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1 Introduction

Twist fields play an important role in the context of conformal field theory, or more gen-

erally, quantum field theory. They are associated to internal symmetries of a QFT; the

Z2 symmetry of the Ising model, for example, is associated to the spin field σ, the order

parameter field. Similarly, twist fields connect the Ramond and Neveu-Schwarz sectors

of a fermion [1]. Analogously, there are bosonic twist fields, connecting the Ramond and

Neveu-Schwarz sectors for a free boson [2].

Twist fields are very important when studying solitons and other non-perturbative

effects in string theory that can be described by bound states of D-branes [3, 4], for instance

the worldsheet description of black holes [5–7] and the reconstruction of the instanton profile

in terms of intersecting D-branes [8–10]. Generally, the role of twist fields is essential when

considering open strings stretched between branes of different dimension, in such a way

to have different boundary conditions on the two endpoints; scattering amplitudes contain

vertex operators built using twist fields [11].

Another important application of twist fields is in the context of entanglement en-

tropy [12, 13]; for example, correlation functions of Zn twist fields are connected to the

calculation of the entanglement entropy of an interval.

In this paper we focus on the conformal field theory of Z2 boundary bosonic twist

operators. The essential properties of this theory and the basic correlations functions have

been studied extensively, for example in [14] and references therein. We will review and

extend some of these results, including correlation functions involving excited twist fields.

Correlators of this kind have been computed in [15] and in the context of intersecting

D-branes at non-trivial angles [16–18]; excited twist fields appear in the vertex operators

corresponding to massive stringy excitations. In the case of Z2 twist, excited twist fields

enter in superstring theory, whenever a picture changing of twist vertex operators is needed.

On the other hand, twist fields naturally arise in the context of bulk conformal field

theory, since they create the twisted sector of orbifold theories [19]. The connection between

orbifolds and other c = 1 conformal field theories, in particular to the Ashkin-Teller model,

has been investigated [2, 20]. In particular the orbifold theory at R =
√

2 is equivalent to

a simple (non-twisted) boson compactified on a circle. This observation will inspire us to

define new boundary fields, which we will call bosonized twist fields, that have the same

local properties as the usual boundary twist fields, but will be argued below to describe an

array of Dirichlet sectors, instead of a single one. Since there is a description in which they

are mutually local with the bosonic current, this provides a simple derivation of correlation

functions of the latter which would be otherwise very complicated. In addition, the free

field representation of our bosonized twist fields gives easy access to their operator product

expansion (OPE). This, in turn, leads new insight about the moduli space of bound states of

D-branes since we can explore exact marginality of twist field deformations of the boundary

conformal field theory. For instance, we find that the modulus corresponding to blowing

up a co-dimension 16 D-brane bound state in bosonic string theory is obstructed for some

values of the compactification radius.

The plan of the paper is as follows. In section 2 we review some aspects of the boundary

conformal theory of a free boson, and the basic properties of twist fields. In section 3 we
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introduce the bosonized twist fields. We explain their relation with the usual twist fields

and we argue that they describe an array of Dirichlet sectors. Section 4 is dedicated to the

study of correlation functions on the upper half plane in the presence of two twist fields,

using both the operator formalism as well as the properties of twist fields. In section 5 we

consider more twist field insertion, and we present some new explicit results for correlation

functions in the presence of four or more twist fields. In section 6 we discuss ordering

issues when considering the twist fields on the boundary. Section 7 is devoted to modular

invariance of bulk twist field correlation functions and their connection with partition

functions on Riemann surfaces. In section 8 we discuss application to string theory, in

particular the connection to bound states of intersecting D-branes of different dimensions,

which was the original motivation for this work. We also provide the explicit form of some

useful correlation functions and we discuss possible marginal deformation of bound states of

D-branes in bosonic string theory. In appendix A we discuss how correlation functions with

twist fields can be derived using the analogy to electrostatics in 2 dimensions. Appendix B

contains a discussion about how the calculation of correlation functions is related to the

theory of complex functions defined on higher genus Riemann surfaces. In appendix C

and D we review the derivation of known correlation functions involving four twist fields,

and we give the explicit results for other correlators.

2 Free boson and twist fields

In this section we introduce our normalization conventions for the boundary conformal field

theory of a free boson X in one space-time dimension. The bulk action is

S[X] =
1

4π

∫
dzdz̄ ∂X(z, z̄)∂̄X(z, z̄) . (2.1)

We use complex coordinates and we split the field in its holomorphic and anti-holomorphic

part as X(z, z̄) = X(z) + X̄(z̄), focusing on the first one. Furthermore, we assume that

the domain of X is the upper half plane (Im z > 0), and the boundary coincides with the

real line. Out of the field X one constructs the current

j(z) = i∂X(z) , (2.2)

which satisfies the OPE

j(z)j(w) =
1

(z − w)2
+ reg. (2.3)

The stress-energy tensor is T (z) = −1
2 : ∂X∂X : (z) = 1

2 : jj : (z), where : : indicates

normal ordering. In addition

Ṽα(z) =: eiαX : (z) , (2.4)

are primaries with conformal dimension hα = α2/2. The OPE among them takes the form

Ṽα(z)Ṽβ(w) = e−αβ〈X(z)X(w)〉 : ei(α+β)X : (w) + · · · = (z − w)αβṼα+β(w) + . . . (2.5)

Finally the OPE with the current j is given by

j(z)Ṽα(w) =
α

(z − w)
Ṽα(w) + reg. (2.6)

– 3 –
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Twist fields (also known as twist operators or boundary changing operators) come into play

when dealing with inhomogeneous boundary conditions for the boson X, in particular al-

ternating Dirichlet and Neumann boundary conditions. Their operator product expansions

with the current j = i∂X reads (see for example [2] and [11])

i∂X(z)σ(w) =
σ′(w)

(z − w)1/2
+ . . .

i∂X(z)σ′(w) =
σ(w)

2(z − w)3/2
+

2 ∂σ(w)

(z − w)1/2
+ . . .

σ̄(z)σ(w) =
1

(z − w)1/8
+ . . .

(2.7)

where σ′(w) is the excited twist field. In the context of this paper we take this OPE (2.7)

as the defining property of twist fields. Similar relations to the first two hold for the

conjugated fields σ̄ and σ̄′. σ (and its conjugated σ̄) is a conformal primary of dimension

1/16, while σ′ (and σ̄′) has dimension 9/16. Notice that the square root branch cut implies

that the field X(z) changes sign when the point z is moved around the point where the

twist field is inserted. In the following we will always insert twist fields at the boundary

of the domain, i.e. on the real line (z = z̄). Therefore, the branch cut in the OPE changes

the boundary condition from Neumann to Dirichlet (and vice versa). For completeness, we

recall that the Neumann intervals on the boundary are characterized by the condition

(∂ − ∂̄)X(z, z̄)
∣∣
z=z̄

= 0 , (2.8)

while on the Dirichlet intervals we have

(∂ + ∂̄)X(z, z̄)
∣∣
z=z̄

= 0 , X(z, z̄)
∣∣
z=z̄

= X0 . (2.9)

3 Bosonized twist fields

In general the calculation of correlation functions involving bosonic twist fields is a compli-

cated task (see e.g. [2, 14]), since these fields are non-local with respect to the boson X. For

fermions, ghosts and fermionic twist fields (spin fields) it is possible to use a bosonization

procedure [21] in order to simplify the calculation of correlation functions. In this paper

we will apply the same procedure to bosonic twist fields.

3.1 Orbifold CFTs

If we consider bulk CFT, one can twist the anti-holomorphic part of the boson as well.

Correspondingly we will have another twist field σ(z̄) satisfying the OPE (2.7) with j̄ =

i∂̄X̄(z̄). A bulk twist field, twisting the full boson X(z, z̄), can be defined by σ(z, z̄) =

σ(z)σ(z̄). In the previous section we have considered X in a non-compact space; if, instead,

the boson is compactified on a circle of radius R, the insertion of twist fields creates the

twisted sector of a symmetric orbifold [19]. Twist fields have the same local properties (2.7)

independently of the radius of the orbifold, but correlation functions can be affected by the

value of the radius.
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Figure 1. Classification of conformal field theories at central charge c = 1.

To see how a bosonization of twist fields is possible, we recall the classification of

conformal field theories at c = 1 (see, for example, [1, 20]).

These theories can be divided in two families as in figure 1. One describing a boson

compactified on a circle S1, and one describing a boson compactified on an orbifold S1/Z2.

Both of these lines are parametrized by the radius of the circle. Some points on this graph

correspond to particular models, for which it is possible to find a description in terms of

a boson. It turns out that the two branches in the picture intersect, since the orbifold

theory at R =
√

2 is equivalent to the circle theory at R = 2
√

2, which corresponds to

the continuum limit of the XY-model at the Kosterlitz-Thouless point [22]. This duality is

valid also at the level of boundary CFT; it has been shown that the two bulk CFT admit

the same boundary conditions and boundary operators or, in string theory language, the

same set of D-branes [23]. This leads us to the idea of bosonizing boundary changing

operators (the bosonized twist fields) in terms of another boson compactified on S1.

3.2 su(2) Kač-Moody algebra

Let us consider first the holomorphic part of the free boson X(z); let us consider the primary

operators Ṽα(z), in particular the ones with α = ±
√

2. These are allowed operators when

the boson is compactified on a circle at the self-dual radius. Out of these two operators we

can construct two other currents, namely:

j1(z) =
1√
2

(
Ṽ√2(z) + Ṽ−

√
2(z)

)
, j2(z) =

i√
2

(
Ṽ√2(z)− Ṽ−√2(z)

)
. (3.1)

The three currents j1, j2 and j3 = j = i∂X constitute a su(2) Kač-Moody algebra.

To continue we perform a change of basis by introducing a new free chiral boson Ω(z),

satisfying the same OPE

Ω(z)Ω(w) ∼ − log(z − w) , (3.2)

as the chiral field X(z). Out of the boson Ω we can construct three currents J i(z) (i =

1, 2, 3), analogously to the currents ji constructed out of X. We then express ∂X in terms
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of Ω, identifying

i∂X(z) = j3(z) ≡ J2(z) =
i√
2

(
: ei
√

2Ω : (z)− : e−i
√

2Ω : (z)
)
. (3.3)

This change of basis is equivalent to a rotation in the three-dimensional space generated

by the three currents of the su(2) Kač-Moody algebra (cfr. [1]). For consistency we also

impose the identifications

i∂Ω(z) = J3(z) ≡ j1(z) =
1√
2

(
: ei
√

2X : (z)+ : e−i
√

2X : (z)
)
,

1√
2

(
: ei
√

2Ω : (z)+ : e−i
√

2Ω : (z)
)

= J1(z) ≡ j2(z) =
i√
2

(
: ei
√

2X : (z)− : e−i
√

2X : (z)
)
.

(3.4)

Once we have done this rotation, we have a description of the CFT of a free boson in

another basis. This may not seem convenient, since the conformal primaries : eiαX : do not

have a local description in terms of Ω in this new picture. However, this rotation allows us

to identify new primaries which do not have a local description in terms of X. Namely they

are the primaries Vα(z) =: eiαΩ : (z), and the bosonized twist fields will be among them.

The same procedure can be done for the anti-holomorphic part of the boson, defining

an anti-chiral field Ω̄. Notice that Ω(z, z̄) = Ω(z) + Ω̄(z̄), as a functional of X(z, z̄) =

X(z) + X̄(z̄), will be periodic under a shift of 2π
√

2n (n ∈ Z), which means that also Ω

is compactified on a circle at the self-dual radius. Let us now consider the boson X(z, z̄)

compactified on an orbifold at the self-dual radius, with the Z2 transformation defined

by X → −X. The boson Ω(z, z̄) should be unaffected by this transformation; this can

be achieved if Ω(z, z̄) is compactified on a circle with half the radius, namely R = 1/
√

2.

Notice that this is consistent with the identifications (3.3) and (3.4). Furthermore, T-

duality implies that the circle theory at R = 1/
√

2 is in turn equivalent to a circle theory

at radius R′ = 2/R = 2
√

2, in accordance with what depicted in figure 1.

3.3 Boundary conditions and bosonized twist fields

Let us now consider a boundary CFT, with the chiral and anti-chiral part of the boson

X related by boundary conditions. If we define the chiral and anti-chiral part of a boson

Ω as in the previous subsection, we can deduce the boundary conditions in terms of Ω.

For this we note that a change of sign in ∂X(z), which one needs in order to interchange

Dirichlet and Neumann boundary conditions, can be achieved by shifting the chiral field

Ω(z) by π/
√

2; therefore Neumann and Dirichlet boundary conditions for X (on the real

line z = z̄) correspond to

Neumann: Ω(z) = Ω̄(z̄) ,

Dirichlet: Ω(z) = Ω̄(z̄) +
π√
2
.

(3.5)

These boundary conditions may look unfamiliar from the point of view of the Ω boundary

conformal field theory. However, it is not hard to see that they are conformal as it must

– 6 –
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be since they correspond to the usual Neumann and Dirichlet boundary conditions for the

boson X.

Among the primaries Vα, defined in terms of Ω, there are some that have the same

local properties (2.7) as twist fields. Indeed, consider the two primaries σB = V√2/4 and

σ̄B = V−
√

2/4, both with conformal dimension 1/16. σB will be called bosonized twist

field, and σ̄B is its conjugated field. Moreover, we identify the excited bosonized twist

field σ′B = − i√
2
V−3

√
2/4 and its conjugated σ̄′B = i√

2
V3
√

2/4. Given these definitions, the

bosonized twist fields satisfy the following OPE’s with the current j = i∂X:

i∂X(z)σB(w) =
σ′B(w)

(z − w)1/2
+ . . .

i∂X(z)σ′B(w) =
σB(w)

2(z − w)3/2
+

2 ∂σB(w)

(z − w)1/2
+ . . . ,

(3.6)

which are identical to (2.7), at least for the most divergent terms. The description in terms

of Ω allows to treat the bosonized twist fields and the current ∂X in the same way, having

a free field representation for all of them at the same time.

The way we interpret these (boundary) twist fields is the following: usually twist fields

relate the Neumann sector ((∂ − ∂̄)X = 0) to the Dirichlet sector X(z, z̄) = X0, where

X0 is some value for the boundary condition, and this information is encoded in the twist

fields. The bosonized version σB = V√2/4, however, cannot provide the information about

X0; furthermore, the periodicity property X(z, z̄) ∼ X(z, z̄) + 2π
√

2n, which is necessary

for the definition of the boson Ω, suggests that these twist fields describe the superposition

of different Dirichlet sectors with boundary conditions Xn
0 = 2π

√
2n (n ∈ Z). We will give

more evidence in favour of this interpretation in the following sections.1

4 Single twist field insertion

Let us begin by reviewing some basic facts about the boundary CFT of a free boson X

in the presence of a single Dirichlet sector, i.e. in the presence of a σ̄-σ pair, and compare

it with the bosonized version σ̄B-σB. The presence of two twist fields is needed, because

one of them, say σ changes the boundary condition from Dirichlet to Neumann, while σ̄

changes from Neumann to Dirichlet. In the bosonized language, the presence of both a

twist field and its conjugated is necessary, since the integration over the zero mode of Ω

implies that the sum of all the exponents αi in 〈
∏
i Vαi〉 has to be zero. Hence correlation

functions with just one σ (or just one σB) would vanish.

4.1 Free boson with anti-periodic boundary condition

We start with the operator formalism for Dirichlet and Neumann boundary conditions on

the positive and negative real line respectively. In this sector the mode expansion for the

1We would like to thank Carlo Maccaferri for sharing his insight with us on this point.
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two currents j and j̄ are

j(z) = i∂X(z) =
∑

r∈Z+ 1
2

jrz
−r−1 ,

j̄(z̄) = i∂̄X̄(z̄) = −
∑

r∈Z+ 1
2

jrz̄
−r−1 .

(4.1)

where the modes satisfy the commutation relation [jr, js] = rδr+s. A branch cut is present

in the complex plane, extending from 0 to −∞. Equation (4.1) defines a boson in the

Ramond sector, instead of the usual integer mode expansion, which corresponds to the

Neveu-Schwarz sector. The twist vacuum (and its dual) are related to the NS vacuum

through

|σ〉 = lim
z→0

σ(z)|0〉 ,

〈σ| = lim
z→∞

z1/8〈0|σ̄(z) .
(4.2)

These states are normalized, 〈σ|σ〉 = 1 and the modes jr are creation and annihilation

operators for |σ〉:

jr|σ〉 = 0 , r ≥ 1/2 ,

〈σ|jr = 0 , r ≤ −1/2 .
(4.3)

Other states in the Ramond sector can be obtained applying creation operators to the

vacuum. For example we can define the state |σ′〉 and its conjugated as

|σ′〉 = j−1/2|σ〉 , 〈σ′| = 〈σ|j1/2 . (4.4)

These states are associated (through the state-operator correspondence) to the excited

twist fields.

The expansion (4.1) is not defined on the negative real axis; we can formally solve the

problem introducing a new current j(z), defined on the whole complex plane as

j(z) =
∑

r∈Z+ 1
2

jrz
−r−1 . (4.5)

This means that we are identifying j(z) = j(z) on the upper half plane, and j(z) = −j̄(z)

on the lower half plane. This new current is naturally defined on the two-fold branched

cover of the complex plane. Therefore, the problem of computing correlation functions of

j(z) on the upper half plane with anti-periodic boundary conditions is equivalent to that

of correlation functions of j(z) on the two-fold cover of the complex plane, restricting the

result to Im z > 0 on the first sheet.

4.2 Normal ordering

In the case of a boson in the Ramond sector we have two useful definitions of normal

ordering which do not coincide (see e.g. [24]). The first one (indicated with N( )) arises

– 8 –
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from the operator product expansion, the second one (indicated with : :) is a prescription

on the order of annihilation and creation modes. Let us consider the OPE of two currents

j; the normal ordered product N(jj) is the finite term of the expansion, i.e.

j(z)j(w) =
1

(z − w)2
+N(jj)(w) + . . . (4.6)

which gives the familiar Sugawara construction of the energy momentum tensor, T (w) =
1
2N(jj)(w). It is related to the creation-annihilation normal ordering through

T (w) =
1

2
N(jj)(w) =

1

2
: jj : (w) +

1

16w2
, (4.7)

so that

〈σ|T (w)|σ〉 =
1

16w2
. (4.8)

Consequently, the Laurent modes Lm of T are

Lm =
1

2

∑
r∈Z+1/2

jr jm−r , (m 6= 0)

L0 =
1

16
+

∞∑
r=1/2

j−r jr .

(4.9)

where the shift by 1/16 is just the conformal weight of the field σ.

4.3 Correlation functions with two twist fields

The CFT of a boson with anti-periodic boundary conditions has been studied intensively

(see e.g. [1, 25]). Some correlation functions can be derived simply by means of the mode

expansion, and using the property (4.3). For example one obtains:

〈σ|j(z)j(w)|σ〉 =
1

2

(√
z
w +

√
w
z

)
(z − w)2

,

〈σ|j(z)|σ′〉 =
1

2z3/2
,

〈σ′|j(z)|σ〉 =
1

2z1/2
.

(4.10)

Via the operator state correspondence, (4.10) should be interpreted in terms of correlation

functions in the presence of two twist fields (or excited twist fields) at the ramification

points 0 and ∞. More generally,

〈σ̄(z1)j(z2)j(z3)σ(z4)〉 =
1

2

1

(z41)1/8(z32)2

(√
z31z42

z21z43
+

√
z21z43

z31z42

)
,

〈σ̄(z1)j(z2)σ′(z3)〉 =
z

3/8
31

2z
1/2
21 z

3/2
32

,

〈σ̄′(z1)j(z2)σ(z3)〉 =
z

3/8
31

2z
3/2
21 z

1/2
32

.

(4.11)
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where zij = zi−zj . The last two correlation functions can also be derived taking appropriate

limits of the first one, and using the OPE (2.7) defining excited twist fields. For example

〈σ̄(z1)j(z2)σ′(z4)〉 = lim
z3→z4

√
z3 − z4〈σ̄(z1)j(z2)j(z3)σ(z4)〉 . (4.12)

Other correlation functions are well known, including the primaries

ψα(z) ∝ N(eiαX)(z) ∝ : eiαX(z) :

zα2/2
, (4.13)

with conformal weight hα = α2/2, and OPE

T (z)ψα(w) =
hα

(z − w)2
ψα(w) +

1

z − w
∂wψα(w) + . . .

j(z)ψα(w) =
α

z − w

√
w

z
ψα(w) + . . .

(4.14)

The expansion over half-integer modes is a powerful tool that allows computing correlators

on the Ramond vacuum, i.e. of the form 〈σ|φ1(z1)φ2(z2) . . . |σ〉, even if some of the fields are

of the form ψα. From these results one can derive the corresponding correlation function

with two twist fields on the vacuum |0〉, using the definitions (4.3). For example we can

compute (see [14] and [26]):

〈σ|ψα(z)|σ〉 =
eiαx0

zα2/2
, (4.15)

where a particular normalization for ψα has been chosen. Here x0 is the zero mode of the

chiral boson X(z); we denote the zero mode of X(z, z̄) by X0 = x0 + x̄0, where x̄0 is the

zero mode of the anti-chiral part. Analogously:

〈σ|ψα(z)ψβ(w)|σ〉 =
ei(α+β)x0

zα2/2wβ2/2

(
1−

√
w/z

1 +
√
w/z

)αβ
. (4.16)

Using conformal symmetry we can derive the correlators involving two twist fields:

〈σ̄(z1)ψα(z2)σ(z3)〉 =
eiαx0

z
α2/2
21 z

α2/2
32 z

1/8−α2/2
31

,

〈σ̄(z1)ψα(z2)ψβ(z3)σ(z4)〉 =
ei(α+β)x0

(z21z42)α2/2(z31z43)β2/2z
1/8−α2/2−β2/2
41

(
1−√η
1 +
√
η

)αβ
,

(4.17)

where η is the conformal ratio η = z21z43
z31z42

. We note, in passing, that all these results

can be derived in another way, using the analogy to electrostatics in two dimensions (see

appendix A). Excited twist fields can be also considered; for example, one can derive the

following correlation functions (for insertions of the twist fields at generic positions):

〈σ̄(z1)ψα(z2)σ′(z3)〉 =
−αeiαx0

z
α2/2−1/2
21 z

α2/2+1/2
32 z

5/8−α2/2
31

,

〈σ̄′(z1)ψα(z2)σ(z3)〉 =
αeiαx0

z
α2/2+1/2
21 z

α2/2−1/2
32 z

5/8−α2/2
31

,

〈σ̄′(z1)ψα(z2)σ′(z3)〉 =
−α2eiαx0

z
α2/2
21 z

α2/2
32 z

9/8−α2/2
31

.

(4.18)
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From the correlation functions of twist fields with operators ψα we can see that the operator

product expansion of two twist fields must contain all these primaries. Therefore we can

guess that

σ̄(z)σ(w) =

∫
dα

e−iαx0

(z − w)1/8−α2/2
ψα(w) + . . . , (4.19)

where x0 is the Dirichlet boundary condition of the interval between the insertion of the

two twist fields. The rest of the OPE contains descendants of ψα, but can in principle

contain also other primaries. If the boson is compactified, the values of α are restricted,

and the integral becomes a sum. For example, in the case of bosonized twist fields, α must

be a multiple of
√

2. This can be derived also in the Ω picture, since

σ̄B(z)σB(w) =
1

(z − w)1/8

(
1−
√

2

4
(z − w)i∂Ω(w) + . . .

)
, (4.20)

and Ω is expressed in terms of exponential operators through (3.4).

4.4 Correlation functions with two bosonized twist fields

The same correlation functions considered above can be computed for the bosonized twist

fields since the current j = i∂X and the bosonized twist fields have both a local description

in terms of the boson Ω. Correlation functions involving only j and bosonized twist fields

are straightforward; for the explicit calculation we use

〈Vα1(z1) . . . Vαn(zn)〉 =
∏
i<j

(zij)
αiαj δ

(
n∑
i=1

αi

)
, (4.21)

From this one obtains

〈σ̄B(z1)j(z2)j(z3)σB(z4)〉 =
1

2

1

(z41)1/8(z32)2

(√
z31z42

z21z43
+

√
z21z43

z31z42

)
,

〈σ̄B(z1)j(z2)σ′B(z3)〉 =
z

3/8
31

2z
1/2
21 z

3/2
32

,

〈σ̄′B(z1)j(z2)σB(z3)〉 =
z

3/8
31

2z
3/2
21 z

1/2
32

.

(4.22)

in agreement with (4.11). This is not surprising since the zero mode of X does not appear

in the current j = i∂X.

When fields like ψα are present, correlation functions depend explicitly on the par-

ticular boundary condition x0. Therefore, we do expect them to be different when the

bosonized twist fields σB and σ̄B are used instead of σ and σ̄. As explained before, how-

ever, we want to interpret the result in terms of a superposition of different sectors with

boundary conditions x0 =
√

2πn (considering only the holomorphic part of X). We thus

assume that

〈σ̄B(z1)ψα(z2)σB(z3)〉 =
∑
n∈Z
〈σ̄(z1)ψα(z2)σ(z3)〉x0=

√
2πn , (4.23)
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and check this hypothesis. Since the sum is over an infinite number of Dirichlet sectors, the

result must be normalized, in order to match with the normalization of two-point function

〈σ̄(z1)σ(z3)〉 = z
−1/8
13 . The right hand side of (4.23) is straightforward to compute, and

involves the Dirac comb

XT (t) =
1

T

∑
n∈Z

e2πin t
T =

∑
k∈Z

δ(t− kT ) . (4.24)

The final result for the right hand side of (4.23) is

√
2

z
1/8
13

(
z13

z12z23

)α2/2

X√
2(α) =

√
2

z
1/8
13

(
z13

z12z23

)α2/2 (
δ(α)+δ(α+

√
2)+δ(α−

√
2) + . . .

)
.

(4.25)

The calculation of the left hand side is more involved, since σB and σ̄B are naturally

written in terms of Ω, while ψα is not local with respect to it. However, we can rewrite the

combination σ̄B(z1)σB(z3) as

σ̄B(z1)σB(z3) = V−
√

2/4(z1)V√2/4(z3) =
1

z
1/8
31

exp

(√
2

4

∫ z1

z3

i∂Ω(z)dz

)
(4.26)

and express ∂Ω in terms of X using (3.4). This gives a path integral over X,

〈σ̄B(z1)ψα(z2)σB(z3)〉 =
1

Z

∫
[dX] (σ̄B(z1)ψα(z2)σB(z3)) e−S[X] . (4.27)

We can split the integral as
∫

[dX] =
∫
dx0

∫
[dX⊥], where x0 represents the zero mode of

X. The periodicity properties of ∂Ω imply that the
∫
dx0 integral is of the form∫

dx0 e
iαx0f(x0) , (4.28)

where eiαx0 accounts for the zero mode in ψα and f is a periodic function f(x) = f(x+
√

2π).

This integral can be rewritten as

∑
n∈Z

eiαn
√

2π

∫ √2π

0
dx0 f(x0)eiαx0 . (4.29)

Using the definition of Dirac comb, we then notice that

〈σ̄B(z1)ψα(z2)σB(z3)〉 ∝X√
2(α) =

(
δ(α) + δ(α+

√
2) + δ(α−

√
2) + . . .

)
, (4.30)

in agreement with (4.25). Furthermore, the dependence on the positions z1, z2 and z3

is fixed by conformal invariance, hence it must coincide with the one in (4.25) up to

normalisation.
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5 More twist field insertions

With four or more twist fields the situation is more complicated, for three reasons. First,

the operator formalism reviewed in section 4.1 is not applicable. The second reason is that

we have two or more cuts on the complex plane where the fields are defined; this means that

the worldsheet is now effectively a hyperelliptic surface with genus g > 0 [14, 27]. Finally,

using the electrostatic analogy for finding correlation functions on the upper half plane is

still possible, but an explicit expression for the Green’s function with appropriate boundary

conditions is known only in integral form. In appendix B we review the connection between

twist fields insertions and hyperelliptic surfaces, in particular in the case of four twist fields.

5.1 Correlation functions with four twist fields

Let us now consider correlation functions involving four twist fields; many of them are

already known, and have been derived solving systems of differential equations, similar to

the Knizhnik-Zamolodchikov equations (see [2, 14, 28] and also [29, 30] for parallel results

in the context of D-branes at angles). We review here some of these results, and we extend

them to the corresponding correlation functions involving the bosonized version of the twist

fields. Let us consider first of all the correlation function of four twist fields, namely

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (5.1)

This correlation function is well known in the literature, and was computed for example

in [2]; the detailed derivation can be found in appendix C. It is important to notice that

in the presence of four twist fields there are two Dirichlet intervals on the boundary. The

boson X(z, z̄) can in principle have different boundary conditions X = Xi
0 (i = 1, 2) on

the two intervals. Adapting the result of [2] to our notations, the correlation function is

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

(
z31z42

z21z41z32z43

)1/8√ π

2K(η)
exp

(
i

8π
(X1

0 −X2
0 )2τ

)
, (5.2)

where the conformal ratio η is given by η = z43z21/(z42z31), and K(η) is the complete ellip-

tic integral of the first kind. In order to derive this four-point function one encounter

other correlation functions, namely 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉, 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉
and 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉; explicit expressions are given in appendix C.

Another important correlation function that can be computed is the one involving two

currents j and four twist fields. The result is known (see [19, 28]) when the difference of

the two boundary conditions δ = X1
0 −X2

0 is zero. In appendix D we generalize to the case

δ 6= 0, the result being

〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

=
G(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]

+

√
2π√

P (z)P (w)

(
z31z42

z21z41z32z43

)−7/8

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
,

(5.3)

where G(zi) is the four-point function G(zi) = 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉.
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Starting with the correlation function with two currents one can easily obtain other

correlation functions involving excited twist fields. It is sufficient to consider the limit

when one of the currents approaches a twist fields, and use the corresponding OPE, as

done in section 4. In particular, we derive explicit results for 〈σ̄′(z1)σ′(z2)σ̄(z3)σ(z4)〉 and

〈σ̄′(z1)σ(z2)σ̄′(z3)σ(z4)〉 in appendix D. Similar and other correlation functions involving

excited twist fields can be found in [15], and in [31] for the case of twist fields connecting

D-branes at different angles.

5.2 Correlation functions with four bosonized twist fields

We now compare the above results to the case of four bosonized twist fields. The calculation

of the four twist correlator is straightforward using (4.21):

〈σ̄B(z1)σB(z2)σ̄B(z3)σB(z4)〉 =

(
z31z42

z21z41z32z43

)1/8

. (5.4)

This correlation function should represent a double array of Dirichlet sectors, whose bound-

ary conditions are separated by 2
√

2π. This is because each pair σ̄B-σB connects the Neu-

mann sector to the array; therefore a sum over the array has to be performed for both

pairs. Thus we should compare (5.4) with the quantity

∑
a,b∈Z

(
z31z42

z21z41z32z43

)1/8√ π

2K(η)
exp

(
i

8π
(2
√

2π(a− b))2τ

)
. (5.5)

The sum is infinite but will give a finite result after dividing by the two-point function∑
n∈Z〈σ̄(z1)σ(z2)〉X0=2

√
2πn, which is the correct normalization of correlation functions.

Using the Jacobi theta function ϑ3, which satisfies

ϑ3(0; τ) =
∑
n∈Z

eiπτn
2

=

√
2K(η)

π
, (5.6)

we notice that (5.5) is equal to (5.4).

We can proceed in an analogous way for the correlation function with two currents

and four twist fields. Using the bosonized expression of j one easily derives

〈j(z)j(w)σ̄B(z1)σ(z2)Bσ̄B(z3)σB(z4)〉

=
1

2(z − w)2

(
z31z42

z21z41z32z43

)1/8
[√

(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
.

(5.7)

Let us now compare (5.7) to the sum of (5.3) over the array. Summing the first term

gives simply

GB(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
, (5.8)
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where GB(zi) = 〈σ̄B(z1)σB(z2)σ̄B(z3)σB(z4)〉. The second term is proportional to

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
(5.9)

Summing over δ = 2
√

2πn we get ∂η

√
2
π = 0. Putting all together we notice that (5.7) is

recovered.

Correlation functions involving excited twist fields, in particular

〈σ̄′B(z1)σ′B(z2)σ̄B(z3)σB(z4)〉 and 〈σ̄′B(z1)σB(z2)σ̄′B(z3)σB(z4)〉 are computed in ap-

pendix D, and agree with the sum over the array of 〈σ̄′(z1)σ′(z2)σ̄(z3)σ(z4)〉 and

〈σ̄′(z1)σ(z2)σ̄′(z3)σ(z4)〉 respectively. The results of this section give further support to

our claim that bosonized twist fields describe an array of Dirichlet sectors.

5.3 Correlation functions with more than four bosonized twist fields

The calculation of correlation functions becomes increasingly more complicated when the

number of twist fields is more than four. Some results have been derived through the

electrostatic analogy (see [14] for Z2 twist fields and [18, 32, 33] for generic angle twist

fields); this procedure is however quite formal, since an explicit expression for the Green’s

function is known only in integral form. Furthermore, the generalization of the methods

described in appendices C and D is problematic.

In the bosonized case, however, it is still possible to compute correlation functions

involving bosonized twist fields and, possibly, the current ∂X. For example the 2n-point

function of twist fields is given by

〈σ̄B(z1)σB(z2) . . . σ̄B(z2n−1)σB(z2n)〉 =
∏
i>j

(i−j)∈2N

z
1/8
ij

∏
i>j

(i−j)∈2N+1

z
−1/8
ij =

∏
i>j

z
(−1)i−j

8
ij .

(5.10)

The correlator with two currents reads

〈j(z)j(w)σ̄B(z1) . . . σB(z2n)〉 =
G2n
B (zi)

2(z − w)2

(∏
i odd

√
z − zi
w − zi

∏
i even

√
w − zi
z − zi

+ (z ↔ w)

)
,

(5.11)

where G2n
B (zi) is the 2n-point function (5.10). Correlators involving excited twist fields can

also be considered; for example the correlation function of two excited and four normal

twist fields is

〈σ̄′B(z1)σ′B(z2)σ̄B(z3)σB(z4)σ̄B(z5)σB(z6)〉 =
1

2z
9/8
21

(
z53z64

z43z63z54z65

)1/8(z31z51z42z62

z32z52z41z61

)3/8

.

(5.12)

Through the bosonization procedure one might easily see if a correlation function vanishes;

this happens whenever the sum of all the exponents of operators Vα can not give zero. For

example, a correlator with one excited and 2n− 1 normal twist fields is always zero:

〈σ̄′B(z1)σB(z2) . . . σ̄B(z2n−1)σB(z2n)〉 = 0 . (5.13)

– 15 –



J
H
E
P
0
7
(
2
0
1
8
)
0
9
9

The same is true for a correlator of m excited and 2n−m normal twist fields, when m is

odd. Analogously, a correlator involving two excited twist fields vanishes if they are both

conjugated (or both non-conjugated). For example

〈σ̄′B(z1)σB(z2)σ̄′B(z3) . . . σ̄B(z2n−1)σB(z2n)〉 = 0 . (5.14)

Furthermore, every correlation function with an odd number of currents and 2n normal

twist fields is zero:

〈j(w1) . . . j(w2m+1)σ̄B(z1) . . . σB(z2n)〉 = 0 . (5.15)

We have seen in appendices C and D that these correlation functions (with n = 2) are not

vanishing for normal (non-bosonized) twist fields. The setup with the array of Dirichlet

sectors is special, since it makes many correlation functions vanish.

6 Ordering of boundary twist fields

In the previous section, when computing correlation functions with twist fields on the

boundary, we have always implicitly assumed a particular ordering of the twist fields.

This is because a twist field connects a CFT to a different one (corresponding to different

boundary conditions for the boson), and it must be followed by a conjugated twist field,

in such a way that the correlation function is computed with respect to the vacuum of

the original CFT. For concreteness, let us consider the two-point function of twist fields

〈σ̄(z)σ(w)〉. The two twist fields connect the boundary conformal field theory of a boson

with Dirichlet boundary condition (BCFTD) to the boundary conformal field theory of a

boson with Neumann boundary condition (BCFTN ); more precisely, reading the correlation

function from left to right, σ̄ connects BCFTD to BCFTN and σ connects BCFTN to

BCFTD. To make things clear, we will indicate explicitly with N or D the vacuum of the

reference CFT, which is the BCFTD in this case. Therefore, the correlation function has

to be interpreted as

〈σ̄(z)σ(w)〉D =
〈1l〉D

(z − w)1/8
=

ZD
(z − w)1/8

, (6.1)

where we have used the OPE (2.7), and ZD is the partition function in BCFTD. If we

now want to consider the opposite ordering, we have to consider the BCFTN as reference

theory. Assuming that the OPE is

σ(z)σ̄(w) =
α

(z − w)1/8
, (6.2)

we will have 〈σ(z)σ̄(w)〉N = α(z − w)−1/8〈1l〉N = α(z − w)−1/8ZN , where ZN is the

partition function in BCFTN . Since we are considering the twist fields inserted on the

boundary of a disk (or, alternatively, on the compactified real line), cyclicity implies that

〈σ̄(z)σ(w)〉D = 〈σ(w)σ̄(z)〉N , from which we conclude that

α = ZD/ZN . (6.3)
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On the other hand, the number α can be computed using the four-point function. In fact

lim
z2→z3

(z2 − z3)1/8〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = α〈σ̄(z1)σ(z4)〉D =
Z2
D/ZN

(z1 − z4)1/8
. (6.4)

In the previous section we have chosen to normalize ZD = 1. The explicit form of the

four-point function gives the result

lim
z2→z3

(z2 − z3)1/8〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = 0 , (6.5)

which means that the partition function ZN is divergent. However, ZN can be regularized,

for example compactifying the boson on a circle of radius R, which would give ZN = 1/R

(see [34]).

The cyclical property we used for the two-point function generalizes to more compli-

cated correlation functions of twist fields, provided that the appropriate reference CFT is

taken into account. For example, for the four-point function,

〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉D = 〈σ(z2)σ̄(z3)σ(z4)σ̄(z1)〉N . (6.6)

With this rule, every correlation function with an even number of boundary twist fields,

and with alternating σ’s and σ̄’s has a precise and unambiguous meaning.

7 Bulk twist fields and modular invariance

In appendix B we review how the cuts created by the presence of twist fields have the

effect of transforming the worldsheet into a higher genus Riemann surface. It is thus

natural to think that the correlation function of twist fields, without any other operator, is

associated to the partition function of a twisted boson on this surface. This was examined

for example in [20] and [35]. In order to connect to this result, we have to consider bulk

twist fields, twisting both the chiral (X) and anti-chiral (X̄) parts of the boson. The bulk

twist fields are given by the product of a chiral and an anti-chiral twist fields. Effectively,

a correlation function of bulk twist fields is given by the square of the correlation function

of chiral twist fields. An important observation that we have to make is that the Riemann

surface is not sensible to which points the cuts are connecting and to which twist fields

are conjugated and which are not. For concreteness, if we indicate (12)(34) the correlation

function 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉, where the cuts are connecting z1 to z2 and z3 to z4, we

see that the combination (34)(12), (21)(43) and (43)(21) describe the same situation. In

total there are 6 independent ways of partitioning the points zi in two non-ordered pairs,

which correspond to different conformal ratios and, correspondingly, to different periods of

the associated torus (see table 1). In order to recover the partition function on the torus,

one should sum over all these independent partitions. Looking at the associated periods,

we notice that the different partitions generate modular transformations on the period τ .

To be precise, the modular group can be generated by only two transformations:

S : τ → −1

τ
, η → 1− η ,

T : τ → τ + 1 , η → η

η − 1
.

(7.1)
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Partition Conformal ratio Period

(12)(34) η τ

(14)(32) 1− η - 1
τ

(12)(43) η
η−1 τ + 1

(13)(42) 1
1−η − 1

τ+1

(13)(24) 1
η

τ
1−τ

(14)(23) η−1
η − 1

τ + 1

Table 1. Partition of four points and modular transformations.

We refer to [20] for the proof that the sum

Z ∝ |〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉|2 + permutations. (7.2)

is indeed the partition function of a twisted boson on a torus. Here we just notice that the

result (7.2) is manifestly modular invariant.

The same discussion can be done for bosonized twist fields; the resulting modular

invariant partition function will be the one corresponding to a twisted boson on an orbifold

of radius R =
√

2. This partition function and the one obtained by normal twist fields

are related. The quantum part of the partition function (which depends only on the local

property of twist fields) is the same, while the classical part, which depends on the topology

of the surface, is different. In order to obtain the classical part, one has to sum over all

the classical solutions in the different winding sectors around the circle (see e.g. [20]):

Zcl(R) =
∑
(p,p̄)

exp [iπ(p · τ · p− p̄ · τ̄ · p̄)] , (7.3)

where p and p̄ are the allowed momenta running through the loops of the hyperelliptic

surface. It was noticed in [2] that when the radius of the compactification is exactly
√

2, the

total partition function simplifies, and can be expressed in terms of correlation functions of

operators of the form : exp(αφ(z)) :, where φ is a scalar field. The bosonisation introduced

in this paper makes it clear that this scalar field is not the boson X, but it is the dual

boson Ω, and that the operators : exp(αφ(z)) : are just our bosonized twist fields.

If one wants to insert the twist fields on the boundary, and interpret them as boundary

changing operators, not all the partitions of table 1 are allowed. As we discussed in

section 6, only the partitions (12)(34) and (14)(32) are well defined. This means that

summing over the allowed partitions would give a result which is invariant only under the

subgroup of the modular group generated by the S transformation. This is consistent with

the fact that, if the four twist fields are inserted on the real line, the associated period is

purely imaginary, and a T transformation would spoil this property.

8 Application to string theory: bound state of D-branes

Twist fields are useful in string theory in order to describe bound states of D-branes with

different dimensions. Let us consider a bound state of a Dn and a Dm brane in bosonic
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string theory, with n < m. The coordinates XM of open string attached to the branes

obey different boundary conditions. On the Dn brane, for example, the first coordinates

XM (M = 0, . . . , n) obey Neumann b.c. while the remaining XM (M > n) obey Dirichlet

b.c. An open string stretching between the two different branes has mixed boundary

conditions along the directions XM with (n < M ≤ m); along these directions, the change

in boundary conditions has to be taken into account, and twist fields must be inserted

inside correlation functions.

8.1 Boundary changing operators

In the following we will focus on the bound state of a D(−1) and a D(n− 1) brane; other

bound states with a difference of dimensionality equal to n can be related to this by a

T-duality. A higher number of parallel D(−1) and D(n− 1) branes can be also considered,

but we will restrict ourselves to one for simplicity. Let us define the boundary changing

operators ∆(z) (and ∆̄) as the product of the twist fields along the “mixed” directions, i.e.

∆(z) =

n−1∏
µ=0

σµ(z) , ∆̄(z) =

n−1∏
µ=0

σ̄µ(z) . (8.1)

Boundary changing operators are primaries of conformal dimension n/16, and satisfy

∆̄(z)∆(w) =
1

(z − w)n/8
. (8.2)

Correlation functions involving boundary changing operators can be derived from correla-

tion functions with twist fields. When the difference of dimension equals some particular

values, correlation functions can become quite simple. This is the case when n is a multiple

of four. We start considering co-dimension 8 and 16, and comment on the n = 4 case at

the end, due to its importance in superstring theory.

8.2 D7-D(-1) system

Let us now consider the difference of dimension to be 8, in particular the bound state of

a D7 and a D(-1) brane. The four-point function of boundary changing operator has a

simple form, namely

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)(
π

2K(η)

)4

. (8.3)

The bosonized version of twist fields can also be used, but it describes a different setup.

The periodicity properties of the boson Ω can be used for describing a set of D(−1) branes

positioned on a lattice with period 2
√

2π. A pair of boundary changing operators connects

the D7 brane to one of these D(−1) branes; the four-point function can then depend on

the positions of two different branes. If the difference of the two positions is given by the

vector ~δ, the four-point function is

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)(
π

2K(η)

)4

exp

(
i|~δ|2τ(η)

8π

)
. (8.4)
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The position of every brane on the lattice can be described by a vector of four integer num-

bers nµ, i.e. xµ = 2
√

2πnµ. The correlation function of bosonized twist fields is then given

by the superposition of four-point function corresponding to single branes, the result being

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =
z31z42

z21z41z32z43
. (8.5)

Notice that in this case (co-dimension n = 8) the boundary changing operator ∆ has

conformal dimension 1/2. We want now to argue that, at least in the bosonized case, it

behaves effectively as a fermion. From the eight bosons Ωµ, we can construct the normalized

boson ΩCM as

ΩCM =
1√
8

8∑
µ=1

Ωµ . (8.6)

Given this definition, the boundary changing operator can be written as

∆B(z) = exp

i√2

4

8∑
µ=1

Ωi(z)

 = eiΩCM(z) . (8.7)

We notice that this expression represents a complex fermion (in its bosonized

representation).

8.3 D15-D(-1) system

Another notable situation we are considering is when the difference of dimension is 16.

The four-point function of boundary changing operators is simply (allowing D(-1) branes

at different positions)

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 =

(
z31z42

z21z41z32z43

)2( π

2K(η)

)8

exp

(
i|~δ|2τ(η)

8π

)
, (8.8)

while in the bosonized case the result is

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =

(
z31z42

z21z41z32z43

)2

. (8.9)

The boundary changing operator has conformal dimension 1, and can be written (in the

bosonized case), as

∆B(z) = exp

i√2

4

16∑
µ=1

Ωi(z)

 = ei
√

2ΩCM(z) =: J+
CM(z) , (8.10)

where ΩCM =
∑

Ωµ/
√

16 and J+
CM(z) is a generator of the current algebra described in

section 3. A natural question to ask is whether this dimension 1 operator can generate

an exactly marginal deformation of the boundary conformal field theory. We have to

remember, however, that a twist field must always appear together with its conjugate

∆̄B(z) = e−i
√

2ΩCM(z) =: J−CM(z) . (8.11)
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This means that the deformation of the boundary CFT is given by

exp

(
λ2

∫
J+

CM(z)dz

∫
J−CM(w)dw

)
, (8.12)

where λ is the modulus of the deformation. As discussed in [36], a set of dimension 1

boundary operators produces a marginal deformation only if these operators are mutually

local, meaning that the OPE among them must not contain single poles. A similar result

for bulk deformation states that a set of operators of the form Ji(z)J̄i(z̄) generates an

exactly marginal deformation of the theory if and only if these currents form an abelian

subalgebra (see e.g. [37, 38]). In our case, however, we have

∆̄B(z)∆B(w) = J−CM(z)J+
CM(w) =

1

(z − w)2
− i
√

2∂ΩCM

z − w
+ . . . , (8.13)

which means that ∆̄B and ∆B are not mutually local. Equivalently, J+
CM and J−CM do not

constitute a subalgebra of the su(2) Kač-Moody, since [J+
CM, J

−
CM] ∼ ∂ΩCM. In conclusion,

even if the boundary changing operator has conformal dimension 1, it does not generate an

exactly marginal deformation of the bosonic conformal theory. Geometrically, the defor-

mation generated by the twist field ∆B(z) (which is the massless excitation of the (−1, 15)

string) corresponds to blowing up the point-like D(-1) branes inside the D15 brane. We

then conclude that this blowing up mode is not a modulus in the lattice.

One may wonder if this obstruction is an artifact of compactification. Recalling the

OPE (4.19) of the original twist field we see that a simple pole will be present whenever

the compactification radius is a multiple of
√

2. So, we expect the obstruction to persist

if this condition is met. A possible interpretation for the lifting of this modulus from

string theory is that the constituents of the array feel each other through the exchange of

a massless primary.

8.4 Superstring theory and correlation functions for the D3-D(-1) system

In superstring theory the full boundary changing vertex operators contains also spin fields

and ghosts. Due to picture changing, one also encounters the “excited” bosonic boundary

changing operator, which consists of the product of one excited twist field and n−1 normal

ones. More specifically we define

τµ = σ′µ(z)

n−1∏
ν=0
ν 6=µ

σν(z) , τ̄µ = σ̄′µ(z)

n−1∏
ν=0
ν 6=µ

σ̄ν(z) . (8.14)

Excited boundary changing operators are primaries of conformal dimension n/16+1/2; the

operator product expansions can be easily derived from the ones defining the twist fields;

for example

i∂Xµ(z)∆(w) =
τµ(w)

(z − w)1/2
+ . . . ,

i∂Xµ(z)τµ(w) =
∆(w)

2(z − w)3/2
+

2 ∂∆(w)

(z − w)1/2
+ . . . ,

(8.15)
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where we are not summing over the index µ in the second expression. Furthermore we have

τ̄µ(z)τν(w) =
ηµν

2(z − w)n/8+1
, (8.16)

where ηµν is the metric of the target space.

Let us consider a system of the two branes with difference of dimension equal to 4;

in particular we focus on a bound state of a D3 and (possibly many) D(−1) branes. This

system is relevant in superstring theory, in particular for its connection to gauge instantons

(see e.g. [10, 39]). The calculation of four-point correlation functions is straightforward,

and gives

〈∆̄(z1)∆(z2)∆̄(z3)∆(z4)〉 (8.17)

=

(
z31z42

z21z41z32z43

)1/2( π

2K(η)

)2

exp

(
i~δ2τ(η)

8π

)
,

〈τ̄µ(z1)τν(z2)∆̄(z3)∆(z4)〉

=
ηµν

z
3/2
21 z

1/2
43

(
π

2K(η)

)2 1

1− η

(
E(η)

2K(η)
−

~δ2

16K(η)2

)
exp

(
i~δ2τ(η)

8π

)
,

〈τ̄µ(z1)∆(z2)τ̄ν(z3)∆(z4)〉 (8.18)

=
ηµνz

1/2
42

z
1/2
31 z43z21

(
π

2K(η)

)2 1

1− η

(
1− η

2
− E(η)

2K(η)
+

~δ2

16K(η)2

)
exp

(
i~δ2τ(η)

8π

)
.

where K(η) and E(η) are the complete elliptic integrals of the first and second kind respec-

tively. Correlation functions of bosonized twist fields are then given by the superposition

of four-point functions corresponding to single branes, the results being

〈∆̄B(z1)∆B(z2)∆̄B(z3)∆B(z4)〉 =

(
z31z42

z21z41z32z43

)1/2

,

〈τ̄µB(z1)τνB(z2)∆̄B(z3)∆B(z4)〉 =
ηµν

2z
3/2
21 z

1/2
43

,

〈τ̄µB(z1)∆B(z2)τ̄νB(z3)∆B(z4)〉 = 0 .

(8.19)

These correlation functions can also be derived in a straightforward way by expressing the

boundary changing operators in the Ω picture.

9 Conclusions

The primary motivation of this project is to explore the moduli space of bound states of

D-branes, both in bosonic and superstring theory. The key ingredient for this is the OPE

of twist fields and various correlation functions containing a higher number of twist fields.

Therefore, the purpose of this note is to collect and extend results on correlation functions

containing an arbitrary number of Z2 boundary changing operators for a free boson. These

are the correlators that arise primarily when considering bound states of D-branes in string
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theory. Of course, in superstring theory, the relevant correlators contain other fields such

as spin fields, ghost fields etc., but the complication in the calculation of such correlators

resides mainly in the bosonic twist fields. In particular, higher twist field insertions become

important, for instance, when considering bound states of finite size D-branes, which in

turn are related to the instanton moduli space in the field theory limit. On another front

they enter crucially when considering effective actions [40] and classical solutions in string

field theory [34], which was one motivation for the present work. While adding some

explicit results to the list of known correlations functions containing Z2 twist fields, the

key result of the present paper is the bosonization of bosonic twist fields which we argued

to describe an array of D-brane bound states based on their relation to orbifold theories.

As an application we were able to show that the modulus corresponding to the size of the

D(-1) branes bound to a D15 brane is obstructed, since this deformation is equivalent to

a marginal deformation of two non-commuting chiral currents. An interesting question is

to extend this analysis to the bound state of BPS branes in superstring theory. We will

return to this question in [41].
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A Electrostatic analogy

The results of section 4.3 (for the flat space case) can be interpreted in the language of

electrostatics in two dimensions [25]. In absence of twist fields the Green’s function for

the Laplace operator is G(z, w) = log(z − w), satisfying 4zG(z, w) = 2πδ(2)(z − w). The

OPE’s among the fields can be written in terms of the Green’s function and its derivatives,

for example

X(z)X(w) ∼ −G(z, w) ∼ − log(z − w)

j(z)j(w) ∼ ∂z∂wG(z, w) ∼ 1

(z − w)2
,

j(z)Ṽα(w) ∼ α∂zG(z, w) Ṽα(w) ∼ α

(z − w)
Ṽα(w) .

(A.1)

The correlation function of many primaries of the form Ṽα is then given by

〈Ṽα1(z1) . . . Ṽαn(zn)〉 = exp

∑
i<j

αiαjG(zi, zj)

 δ

(
n∑
i=1

αi

)
=
∏
i<j

(zij)
αiαj δ

(
n∑
i=1

αi

)
.

(A.2)

The delta function is a consequence of the integration over the zero modes; furthermore,

there is no contribution proportional to α2
i , since it is always possible to take a flat metric

in a large region containing all the vertex operators (see [42] for a discussion about that).
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The Green’s function in the presence of two twist fields can be derived using the method

of image charges, as in [11]. The result, for Dirichlet and Neumann boundary conditions

on the positive and negative real axis respectively, is

G(z, w) = log

(
1−

√
z
w

1 +
√

z
w

)
= log

(√
w −
√
z√

w +
√
z

)
. (A.3)

Analogously to (A.1) we derive

X(z)X(w) ∼ −G(z, w) ∼ − log

(
1−

√
z
w

1 +
√

z
w

)

j(z)j(w) ∼ ∂z∂wG(z, w) ∼ 1

2(z − w)2

(√
z

w
+

√
w

z

)
,

j(z)ψα(w) ∼ α∂zG(z, w)ψα(w) ∼ α

(z − w)

√
w

z
ψα(w) .

(A.4)

The correlation function of many primaries ψα is slightly more complicated. As clarified

in [14], the zero mode is absent but there is an extra contribution of the form

exp

(
n∑
i=1

α2
i

2
S0(zi)

)
. (A.5)

It can be interpreted as a renormalized electrostatic self-energy and it takes care of the

normal ordering discussed in section 4.2 (cfr. [26]). S0 is defined in general by

G(z, w) = log(w − z) + S0(z) +O(w − z) . (A.6)

In the case of two twist fields at 0 and∞, (A.4) gives S0(z) = log( 1
4z ), from which formulas

like (4.15) and (4.16) follow.

B Twist fields and hyperelliptic surfaces

Let us consider 2n twist fields at positions zi on the real line. We assume that the fields

σ are at position zi with i even, and the fields σ̄ correspond to odd i. The current j

has Neumann boundary conditions on the intervals [z2i−1, z2i], and Dirichlet boundary

conditions on the intervals [z2i, z2i+1]. The real line is to be considered as compactified,

therefore there are Dirichlet boundary conditions also on the interval [z2n, z1], containing

the point at infinity. The complex plane (described by a coordinate z) has cuts along

the real axis, in correspondence to the intervals with Neumann boundary conditions. The

associated hyperelliptic surface, which has genus g = n− 1, is described by the equation

w2 = P (z) :=
2n∏
i=1

(z − zi) . (B.1)

Let us define some useful quantities; first of all we consider a canonical homology class

{Ak, Bk}, where Ak and Bk are the A and B cycles of the hyperelliptic surface. In the
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z1 z2 z3 z4

A B

Figure 2. A and B cycles for a complex plane with 4 twist fields insertions.

description on the complex plane, these cycles surround two neighbouring ramification

points. There is a basis for holomorphic 1-forms on this hyperelliptic surface, given by

ωk =
zk−1 dz√
P (z)

for k = 1, . . . , g . (B.2)

Denoting with Ak the A-cycle surrounding the two ramification points z2k−1 and z2k, the

period of the 1-form ωl along Ak is defined as

Ωkl =

∮
Ak

ωl =

∮
Ak

zl−1 dz√
P (z)

. (B.3)

There is also a dual basis for holomorphic 1-forms ζl, satisfying∮
Ak

ζl = δkl . (B.4)

The period matrix of the hyperelliptic surface is defined in the following way:

τkl =

∮
Bk

ζl , (B.5)

where Bk is the B-cycle surrounding the two ramification points z2k and z2k+1.

Four twist fields and the associated torus. When we have only four twist fields, the

genus of the surface is g = 1. This means that we are dealing with a torus, whose A and

B cycles are shown in figure 2.

We have only one holomorphic 1-form

ω =
dz√
P (z)

, (B.6)

and its dual ζ given by

ζ =
ω

Ω
= ω

/∮
A
ω . (B.7)

Therefore the period τ is simply

τ =

∮
B
ω

/∮
A
ω . (B.8)
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τ

1z1 z2

z3z4

Figure 3. Fundamental domain of a torus in uniformized coordinates.

It can be useful to distinguish the two periods of the torus as τ1 =
∮
A ω and τ2 =

∮
B ω,

τ being the ratio of the two. Notice that, given the definition (B.1) and assuming that

the twist fields are inserted on the real line, the quantity τ2 is real, while Ω = τ1 and τ

are purely imaginary. Introducing the conformal cross ratio η = z43z21/(z42z31), where

zij = zi − zj , the period can be written as

τ = i
K(1− η)

K(η)
, (B.9)

where K is the complete elliptic integral of the first kind. This relation can be inverted

using Jacobi theta functions, namely

η =

(
ϑ2(0; τ))

ϑ3(0; τ)

)4

. (B.10)

A positive, purely imaginary τ corresponds to 0 < η < 1; the modular transformation

τ → −1/τ corresponds to the map η → 1 − η. We will also use the so-called uniformized

coordinates, defined by

x(z) =
1

Ω

∫ z

z1

ω =
1

Ω

∫ z

z1

dw√
P (w)

. (B.11)

In these coordinates the torus is flat, and we identify points on the complex plane via

x ≡ x+m+ nτ , where m,n ∈ Z. The four points z1, z2, z3 and z4 are mapped to 0, τ/2,

(τ + 1)/2 and 1/2 respectively. The torus can thus be described as the quotient

T2 =
C

Z + τZ
. (B.12)

The fundamental domain is shown in figure 3.

C Four-point function of twist fields

In this appendix we follow the procedure of [2] in order to compute the four-point function

of twist fields

G(zi) = 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (C.1)
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As in appendix B, we have two Dirichlet intervals [z4, z1] (which includes the point at

infinity) and [z2, z3]. We consider the closed cycle C, that encircles the point z1 and z2.

We assume furthermore that the cycle is symmetric with respect to the real axis. We

have that∮
C
dz j(z) =

∫
C>

dz j(z)−
∫
C<

dz j̄(z) =

∫
C>

dz i(∂ + ∂̄)X(z, z̄) = iδX0 , (C.2)

where δX0 is the difference between the zero modes of X(z, z̄) on the two Dirichlet intervals.

Consider now a new correlation function

Γ(w, zi) = 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 . (C.3)

Integrating around the circle C we get the so-called block condition∮
dw

2πi
Γ(w, zi) = pG(zi) , (C.4)

where p = δX0/2π. Considering the OPE defining the twist fields, we can use the following

Ansatz for Γ:

Γ(w, zi) = [(w − z1)(w − z2)(w − z3)(w − z4)]−1/2A(zi) , (C.5)

where A(zi) does not depend on w. Performing now the limit w → z2, and using again the

OPE, we find

lim
z→z2

Γ(w, zi) =
1

(w − z2)1/2
G(2)(zi) + . . . , (C.6)

where G(2)(zi) = 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 and . . . represent terms of order (z − w)1/2. On

the other hand (C.5) implies

lim
z→z2

Γ(w, zi) =
1

(w − z2)1/2

A(zi)√
z21z32z42

+ . . . . (C.7)

Comparing the two equations gives A(zi) =
√
z21z32z42G

(2)(zi). Consider now another

correlation function, namely

Γ(2)(w, zi) = 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 . (C.8)

Integrating over w around the cycle C we obtain another block condition, that reads∮
dw

2πi
Γ(2)(w, zi) = pG(2)(zi) , (C.9)

Considering now the local properties when w approaches the insertion points zi, the proper

Ansatz for Γ(2) is

Γ(2)(w, zi) = [(w − z1)(w − z2)(w − z3)(w − z4)]−1/2

(
B(zi)

w − z2
+ C(zi)

)
. (C.10)
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Expanding this for w → z2 we find

lim
z→z2

Γ(2)(w, zi) =
1√

(w − z2)z21z32z42

×
(
B(zi)

w − z2
+ C(zi)−

1

2
B(zi)

(
1

z21
+

1

z23
+

1

z24

))
+ . . . (C.11)

On the other hand, the OPE implies that

lim
z→z2

Γ(2)(w, zi) =
1

2(w − z2)3/2
G(zi) +

2

(w − z2)1/2
∂z2G(zi) + . . . (C.12)

Comparing the last two equations we find closed expression for B(zi) and C(zi):

B(zi) =
1

2

√
z21z32z42G(zi) ,

C(zi) =
√
z21z32z42

(
1

4

(
1

z21
+

1

z23
+

1

z24

)
+ 2

∂

∂x2

)
G(zi) .

(C.13)

Finally we use the relation

K(zi) =

∮
C
dw[(w − z1)(w − z2)(w − z3)(w − z4)]−1/2 =

4i
√
z31z42

K(η) , (C.14)

where η = z43z21/(z42z31), and K(η) is the complete elliptic integral of the first kind. Using

this we can rewrite the two block conditions as

A(zi)K(zi) = 2πipG(zi) ,(
C(zi) + 2B(zi)

∂

∂x2

)
K(zi) = 2πipG(2)(zi) .

(C.15)

Inserting the relations we found for A, B and C we finally find a differential equation for

the original correlation function:

K3/2(zi)
∂

∂x2

[
(z21z32z42)1/8K1/2(zi)G(zi)

]
= −2π2p2(z21z32z42)−7/8G(zi) , (C.16)

whose solution is

G(zi) ∝
(

z31z42

z21z41z32z43

)1/8 1√
K(η)

exp

(
i(δX0)2

8π
τ(η)

)
. (C.17)

Here τ(η) is given by τ(η) = iK(1 − η)/K(η). The overall normalization factor can be

fixed using the OPE of twist fields. Knowing that σ̄(z)σ(w) ∼ (z − w)−1/8 + . . . , we have

to require that

lim
z1→z2

G(zi)(z1 − z2)1/8 = (z3 − z4)−1/8. (C.18)
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This fixes the overall factor to be

√
π

2
. We summarize here the result for the four-point

function of twist fields and the other correlators introduced for the derivation:

G(zi) = 〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

=

(
z31z42

z21z41z32z43

)1/8√ π

2K(η)
exp

(
i(δX0)2

8π
τ(η)

)
,

Γ(w, zi) = 〈j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

=
1

4

√
π

2P (w)

(z31z42)5/8

(z21z41z32z43)1/8

δX0

K(η)3/2
exp

(
i(δX0)2

8π
τ(η)

)
,

G(2)(zi) = 〈σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉

=
1

4

√
π

2

(
z31

z21z32

)5/8( z42

z41z43

)1/8 δX0

K(η)3/2
exp

(
i(δX0)2

8π
τ(η)

)
,

Γ(2)(w, zi) = 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉 =

=

√
π

2P (w)K(η)
z

9/8
31

(
z42

z21z32

)5/8( 1

z41z43

)1/8

δX0

×
(

w − z1

2(w − z2)

z32

z31
+

E(η)

2K(η)
− δ2

16K(η)2

)
exp

(
i(δX0)2

8π
τ(η)

)
.

(C.19)

Here P (w) indicates the product P (w) = (w − z1)(w − z2)(w − z3)(w − z4). Notice that

the three correlation functions Γ(w, zi), G
(2)(zi) and Γ(2)(w, zi) are proportional to the

difference δX0; therefore, when summed over the array, they give vanishing results. This

means that the bosonized version of these correlation functions are zero, as one could derive

by direct calculation in the Ω picture.

D Correlation function with four twist fields and two currents

In this appendix we consider the Green’s function in the presence of four twist fields. In

particular, following [19] and [28], we compute (assuming that Imz > 0 and Imw > 0)

g(z, w, zi) = ∂z∂wG(z, w) =
〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉
〈σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

. (D.1)

Taking in consideration the OPE among j and the twist fields, we can make an Ansatz for

g, which reads

g(z, w, zi) =
1

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]
+

A(zi)√
P (z)P (w)

,

(D.2)

where P (z) = (z−z1)(z−z2)(z−z3)(z−z4). We now use the definition of energy-momentum

tensor

T (z) =
1

2
N(jj)(z) =

1

2

(
lim
w→z

j(z)j(w)− 1

(z − w)2

)
; (D.3)
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this implies that

1

2

(
lim
w→z

j(z)j(w)− 1

(z − w)2

)
=
〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

G(zi)
. (D.4)

The direct calculation gives

〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉
G(zi)

=
1

2

A(zi)

P (zi)
+

1

16

(
1

z − z1
− 1

z − z2
+

1

z − z3
− 1

z − z4

)2

.

(D.5)

We can now use the OPE of T with σ(z2), in order to get the condition

lim
z→z2
〈T (z)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉 =

G(zi)

16(z − z2)2
+
∂z2G(zi)

z − z2
. (D.6)

Performing the limit on (D.5) gives the equation

∂z2 log(G(zi)) =
A(zi)

2z21z23z24
− 1

8

(
1

z21
+

1

z23
− 1

z24

)
, (D.7)

from which we find the function A(x):

A(zi) = 2z21z23z24
∂

∂z2

[
log
(

(z21z23/z24)1/8G(zi)
)]

= z42z31

(
1− η

2
− E(η)

2K(η)
+

δ2

16K(η)2

)
, (D.8)

where δ = δX0 and K(x) and E(x) are the complete elliptic integrals of the first and second

kind respectively. Analogous equations can be found for z1, z3 and z4. We can finally join

the equations together, using the property (for any function f(z1, z2, z3, z4))

η(1− η)∂ηf(zi) =
1

z42z31
(z12z13z14∂z1 + z21z23z24∂z2 + z31z32z34∂z3 + z41z42z43∂z4) f(zi) .

(D.9)

The final compact expression for A(zi) is

A(zi) = 2z42z31η(1− η)∂η log

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
, (D.10)

which was found in [19], in the case δ = 0. Multiplying (D.2) by G(zi) we find the correlator

〈j(z)j(w)σ̄(z1)σ(z2)σ̄(z3)σ(z4)〉

=
G(zi)

2(z − w)2

[√
(z − z1)(w − z2)(z − z3)(w − z4)

(w − z1)(z − z2)(w − z3)(z − z4)
+ (z ↔ w)

]

+

√
2π√

P (z)P (w)

(
z31z42

z21z41z32z43

)−7/8

∂η

[
1√
K(η)

exp

(
iδ2

8π
τ(η)

)]
.

(D.11)

Taking appropriate limits one can derive correlation functions involving excited twist fields.

For example, we can recover the correlator 〈j(w)σ̄(z1)σ′(z2)σ̄(z3)σ(z4)〉, which was already
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computed in appendix C. Considering the limit when both of the currents collide with a

twist field we find correlators with two excited twist fields. For example

〈σ̄′(z1)σ′(z2)σ̄(z3)σ(z4)〉

=
1

z
9/8
21 z

1/8
43

(
z31z42

z41z32

)5/8( E(η)

2K(η)
− δ2

16K2(η)

)√
π

2K(η)
exp

(
iδ2

8π
τ(η)

)
.

(D.12)

When the two excited twist fields are not adjacent we get

〈σ̄′(z1)σ(z2)σ̄′(z3)σ(z4)〉

=
z

1/8
31 z

9/8
42

(z43z41z32z21)5/8

(
1− η

2
− E(η)

2K(η)
+

δ2

16K2(η)

)√
π

2K(η)
exp

(
iδ2

8π
τ(η)

)
.

(D.13)

Correlation functions involving excited twist fields are easily computed summing (D.12)

and (D.13) over the array of Dirichlet sectors, or simply using the bosonized expressions

of these fields. The results are

〈σ̄′B(z1)σ′B(z2)σ̄B(z3)σB(z4)〉 =
1

2z
9/8
21 z

1/8
43

(
z41z32

z42z31

)3/8

,

〈σ̄′B(z1)σB(z2)σ̄′B(z3)σB(z4)〉 = 0 .

(D.14)
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