motivation from the toroidal case

In this section we first introduce some aspects of (classical) abelian T-duality, such as the
Buscher procedure and the duality group O(d, d), in order to motivate their equivalents in
the non-abelian case. We then review a particularly interesting formulation on S-shifts via
non-abelian T-duality, that will be of use later in this paper.

2.1.1 Abelian T-duality

The non-linear o-model of world-sheet embeddings into an n-dimensional target space is'

1 . . . .
5:2/[Gij(X)dXZ/\*dXJ—|—Bz»j(X)dX’/\dXJ] ) ih,j=1,....n (2.1)
with a target space metric G(X) and Kalb-Ramond field B(X). Now assume the target
space has an isometry and choose coordinates X’ = (X!, X%) such that X! parameterises
this isometry. Using this fact we can rewrite the action by substituting d X' by gauge fields
A. For this we also have to add a Lagrangian multiplier term —X;dA to the action, such

'Here and in the following we will neglect the dilaton and its behaviour under T-duality because we are
mainly interested in the classical case. The dilaton couples at higher order in o’ to the worldsheet and its
change under 7T-duality comes from a transformation in the path integral.

Throughout this paper we use the following conventions: the world-sheet coordinates are 7 and o with
world-sheet metric in conformal gauge vos = diag(—1,1). We also use Y =8.Y and Y’ = 8,Y and the
light-cone coordinates o* = 7 + &, such that *de® = +do™.



that the new action is classically equivalent to (2.1) by enforcing that A is flat, A = dX*.
Integrating out the gauge field A instead of the Lagrangian multiplier X; we get the new
o-model of the form

1 I _ I _
S = 2/ [GU( 1)CLXZ VAN *de + BZ]( l)dXz A de] (2.2)
with coordinates X; = (X1, X%) where the new background E = G + B for the metric G

and the Kalb-Ramond field B is given by the so-called Buscher rules

(_;Uzi Elm:@ Eml_,Eml Emn = B, —

) b) )
G E E

Eml Elﬂ

o (2.3)

in terms of the old background £ = G + B. In case there are d such U(1)-isometries,
or in other words the target space is a toroidal fibration, we can choose coordinates such
these fibres are parameterised by the X’ = (X< X2) and apply the above procedure.
Combining the above discussed Zo-dualities with GL(d)-transformations of the X yields
the duality orbit

E=¢.E=(aE+b)(cE+d)". (2.4)

where a = diag(A4,1), b = diag(b,0), ¢ = diag(c,0) and d = diag(D, 1) are each n by n

matrices and
A B
= d,d

1
where O(d, d) is defined w.r.t. the metric n = 1 . The duality group is O(d, d) and can

be revealed only by considering the quadratic part in derivatives of the isometry coordinates
— the transformation of non-isometry coordinates (also called spectators sometimes) is
easily reproduced from (2.4), thus these are normally neglected and we will follow this
route for most parts of this paper. Later in this article we will see that this separation
needs to be treated with a little care in the non-abelian generalisation.

Let us briefly review the structure of this duality group. Any ¢ € O(d,d) can be
generated by elements of the following four subgroups.

e The true Zs-dualities, corresponding to the Buscher rules, are normally called fac-
torised dualities. They fulfil 9> = 1 and ’generate’ the components of O(d, d), that
are not connected to the identity:

o1, = ( E, " 1 —ZEZ-Z-> with (B = diwdji- (2.5)

e General linear transformations G + B — AT(G + B)A are contained in this repre-
sentation of O(d,d) as

AT
v = ( A_1> for A€ GL(d). (2.6)



e B-shifts by a constant skewsymmetric matrix also form a subgroup of the duality
group. They correspond to gauge transformations of the H-flux, H = dB.

e Performing a *full’ factorised duality ¢ = 7 gives a new background E = g+ 3, where
(B takes the role of B and is given by

f=—-(G+B)'B(G-B)L (2.7)

We will refer to 5 as being dual or conjugate to B. So, logically S-shifts by a
skewsymmetric matrix form another subgroup of O(d,d). We discuss their meaning
on the o-model level in the next paragraph.

The matrix representations of B- and S-shifts are given by

() ()

for skewsymmetric ¢ and r.

The O(d, d) duality group cannot only be motivated as above but also from the Hamilto-
nian. With the canonical momentum

P, = Gz‘ij + Bin/j (29)
we can compute a first order form of the action:

L=X'P-H (2.10)

_ —1 —1 !
wn = o) (ORGP R (). 21

The Hamiltonian density H is invariant under linear transformations by ¢ €0(d,d) of
(X', P) and of the so-called generalised metric

(2.12)

. -1 -1
%(G,B)—<G BG'B BG )

-G7'B  G7!
From a similar first order form of an action we will motivate the non-abelian generalisation
of the duality group O(d, d).

More details on abelian T-duality, including comments on the issues on integrating the

gauge fields out and the discussion to the quantum case, where the duality group reduces
to its discrete subgroup O(d, d;Z), can be found for example in [2, 31-44].

2.1.2 [(-shifts via a generalised Buscher procedure

The o-model interpretation of 3-shifts will be of special interest in the following. We will
show two points of view on [-shifts. Starting from the linear o-model

S = 2/ [GijdX* A*d X7 + Bi;d X' NdX] (2.13)

for constant metric G and Kalb-Ramond field B, we follow the steps



1. gauging all the U(1)-isometries: substituting dX* by gauge fields A* and introducing
a Lagrangian multiplier term X; A A’ in the Lagrangian,

2. B-shift in the dual picture: adding a term X*3 = BYdX; A d)_(j with constant
and skewsymmetric coefficients $%, which is a total derivative as d3 = 0, to the
Lagrangian,

3. step 1 for the U(1)-isometries of the dual coordinates X;,

after which we arrive at

S, = ;/Al A (Gz] *Aj + BZJA]) =+ Az A\ (BZ]AJ + AZ) + d.)(Z AN /L (214)

Integrating out A and A; gives the standard O(d, d) S-shift?

1 .ot . . A 1 A
S == /d)(Z VAN |:GU * +Bij:| dX’ = /dQO' 6+X’ (1> 0_X’. (2.15)
2 aBth),

The second perspective on a S-shift, that we will take, is the following. A S-shift cannot
only be interpreted as a B-shift in the dual coordinates, but also as the introduction of
a Poisson bivector II = 3%9; A 8;. On a symplectic leaf® of II, we can define a two-form
w= Bi; 14X A dX7, which is symplectic for constant 3%:

MLIg=0 < dw=0, (2.16)

where [, ]g is the Schouten bracket of multivectors. On such a symplectic leaf and after
integrating out the A; in (2.14) first and redefining A7 +— A7 — d X7, we get

1 ; . . i .
S=3 /DX A (Gijx» DX + B;;DX7) 4 8,1 A" A A7 (2.17)
with DX = dX’ — A*. With the identification
dX; = Gij xdX7 + Bj;dX7 (2.18)

between dual (winding) and the original coordinates and subtraction of a total derivative
dX; A dX? we obtain

1 i j j o i L a—1A4i A Al
S = 2/.4 A (Gij*AJ—FBi]‘AJ)-FdXZ‘/\A +/8ij1A NA. (2.19)

The reason, that we consider the version (2.19) of (2.14), is that it can be obtained
via a different route, which was introduced in [27]:

2In the literature to integrable deformations [S-shifts are usually referred to by TsT-transformation,
standing for T-duality — coordinate shift — T-duality. See for example the original papers [45, 46] and
proof of the equivalence between [-shifts and abelian Yang-Baxter deformations [29].

330 choosing and restricting to coordinates such that (Bfl)ij exists. We define (671)15 to vanish on all
other coordinates.



e Given a cocycle w (2.16) we can centrally extend the isometry algebra with generators
{t;} (abelian in the toroidal case) in the following way (see appendix A for more
details), where Z is the new central element of the algebra:

[tits] =0 = [ti ] = [t tj] +w(ti, t))Z = B;' 2, [ti, Z) = 0. (2.20)

e Starting from original action (2.13), we substitute dX* by gauge fields A’, which we
now assume to be components of a gauge field A’ = A't; + CZ with field strength
F'=dA"—[A'"}A']". Using (2.20) the components of F are

F'=dA" and F?=dC—p; AN A. (2.21)

Instead of adding a Lagrangian multiplier term which enforces only F* = dA® = 0,
we also want to set FZ = 0. For this we use ’extended’ dual coordinates Y; = (XZ-, Y)
and add the following term to the Lagrangian

LlLagmuts. X —YoF* 2 dX; AAT+dY AC+YBZLA A A, (2.22)

e Integrating out C leads to Y = const., so that the resulting action is the same
as (2.19). After integrating out A we are left with (2.15).

All these manipulations were rather trivial in the abelian case, but this analysis helps to
understand the geometrical meaning and the objects to look for in the non-abelian case.
We will comment on this and the connection to Lie algebra cohomology in section 3.2.

2.1.3 Non-abelian T-duality

Here we show that also based on non-abelian isometries a similar gauging procedure can
be done. In general this is known as non-abelian T-duality (NATD in the following). Let
us consider the model

1
S=5 [ @0 (5710:9) Eug™0-g) (2.23)

with constant 'background’ field £ = G + B and group valued fields ¢g: > — G, with
corresponding Lie algebra g and structure constants f¢,,. Here we neglect as discussed
above additional spectator coordinates. We perform a procedure, which is very similar to
the abelian case: substitute g~ 'dg by g-valued gauge fields j, add a Lagrangian multiplier
term xz,(dj + [4,7])%, which fixes j to be pure gauge and then integrate out j. The non-
abelian T-dual model is

1 _ _
§=3 / %0 043, B (x)0_mpy,  E.' = Egp — vcf n (2.24)

So in contrast to the abelian case, the duality connects an isometric and a non-isometric
model with each other. In general the status of non-abelian T-duality is not as strong as
the one of abelian T-duality — it is not supposed to be a true duality on the quantum
level, but a map between similar theories. Also if the trace of the structure constants of g
does not vanish, f.%“ # 0, the non-abelian T-dual model (2.24) possesses a kind of anomaly
that spoils conformal invariance in the quantum theory. For more details on non-abelian
T-duality see [3, 6, 7, 27, 38, 47, 48].



2.2 Lie bialgebras

Before we discuss the further generalisation of the above, i.e. Poisson-Lie T-duality and
Poisson-Lie o-models, which will also enlighten the structure of the action (2.24), let us
review the algebraic basics for this — Lie bialgebras — and set up our conventions.

Here and in the rest of the paper, we consider a d-dimensional semi-simple? Lie algebra
g with corresponding Lie group G, the Killing form s and generators t, fulfilling

[tmtb] = fCupte- (2.25)
We use O, Jp, - . . to represent the curved derivatives corresponding to t4,tp, . .. treated as
invariant vector fields on G, and 0;,0j, ... for flat derivatives.

2.2.1 Lie bialgebra definitions

Definition via Manin triples. We want to define a Lie algebra bracket on the vector
space g @ g* in terms of the 2d generators Ty = (t4,t%) of g ® g*, such that the canonical,
non-degenerate and symmetric bilinear form, defined by

(ta,ty) = @41 =0, (tg, 1) =& (2.26)
or in terms of the T, (Ta,TB) = nap with n = <]1 ]ld>, is Ad-invariant, i.e.
d

(Ta, [T, Tc)) = ([T, Tal, TB) - (2.27)

The structure constants of a complementary pair (g, g*) of Lagrangian (meaning maximally
isotropic w.r.t. to (, )) subalgebras can be constructed to be of the form

[Ta,T5) = F° ApTc
with [te,ts] = foustes [ 8] =F,"
— b —
[ta: ] = fa te+ et
The Lie group to the Lie bialgebra 9 is called Drinfel’d double, we denote it by D. It
contains G and G (the Lie group to g*) as subgroups, D = G x G. The condition on the
structure constants f¢,, and f,* in order for (2.28) to fulfil the Jacobi identity is®

fcmn?c = f(ac(m?n)b)c' (2'29)

The triple (9, g, g*) is called Manin triple. For a given (9, (, )) there can be multiple Manin

&, (2.28)

ab

triple decompositions. In the following we also use the notation
9o 9" (2.30)

to describe a Manin triple. Consistency requires that x£~! is the Killing form on g*.

4In principle we do not have to restrict to the semi-abelian case to perform non-abelian T-duality. This
was successfully demonstrated in [49].
5We use the following notations for antisymmetrisation of indices

U(aVb) = UqVUp — UbVq and U(a|Ve|b) = UaVUch — UbVca-



Definition via 1-cocycles. In the maths literature Lie bialgebras are normally defined
differently but of course equivalently. A bialgebra is the pair (g, u) of a Lie algebra g and
a g A g-valued 1-cochain u on g fulfilling

1. 1-cocycle condition:
du(m,n) := A(ady,)u(n) — A(ady,)u(m) — u([m,n]) =0 (2.31)
2. 'Jacobi identity’:
A(u)ou =0, (2.32)
where we defined the coproduct A(X) :=1® X + X ® 1. A g A g-valued 1-cochain
u(te) = ucPty Aty (2.33)

can be identified with a skew-symmetric bracket on g*, [, Jg« : g* Ag* — g* with structure
constants 7Cab = u,%. Then the 1-cocycle condition (2.31) is equivalent to (2.29) and (2.32)
corresponds to the Jacobi identity on g*. So indeed, this definition is equivalent to the
Manin triple.

If the 1-cocycle is a 1-coboundary, we will call the corresponding Lie bialgebra ’1-
coboundary’. We will comment on a certain type of these 1-coboundary bialgebras in the
next section. But, of course, there are more possible Lie bialgebras. In appendix B.4 we
comment on this. See appendix A for our conventions of Chevalley-Eilenburg cohomology
of Lie algebras.

2.2.2 R-brackets and Yang-Baxter equations

Given a Lie algebra g with bracket [, |, is it possible to define another Lie bracket on g?
A simple candidate is the so-called R-bracket

[m,n]r = [m, R(n)] — [n, R(m)] Vm,n € g (2.34)
for some R € End(g). A sufficient condition on R, s.t. [, |r fulfils the Jacobi-identity, is
[R(m), R(n)] — R([m,n]r) = c*[m,n], Ym,n € g. (2.35)
This condition can be rewritten as
[(Rtcl)(m),(R+cl)(n)] = (R=Ecl)([m,n]r), Vm,n € g, (2.36)

which means that (R + c1) is a Lie algebra homomorphism between (g, [, ]) and
gr:=(g,], |r). After rescaling we can distinguish three cases of (2.35):

1. ¢ = 0: classical Yang-Baxter equation (cYBe),
2. ¢ = 1: non-split modified classical Yang-Baxter equation (mcYBe)

3. ¢ =1: split modified classical Yang-Baxter equation,



each of which have distinct roles in the definition of Lie bialgebra structures to semisimple
Lie algebras, which are sketched in appendix B. A more extensive review can be found for
example in [50].

The connection of R-brackets of semisimple Lie algebras to their bialgebra structures
is seen via the definition via 1-cocycles. The non-degenerate Killing form s on g defines a
2-vector r = r%®t, A t;, for each R € End(g), % = k% R?.. The g A g-valued 1-coboundary

or(z) = Aady)r = [A(x), 7] (2.37)

is trivially a 1-cocycle (2.31) and the condition for the Jacobi identity (2.32) on r can be
written as

A(adg) ([r,7]s) =0, (2.38)

where [, |g is the standard Schouten bracket of multivectors.

2.2.3 Bivector fields on Lie groups

In the following we review typical bivectors on Lie groups associated to a dual Lie algebra
structure by the canonical relation

7.0 = 9,11 e). (2.39)

Poisson bivectors. The canonical Poisson vector II = I1%t, A t;, on a Lie group G for a
left-(right-)invariant basis {¢,} of T'G is given by
ab_c 1- &

—fe (afb)dkxcxd +..., for g=-exp(z,) €q, (2.40)

Hab (g) :?c - 9

if the structure constants f, f describe a Lie bialgebra.® The explicit form of (2.40) can be
derived from (formally) transporting Tcabxc along G. Let us note, that IT in (2.40) is neither
left- nor right-invariant, which allows for the fact, that II(e) = 0. For this reason we will
call IT homogeneous Poisson structure in the following. The Poisson bivector (2.40) can be
constructed also in a coordinate independent manner. Given a Lie bialgebra 0 = g @, g*
and the adjoint action of a ¢ € G on the generators of 0 we can write the homogeneous
Poisson bivector as [4]

I(g) = C(g)- A" (g) (2.41)

B
gtag ™ Alg) 0
for Ad,T4 = w1 | = B Tp.
! <gt g 1) (C(g) An e )
From the properties of Ad, on ? we can deduce the useful relation
0uIl(g) = £, + £ 119" () (2.42)

for g = exp(zt,).

°B.g. O(z) of [1¥(®8, 1% vanishes because of the Jacobi identity on g*, all the higher order terms
because of the Jacobi identity of g* and 1-cocycle condition (5.7).
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Invariant bivectors. In case we have a 1-coboundary Lie bialgebra associated to g and
the O-cocycle r = r®t, A t, on g, we can define a non-homogeneous bivector

% (g) =% — f."2¢ 4+ ..., for g = exp(zt,) € G, (2.43)

which is simply r transported via left-(right) translation along G and the same as (2.40)
plus a constant term.

Generically II, given by (2.43) will not be a Poisson structure, but the Lie bialgebra
properties on the structure constants f and f mean that the Jacobiator will be constant
and Ad-invariant. So for example, if r corresponds to a solution of the (modified) classical
Yang-Baxter equation, then

159,15 (g) = 2romebn e (2.44)

mn?

where c? is the coefficient in the (modified) classical Yang-Baxter equation (2.35). In case, r
is a solution of the classical Yang-Baxter equation (c? = 0), (2.43) is the left(right)-invariant
non-homogeneous Poisson bivector, introduced by [51].

For such 1-coboundary Lie bialgebras we can reproduce the homogeneous Poisson
bivector (2.40) from

Im=r-T1I,. (2.45)
This has been noted already in [52]. But as commented above, 11%(e) = r% does not
necessarily have to be a solution to a Yang-Baxter equation in order for II to be Poisson.
2.3 Construction of Poisson-Lie c-models from a doubled o-model

Let us review the basic construction und geometry of Poisson-Lie o-models. It is the
natural generalisation of o-models like (2.23) or (2.24).

A first order parent action [8, 9, 53], generalising the one of abelian T-duality (2.11),
for Poisson-Lie o-models is a o-model of fields [ taking value in a Drinfel’d double D

S = 1/ d*o [<z—1agz,z—1afz>—<z—1agz,7%(l‘1aal)>] +1/ (~tanpTtamtar)
2 JoB 12 /p
(2.46)

where (, ) is the canonical metric on 9. The operator # represents a generalised metric

. Go — BoG; 1By ByGyt
HAB = H(TAyTB) = <TA7H(TB)> = ( " GSIBO " g_(l) > .
—vo PO 0

and is defined by constant symmetric resp. skewsymmetric d x d-matrices Gg resp. By
given in some basis {Ta} = {t4,t*} of a Manin triple decomposition of 9. As such (2.46)
is the natural generalisation of the toroidal first order action (2.10) with a few caveats:

e The polarisation term X - P in the abelian case becomes a W ZW-model like term.
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e The non-abelian nature of 0 means that for some choice of Manin triple decomposition
the decomposition of I = gg=' € D for g € G and g € G will not result into a direct
decomposition of 1719, (which would correspond to (X', P;) in the abelian case),
but instead we have:

I7'dl = Ady (—g'dg + g 'dg) (2.47)
= —(g7"dg)"Ady(ta) + (77" dg)aAd,(t)

b
= (~(g7'dg)", (7" dg)a) (111n 1) (fug)<Ar>qg)> <§g>

where the homogeneous Poisson structure II(g) arises according to definition (2.41).

What we call Poisson-Lie o-model in this paper is constructed as follows: choose a Manin
triple g ©, g* with a corresponding basis {¢,,7} and groups G, G, and take a correspond-
ing decomposition of | as above | = gg~'. We put this choice of parameterisation of D
into (2.46), then with knowledge of (2.47) and help of the Polyakov-Wiegmann identity for

the WZW-term we integrate out g and yield
55=;/d%(f%hwa(1l> (g7'0-g)". (2.48)
s T19) )

This model is a o-model for G-valued fields g. The Lie bialgebra structure of the original
doubled o-model is encoded in the homogeneous Poisson structure II(g) of the form (2.40),
and the generalised metric finds itself in Fy = Gy + By.

The models, which we discussed before, belong to this class of o-models for different
choices of Lie bialgebras:

e The toroidal o-model (2.13) is reproduced from (2.48) for ? being abelian.

o We get the typical G-isometric o-model (2.23) for the so-called semi-abelian Lie
bialgebra

0 =g @ (u(1)".
e The non-abelian T-dual of the above (2.24) corresponds then logically to
0= (u(1))’ @ 0.

Due to the abelian structure of the target space this Poisson structure of the
form (2.40) is given by I (x) = — € pxe.

Dirac structures. The key data of the doubled o-model (2.46) is the Lie bialgebra
and the generalised metric H. This data singles out a decomposition of 0 into so-called
Dirac structures, orthogonal subspaces w.r.t. to natural O(d, d)-metric (, )

p=0" Lo (2.49)
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Each choice of a non-degenerate d x d-matrix Fy = Go+ By, with a metric Gy and skewsym-
metric By, chooses such a decomposition:

St =t,+ ngabfu, with Ef = E} | E; = Ep (2.50)
2% = span (S7). (2.51)

This basis also block-diagonalises the canonical O(d, d)-metric
()= 1S5) G (S| — 150) Gav (S (2.52)

So the effect of the generalised metric term in (2.46) is to ’choose’ a decomposition of d
into Dirac structures, which are the eigenspaces of H:

Hlye = () [her H=1ST)GE (ST 1) GE’ (S |- (2.53)

A crucial property of the (classical) doubled o-model (2.46) is, that the dynamics follows
the constraint

(I7toLl,0%) =o. (2.54)

This relation highlights the role of the Dirac structures and was the starting point of
the investigation of Poisson-Lie T-duality in [4], even before the doubled o-model was
discovered. For a mathematical treatment of Dirac structures and Courant algebroids in
the context of Poisson-Lie T-duality see [54].

The choice of decomposition is of course independent of the basis choice of 9, but the
Dirac structure is non-manifestly realised in the Poisson-Lie o-model (2.48), the explicit
form of which will depend on a choice of basis, in contrast to the doubled o-model (2.46).
This is the key point in our analysis of Poisson-Lie T-duality.

Poisson-Lie T-duality. Suppose we have another choice of Manin triple other than
gDag™ at our hand, the simplest choice of course being g*@®pg. Let us choose a corresponding

1

parametrisation of D in (2.46) by [ = gg— " and integrate out g (instead of g before). This

gives rise to a classically equivalent o-model
1 1o o\ Babi\i——1n =
5= [ @ola 0.9 )5 D), (255)

with E~1(g) = Go + Bo + I1(g), where II is now the homogeneous Poisson structure on G,
equivalent to the dual Lie algebra structure g. This is the Poisson-Lie T-dual of (2.48) and

generalises the R < %—behaviour from abelian T-duality by

EoE;' =1 and also E(e)E(e) = 1.

A Poisson-Lie T-duality group will consequently be the space of decompositions [ = hh™! €
D, where h € H, h € H for some D = H x H. On the Lie algebra level this is corresponds
to the set of Manin triple decomposition of the Lie bialgebra 9 to D. The task to explore
this space is what we set about in the next section.

You can find generalisations of Poisson-Lie T-duality to coset spaces, open strings and
supersymmetry [55-58|, a canonical analysis [9, 11, 59, 60] and studies of the dual models
beyond the classical level [8, 10, 12, 61, 62] in the literature.
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3 A non-abelian T-duality group

3.1 Definition

Motivated by the discussion in the last section about the construction of the Poisson-Lie
o-model (2.48) with a corresponding Lie bialgebra d from a doubled o-model (2.46) and
following the first encounter with Poisson-Lie T-duality [4], a candidate for a non-abelian
T-duality group’ is

NATD group(?) = {Manin triple decompositions of 0} . (3.1)

The elements of the NATD group as defined above are vector space automorphisms ¢ of
0, which

1. preserve the natural pairing ( | ), so ¢ €0(d, d).

2. preserve the algebraic closure of g and g*, i.e.
[p(9),0(9)] € p(g) and [p(g"), ¥(g")] C @(g"). (3-2)

In the case, where 9 is abelian, (3.1) naturally becomes the O(d,d) group of abelian T-
duality.

Let us emphasise that this group (3.1) is the modular space of Poisson-Lie o-models
corresponding to a Lie bialgebra d (and some given Gy, Bpy). This does not imply that
this group contains any (non-abelian) T-duality transformation, that we can think of. As
a side note, we will find that condition 2 has to be partially relaxed in order to incorporate
non-abelian T-dualities of principal chiral models with respect to subgroups. Nevertheless
we will be content in the study of Poisson-Lie o-models and thus focus on the above NATD
group for most of this paper.

Action on Poisson-Lie o-model. O(d,d) basis transformations on the doubled o-
model (2.46) result in different dual o-models, because we project onto the same Dirac
structure (which defines the model), but integrate out different d.o.f.s corresponding to
©(g*). This similarity action is given by

e (0,d0,0™) = (0,0(9), ©(g*)), where again ¢ is not a Lie algebra, but only a vector
space automorphism. Generically there will be a change in algebraic structure.

e standard O(d, d)-action on the generalised metric (2.12) by the inverse ¢

H(Gy+ By) = ¢~ ' H(Go + Bo). (3.3)

"The investigation of this group, although it defined on basis of, what we called here, the Poisson-Lie

o-model, will turn out to contain isometric models like the principal chiral models and their non-abelian
T-duals in many cases. As it will also turn out to be a direct generalisation of the abelian T-duality group
0O(d,d), we decided in favour of the name 'non-abelian T-duality group’ against 'Poisson-Lie T-duality
group’ here.
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So, in addition to transforming the background Gy + By as in abelian T-duality, we also
need to account for the change in algebraic structure. The transformed o-model looks like

1 1

S =_ d20' /718 AV /718_ \b 3.4

2/ (9" 0+9") — TP (g q) (3.4)
Go+By ab

where ¢’ takes values in G’ <D, which is the Lie group to ¢(g), and IT' is the homogeneous

Poisson bivector field on G’ corresponding to the transformed dual structure Fcab.

3.2 Standard subgroups

In the subsequent literature the group (3.1) was studied systematically only for lower
dimensional Lie bialgebras and without physical interpretation of the transformations,
following the Bianchi classification of three dimensional Lie algebras [63—67]. Now we
want to understand some concrete structure of the NATD group apart from the original
‘complete’ factorised non-abelian T-duality transformations (called Poisson-Lie T-dualities
so far) and give an explanation on the o-model level or, if possible, a Buscher-like procedure.
As the study of a generic ¢ € O(d, d) is a little unhandy, we will make use of the standard
decomposition of O(d, d) into factories dualities and the three continuous subgroups: GL-
transformations, B- and S-shifts. We look for the conditions such that these lie in the
NATD group (3.1) and also for the meaning of these transformations on the level of the
(undoubled) Poisson-Lie o-model.

The study of the standard O(d, d) subgroups should help to get physical understanding
of this NATD group. The definition (3.1) will severely restrict the allowed factorised duali-
ties, B-shifts and S-shifts. But it is by no means to expected that these subgroups generate
all elements of (3.1), and resultantly our investigation may only give a subgroup of (3.1).

Lie (bi)algebra automorphisms. For example all the standard O(d, d) subgroup trans-
formations will turn out to be generically not Lie algebra automorphisms. But Lie algebra
automorphisms of 9, that also preserve the O(d, d)-metric will also be part of the duality
group, acting only on the background data Gy and By. We will not consider these further.

(Non-abelian T-duality) GL-transformations. The simplest continuous subgroup of
O(d, d), general linear transformations GL(d) of O(d, d)

AT 0 :
ver=\ o 41 ] with A € GL(d) (3.5)

is clearly contained fully in the non-abelian T-duality group. It describes simultaneous basis
changes of g and g* preserving the O(d, d)-metric and also the algebraic closure conditions.

3.2.1 Factorised non-abelian T-dualities

Factorised dualities of O(d, d) are the Zs-transformations corresponding to the maps

Qrd. : ta >ty =1% to sty =to
Y 7Y =ty, (=12 (3.6)
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fora=1,...,mand a =m+1,...,d, for an m < d.® Following the definition (3.1) the
@g.q. are only NATD transformations, if the {t,,t°} = {ta,to, t*,t¢} fulfil the following
conditions:

1 = F T = g = Flag =0 (3.7)

This is equivalent to the decomposition of 0

2= (h@&m) & (h*&m”) (3.8)
with — [b,b] C b, (6%, 5] C b7,

[m, m] C m, [m*, m*] C m*,

b ]chom’,  [p*m]Ch Sm,

where b resp. h* is generated by {t,} resp. {t*} and m resp. m* by {t,} resp. {¢2¢}. Thus
the factorised dualities act as

(hom) @ (h*em™) < (B @m) o, (hom") (3.9)

on the Lie bialgebra structure. The dual Poisson-Lie o-model

1
L L R — 70 3.10
> “((Ea)—lm')ab] (340

consists of the Maurer-Cartan forms j’ to the Lie group of the algebra b* & m, the ho-
mogeneous Poisson structure II’ (corresponding to the new Lie bialgebra (3.9)) and the
transformed background Ej), given by the standard O(d,d) action of ¢¢q (3.6) on the
original Ej.

The conditions (3.7) seem to be very restrictive — even for the semi-abelian Lie bial-
gebra
g @ (u(1))? with an abelian subalgebra h C g these are not fulfilled in general, due to
[ta, 1] = fP 4st7 € b* @ m in general. In the following paragraph we study exactly this sce-
nario — the non-abelian T-duality of the principal chiral model w.r.t. to a subgroup. This
will indeed demonstrate that it cannot be put into the Poisson-Lie o-model form (2.48).

Subgroup non-abelian T-duality. Consider the principal chiral model on a group
G, which has a subgroup H with Lie algebra h. We decompose the generators of G
correspondingly, {t,} = {ta,ts}, and the model by choosing g = hm with h € H and some
m € G, so that

g tdg = Ad;! (h_ldh +dm m_l) . (3.11)
The action becomes

S o /Tr (" 'dh+dm m™) Ax (k7 dh +dm m™1))

= / {Tr (A+dm m™ ) Ax (A+dm m™")) — 2, (dA” + [AVA]Y) }. (3.12)

8This is generic as we can arrange any choice of the generators {ta} with help of GL-transformations.
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Integrating out the h-valued field A yields

- 1
S d? 0+ 0 —1ye — (0-23 — 0— -HrT
oc/ a{( T + (Opm m™ ) Kgq) /‘?aﬁ—i‘v.ﬁaﬁ( Tp— kpr(O-mm™)7)
+ Tr ((04m m™) (0_m m_l)) } (3.13)
The equations of motion can be expressed in the following form
- 1 _ _
dJ, + §Qabcjb ANJ,=0 (3.14)
with the Poisson structure llos = —Z,f7,45 and the current”
_ 1 . _
Jo=+(-—— (aia-:ﬁ + (94 m_1)> 7o & §,5(00m m~1)ers (3.15)
11/, =

and the new generators of the transformation (3.6), where the {¢,} generate a subalgebra:

[th th] = 0= Feapty + Hagel (%) = [1agt" = Qy°7F7 + R4,
[t t5] = gty + [ 502 = Flaptl, + Hapy 'L, [7,7%] = f2,,87 = Q272 + R,
[thots] = Loty + fapt = Flagtl + Hop 7, [0, 78] = 0 = Q.22 + R4,

[th, 8%) = Ot + f 00 = FP 87+ Qa1 [th, 7% = 0= FB.,0° + Q.2

[t,g’ E/ﬁ] = fvgﬁtlw + flgﬁfw = Fﬂ'ygfw + Qgﬁlt/w

[0, F2] = f2 0t + fE 870 = FL ot + Qo2 (3.16)

where we organised the resulting structure constants in the conventions of generalised
fluxes.! So, formally (3.13) looks like a Poisson-Lie o-model, but the current

(0+Zq £ (0xm m_l)"/@m) t 4+ (0em m H%, €h* @ m (3.17)

is not the Maurer-Cartan form of a group, because h* @ m is not closed under the Lie
bracket generically. As long as f“g, (the only non vanishing component of H in (3.16))
does not vanish, it does not seem possible to arrange the Bianchi identities of (3.17) into
a zero curvature form, which would required in order for the subgroup non-abelian 7T-dual
model to be of the Poisson-Lie o-model form — this agrees with (3.1).

A modified definition of a NATD group. Motivated by the above considerations,
let us give a refined version for the definition of the NATD group
mod. NATD group (0) = {Manin pair decompositions of 0} (3.18)
~{(p: 2=20)€0(d,d): [p(g"),0(a)] C ¢(g")},

9Superficially it looks as if this would have increased the degrees of freedom, but the variation of (3.13)
JaYer
)

with respect to (9m m~™ vanishes by the equations of motion for Z.

19Because we start with a semi-abelian Lie bialgebra and the f¢,, fulfil the Jacobi identity, the coefficients
H, F, Q and R fulfil the standard Bianchi identities of non-geometric fluxes [68]. We will comment further
on this topic in section 4.
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which goes beyond the notion of Poisson-Lie o-models, but includes the previous case.!!

From the perspective of the construction from a doubled o-model (2.46), the above scenario
is plausible, because for integrating out the degrees of freedom consistency requires only,
that g* is a subalgebra (resp. G a subgroup), but not g. The refined conditions in compar-

ison to (3.7) for factorised dualities were already stated in [52] with slight differences:'?

(hem) & (h*&m”) (3.20)
with [h,h] C h, [m*,m*]Cm* and [ph,m"] ChHhedm",

Of course the setting of Lie bialgebras resp. Drinfel’d doubles, Poisson-Lie o-models
and Poisson-Lie T-duality is very narrow. A consistent treatment of the modified defi-
nition (3.18) would require a different setting, i.e. one, which is not based on a Lie bialge-
bra 9, but on any even dimensional Lie algebra, which admits an O(d, d)-invariant metric
and has one maximally isotropic subalgebra. This would include very different settings, of
course Lie bialgebras but e.g. also the setup discussed in [69], with a symmetric space de-

composition 0 = m® @ m®, where m(©®

is an isotropic subspace and -algebra w.r.t. to the
O(d, d) metric and m(®) is complementary isotropic subspace, but fulfils [m(l),m(l)] =m©
and thus does not close.

Nevertheless we will continue to work with the more restrictive Manin triple defini-
tion (3.1), as it gives already some interesting insights in the subgroups in the component

connected to identity of the duality group (3.1), which we will study in the following.

3.2.2 Non-abelian 7T-duality B-shifts

Let us come to the B-shift and §-shift subgroups of the NATD group, which have not been
considered so far in the literature. In context of abelian T-duality B-shifts correspond to
gauge transformations of the Kalb-Ramond field B, leaving the H-flux, H = d B, invariant.
The expectation is that this behaviour generalises to the H-flux of the Poisson-Lie o-
model (2.48) and the B-shifts of the NATD group (3.1) (from now on NATD B-shifts).
We will see hints for this in section 4.

In this section we are going to discuss, how the NATD B-shift looks and how it acts
on the Poisson-Lie o-model. B-shifts in O(d, d) are of the form

B = (15 Uﬁ”) (3.21)

LA Manin pair (9,g*) is a pair consisting of a 2d-dimensional Lie algebra ? admitting an O(d, d)-metric

and a Lagrangian subalgebra of 9, here denoted by g*.
2Tn [52] the authors required that for subgroup Poisson-Lie T-duality the dual flatness condition should
decompose fully

= 17 be— = - 17 By= =
djo+ 5Fa Go Ne = dja+ 5 Fa i Ny = 0. (3.19)

But the factorised Poisson-Lie T-duality map ¢ acting on the currents j=g¢ 'dg and ji .= :E(E%in) G4 is
0 ab

more complicated than j <+ j, and Ey < EO_1 in the abelian case — it consists also of exchanging IT — II'.
Our analysis suggests, that condition (3.19) is not required for consistency of Poisson-Lie T-duality.
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with a skewsymmetric d X d-matrix o4,. The transformed algebra relations are
[to, th) = Fapt, + Hapl (3.22)
. - k - d !
with  Fa = f + opafy  and  Hawe = 0(ea0plef1e) — k@l ) =0, (3.23)

by imposing algebraic closure on ¢p(g). The only relevant Jacobi identities, we need to
check for these new algebra relations (3.22) are:

— (mn— d)k — dk
FR Pl = Fonf o = omaomFi ™ " + " Han
— dm — m)k
+ O0em (fkabfk - f(dk(afb) : ) + (C' p. of (abc)) (324)
- mn m T nk - mn - n)k - (k- mn
Fro B = FO By = P afl™ = F Oy ™ + oaly T

which vanish due to Jacobi identities of the original Lie bialgebra and the condition (3.23),
H = 0. This condition is the crucial requirement of a NATD B-shift in comparison to the
abelian case, where it is trivially fulfilled. Let us distinguish three cases to understand it
better:

1. g* is abelian: fcab =0

Then 0 = Hype = —Uk(afkbc), means that oq,(g7'dg)* A (g~ dg)? is a closed 2-form on
G. In this case the NATD B-shift simply adds of a 2-cocycle term to the Lagrangian:

S /dQU(g_laJrg)“ [Go + By + 0ol (9710_g)°, (3.25)

which is a gauge transformation of the H-flux. Later we will argue that this is a
generic feature also in the generic case.

2. g is abelian: f¢, =

oat® AT is a solution of the classical Yang-Baxter equation on g*. In this case a
o-model interpretation is possible in the dual picture — there B-shifts will be S-shifts
of an isometric model. We will show in the next paragraph on NATD [-shifts, that
these are indeed easier to understand in this specific case and that we can employ a
generalised Buscher procedure there.

3. generic case:

Generically o, will be neither a 2-cocycle on g, nor a solution to the classical Yang-
Baxter equation on g*. Eq. (3.23) says that the failures for both cancel each other
out. We can also view (3.23) as 2-cocycle condition of o4, w.r.t. the new structure
constants in (3.23)

Hape = —0p(aFF ey = 0. (3.26)

. . . . —ab .
If we restrict to start with f€¢,, being a 1-coboundary Lie algebra to fca with f¢,;, =
— f(b;Tb)d for some 7 = 7,41% A ¥ and make the ansatz oq, = 7! — Tap, condition (3.23)
becomes
cd [

f. T Thd — Tachd] + c.p. of (abe) =0 (3.27)
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which is satisfied if 7" and 7 fulfil the same classical Yang-Baxter like equation. In
this case we can understand a NATD B-shift as

e exchanging the 1-coboundary Lie algebra structures f€,, <> F,; that fit to g*,
which is unaffected by the B-shift. This will also change IT — II with II being
of the standard form (2.40) corresponding to the dual structure constants ?Cab
but now on a new group with structure constants F..

e standard action of ¢p on Ey = Gy + By.

A generic Buscher-like procedure or some other action on the (non-doubled) Lagrangian
level, which reproduces the NATD B-shift action, has not been found yet, but it is not
necessarily expected to exist, as there is also none for the factorised dualities. The jus-
tification for these transformation thus lies in the common origin in the same doubled
o-model (2.46).

3.2.3 Non-abelian T-duality S-shifts

From the perspective of the definition of the NATD group (3.1), S-shifts are exactly con-
jugate to the previous encountered NATD B-shifts. On the other hand the formulation
of the Poisson-Lie o-model is not duality symmetric, so NATD [-shifts and their action
on Poisson-Lie o-model deserve some attention on their own. p-shifts in O(d,d) are of

o (ﬂ g) 529

with a skewsymmetric d x d-matrix r®. The transformed algebra relations are

the form

abzc

[, 8°) = F."1° + R4, (3.29)
!

W]th Fcab _ ?Cab + Tk(afb)kc and Rabc — T(a‘dr‘b|6f‘0)de o rk}(a?kbC) ~ O, (330)

Also the solutions to the closure condition are basically the same as those in the B-shift
case. In the dual picture (understand a NATD [-transformation as the sequence NATD
factorised duality — NATD B-shift — NATD factorised duality) the interpretation is
exactly the same as NATD B-shifts.

1. g is abelian: f¢,; =0

r = 1%, Aty is a symplectic 2-form on g*. In this case the NATD S-shift is indeed
easiest understood in the dual picture, where it is simply a NATD B-shift with the
intuitive o-model interpretation as discussed in the previous paragraph.

2. g* is abelian: fcab =0

Then r = r®t, Aty is a solution of the classical Yang-Baxter equation on g ® g. The
resulting o-model will be discuss below.
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3. generic case:

If both g and g* are non-trivial, then we use (3.30). Let us restrict to 1-coboundary

Lie bialgebras with ?Cab = —fle, Y4 for some s = s%t, A t,. With the ansatz
rab = g% _ 59 condition (3.30) becomes
[ | 8798 — sacsbd} + c.p. of (abe) =0, (3.31)

which is satisfied if s’ and s fulfil the same classical Yang-Baxter like equation. NATD
B-shifts switch between different choices of dual Lie algebras for a given f€,, in a
way that r corresponds to a 2-cocycle on the new dual algebra

rEaF") =, (3.32)

This incorporates the cases, where we can ’G-untwist’ to standard G-isometric

o-models.

Exactly dual to the generic NATD B-shift case, these kind of NATD g-
transformations can be thought of as connecting Poisson-Lie o-models for the same
quasi-isometry algebra g but different dual structure g* connected by (3.31) fulfilling
condition (3.30). In general the NATD f-shifted Poisson-Lie o-model is given by

1 1
S = /d%— (9" 049)" (g7'0-g)" (3.33)
2 " aim — T+ ),

o-model interpretation via generalised Buscher procedure. Generically, exactly
as for the NATD B-shifts or factorised dualities, a derivation of NATD g-shifts only on
the (non-doubled) Lagrangian level is not available. But in the semi-abelian case, the
G-isometric model (2.23), it is possible and mediated by the non-abelian generalisation of
the ’generalised Buscher procedure’ (see section 2.1.2). It was introduced already in [27]
to show for certain examples on AdSj;, that homogeneous Yang-Baxter deformations are
non-abelian T-duality transformations, and explained further in [28]. We explain this
generalised Buscher procedure in generality here

1. Start with a Lie group G and consider the following o-model for group G

5= [ (47149)" A (Gox +Bo)y (97'49)". (3:34)

with constant metric Gy and By.

2. Given a 2-cocycle w on g we define a central extension ¢ of g by a central element Z
with the new bracket [, |' by

{taa tb] = fcabtc — [taa tb]/ = [tm tb] + wapZ (335)
and the field strength F’ of an e-valued gauge field A’ = A%, + CZ by

F'=dA — [AhAY (3.36)
F' = F" = dA® — [A2A]® and F"? = dC — wep A% A AP,
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3. Again on a symplectic leaf of the 2-cocycle w, which actually defines a subalgebra,'3
this defines a Poisson structure II(g)

w = wepl® AP =TI AP (3.37)

Gauging (gildg)a — A® but fixing the field strength F”’ to be zero, instead of F', via
adding the Lagrangian multiplier term

ﬁLag.mult. X _YZSFS = Xa NAY+Y (338)

and integrating out C' and the Lagrangian multipliers Yy = (X,,Y) leaves, similarly
to earlier calculations, the o-model

5=/d20 (97 040)" (97 0-g)" (11+H> 5 (3.39)

Go+Bo

As the Poisson bivector II here should be invertible on a symplectic leaf TG and thus
non-vanishing everywhere on G, it can be only of the forms

H“Rb(g) =r® or HaLb (9 = exp(a?t,)) = rab _ Tk(afb)kcxc +... (3.40)

as discussed in section 2.2. In the sense of our definition of the action on (3.34) of the
NATD group in section 3.1 only the latter has the striven for form,'* which agrees with
the one of a NATD S-shifts by —r.

Our conventions on Lie algebra cohomology and the connection of 2-cocycles to central
extensions are very briefly reviewed in appendix A.

4 (Generalised fluxes

4.1 Review and definition

Starting with some (geometric) background, T-dualities can result in backgrounds with
non-geometric features — namely non-commutativity and non-associativity — charac-
terised by so-called non-geometric fluxes. Double field theory and generalised geometry
as its mathematical tool helped to understand the web of connected backgrounds and also
the nature of the non-geometric backgrounds better. Motivated by the fact, that the de-
scription of Poisson-Lie o-model and Lie bialgebras resembles generalised geometry, we
study the Poisson-Lie o-models as realisation of a (classical) string in a non-trivial gen-
eralises flux background. For this we review these and give their definitions and Bianchi
identities.

13A closed Chevalley-Eilenburg 2-cocycle defines a so-called quasi-Frobenius subalgebra, which is exactly
the space, where the 2-cocycle is non-degenerate [25].
141n fact both versions make sense, as
_ @ _ “1\a 1
0.0 ( (67*0-0)" = @s9 57"

—_——— o_gg M) 3.41
) o) G

E51+HL)ab

The constant IIr corresponds to the S-shift (and a GL-transformation by A(g) of the inner automorphism
corresponding to the adjoint action on g acting on Fy) corresponding to the right isometries Gr of the
principal chiral model. This is well known in contexts of Yang-Baxter deformations, where FEy is ad-
invariant. We will come back to this later.
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Motivation. Starting with a three-torus with constant H-flux, H = hdz A dy A dz,
we can successively perform (factorised) abelian T-duality transformations along the two
isometries'® of the background, and also a formal T-duality along the third direction. The
resulting backgrounds are usually summarised in the diagram [70]

Tz Ty

Hmyz fxyz Q. <TZ R™=. (4'1)

Let us briefly sketch the nature of these backgrounds:
e H-flux background: the original 73 with constant H-flux.

e f-flux background: applying the Buscher rules gives a new geometry, often called
"twisted torus’, described by a Heisenberg algebra.

e Q-flux backgrounds, also called T-folds, are locally geometric spaces. In the above
setting we have locally a T?2-fibration along the base S*. Globally, whilst transporting
the fibre around the base once, we need to glue the patches together with help of a
T-duality transformation, not a diffeomorphism.

Another point of view on these spaces is, that the coordinates describing them do not

commute [z,y] x Q,"w,, where w, is the winding of the string around the z-cycle.

e An R-flux background is a locally and globally non-geometric ’space’. The coordi-
nates do not associate anymore. Here we have [[z,y], z] + c.p. o« R™%.

More details on non-commutativity and non-associativity due to Q- and R-flux can be
found in [30, 70-75].

Definition. In an NS-NS background, given by a metric G and a Kalb-Ramond field B,
neglecting again the dilaton, the generalised fluxes are defined in a non-holonomic basis
t, = e'0; =70, by [76]

Hupe = a(aBbc) + fd(abBc)d
£ = ecj (eaiaiebj - ebiaieaj) =fuw

Qcab — 806(&) + f(amc/Bb)m

Rabc _ _Bm(aamﬁbc) + f(amnﬁb\mﬁk)n. (42)
The fluxes cannot be turned on and off independently — they have to satisfy the Bianchi
identities
0 =Hywf ), 0 = £ f" iy + Hy5cQa) ™"
0 = R*"Hyeq + Q1" f%a — £, Qu) "
0= Qk(abRCd)k, 0= Qk(adec)k + f(adebC)k“ (43)

Due to B.y = hz, for example as one possible choice for z,y, z as coordinates on T3, the presence of
H-flux breaks one of the isometries of T3,
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Fluxes defined by ’potentials’ B resp. [ (4.2) fulfil these identities automatically. Without
referring to these potentials, the Bianchi identities are motivated from flux compactifica-
tions [68] and Roytenberg-type algebras [77], where they encode a Jacobi identity. Later
we will later discuss a (partial) interpretation of (4.3) in terms of Lie algebra cohomology.

4.2 Generalised fluxes of the Poisson-Lie o-model
We study the generalised flux interpretation of the Poisson-Lie o-model (2.48)
s=5 [ @ (g o (1) (g7'0_g)" (4.4)
2 g0 + Bo +11(g) / o

It is convenient to express the data Gy and By in terms of their dual objects
g0 = (Go — BoGy 'Bo)™",  Bo = —(Go+ Bo) 'Bo(Go — Bo) ™.

Reading off 38, we note, that it has two contributions, one from the choice of Dirac structure,
Bo, and one from the (group dependent) Poisson structure II(g) determined by the dual
Lie algebra structure ?Ca .

B(g) = Bo +11(g) (4.5)

From g and gg we can, in principle, calculate again By so that the Kalb-Ramond field is
given by B = By (g 'dg)* A (97 'dg)®. The generalised fluxes for the Poisson-Lie o-model,
defined through (4.2), are given by

Hype = (dB)abc + fd(abBc)d

fcab:fcab
a — ab a
Q. =T7." + By e
abe m(a—g be alm n rle

using that IT is a homogeneous Poisson bivector, i.e. the useful property (2.42). We see that
the Q-flux describes the dual geometric flux’, modified to some extend by a non-vanishing

Bo. This quantity is what arises as skewsymmetric part of the equations of motion'6
- 1 ab—= -
dje + EQC JaNJjb =10 (4.8)
with
(o) o w
90 + ﬁO +1I ab

18Tn the cases of interest to us in the following, go will be the inverse of the Killing metric on g, so the
symmetric part of the equations of motion of the Poisson-Lie o-model (2.48)

Fradn (8 e+ 98" ) = 0 (4.7)

vanishes. If this is not the case, it gives a non-trivial constraint on the field g : ¥ — G.

— 24 —



The H-flux of the Poisson-Lie o-model is the most difficult to access of the four fluxes. We
try to approach it by expanding the Lagrangian in coordinates ¢ = exp(z¥¢;) around the
identity and reading of the first orders'” of the B-field

B;; = (By)ij + 2" {fak(i(BO)j)a — (GO Fi - (Go)jym — (BO)m(i|?kmn(BO)|j)n} +0(2?),

(4.10)
from which we can read off the first order of the H-flux
0
H=H) + O(x)
with H® = £%,:(B0) jya + (Bo)mifi (Bo)in + (Go)mifr - (Go)jyn, (4.11)

we see that it is quite different from what might have been expected — we even see a
dependence on the (constant) metric G.

The fluxes satisfy the Bianchi identities (4.3). This is ensured by the fact, that we
defined them originally in terms of potentials 8 resp. B. So we can read of some properties
of the H-flux already, without needing to calculate it.

4.3 The action of the non-abelian T-duality group on generalised fluxes

We study now how NATD transformations (3.1) act on Poisson Lie o-models in term of
these fluxes. The focus lies on NATD B- and S-shifts, because the others are not giving
further insights. In particular we are interested to see, whether NATD B- resp. [-shifts
leave indeed H- resp. R-flux invariant.

e A NATD [-shift by a constant bivector r has two effects on 3 in (4.4):
BO — 60 -,
o — I, with F”=7" 7% 4pmapp (4.12)
Under these transformations the background transforms as
Go+ By — (Go+ By) (r(Go + By) + ]l)_l
fcab — fcab’ Qcab — Qcab
Rabc N Rabc . (T,(a\mr\b|nf|c)mn - rm(a?mbc)> ) (413)
So iff r fulfils the NATD group condition for S-shifts (3.30) the R-flux is invariant.
As expected from their interpretation of being NATD B-shifts in the dual picture,

they act as gauge transformations on the R-flux. f- and Q-flux are unchanged, but
H changes non-trivially according to a S-shift by » on Go + By.

e NATD B-shifts by a constant o, act as

By — By—o,
fcab - fcab + O—m(a?b)mC (414)

7Tt is straightforward but very tedious to compute higher orders and not insightful unless it reveals

further structure.
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with an according change of II — II. As mentioned already earlier the action of
NATD B-shifts on o-models of type (4.4), although being duality symmetric to -
shifts on the Lie bialgebra level, is more complicated here because the formulation
of the o-model (and also the generalised fluxes) is not duality symmetric.'® Indeed
the action of B-shifts on the generalised fluxes is messier, as also the f- and Q-flux

transform.
(0) (0) 7 mn mbc
Habc - Habc + (O-(ll|m0-|b|nf|c) - Jm(af ))
o — ffat+ O'm(a?b)mcv (415)

which again is a gauge transformation on H(®) iff o, fulfils the NATD B-shift con-
dition (3.23). We did not give the transformations of Q- and R-flux explicitly. They
are given by the modified structure constants F¢;;, and the O(d, d)-action of ¢ on fy.

4.4 Associativity, R-flux and Lie algebra cohomology

In contrast to a generic non-geometric flux background, the Poisson-Lie o-model is based
on a very geometric object, the Lie bialgebra 9. It is logical to ask, how the Lie bialgebra
manifests itself in terms of the 'physical’ fluxes (H, f, Q, R) and also how the non-geometric
fluxes connect to such geometric objects, in order to understand their meaning better.

One of the key points in our cases is that the f-flux of the Poisson-Lie o-model repre-
sents Lie algebra structure constants. It will turn out that we can understand the Q- and
R-flux in terms of Chevalley-Eilenburg Lie algebra cohomology on this Lie algebra. This
idea was mentioned and demonstrated in some examples in [69]. For the abelian case this
connection was investigated in detail in [30] — we will generalise these results here. For a
brief review on Lie algebra cohomology and our conventions see appendix A.

Simple case. Let us start with

By =By =0 (4.16)
n (4.6), so that the generalised fluxes take the simple form
0 C c
Hyp = (Goduals " (Go)oyn Fap = fu
Q" =71." R = 0 (4.17)

in terms of the Lie bialgebra structure constants. It turns out that the Bianchi identi-
ties (4.3) for (4.17) encode the Jacobi identities of the Lie bialgebra 0 resp. (f,Q). The
NATD S-shift leaves Q. invariant.'® This suggests that dual structures fcab to [
which are related by adding a 1-coboundary, are equivalent as long the the resulting struc-
ture still fulfils the Jacobi identity. So the Q-flux represents [?Cab] € H'(g,g N g).

The vanishing R-flux ensures the Jacobi identity for elements [?cab} . So in this simple
case Poisson-Lie o-models are classified by

Q. % e H'(g,gNg) and R =0. (4.18)

18The NATD transformations in the weaker sense of (3.18) only act as gauge transformation on R, as
they preserve the integrability of g* but not of g.
YFormally the Q-flux is invariant under arbitrary, not only NATD, S-shifts.
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The f-flux represents the structure of g, of course. From (f, Q, R) alone, the Lie bialgebra
0 cannot be determined uniquely, but only up to a NATD S-shift.

If we introduce a non-vanishing [y to the previous setting, the H-,Q- and R-fluxes
are modified. Let us only comment on the changed role of the non-geometric fluxes Q, R.
The R-flux seems to introduce two obstruction to the previous interpretation of the Q-flux
as representing some dual structure constants to the f-flux. The first is, what might have
been expected: the trivector R introduces a 'non-associative’ deformation on the Q-flux
Jacobi identity via its Chevalley-Eilenburg 1-coboundary

wp®® = (0R),™ = £, RY" = Q,'eQ,*) € [0] € H'(g,g A g A g). (4.19)

The second possible implication of the R-flux on the Q could be, following the Bianchi
identities (4.3), that also the mixed Jacobi identity (1-cocycle condition) of the would-be
Lie bialgebra (f,Q) is violated:

0= R*"Hy, oy + Q"% g — £04.Qa) "

But, if we use the particular form of the generalized fluxes of the Poisson-Lie o-model
in (4.2) and the calculation (3.24), we have independently of H, that

Qi fF cq — £11,.Qe) " = 0. (4.20)

So, in the generic case the fluxes f, Q, R describe a kind of quasi-Lie bialgebra struc-
ture, corresponding to a triple

(3.Q€ H' (9,91 9), OR) € H' (g, g A g N 9g)) (4.21)

generalising the Lie bialgebra definition via 1-cocycles by allowing a non-associativity de-
scribed by a trivector R. The H-flux is non-vanishing but 'decouples’ from the other three
fluxes in terms of the Bianchi identities (4.3).
The original Lie bialgebra 0 structure (f, f) and the background S-field 8y cannot be
deduced uniquly from f, Q and R, but only up to NATD S-shift as also in the simpler case.
For abelian algebras a, there are no non-trivial Chevalley-Eilenburg coboundaries, so
the space of M-valued n-cocycles is H"(a, M). Moreover

HY(a,aAa)~ H*(a,a) and H'(a,aAaAa)~ H3(a,a), (4.22)

which reproduces the results from [30]. In constrast to the construction in this article, the
Chevalley-Eilenburg cohomology groups H?(g, g) resp. H?(g, g) have been suggested to de-
fine non-commutative deformations (by a Q-flux) resp. their non-associativity (described
by an R-flux) in [30]. 2-cocyles in H?(g, g) generate deformations, namely central exten-
sions of g by g (treated as a vector space, becoming a central subalgebra). But this setup
is not applicable to generalised geometry, as it is not possible to define an Ad-invariant
O(d, d)-metric on these kinds of centrally extended algebras.
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5 Comments and applications

5.1 Drinfel’d doubles and generalised double field theory?

The formulation of double field theory doubles coordinates in order to make T-duality
manifest — the physical space is then reached after applying a constraint, the section
condition (see [33, 34, 36, 78-82]). There have been approaches to incorporate non-abelian
T-duality resp. Poisson Lie T-duality in double field theory [69, 83-87].

If we would like to make the NATD group (3.1) a manifest symmetry of a theory
on a doubled space, a natural candidate for this doubled space is the Drinfel’d double
D and a (strong) section condition then is mediated by the projection onto the (local)
Dirac structures 0 = 0+ L 0. There are multiple possible candidates for mathematical
structures describing this ’splitting’ of a Drinfel’d double, some of which could be used for
constructions proposed in [88-91].

We will briefly introduce some natural candidates for such a splitting structure and
argue that a para-complex structure is the most natural of these and allows us to view
double field theory on Drinfel’d doubles in the framework of double field theory on para-
Hermitian manifolds [89-91].

Canonical para-complex structure. Given a Lie bialgebra ? and a basis of a Manin
triple decomposition {t,,t*}, a canonical object describing the splitting is the linear
operator

I(te) = ta,  J(E) = —1" (5.1)

This is an almost para-complex structure because J? = 1 and it has d-dimensional 41-
eigenbundles. J is chosen in a way, that these eigenbundles are also maximally isotropic
subspaces w.r.t. to ( | ). J is integrable as its Nijenhuis-tensor

Ny (X,Y) = =JX([X,Y]) + J(J(X), Y]+ [X, J(V)]) = [J(X), J (V)] (5.2)

vanishes for X,Y € 0. More precisely

Ny(ta,ty) =0 <= [g,9]Cyg
Ny ®) =0 < [g5g]Cg* (5.3)
Ny(te,1°) = 0= Ny(1% 1)

This opens a new perspective on J: given a 2d-dimensional Lie algebra with an Ad-invariant
O(d, d)-metric, then the choice of a complementary pair of maximally isotropic subspaces
w.r.t. to the O(d, d)-metric defines an almost (para-)complex structure J. These subspaces
are closed subalgebras, iff the almost (para-)complex structure is integrable. Thus a Manin
triple decomposition (9,g,g*) can equivalently be described by the pair (d,.J) with an
integrable para-complex structure J.

The linear invariance group of the integrability of J is exactly the NATD group (3.1).
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Non-degenerate 2-form. Given a metric (, ) and a (para)-complex structure J it is
possible to complete a compatible triple (7, J, wy) with a non-degenerate two-form w;y via

wi(X,Y)=(J(X),Y). (5.4)
Considering the O(d, d)-metric and the para-complex structure J (5.1) above we get
wy =tqg N % (5.5)
With help of the Maurer-Cartan structure equation we compute
dw = —% (f“bcta A A+ F 0 At A tc) , (5.6)

so the 2-form wj is symplectic, resp. D is a para-Kahler manifold, iff 0 is abelian. For the
generic case, in which we are interested in here, the apparatus for para-Kéhler manifolds
as mentioned in [89, 90] and thus the straightforward interpretation of the doubled space
as some 'phase space’ is not applicable.

Other almost (para)-complex structures. Two other (families of) candidates for
a splitting structure have been recently discussed in detail in [92] in a slightly different
setting.? In the framework of Drinfel’d doubles, in which we are interested, they are only
applicable for the semi-abelian Drinfel’d double D = T*G with 0 = g @, (u(1))?, where
we can define two almost (para)-complex structures,?! given a (vector space) isomorphism
0: g g = (1)

e almost para-complex structure I: 9 — 9, (m,n) — (0=(n),0(m))
e almost complex structure J : 9 — 9, (m,n) — (—071(n),0(m)).

Theorem 3.2. of [92], adjusted to our case, states that these structures are integrable, iff

the isomorphism 6 is an 1-cocycle of (g, ad(g) g*), meaning that

There are two simple possibilities to fulfil this condition:

e g is abelian = 0 is abelian. In this case any isomorphism 6 will do and we could
for example choose the canonical harmonic isomorphism w.r.t. to the O(d, d)-metric:
fn: g — g% to > t% such that the integrable (para)-complex structures become

(m,n) = (£by(n), #,(m)). (5.8)

20The consideration in [92] are more general than the one we need. They consider a Lie group, which is a

semidirect product of two Lie groups of equal dimension d, @ = H x K, so the corresponding Lie algebra is
q = bh @ ¢t, where b is a subalgebra and ¢ is an ideal. Following this definition, they have to consider general
representations 7w : h — End(£) describing the action [h,¥] C ¢. The study of Drinfel’d doubles fixes the
choice of representation such that it is compatible with the Ad-invariant O(d, d)-metric.

2Tn principle we could define the same structures for a generic Drinfel’d double, but only in the case
of the semi-abelian double we can solve the integrability condition in a straightforward way and apply the
results of [92].
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e gis a quasi-Frobenius algebra. We can define a non-degenerate 2-form w = 6,t® A £
on G, where 6 : t, — 0yt°. The 1-cocycle condition means, that w is symplectic
(dw = 0) resp. that (§71)%%, Aty is a solution of the classical Yang-Baxter equation.

The canonical para-complex structure J (5.1) can be obtained via J = I o J. The
integrability of J does not depend on the integrability of T or J but only on the algebraic
decomposition of 0.

These (para)-complex structures I and J have not been applied yet to the geometric
study of ordinary DFT (abelian Lie bialgebra) or integrable deformations (quasi-Frobenius
semi-abelian Lie bialgebra case), where they might be useful. Many more details can be
found in [92].

5.2 Yang-Baxter deformations as (-shifts

The role of abelian and non-abelian resp. Poisson-Lie T-duality in the study of inte-
grable deformations of string o-models has been widely discussed. 1. e. so-called A-
deformations [22, 93-95] were constructed as interpolations between a WZW-model and
the (factorised) non-abelian T-dual of principal chiral model and the Yang-Baxter (also 1-)
deformations were introduced based on Poisson-Lie T-duality, generated by solutions of the
modified classical Yang-Baxter equation [96]. The integrability of latter was proven [20, 97],
before they were generalised to coset and supercoset o-models, and solutions of the clas-
sical Yang-Baxter equation as generators [21, 23, 97]. The resulting backgrounds are (su-
per)gravity solution if the generating classical r-matrix is unimodular [25], meaning that
the resulting dual structure constants fulfil

?bab = 07 for ?Cab = Td(afb)d()' (5'9)
Nevertheless, starting from a k-symmetric semi-symmetric type IIb supergravity back-
ground, all Yang-Baxter deformations preserve x-symmetry and thus the resulting back-
grounds are still solutions of so-called modified type IIb supergravity equations [25, 98-101].
The study of many examples of homogeneous Yang-Baxter deformations [23, 24, 102-112]
revealed that they seem to be related to S-shifts of abelian T-duality in case of abelian -
matrices. This was proven in the case of abelian r-matrices [29] and for general r-matrices
in case of AdS5xS® [27]. The connection of Yang-Baxter deformations and non-abelian
T-duality became clearer in [26, 28, 113]. It was demonstrated, that on a purely formal
level Yang-Baxter deformations are given by formal §-shifts, though there was no criterion
of a connection to NATD there [114]. Also in case of AdS5xS5-backgrounds in context of
the AdS/CFT correspondence it was demonstrated that homogeneous Yang-Baxter defor-
mations lead to Drinfel’d twists of the corresponding Hopf algebra structures on both sides
of the duality [110, 115]. These aspects were investigated further in [116, 117].

The non-geometric features have been already discussed in case of the (abelian)
B-shifted S5-background (a special case being the Lunin-Maldacena background [118])
in [45, 46], where the [-shift can be accounted for by twists of the closed string boundary
conditions. The first insights into homogeneous Yang-Baxter deformations in the sense of
non-geometric fluxes discussed in section 4 have been found in [119]. There the Q-flux of
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homogeneously Yang-Baxter deformed coset o-models was studied in some examples and
a T-fold interpretation of the resulting backgrounds was established.

With help of the previously developed framework of a NATD group and generalised
flux analysis of the Poisson-Lie o-model we will analyse Yang-Baxter deformed o-models.
In case of the homogeneous Yang-Baxter deformations this will proof the natural gener-
alisation of [29] for non-abelian r-matrices, that the notions of homogeneous Yang-Baxter
deformations and NATD p-shifts of principal chiral models are exactly the same.

5.2.1 Yang-Baxter deformations

Consider the Yang-Baxter deformed Lagrangian

1

1 (&
_ 1 2 -1 oo ~15 )b 1
S 2/d0 (97 0+9)"% <]l—nRg) b(g 9-g)", (5.10)

where kg4 is the Killing form on the Lie algebra g and R, = Adg_1 o RoAd, (and also R)

is a solution to the (modified) classical Yang-Baxter equation??

[R(tq), R(ty)] — R([R(ta), ) + [ta, R(ts)]) = —*[ta, ty)]. (5.11)

For ¢ = 0 the corresponding deformations are usually called (homogeneous) Yang-Baxter
deformations and for ¢ = ¢ n-deformations.
We can express R, conveniently in the language of the previous sections

(Ry)* =1 —T1%(g), (5.12)

where II(g) is the homogeneous Poisson structure corresponding to the R-bracket of R.
We see that (5.10) is of the form of our above definition of a NATD S-shift starting from
a principal chiral model. In order for the Yang-Baxter deformation to be a NATD (-shift,
% has to fulfil (3.30), which for fcab = 0 in case of the principal chiral model is

T(a|mr|b|nf\0)mn =0, (513)

which is exactly the (homogeneous) classical Yang-Baxter equation for a bivector r on g.
This proofs the conjecture, that homogeneous Yang-Baxter deformations are exactly the
same as NATD [-shifts of principal chiral models.

Let us also discuss the Yang-Baxter deformed model at the level of generalised fluxes.

Qcab =0
Rabc — _77202I€al~<:fkbc7 (514)

The Q-flux clearly vanishes because the Yang-Baxter deformation is a formal 8-shift. The
R-flux of the deformed model vanishes as expected for ¢ = 0. For ¢ = ¢, the n-deformation,
we see that (5.10) is a realisation of an R-flux background and of course the n-deformation
is not a NATD p-shift.

22Let us emphasise for clarities sake the distinction between R-operator, related to 8 by % = R;Ckad’,

and the R-flux, defined in terms of 3, as R = [, A]s-
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Let us compare these results with the ones in [119], where the authors studied examples
of deformed coset o-models. The key results there was, that the deformed backgrounds
should be interpreted as T-folds, because going around closed cycles we pick up a mon-
odromy in 3, which is described by a non-vanishing Q-flux. So our result (5.14) of vanishing
Q-flux might seem overly simplistic, but in constrast to Yang-Baxter deformed principal
chiral models we have 5% = (Rg 0 P)“Cﬁd’ for Yang-Baxter deformed coset o-models, where
P is the projector on the coset algebra. This projector makes the algebraic situation much
more diverse, which appearently also leads to a non-vanishing Q-flux.

5.2.2 Bi-Yang-Baxter deformations

A very natural generalisation of the Yang-Baxter deformation (5.10), which turns out to
be still integrable [120, 121], is

1 2 (1 a . C b
5= [ @olaosg) mac<1£RnRg> (509" (5.15)

Originally it was introduced for R being a solution mcYBe(i), but is also integrable for R

solution of classical Yang-Baxter deformation.?? For our purpose we generalise to the case,

where the R-bracket fulfils the Jacobi identity, and which is not generically integrable.
Let us rewrite for our purposes

B = (ER +nRy)* 57 = (& +m)r™ — nlI™(g), (5.16)
The generalised fluxes for this model take the form

Q. = —¢f
Rabc — _(é‘ + n)2r(a‘mr‘b‘nf|6)mn‘ (517)

For £ = —n they become especially simple

0 _
Héb)c = Nhambint " ea™ = 1F gpe

fcab — fcab
a a — ab
Q. = nfl V" = nf,
R = 0. (5.18)

Then (5.15) describes an R-flux free model which is (in case R is not a solution to the
classical Yang-Baxter equation) not related to the principal chiral model via a NATD
(-shift, because the Q-flux is changed.

ZFormally it corresponds then to separate [(-shifts on the isometries Gr x G, for the principal chiral
model with separate parameters £ and 7. This is becomes clear as

c
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6 Conclusion

In this paper we looked rather schematically at Poisson-Lie o-model (2.48) from different
perspectives. These perspectives included methods from generalised geometry and double
field theory, non-geometric fluxes, integrable deformations and Lie algebra cohomology.

After setting the stage in introducing Lie bialgebras and Poisson-Lie T-duality, which
motivated the duality group

NATD group(?d) = {Manin triple decompositions of 0}

of a Poisson-Lie o-model corresponding to the Lie bialgebra 0, we proposed a method to
get some insights into this group, which is some subgroup of O(d, d). We studied the con-
ditions of the typical O(d, d)-transformations, i.e. factorised dualities, GL-transformations,
B-shifts and ($-shifts such that they lie in this non-abelian T-duality group, and found in
some simple cases an explicit interpretation of these transformation on the (non-doubled)
Lagrangian level. The analysis revealed some interesting structures, but also that the above
definition does not give the whole (classical) duality structure of a Poisson-Lie o-model:
the standard non-abelian T-duality of a principal chiral model w. r. t. a subgroup, turns
out not to correspond to a Manin triple decomposition of 9. Based on this we also proposed
a slightly generalised version of the non-abelian T-duality group:

mod. NATD group () = {Manin pair decompositions of 0},

which would also allow for other, slightly more general basic objects than a Lie bialgebra.

The analysis, which was done in this paper, was using aspects of generalised geometry
and the notion of generalised fluxes. We computed the fluxes of the Poisson-Lie o-model ex-
plicitly and it turns out that the non-geometric fluxes Q and R have some meaning in terms
of Lie algebra cohomology on g. In general (f, Q, R) describe a kind of quasi-bialgebra,
where the R-flux describes the failure of dual structure constants Q to associate. The
Poisson-Lie o-model in general and the integrable n-deformed principal chiral model in par-
ticular seem to be realisations of a classical string in a non-associative R-flux background.

In the last section we studied the Yang-Baxter deformations with help of this non-
abelian T-duality group and generalised fluxes. This proved that homogeneous Yang-
Baxter deformations are nothing else than non-abelian T-duality S-transformations follow-
ing our definition.

Outlook. Regarding the non-abelian T-duality group, there are some open questions.
The extensions to geometries with spectator coordinates, coset geometries, supergroups,
etc. seem straightforward. A more difficile is to understand the web of dual models: already
in the simple example of the principal chiral model to a group G, this web of dualities might
become very complicated, depending on the amount of 2-cocycles and solutions to the
classical Yang-Baxter equation on g. Another issue is, what a rigorous motivation and the
structure of a non-abelian T-duality group in the spirit of the modified definition (3.18) is.

The approach in this paper, which is based on the (undoubled) classical string o-
model (2.48) seems to yield different results than the approach for a Poisson-Lie T-duality
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invariant DFT in [69, 87]. For example in our approach a potential -field is a very natural
object, which would allow for a non-trivial R-flux as its Jacobiator, whereas in [69, 87|
it does not seem possible so far to find solutions to the section condition, which result
in an R-flux background. It would be very interesting to implement the backgrounds
corresponding to the Poisson-Lie o-models in the framework of [69, 87] or, if this does not
work, to understand what causes the difference between the two approaches. One reason
could be, that in [69, 87] the Dirac structures are defined globally on the Drinfel’d double
D, whereas for the construction [4] of Poisson-Lie T-duality, that we use in section 2, it is
sufficient to define a (local) decomposition of the bialgebra 0.

The connection of deformed classically integrable o-models to generalised geometry,
which was one subject of this paper, might help to understand the nature of non-geometric
backgrounds bet