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Abstract Gravitational effects may interfere with the axion
solution to the strong-CP problem. We point out that gravity
can potentially provide a protection mechanism against itself,
in the form of an additional axion-like field associated with
torsion.

The effective theory describing the dynamics of the QCD
axion a contains a nontrivial interaction between the pseu-
doscalar and the QCD Chern–Simons topological density,
and has the following schematic form 1

La = 1

2
∂μa∂μa + a

f
G˜G, (1)

with f the axion decay constant. We have used the shorthand
notation

G˜G = 1

2
εκλμνTr

(

GκλGμν

)

, (2)

where εκλμν is the totally antisymmetric symbol, and Gμν

the QCD field strength.
It is clear that (1) is capable of solving the strong-CP

problem, for the minimum of the axion potential forces the
vacuum expectation value of G˜G to vanish. This in turn
implies that physics does not depend on the CP-violating
θQCD parameter. It should be stressed that this holds true for
the plethora of theories in which this specific coupling of a
to the QCD Chern–Simons term appears, independently of
their origin.2

It is quite illuminating to show why this is the case by using
the dual formulation of QCD discussed thoroughly in [2] and

1 Throughout this article we will not keep track of irrelevant
numerical factors.
2 For example, in the original Peccei–Quinn proposal [1], the axion
emerges as the pseudo-Goldstone boson of a spontaneously broken
anomalous U (1) symmetry.

a e-mail: georgios.karananas@physik.uni-muenchen.de

later in [3,4]. In this language, the vacuum superselection
problem – or in other words the dependence of physics on
θQCD – translates into the presence of a long-range constant
field associated with the three-form

Gμνλ = Tr

(

A[μ∂ν Aλ] + 2

3
A[μAν Aλ]

)

, (3)

where Aμ is the SU (3) gauge field, and the brackets [. . .]
denote antisymmetrization.

In the absence of the axion (as well as massless quarks),
the topological vacuum susceptibility is nonzero [5]

lim
k→0

∫

d4xeikx 〈E(x)E(0)〉 �= 0, (4)

where we introduced E ≡ εκλμν∂κGλμν . At energies below
the QCD confinement scale �QCD, Gκλμ behaves as a mass-
less field [6], since from (4) it follows that its propagator
has a pole at vanishing virtuality. Its dynamics is captured by
an effective lagrangian, whose (vacuum) equations of motion
dictate that E = const., in units of �QCD [4]. This means that
the theory possesses an infinite number of distinct vacua, one
for each value of E .

On the other hand, when the axion is present, then in the
dual picture it is replaced by a two-form Aμν = −Aνμ,
whose role is to put the massless field (3) in a Higgs phase
by providing a (gauge-invariant) mass term for it.3 The low-
energy dynamics of Gκλμ is described by [2,3]

L = E2

�4
QCD

+ 1

f 2

(Gκλμ − ∂[κAλμ]
)2

. (6)

3 In the dual formulation, there is the gauge invariance

Gκλμ → Gκλμ + ∂[κcλμ] , Aλμ → Aλμ + c[λμ], (5)

which obviously cannot be broken.
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The fact that the theory has now become gapped, means that
the Chern–Simons field is now screened. This results into the
vacuum susceptibility being zero, so the physics is indepen-
dent of θQCD and the strong-CP problem is solved.4

On general grounds, however, it is believed that gravity
violates global symmetries, the aftermath of which might
be the reintroduction of the strong-CP problem. This can be
easily understood, since, in principle, extra terms – on top of
the ones in (1) – can be generated by gravitational effects.
This would result into the axion potential be displaced from
the point where 〈G˜G〉 = 0. In the absence of a theory of
quantum gravity, it seems that there is no way of knowing
the exact form of these contributions.

As realized in [2], the treatment of the problem in the dual
description is particularly suggestive, for it makes clear that
there is a unique way that the axion solution can be affected.
This would correspond to the presence of an additional three-
form field of gravitational origin with a massless pole in its
propagator, which also couples with Aμν .

Simply by counting the degrees of freedom in the theory,
we notice that the number of the three-forms in this case
would exceed the number of axions. Thus, necessarily, one
of the fields – or better say, one combination of the fields –
will be in a Coulomb phase.

It turns out that the suitable gravitational candidate is the
following three-form

Rμνλ = 	α
β[μ∂ν	

β
λ]α + 2

3
	α

β[μ	
β
ν|γ 	

γ
|λ]α, (7)

with 	 the Christoffel connection. Then, in complete anal-
ogy with QCD, there will be a nonvanishing “gravitational”
vacuum susceptibility,

lim
k→0

∫

d4xeikx 〈E ′(x)E ′(0)〉 �= 0, (8)

with E ′ ≡ εκλμν∂κRλμν . The above implies that the vacuum
is also permeated by the constant field E ′ �= 0; consequently,
in the dual picture we find that the effective theory boils down
to [2,3] 5

L = E2

�4
QCD

+ E ′ 2

�4 + 1

f 2

(

αGGμνλ + αRRμνλ − ∂[μAνλ]
)2

,

(10)

4 This can also be achieved with massless quarks.
5 Note that, on top of (5), the lagrangian (8) is also invariant under the
dual version of diffeomorphisms,

Rκλμ → Rκλμ + ∂[κdλμ], Aλμ → Aλμ + d[λμ]. (9)

where � is a scale set by the correlator (8), which need
not necessarily be large, and αG , αR constants. [As a side
note, in the “conventional picture,” the aforementioned mix-
ing between Rκλμ and Aμν , corresponds to (1) being sup-
plemented by the term

a

f
R˜R, (11)

where

R˜R = 1

2
εκλμνRρ

σκλR
σ
ρμν, (12)

is the gravitational parity-odd density. Here, Rκ
λμν is the Rie-

mann curvature tensor.] We can go a step further and make
explicit that the axion solution is affected. To this end, it
is convenient to diagonalize the mass term in the above by
introducing

gμνρ = αGGμνρ + αRRμνρ, and

rμνρ = αGGμνρ − αRRμνρ. (13)

Expressed in terms of these new fields, it is easy to see that
only g gets a mass, while r remains massless. Given the pre-
vious discussion, this is something that should hardly come
as a surprise.

A protection mechanism against the gravitational contri-
bution is the existence of yet another two-form A′

μν in the
theory, such that it screens the second field as well [2–4]. For
instance, this can emerge from the presence of neutrinos in
the theory, as was suggested in [3]. Various aspects of this
proposal were further investigated and generalized in [7,8].

Alternatively, A′
μν can be identified with an axion-like

degree of freedom that couples to G˜G, R˜R, or both. It is
tempting to entertain the possibility that this field actually be
of gravitational origin. This means that gravity would have
an inherent protection mechanism, which counterbalances its
original effect on the strong-CP problem. Let us discuss how
this can indeed be the case.

It has been known for many years that gauging the
Poincaré group yields the Einstein–Cartan–Sciama–Kibble
theory [9–12].6 In order to achieve invariance under local
translations and Lorentz transformations, one needs more
degrees of freedom than in General Relativity: the a priori
independent vielbein and spin connection, whose respective
field strengths are torsion and curvature.

It should be noted that it is in principle possible to elim-
inate the extra degrees of freedom by imposing vanishing
torsion. In a four-dimensional spacetime this gives rise to

6 The Poincaré group can be gauged, for example, by employing
the Callan–Coleman–Wess–Zumino coset construction [13,14], for the
case of spacetime symmetries [15,16]. See also [17–19] and references
therein for a number of generalizations and applications.
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twenty-four constraint equations that allow to express the
connection in terms of the derivatives of the vielbein (or
equivalently the metric).

If, on the other hand, torsion is not eliminated, then the
presence of chiral fermions in this context has quite interest-
ing implications. The fermionic (torsionful) covariant deriva-
tive involves the axial four-vector of the torsion;7 a rather
nontrivial consequence of this interaction is the emergence
of a pseudoscalar axion-like field ϕ, which couples deriva-
tively with the spinorial axial current jμ5 [20–24].8

However, it is well known that due to the chiral anomaly,
the divergence of jμ5 is nonzero. Consequently, ϕ will inter-
act (in a classically shift-symmetric manner) with the Chern–
Simons topological densities associated with QCD and grav-
ity. It should stressed at this point that the latter mixing
appears obiquitously in the context of torsionful theories,
so its presence need not be assumed (for instance see [20–
26]). Let us note in passing that the divergence of the current
might comprise other terms too, such as the U (1) as well as
SU (2) CP-odd invariants which, nevertheless, are irrelevant
for the present discussion, so we have tacitly ignored them.

In the dual picture, the presence of ϕ with these “spe-
cial” couplings to G˜G and R˜R, translates into the effective
theory (10) becoming

L = E2

�4
QCD

+ E ′ 2

�4 + 1
f 2

(

αGGμνλ + αRRμνλ − ∂[μAνλ]
)2

+ 1
f ′ 2

(

βGGμνλ + βRRμνλ − ∂[μA′
νλ]

)2
. (14)

Here, βG and βR are constants, while f ′ is the decay constant
of ϕ, which is not a free parameter and its value is roughly
of the order of the Planck scale [20–24]. We notice that,
as long as αG/αR �= βG/βR ,9 both the QCD as well as
the gravitational three-forms have entered a Higgs phase, so
there are no long-range fields in the vacuum and the solution
to the strong-CP problem persists.
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7 Torsion can be decomposed under the Lorentz group into a vector, an
axial vector and a tensor with mixed symmetries.
8 Contrary to [20–24], however, we do not identify this field with the
standard Peccei–Quinn axion.
9 It would be somehow peculiar for this relation to not be true in
general, since αG and aR are model-dependent parameters.
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