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ABSTRACT
We investigate a reduced point vortex model for statistical and dynamical analyses of atmospheric blocking phenomena.
Thereby, we consider High-over-low and Omega blocking as relative equilibria of two and three point vortices. Under
certain conditions, such point vortex systems move westward opposing the mean westerly flow and hence can become
stationary. Based on the kinematic vorticity number, two novel, independent methods, the contour and the trapezoid
method, are introduced in order to identify the vortices that form the blocking pattern, their local positions and circulation
magnitudes. While the contour method takes into account the observed stationarity of blocking, the trapezoid method
minimizes the total circulation of the vortex system following point vortex theory. Using an instantaneous blocking
index, a total number of 347 blocking periods were identified in NCEP-NCAR Reanalysis data for the Euro-Atlantic
region during the time period 1990–2012. This procedure provides the basis to corroborate the applicability of the
point vortex model to atmospheric blocking in a statistical framework. The calculated translation speed of point vortex
systems associated with the atmospheric blocking appears to match the zonal mean velocity reasonably well. This
model explains the stationary behaviour of blocking patterns. A comparison between the theoretical and a statistical
model further reveals that the circulation of the blocking high follows the principles of the point vortex model to a large
extent. However, the low-pressure systems behave more variable. Moreover, the stability of point vortex equilibria is
analysed regarding the relative distances by considering linear stability analysis and simulations. This reveals that the
point vortex blocking model corresponds to an unstable saddle point. Furthermore, we take viscosity and a Brownian
motion into account to simulate the influence of the smaller, subgrid-scale disturbances. As a result, a clustering near
the equilibrium state emerges indicating the persistence of the atmospheric blocking pattern.

Keywords: Atmospheric blocking, point vortices, kinematic vorticity number, stability analysis, instantaneous blocking

index, circulation, vortex identification, vortex pattern recognition

1. Introduction

Blocking events are large-scale, quasi-stationary phenomena
that persist from several days to weeks and block the jet stream
and thus the westerly flow. In general, a blocked atmospheric
flow field is characterized by a mid-tropospheric high-pressure
system that lies polewards of one or two lows. The pattern is
called High-over-low in case of two vortices and Omega block-
ing in case of three vortices due to the �-shaped geopotential
height isolines. Rex (1950) was one of the first who defined and
studied blocking. Since then many theories have been developed
to describe blocking: Charney and DeVore (1979) for example
suggested that a metastable equilibrium state can be associated
with blocking situations and Shutts (1983) proposed an eddy

∗Corresponding author. e-mail: annette.mueller@met.fu-berlin.de

straining mechanism for the reinforcement and maintenance of
blocking. Also many indices have evolved to detect blocked
situations mostly in gridded model data. Well-known examples
include those from Tibaldi and Molteni (1990) based on geopo-
tential height gradients and from Pelly and Hoskins (2003) who
introduced the PV-θ (Potential Vorticity - potential temperature)
approach.

The persistent behaviour of blocking often causes extreme
weather situations. An example of considerable impact is the
Russian heatwave in summer 2010 which was accompanied by
extreme rainfall in Pakistan (Galarneau et al., 2012). Despite
their large and manifold impact on our society, numerical weather
prediction models as well as climate models still need to be
improved to produce adequate behaviour and appearance of
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blocking: blocking onsets frequently coincide with low forecast
skill of numerical weather prediction models (Rodwell et al.,
2013; Ferranti et al., 2015) and climate models often underesti-
mate their frequency (Mitchell et al., 2017). These deficiencies
are often ascribed to the still not sufficiently understood under-
lying dynamical mechanisms (e.g. Barnes et al., 2011; Yamazaki
and Itoh, 2013; Luo et al., 2014; Pfahl et al., 2015; Kennedy
et al., 2016).

Obukhov et al. (1984) were the first who considered blocking
as a constellation of point vortices that on its own translates
westward and becomes stationary within a counteracting zonal
westerly flow. Kuhlbrodt and Névir (2000) further considered
a latitudinal-dependent zonal mean flow resulting in a stable
oscillation for dipole vortex constellations whose time scale cor-
responds to the oscillation of an exemplary High-over-low case.
Further comparisons between case studies and point vortex sys-
tems also showed the transition from High-over-low to Omega
blocking as well as the involvement of two neighbouring troughs
in a four-vortex framework (Kuhlbrodt and Névir, 2000). More
recently, Müller et al. (2015) demonstrated for two exemplary
blocked weather situations that the magnitude of the translation
velocity matches that of the zonal mean flow and thereby con-
firmed the stationary weather pattern.Asimilar view is presented
by Altenhoff et al. (2008) regarding the blocking vortices as Po-
tential Vorticity (PV) anomalies (instead of point vortices). These
PV anomalies also counteract the ambient westerly flow leading
to stationary conditions. This vortex perspective of blocking
is complementary to other blocking theories, e.g. the develop-
ment mechanism of blocking is often ascribed to Rossby wave
breaking (Tyrlis and Hoskins, 2008). This mechanism enforces
a transition from waves to vortices, supporting our vortex view.

Focusing on the stability of blocking, Faranda et al. (2016)
proposed that blocking can be attributed to an unstable saddle
point of the atmospheric dynamics. In the vicinity of this unstable
saddle point, clustering can occur manifesting in the persistence
of blocking. This is fortified by Schubert and Lucarini (2016)
showing that the atmospheric circulation is more unstable during
blocking in comparison to unblocked flow.

In this study, we will focus on the following research
questions:

(i) Can the applicability of the point vortex model to at-
mospheric blocking (Müller et al., 2015) be statistically
corroborated, i.e. do atmospheric blocking behave similar
to the point vortex model in general?

(ii) Which dynamical characteristics of blocking can be rep-
resented with the point vortex model?

(iii) How sensitive is the point vortex model to perturbations
and what implications can be derived for its stability?

These research questions will be tackled in the following way:
First, we will describe the theory of point vortices, and how it
can be applied to atmospheric blocking in Section 2. In order

to give a more substantiated answer in a statistical framework,
we will consider a large number of blocked weather situations
instead of single examples. Therefore, we will present two auto-
mated, more objective methods to detect blocking periods and to
identify and characterize the vortices constituting the blocking
in Section 3. One method, the contour method, is based on
stationary, isolated vortices. The second method, the trapezoid
method, is based on Müller et al. (2015) and fits boxes/trapezoids
to the blocking area. Subsequently, the constituent blocking pa-
rameters are statistically investigated in Section 4. In Section 5,
we will compare the theoretical point vortex model with a sta-
tistical model given by a linear multiple regression. We remark
that with regard to atmospheric investigations reduced low-order
dynamical models only rarely exist, allowing a comparison with
statistical models based on reanalysis data-sets. Furthermore, we
will analyse the stability of blocked systems by investigating the
characteristics of the tripole relative equilibrium in Section 6.

Finally, a summary and discussion will be given in Section 7.

2. The dynamical point vortex blocking model

The theory of point vortices is characterized by the interaction
of discrete vortices under the idealized conditions of a two-
dimensional, incompressible, inviscid flow. Mathematically, it is
represented by a system of coupled non-linear ordinary differen-
tial equations. Each point vortex is determined by its circulation
�i , i.e. its strength and its location r i = (xi , yi ). The circulation
is determined by the integral of the vertical vorticity ζ over the
vortex area element A in the horizontal plane:

� =
∫

A
ζd A. (1)

The circulation can either be positive or negative corresponding
to cyclonic or anticyclonic rotation. While the circulation is
constant for each point vortex, the vorticity field is infinite at
the point vortex locations and zero elsewhere. The equations of
motion for n point vortices are given by Helmholtz (1858):

dxi

dt
= − 1

2π

n∑
j=1, j �=i

� j (yi − y j )

l2
i j

,

dyi

dt
= 1

2π

n∑
j=1, j �=i

� j (xi − x j )

l2
i j

,

(2)

where li j =
√

(ri − r j )
2 denotes the distance between two point

vortices i and j . Thereby, each point vortex i induces a velocity
field that decreases with l−1

i j . The superposition of the velocity
fields induced by each point vortex then determines the motion of
each vortex. Such point vortex systems conserve the horizontal
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Fig. 1. Schematic illustration of the interaction of three point vortices
arranged according to the atmospheric Omega pattern, where the circles
indicate the direction and relative strength of rotation. The dotted arrows
represent the influence of the other two vortices on the velocity of the
corresponding point vortex. Their vector addition given by the solid lines
represents the resulting velocity vector for the corresponding vortex.
The anti-cyclonic vortex (red) is assumed to be twice as strong as the
cyclonic vortices (blue); therefore the induced velocity field is stronger.
This interaction can also be derived from Equations 2.

Kelvin momenta, the angular momentum as well as the kinetic
energy and therefore satisfy important physical characteristics
of many fluid dynamical systems (see e.g. Müller et al., 2015).
In general, point vortex systems rotate around their centre of
circulation

C =
∑n

i �i r i∑n
i �i

, (3)

which is conserved due to the conservation of the Kelvin mo-
menta. For systems with vanishing total circulation �total =∑n

i=1 �i = 0 the centre of circulation moves to infinity. As
a result, the system translates uniformly. An example of the
motion of n = 3 point vortices with �total = 0 arranged on
an equilateral triangle is illustrated in Fig. 1.

Alternatively, point vortex systems can be described by their
intervortical distances li j as state variables, denoted as equations
of relative motion (Gröbli, 1877; Aref, 1979; Newton, 2001):

dl2
i j

dt
= 2

π

n∑
k �=i �= j

�k Ai jkσi jk

(
1

l2
jk

− 1

l2
ik

)
, for n ≥ 3, (4)

where Ai jk describes the area and σi jk the orientation of the
triangle composed of three vortices i , j and k. Thereby, σ is
defined as +1 for a counter-clockwise order of i , j , k and −1
for a clockwise order. Point vortex constellations that translate
or rotate uniformly by preserving their relative constellation
are called relative equilibria and correspond to fixed points in
the framework of the relative motion, i.e. the distances remain

constant. The point vortex constellation given in Fig. 1 corre-
sponds to a relative equilibrium due to the equilateral arrange-
ment. Moreover, assuming �total = 0, the point vortex system
translates uniformly. In case of �total �= 0, the point vortex
constellation rotates around its centre of circulation (3) but, as
in the first case, the intervortical distances remain constant. Both
states are relative equilibria. For a more detailed overview on the
theory of point vortices, we refer to Newton (2001), Aref (2007)
and Müller et al. (2015).

The quasi-two-dimensional behaviour of atmospheric block-
ing allows for the representation of large-scale vortices by point
vortices as suggested by Obukhov et al. (1984). This reduces
the atmospheric flow field to a dynamical system described by
ordinary differential equations. Thereby, we identify the high-
pressure system as anticyclonic point vortex and the low-pressure
systems as cyclonic point vortices. The n = 2, 3 point vortex
systems representing the High-over-low and Omega blocking,
respectively, are illustrated in Fig. 2. In the High-over-low case,
the circulations of the two vortices have the same absolute value
with opposite signs (�1 = −�2), whereas for the Omega case the
absolute value of the circulation of the anticyclonic vortex (�1)
is equal to the sum of the circulation of the two cyclonic vortices
(�2 = �3 = −0.5 �1, see also Fig. 1 for the Omega case).
Both cases are characterized by their vanishing total circulation
�total = 0 which provoke the translation of the systems (see
(3)). For uniform westward translation, the vortices are located
on an equilateral triangle for the Omega case and on the same
longitude for the High-over-low case. Under these conditions
(�total = 0, equilateral triangle), such point vortex constella-
tions correspond to relative equilibria and translate westwards
with dipole velocity ud = −ud i for the High-over-low model
and tripole velocity u� = −u� i for the Omega case (Newton,
2001):

ud = |�1|
2πl

, (5)

u� =
√

1
2 (�2

1 + �2
2 + �2

3)

2πl
, (6)

where l = l12 = l23 = l31 and i is the unit vector pointing
to the east. For atmospheric blocking, the zonal mean westerly
flow ū = ū i counteracts this westward translation of the point
vortex system. As a result, the system can become stationary, if
the two velocities are of same magnitude:

ū =
{

ud for High-over-low blocking
u� for omega blocking.

(7)

It is emphasized that the translation velocities ud and u�

correspond to the theoretical translation of a corresponding point
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Fig. 2. (Left) Two exemplary blocking events, one resembling an Omega (top) and the other a High-over-low (bottom). Shown are the vorticity
(coloured) and the geopotential height isolines (grey isolines in 8 dm intervals, bold line represents the 552 dm line) at 500 hPa. (Right) Illustration
how the corresponding blocking can be realized in the point vortex model. Upper right figure by courtesy of Müller et al. (2015).

vortex dipole/tripole. The actual, observable translation of a non-
stationary blocking system will be denoted as uobs .

3. Data and methods

3.1. Data and zonal mean flow

To analyse blocking systems, the NCEP-NCAR Reanalysis
(Kalnay et al., 1996) is used with a horizontal grid spacing of
2.5◦E × 2.5◦N and a temporal resolution of 6 h. We restricted
the analysis to blocking patterns centred within 90◦W − 90◦E
(approximately the Euro-Atlantic sector) occurring in the years
1990–2012. For the analysis, we used the geopotential height
and horizontal wind fields at the 500 hPa-level. The zonal mean
flow ū is determined as the zonal average of the global, zonal
wind component within 20◦N − 80◦N.

3.2. Identification of blocking periods

At first, the time periods of blocked atmospheric flows are iden-
tified using the Instantaneous Blocking Index (IBL) which is

implemented on the Freie Universität Berlin Evaluation System
(see Freva, 2017; Richling et al., 2015, for more details). The
blocking index is based on the 500 hPa geopotential height gra-
dient, similar to the detection method from Tibaldi and Molteni
(1990) combined with the approach of a seasonal and longi-
tudinal varying reference latitude which represents the posi-
tion of the weather system activity (Pelly and Hoskins, 2003;
Barriopedro et al., 2010; Barnes et al., 2011). Only those IBLs
are considered as blocking periods that extend over at least 15◦
longitudes with one (or more) longitudes blocked for a minimum
of five days. Moreover, we determine an IBLmax as the longitude
that is blocked most frequently during one blocking period.
This IBLmax gives an approximate longitudinal location of the
blocking.1

3.3. Identification of rotational flow using the kinematic
vorticity number

In a next step, we searched for prevalent rotational flow (i.e.
vortices) in the identified blocking periods. The search procedure
is based on the dimensionless kinematic vorticity number which
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Fig. 3. Schematic diagram and comparison of the set-ups of the two different approaches of the contour method and the trapezoid method to
determine the vortex properties. Grey-shaded boxes indicate the temporally averaged fields over one blocking period.



6 M. HIRT ET AL.

Fig. 4. Composites of (a, b) High-over-low blockings and (c, d) all Omega blockings that were identified by the (a, c) contour and (b, d) trapezoid
method from 347 blockings during 1990–2012. The mean positions and circulations (in 107m2s−1 ) of the identified blocking vortices are marked
(circles, rectangles and triangle). The ζ field is shown for the contour method and the ζWk>1field for the trapezoid method. Also, the geopotential
height field is shown as grey isolines in 8 dm intervals at 500 hPa, where the bold line represents the 552 dm line.

was introduced by Truesdell (1953) as

W (3D)
k = ‖�‖

‖S‖ , (8)

for three dimensions. Here, S and � are the symmetric and anti-
symmetric tensors of the velocity gradient tensor ∇u. Recently,
the kinematic vorticity number was successfully applied to at-
mospheric data-sets of different resolutions in order to identify
vortices on two-dimensional surfaces by Schielicke et al. (2016)

and Schielicke (2017). Explicitly, it reads:

W (2D)
k =

√
ζ 2√

D2
h + Def 2 + Def ′2

, (9)

which can be evaluated at every point in the field and is
used in this analysis. Here, ζ = ∂v

∂x − ∂u
∂y is the vertical vorticity,

Dh = ∂u
∂x + ∂v

∂y denotes the horizontal divergence, Def =
∂u
∂x − ∂v

∂y defines the stretching deformation and Def ′ = ∂v
∂x + ∂u

∂y

denotes the shearing deformation. Hence, W (2D)
k as well as

W (3D)
k characterize the relation between rotation, deformation
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Fig. 5. Histogram of the distances l between the vortices (a-d) and the circulations � (e-h) of the single-time steps for High-over-low and Omega
blocking as analysed with the (a,c,e,g) contour method and (b,d,f,h) trapezoid method. Due to overlapping distributions, the colours accordingly
appear darker.
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Fig. 6. Scatter plot of the circulations [m2s−1] (averaged for each
blocking period) for comparing the two methods. Only situations have
been considered, where both methods classify the period either as
High-over-low or as Omega blocking. The dashed line shows the ideal
case, the bisecting line. The correlation coefficients are displayed in
corresponding colours.

and shearing of a flow (see Schielicke et al., 2016; Schielicke,
2017, for more details). We differentiate three cases:

Wk < 1: deformation prevails over rotation
Wk = 1: pure shearing flow
Wk > 1: rotation predominates deformation

As a result, rotational flow is identified as simply connected
region of Wk > 1 which is used to define a vortex. For fur-
ther analysis, we will only consider the vorticity field ζ where
Wk > 1, and the other vorticity values are set to zero. This field
will be called ζWk>1. It represents a field of vortices that were
cut out from the continuous flow field.

3.4. Block properties: vortex centres, circulations and
intervortical distances

Under the assumption that we know the exact size of a vortex,
we can determine vortex properties such as the circulation and
the vortex centre in the following way: The circulation �i of
vortex i is computed as the area weighted sum of vorticity as
approximation to (1):

�i ≈
n∑

k=1

�k =
n∑

k=1

ζkak , (10)

where we sum over all n grid boxes ak that form vortex i . �k =
ζkak corresponds to the circulation of each grid box k, that is
approximated as the product of the vorticity ζk and the area ak of
this grid box. For each vortex i the location of its vortex centre
Ci is calculated likewise to the centre of circulation of a point
vortex system (3) as the circulation centre of all n grid boxes
belonging to the area of the vortex i :

Ci =
∑n

k=1 �k rk

�i
, (11)

where k represents the grid box index of all grid boxes n belong-
ing to the area of vortex i . Although, this definition is similar to
the definition of the circulation centre of a point vortex systems,
the latter is defined as centre of all n point vortices, while the
vortex centre is the circulation centre of a single-extended vortex.

The intervortical distances li j between two vortices i and j
are calculated as secants through the vortex centres.

3.5. Two methods for the identification and extraction of
High-over-low and Omega blocking

The most challenging part is to determine the properties –
especially the areas – of the vortices that constitute the blocking
in an automated and objective way. Since the vortex circulations
and locations depend on the area of a vortex this is an essential,
but non-trivial step. A definition of a vortex and its intensity is
still lacking and the research in this field is still ongoing (Jeong
and Hussain, 1995; Neu et al., 2013). The circulation is a possible
measure of vortex intensity. Despite its advantage as global mea-
sure of rotation, it is only rarely used in the study of atmospheric
vortices. One of the rare publications using the circulation is the
cyclone identification method of Sinclair (1997). The method
introduced in Schielicke et al. (2016) and Schielicke (2017)
presents another way to identify vortex circulations successfully
and in a consistent manner throughout the atmosphere. Since
this topic is a current field of research, we will introduce two
novel methods in the following, the contour method and the
trapezoid method, that have different approaches to determine
the vortex properties and distinguish between High-over-low
and Omega blocking. We chose to use two methods because of
two reasons. First, the methods are independent and based on
two different aspects of blocking: The contour method is mainly
based on the observation that blocking patterns are stationary and
the trapezoid method searches for vanishing total circulation of
the vortex system which is in accordance with the theoretical
point vortex model. Hence, the contour method rather mirrors
the observation, while the trapezoid method is rather connected
to the theoretical point vortex model assumption. Second, both
methods have advantages as well as flaws. For example due
to stationary vortex areas the contour method, in contrast to
the trapezoid method, does not allow for translating blocking
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(a) High-over-low, contour method (b) High-over-low, trapezoid method (c) Omega, contour method (d) Omega, trapezoid method

Fig. 7. Scatter plot of the velocities u� and ud with the zonal mean zonal velocity ū averaged over 20–80◦N. The grey-dashed line indicates the
bisecting line, the blue line shows the linear regression.

Fig. 8. Phase space of relative distances li j . The fixed point is marked
as red cross and the three eigenvectors are displayed as green (stable),
blue (unstable) and grey (neutral) lines. Three exemplary trajectories
are displayed as points. The elapsed time between two consecutive
points corresponds to 8 h. The initial condition is marked as star in
corresponding colour. Note that the grey trajectory lies on the neutral
eigenvector at the initial position and is therefore stationary.

systems. Comparing the results of the two different methods
allows us to better estimate the reliability of our analysis. A
schematic diagram illustrating the different approaches of the
two methods is shown in Fig. 3. In the following, we will refer
to a maximum (minimum) of geopotential height or an area of
negative (positive) vorticity as high (low).

3.5.1. Contour method. The contour method is based on the
vorticity and deformation fields temporally averaged over each
blocking period separately. The Wk > 1 criterion is applied
to these averaged fields. Coherent areas of Wk > 1 ideally

represent isolated, persistent and stationary highs (abbreviated
as H ) or lows (abbreviated as L). As these areas are identified by
their enclosing outline, we refer to them as contours. See Fig. 3
for an example (Step 3a). Based on the averaged fields, we obtain
a mask of averaged vortices for each blocking period (Fig. 3,
Step 3a middle). Vortex centres (loni , lati ), circulations �i and
distances li j with i, j ∈ (H, L) of these vortices are calculated
for the following identification of the vortices constituting the
blocking.

(1) Determining the high of the block: The high is determined
by the contour with the smallest (negative) circulation
that contains the IBLmax. We exclude contours that range
below 25◦N and that have circulation magnitudes smaller
than |�H | < 2 · 107m2s−1 to exclude tropical vortices
and very small vortex structures. For the cases, that no
corresponding anticyclonic vortex is found, the criterion
of containing the IBLmax is relaxed: vortices, that enclose
at least one longitude in the range IBLmax ± 15◦ are
allowed as blocking high. From now on, the index H
designates this selected blocking high. If no contours are
found, the period is excluded.

(2) Determining the low(s): The following criteria (i)–(iii)
are applied for selecting the cyclonic vortices:

(i) First, vortices with conditions on the distances to
the high (|lonH − lonL | < 40◦ and 8◦ < |latH −
latL | < 30◦) and on their circulations (�L >

1.5 ·107m2s−1) are preselected. If no vortices are
found in this step, the blocking period is omitted.

(ii) Given that there were more than 2 vortices found,
the two vortices closest to the high centre are
chosen, where one lies east, one west of the high
centre. The distance between the two vortex cen-
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tres (lH L ) is used to evaluate this proximity. If
no vortices on one side were preselected, just the
two closest to the high centre are taken. These two
vortices are denoted as L1 and L2 with L1 being
the one closest to the high.

(iii) To exclude situations, when the two cyclonic vor-
tices lie approximately north/south of each other,
i.e. |lonL1 − lonL2| < 15◦ and |latL1 − latL2| >

8◦, the low that is further away from the high
centre is eliminated. Also, cases are excluded if
one cyclonic vortex lies relatively far away from
the high centre. In these cases, we remove the
vortex L2 if lH L2 > 5

3 lH L1. Then, only one
vortex remains.

(3) High-over-low vs. Omega blocking decision: If only one
vortex is left at this point and |lonH − lonL | < 30◦, the
blocking period is classified as High-over-low. If this last
constraint is not satisfied, the blocking period is omitted.
In case of two remaining vortices, a High-over-low is
still classified if the vortex closest to the high centre
satisfies |lonH − lonL | < 10◦ and � > | 1

3�H |. This
classifies High-over-low situations, where the low lies
almost directly south of the high centre and its circulation
is not too small. Otherwise, the period is classified as
Omega situation.

(4) Calculating the block properties for 6-hourly time steps:
For the statistical analysis, we will calculate the block
properties, i.e. the vortex centres, circulations and in-
tervortical distances, on a 6-hourly basis. Therefore, the
mask of stationary vortex contours of each blocking pe-
riod will be reduced to the areas of the identified vortices
which constitute the blocking. Then the block properties
are derived by evaluating the 6-hourly vorticity fields
inside this mask (Step 3a, bottom, in Fig. 3). For cyclonic
(anticyclonic) vortices, only positive (negative) vorticity
values are considered within the corresponding contour.

Modifying the thresholds of this method changes the vor-
tex identification and classification of single-blocking periods.
However, due to high case-to-case variability between blocking
situations various periods react different to modified thresholds.
Therefore, it is often not clear, whether modifying a criterion
improves the overall algorithm. We emphasize, that this method
and its chosen thresholds are by no means the best or the only
possible way. A more elaborate algorithm may be more adaptive
to the diverse blocking periods. However, it is difficult to justify
further criteria from a physical point of view.

3.5.2. Trapezoid method. In contrast to the previous dis-
cussed method, the basic concept of the trapezoid method is to
determine the area of the blocking by a box/trapezoid that min-
imizes the total absolute circulation within the shape following

the method of Müller et al. (2015). The name of the method
stems from appearance of the shape around the vortices as either
box or trapezoid in a regular latitude–longitude grid or mercator
projection. The upper part of the box/trapezoid corresponds to
the high, while the lower part of the box in case of a High-over-
low blocking pattern and the lower left and right parts of the
trapezoid in case of an Omega blocking correspond to the one,
and two lows, respectively.

For each single time step of a blocking period, we determine
both shapes (box/trapezoid) on basis of the ζWk>1 fields and the
corresponding circulation fields which are calculated by Equa-
tion (10) for every single grid point. The procedure is calculated
twice (round 1 and 2) over each blocking period in the following
manner (see Fig. 3, Step 3b).

(1) Determining the high of the block: First, we determine a
box around the high. This is done by iteratively searching
for the circulation centre of negative circulations in a cer-
tain region. As a starting point, we search for the circula-
tion centre in a region (round 1) around the IBLmax ±15◦
longitudes and between 55◦ N and 85◦ N,2 and (round 2)
around the over the blocking period temporally averaged
location of the high centre ±500 km, respectively. This
calculated circulation centre will be the next starting point
of a new search region of radius 1500 km around this
point. In this new search region, we again determine the
circulation center of negative circulations. This proce-
dure is repeated twice. As a result we obtain the location
of the circulation centre of the high as (X H , YH ) =
(lonH , latH ) in cartesian, and grid space, respectively.
The box around the high is then determined by a
(west–east, south–north) extent of (X H ±1500 km, YH ±
1500 km) = (latH ± �latH , lonH ± �lonH ) centred
around (X H , YH ). While �latH is fixed, the width in
longitudes �lonH of the box depend on the latitude latH
of the high’s circulation centre:

�lonH = 180◦
π

1500 km

R cos(latH )
, �latH ≈ 13.5◦, (12)

where R = 6370 km is the radius of Earth. For example
in a latitude of lath = 60◦N, we obtain �lonH ≈ 27◦.

(2) Determining the lows: In the second step, we determine
two shapes: a box for a possible High-over-low block-
ing and a trapezoid for a possible Omega blocking for
each time step (Fig. 3, Step 3b middle). The decision
between these two blocking patterns follows later in the
last step. The box and the trapezoid are independently
derived in the following manner. For the box, we allow
the southern border of the box around the high derived
in (1) to change stepwise in 2.5◦ latitudes down to 20◦N.
For the trapezoid, we further allow the southern border
to stretch symmetrically in 2.5◦ longitudes up to lonH ±
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Fig. 9. Simulations of two N = 3 point vortex systems applying realistic atmospheric conditions. The initial triangles (1) are disturbed from the
relative equilibrium of the equilateral triangle of side length l = 2000 km. The distance between the two lows is (a) decreased with lLeLw = 1800 km,
(b) increased with lLeLw = 3000 km. The coloured lines mark the trajectories of the corresponding point vortices. Some exemplary triangle
constellations 1–6 as realized in the simulations are added for the following times: (a) (1, 2, 3, 4, 5, 6) ≈ (0.0, 1.5, 2.9, 5.9, 8.8, 14.0) days; (b) for
(1, 2, 3, 4, 5, 6) ≈ (0.0, 1.0, 6.2, 12.4, 18.5, 25.0) days. When they appear after the equilateral triangle constellation (constellation 1 and 4) and before
the trilinear constellation (constellations 3 and 5), the triangles are changed according to the unstable direction, as e.g. constellation 2. Triangles,
changed in the stable direction exist after the trilinear constellation and before the equilateral triangle constellation, as e.g. constellation 6.

1.5 · �lonH where �lonH follows from (1) and is half
of the length of the northern border. In this manner, we
derive numerous boxes and trapezoidal shapes. Inside
these shapes, we calculate the total circulation by sum-
ming up the negative circulations at each grid point north
of the circulation centre(s) of the low(s) and the positive
circulations south of the circulation centre of the high
likewise to the definition in Müller et al. (2015) (their
Fig. 3).

(3) Calculating the block properties for 6-hourly time steps:
For each time step of each period, the box and the trape-
zoid minimizing the absolute total circulation are stored
and the block properties are calculated (Fig.3, Step 3b
middle) for later statistical analysis.

(4) High-over-low vs. Omega blocking decision: The de-
cision if the blocking is either a High-over-low or an
Omega blocking pattern is derived on basis of the tem-
porally averaged fields for each blocking period (Fig.3,
Step 3b bottom). We calculated the positive circulation
as a function of the longitude in a specific range (lonH ±
37.5◦, latL ,box ±5◦) around a point that lies on the same
longitude as the circulation centre of the high lonH and

on the same latitude as the southerly positive circulation
centre of the box latL ,box . We average the circulation
over the latitudinal variation of the box to account for
latitudinal differences between a possible Omega and
a possible High-over-low blocking. The range of about
75◦ geographical longitudes is divided in three parts of
about 25◦. The two outer parts and the inner part are
averaged separately and compared to each other: In case
that the averaged circulation of the inner longitudinal part
is larger than the average of the outer parts the blocking
period is identified as High-over-low blocking, otherwise
it is identified as Omega blocking.

The thresholds of the method were chosen carefully after
testing them regarding their sensitivity of identifying the circu-
lations of the vortices constituting the blocking. For example,
for the 1500 km threshold around the high centre, we tested
the identified circulations of the highs starting with a radius of
500 km up to 3000 km in 250 km steps. Expectantly, the circula-
tion magnitudes grow strongly in the beginning when changing
the threshold from e.g. 500 km to 750 km since the high systems
are probably larger and are not captured as a whole properly. The
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Fig. 10. Intervortical distances of the N = 3 point vortex system
of an exemplary simulation with friction as in Zhu and Cheng
(2010). Initial set-up of the distances was (lLeLw, lH Le, lH Lw) =
(2981, 1995, 2000) km. Random numbers were drawn from a normal
Gaussian distribution of zero mean and standard deviation sd = 30 km
using R function set.seed(12345) in order to estimate the Brownian
motion. The other initial conditions are described in the text.

circulation magnitudes from one threshold to the next stabilize
at around 1500 km which was then chosen as the threshold.
The largest longitudinal extent of the southerly border of the
trapezoid shape was determined by testing different lengths.
We started to allow the southerly border to change symmetri-
cally from lonH ± 0.5 · �lonH up to lonH ± 2.0 · �lonH
steps of 0.1. At an increase value of 1.5, the width and height
of the trapezoidal shape identified from one step to the next
stabilize. Hence, this value was chosen. The decision between
High-over-low and Omega blocking, however, is much more
sensitive to the longitudinal range which we base the decision
on. The numbers of identified systems stabilize around a number
of 185 in a range between lonH ±32.5◦ and lonH ±42.5◦ with a
high number (≈ 95%) of overlapping identified systems. Hence,
we decided to take the average value of 37.5◦.

3.6. Translation velocities

The translation velocity of the point vortex equilibria is com-
puted according to (5) and (6). In case of the High-over-low
blocking, (5) presumes both circulations to have the same abso-
lute value. To account for deviations from this assumption, we
will use the averaged absolute value of the circulations of the
two vortices in the identified High-over-low cases. In case of the
Omega blocking, point vortex theory assumes that the vortices
are arranged on an equilateral triangle of side length l. For the
identified Omega blocking, we will use the average of the three
intervortical distances for l in (6).

4. Statistical analysis of the constituting blocking
parameters based on NCEP data

In this section, we will present a climatology of the averaged
and 6-hourly block properties (composites, circulations and in-
tervortical distance) of High-over-low and Omega blocking in

the Euro-Atlantic sector for the years 1990–2012. The statistical
analysis is based on the NCEP reanalysis data and the consti-
tuting vortices were identified with the methods described in
Section 3.5.1. We compare the results between the two methods
to estimate their reliability. Furthermore, we will calculate the
translation velocities and compare these to the zonal mean flow.
Finally, we will shortly discuss the results and the methods.

4.1. Results

4.1.1. Composites and averaged blocking properties. The
identification method (Section 3.2) found a total of 347 blocking
periods during the time period 1990–2012 in the chosen area.
With help of the contour method (Section 3.5.1), we identified
203 of these blocking periods as High-over-low and 131 as
Omega blocking periods (see Table 1). For the remaining 13
blocking periods, the method was not able to classify the pattern
and these periods were disregarded. The trapezoid method clas-
sified a little less High-over-low (184) and more Omega (163)
periods. About two thirds of all blocking periods were identified
identically by both methods as either High-over-low or Omega
blocking. However, a significant number of periods (118) were
assigned differently by the two methods.

The composites for all Omega blocking and all
High-over-lows are displayed in Fig. 4. Thereby the average high
centre of each blocking period is relocated to 0◦E to enable a
comparison between periods located at different longitudes. The
flow in Fig. 4a (contour method) is dominated by a High-over-
low structure, the average strength of the high is slightly stronger
than the low. For the trapezoid method (see Fig. 4b) a similar field
is visible. The vortex circulations are, however, slightly stronger
than for the contour method and the vortex strengths are more
similar between the high and the low. The average vortex centres
lie sufficiently well near the regions of the vorticity extrema.
The average box of the trapezoid method adequately contains
the two vortex structures of the blocking. A distinct pattern of
enclosed vortices representing the Omega blocking in Fig. 4c and
d (contour and trapezoid method) is less pronounced. Instead, a
band of positive vorticity from south-west to south-east of the
blocking anticyclone is visible. A relative minimum of vorticity
is, however, visible in this band directly south of the anticyclone.
The average locations of the high centres are approximately
centred in the vorticity minimum. For the contour method, the
eastern low centre also fits well with the eastern vorticity maxi-
mum. The western vorticity maximum is more elongated and lies
further northward, and is not captured by the western low centre.
Similar structures are visible in the composite for the trapezoid
method. The western vorticity maximum, however, fits well with
the western vortex centre. The average trapezoid also captures
most of the vortex structures. In case of the Omega blocks, the
condition of vanishing total circulation is approximately satisfied
for the contour method (�(contour)

total = 0.9 · 107m2s−1) and for

the trapezoid method (�(trapezoid)
total = 0.3 · 107m2s−1).
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Table 1. Overview of the number of blocking periods as classified by the two methods. The last column gives the number of blocking periods, that
were identified as either High-over-low or Omega by both methods.

Contour method Trapezoid method Overlap of identification

# blocking periods 347 347
# High-over-low periods 203 184 134
# Omega periods 131 163 82
# omitted periods 13 0 0

4.1.2. Intervortical distances (6-hourly time steps). The dis-
tances between the two vortices of the High-over-low block-
ing peak around 2200 km and 2000 km for the contour and the
trapezoid method (see Fig. 5a and b). While this distribution is
approximately retained for the distances between the high and
the lows of the Omega blocking, the distances between the two
lows are significantly larger and more broadly distributed for
both methods (see Fig. 5c and d).

4.1.3. Circulations (6-hourly time steps). For the High-over-
low configurations from the contour method (Fig. 5e), the maxi-
mum of the total circulation lies approximately centred at −0.3 ·
108m2s−1, suggesting that the High-over-low anticyclone is
slightly stronger than the cyclonic vortex. For the trapezoid
method (Fig. 5f), the total circulation peaks at zero indicating
that both vortices have similar strength. For the Omega blocking
(Fig. 5g,h), the distributions of the two low-pressure systems are
similar and the distributions of the total circulations

∑
� are

centred around zero. For the contour method, the distribution
is relatively broad, whereas the trapezoid method yields a very
thin distribution. Because the minimized total circulation was
chosen as constraint for the trapezoid selection, this is expected.

4.1.4. Comparison of the two methods. A comparison of the
circulations averaged over each blocking period from the two
methods is displayed in Fig. 6, as well as the correlations. For
the high-pressure systems, both methods yield similar results
and are also relatively strongly (0.68) correlated. Nonetheless,
the circulations are far from identical between the two methods,
as strong deviations from the bisecting line are visible. The
circulations of the low-pressure systems for the Omega cases
have similar magnitudes, but are only weakly correlated. For the
High-over-low periods, the correlation is slightly larger (0.48)
and a strong variability is still visible. This analysis also shows
that the contour method yields generally smaller absolute values
for the circulations, especially for the high and the High-over-
low lows. The composites (Fig. 4) and the histograms (Fig. 5a-
d) also exhibit generally larger intervortical distances for the
contour method compared to the trapezoid method.

4.1.5. Comparing translation velocity and zonal mean flow.
A central meteorological focus is the examination of the steady

state of the blocked vortex configuration. Therefore, we com-
pare the translation velocity magnitudes u� and ud with the
zonal mean flow ū. Under the assumption of stationary block-
ing conditions, ideally, the absolute values of the translation
velocity and zonal mean flow should be equal, i.e. the values
of the corresponding scatter plots in Fig. 7 should lie on the
bisecting line for stationary blocking systems. We see, that the
magnitudes of u� and ud match those of ū. For Omega situations
identified by the trapezoid methods, the velocity values lie near
the bisecting line (see Fig. 7c). A significantly positive slope
follows from a linear regression estimate with a correlation of
0.71. However, the linear regression differs considerably from
the bisecting line: especially for large zonal mean velocities, u�

is smaller than ū. For the High-over-low cases (for both methods)
and the Omega situations from the contour method (Fig. 7a-
c), also positive regression lines and correlations are visible.
Although the contour method shows a slightly larger correlation
in the High-over-low cases than the trapezoid method, the rela-
tionships between the two velocities are not as strong. We also
considered different latitudinal regions for the determination of
the ū. While decreasing the band of latitudes generally increases
ū, the overall relations to ud/u� were only slightly modified.

So far the blocking systems have been assumed to be
stationary. Yet many blocking translate slowly east- or west-
ward, and it is interesting to study the relation between this
observed translation uobs and the difference udi f f between the
theoretical translation u�/ud and the zonal mean flow ū. This
difference is also visible in Fig. 7a, c, d, which shows that
the u�/ud is generally smaller than ū. This suggests the pos-
sibility of more eastward propagating blocking systems. Ex-
amples (Omega blocking analysed with the trapezoid method)
confirmed, that positive/negative udi f f correspond to observed
east-/westward translation uobs of the actual blocking system.
Yet due to high variability of the blocking positions as analysed
with the trapezoid method and the thereby arising difficulty
in determining the translation uobs , no statistically significant
results could be obtained.

4.2. Discussion of the statistical results and methods

We determined the areas of the blocking vortices with the con-
tour and the trapezoid methods, i.e. two methods with differ-
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ent approaches. The contour method takes stationary persistent
vortex structures over the whole blocking periods into account.
Hence, it is rather related to the assumption that the blocking
is formed by (the same) stationary vortices. In contrast, the
trapezoid method selects the actual vortex areas at each time
step with the constraint of minimum total circulation inside
the trapezoidal pattern. This can lead to intersected lows in
some cases. As a result, the composite of Omega blocking also
seems to bisect the western low. Due to the scale-dependent
structure of vortices this is not necessarily inappropriate. Fur-
thermore, the blocking pattern can be formed by different indi-
vidual vortices. Since both methods are based on assumptions,
that are not necessarily valid (e.g. stationary vortex structures),
each have their flaws and benefits. Using two different methods
has the advantage that we are able to evaluate the robustness
of our results by comparing the outcomes of the two meth-
ods. We observed that the circulations of the highs are well-
correlated between both methods, but significant variability ex-
ists. Therefore, the circulations of the high contain a significant
uncertainty but are somewhat robust. The circulations of the
lows (especially for Omega situations) show a lower correlation
(Fig. 6) which suggests that the lows are more difficult to cap-
ture and their assigned circulations are less certain. A possible
explanation concerning the dynamics of this behaviour could be
a larger variability of the locations of the lows in the Omega
blocking cases. The difficulty in capturing the areas of the low-
pressure systems also causes higher uncertainties in the position
of the vortices. This higher variability is also congruent with
the observed band of positive vorticity south of the high for the
Omega cases with only a weak gap in between the two lows. Pos-
sibly, there are more than 3 vortices involved or the real triangular
arrangement of the vortices forming the Omega blocking could
be a rotated Omega state such that the arrangement resembles
a High-over-low with an additional second low located west or
east of the High-over-low. It also indicates a possible transition
between High-over-low and Omega configurations.

Furthermore, this transition might obscure the blocking clas-
sification by the two methods since its definition is quite strict: a
blocking period is either identified as High-over-low or Omega
blocking, but not both. Consequently, the two methods do not
agree on the blocking type for a large number of periods. Further
ambiguous periods involve more than two cyclonic vortices
or two small vortex structures that can be interpreted as one.
This emphasizes the difficulty in discerning the blocking types
which manifests in the large number of opposing classification
by the two methods. Nonetheless, the composites show a clear
High-over-low structure and a discernible Omega structure. We
infer that the periods, with many ambiguous ones, have been
sufficiently well classified by both methods. Further research
regarding the High-over-low vs. Omega blocking decision is a
topic of future work.

Both methods are subject to setting some more or less arbi-
trary thresholds. We have chosen these thresholds as a result

of subjective considerations. While small modifications to these
thresholds alter single blocking periods, the composites are not
strongly sensitive (not shown). An ideal point vortex Omega
blocking requires an equilateral triangle. However, using reanal-
ysis data-sets, we find that this is only approximately realized
in the Omega blocking because the distance between the two
lows is considerably larger than the distance between the high
and the lows. We will further investigate such modifications
of the point vortex equilibrium in Section 6. The condition of
vanishing total circulation is approximately satisfied, although
the variability especially for the contour method is quite large.
Given the above described uncertainties underlying the methods,
the relation between the calculated translation velocity u�/ud
and the mean zonal flow ū is a strong confirmation that the
point vortex model is a limited, but reasonable description of
atmospheric blocking. To further corroborate the applicability
of the point vortex systems to blocking, a statistical model of
the blocking vortex system is considered and compared to the
theoretical model in the following section.

5. Comparison of the theoretical and a statistical
model of Omega blocking

The results derived in the previous section allows for a statisti-
cal model that can be compared to the analytic solution of the
point vortex equation in a relative equilibrium. The tripole/dipole
translation velocity u�/ud of the theoretical point vortex model
given in (6)/(5) depends on the circulations and the intervortical
distances. Thus, the questions arise if one of these parameters
contribute more to the relationship between the zonal mean flow
ū and u� than others and how well the theoretical relationship
of (6)/(5) fits to the observed one. We dealt with these questions
with a multiple linear regression model (Wilks, 2005). At first,
we will apply this to the Omega situations, then to the High-
over-low periods.

5.1. Set-up of the theoretical and statistical models

By considering only the behaviour near a reference point a, (6)
can be approximated by a Taylor series expansion. As reference
point we choose: a = (�H , �Lw, �Le, l), where the bar above
the variables denotes the average of the corresponding variable
calculated from the methods. The indices stand for H : the high,
Lw: the westerly low, Le: the easterly low, and l is the average
of the three intervortical distances lH Le, lH Lw , lLeLw . Then,
the first-order Taylor series for the tripole translation velocity
reads:

u� ≈ u�(a) + αH (�H − �H ) + αLw(�Lw − �Lw)

+ αLe(�Le − �Le) + αl (l − l), (13)
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where αi with i = (H, Le, Lw, l) are the corresponding deriva-
tives at the reference point a. For example, αH is given by:

αH = ∂u�

∂�H

∣∣∣∣
a

= �H

4πl
√

0.5(�
2
H + �

2
Lw + �

2
Le)

.

Using the averaged values at the reference point, the αi become
constants. In a next step, we assume u� to have the same absolute
value as ū. Then the above linearized theoretical Equation (13)
can be compared to the following model for a multiple linear
regression:

u = β0 + βH · �H + βLw · �Lw + βLe · �Le

+ βl · l.

The β values denote the corresponding regression estimates. In
the case that the observed blocking, i.e. the determined values
obtained from the contour and trapezoid methods, behave ac-
cordingly to the theoretical model, the α values should coincide
with the β values. Note, that we assumed that the blocking is
stationary and consists of an equilateral constellation with the
average intervortical distance as lateral length.

For the trapezoid method, the total circulation is close to
zero for most periods. This means, that one of the three vortex
circulations can be expressed by the other two, i.e. the three
circulations are not independent. Therefore, we eliminated �Le
in (6), by substituting �Le = −�H −�Lw and correspondingly
adapt the computation of αi . Then, we use u = β0 + βH �H +
βLw�Lw + βl l as regression model. Note that it would also be
possible to eliminate instead one of the other two circulations.
For the contour method, we did not apply this reduction, since the
criterion of vanishing total circulation is not fulfilled as strongly.

For the High-over-low situations, this can be applied in an
analogous way based on ud from (5). However, since the theory
assumes |�H | = |�L | = �, we consider � as the average of
the absolute values of �H and �L . α� for example is then de-
termined as α� = ∂ud

∂�
|a = 1

2πl . Consequently, our regression
model reads u = β0 + β�� + βl l.

5.2. Results and discussion

The α, β values are summarized in Tables 2 and 3. For Omega sit-
uations from the contour method, all regression estimates fit well
with the theoretical α values aside from l. The p-values of �H
and �Le (0.01 and 0.02) signify that their regression estimates
are also statistically significant. The p-value of �Lw implies
only a weakly statistically significant regression estimate. For the
distance l, we cannot confirm a statistical relationship between
l and ū due to a large p-value. The trapezoid method yields
merely a statistically significant, concurring relationship for �H

of Omega periods. We note that due to the distributions of the
circulations and distances (Fig. 5) also the α’s contain some
uncertainty. Thus, it is also interesting that the intercept and
distance l show an α of the same order of magnitude as the corre-
sponding, statistically significant regression estimate. For �Lw ,
the relationship is statistically not significant. For High-over-low
situations, the trapezoid method gives a congruent regression
estimate with high significance for � which we computed as
the average of the absolute circulations of the two High-over-
low vortices. Although α� from the contour method does not
lie within the error interval, it is of same order of magnitude
as its statistically significant regression estimate. So assuming
some degree of uncertainty in α� , we infer that α� and β�

approximately coincide. While the intercepts of both methods
from High-over-low situations are also statistically significant
(p-values of 0.02 and 0.04), α0 is clearly larger, but still within
the approximate order of magnitude. The α and β values for the
distance from the contour method do, however, not coincide de-
spite statistically significant regression estimates. Its equivalent
from the trapezoid method is not statistically significant.

So we can confirm the relationship between �H and ū with
statistical significance for all situations. For the circulations of
the lows, significant relations are revealed for High-over-low
situations and also for Omega situations as identified by the
contour method. The distances could not be proved to relate to ū
according to our model. We note, that some of the inconclusive
results possibly emanate from several assumptions and uncer-
tainties that underlie this regression analysis: We assumed an
equilateral triangle constellation although this condition is not
fulfilled (see Fig. 5c,d). In Section 4, we also found indications
for a high variability and uncertainty in the low-pressure systems
(weak consensus between the two methods) and therefore also in
the intervortical distances. This possibly causes the insignificant
regression estimates for the distances. We further assume that
the blocking systems are stationary. Examples showed, however,
that this has only limited validity. This possibly manifests in the
inconsistent intercepts. Another restriction is embedded in the
Taylor series of first order. This means, that only linear relations
are taken into account.

We also note, that the R2 of the different regression analyses
lie within 0.28 to 0.50. This value gives the amount of variability,
that is explained by the model. It suggests, that only up to
half of the variability of ū is explained by our model. Also
the residuals show non-random patterns (not shown), indicating
additional deterministic behaviour of ū. This means that the
chosen predictors (�H , �Le, �Lw, l) are not sufficient to predict
ū. However, while for usual applications of regression models,
the aim is to predict the predictand (ū here) in the best possible
way, we instead target the relationship between ū and the selected
predictors for a comparison to the theoretical point vortex model.
Consequently, we did not expect to yield an optimal prediction
of the zonal mean flow anyway.
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Table 2. Results of the multiple linear regression for Omega blocking. The α values show the coefficients of the linearized point vortex equations and
the β values denote the estimates from the linear regression. Small p-values indicate more significant regression estimates. For the contour/trapezoid
method, the regression models yield an adjusted R2 of 0.28/0.50.

Contour method Trapezoid method
predictor theory (α) regression estimates (β) p-value theory (α) regression estimates (β) p-value

Intercept 5.6ms−1 4.7 ± 1.4ms−1 0.01 7.0ms−1 4.8 ± 1.3ms−1 10−4

�H −3.2 · 10−8m−1 −3.3 ± 0.6 · 10−8m−1 0.02 −5.7 · 10−8m−1 −5.9 ± 0.9 · 10−8m−1 10−9

�Lw 1.8 · 10−8m−1 1.2 ± 0.7 · 10−8m−1 0.10 0.2 · 10−8m−1 0.1 ± 1.2 · 10−8m−1 0.96
�Le 1.7 · 10−8m−1 2.0 ± 0.8 · 10−8m−1 0.01
l −2.0 · 10−6s−1 −0.4 ± 0.6 · 10−6s−1 0.47 −2.9 · 10−6s−1 −1.7 ± 0.7 · 10−6s−1 0.02

Table 3. As Table 2, but for High-over-low situations. The adjusted R2 of the regression model are 0.39 and 0.48 for the contour and trapezoid
method respectively.

Contour method Trapezoid method
predictor theory (α) regression estimates (β) p-value theory (α) regression estimates (β) p-value

Intercept 5.9ms−1 2.1 ± 0.9ms−1 0.02 8.0ms−1 1.3 ± 0.6ms−1 0.04
� 7.2 · 10−8m−1 6.0 ± 0.6 · 10−8m−1 10−17 8.2 · 10−8m−1 7.6 ± 0.6 · 10−8m−1 10−24

l −2.6 · 10−6s−1 1.1 ± 0.5 · 10−6s−1 0.02 −4.1 · 10−6s−1 −0.1 ± 0.3 · 10−6s−1 0.76

In summary, we confirm with statistical significance that the
circulation of the high and to some extent also the circulations
of the lows relate to ū according to the point vortex model.
Given the uncertainties and limitations of the model, this is a
remarkable result that validates the applicability of the point
vortex model to atmospheric blocking.

6. A stability analysis approach of blocked
systems

A remaining challenge in the context of large-scale atmospheric
dynamics is the analysis of the stability of the blocking phe-
nomenon. For example, Rodwell et al. (2013) state that weather
prediction models often fail to capture the onset and decay of
blockings. So we will now examine (i) the stability of blockings
in terms of the Lyapunov stability of n = 3 point vortex equilib-
ria and by perturbing the side lengths of the equilateral triangle
in accordance with the climatological results of Section 4 and (ii)
the clustering behaviour close to the relative equilibrium state by
modelling the influence of smaller, subgrid-scale disturbances as
Brownian motion.

6.1. Stability considerations

In Section 4, we found that the distances between the three
blocking vortices as computed with the contour and trapezoid
method do not show an equilateral triangle. We will now analyse
how such deviations from the equilateral triangle affect the point
vortex system. In the following, the equations of motion for

the relative distances (4) are applied to represent the equilateral
triangle constellation as a fixed point in the phase space spanned
by the three relative (intervortical) distances li j with i, j ∈
(1, 2, 3). An analysis considering the Lyapunov stability (see
e.g. Strogatz, 2015) can then give information on the stability
properties of the fixed point.Adetailed derivation of this stability
analysis can be found in the supplementary material (Section 2).
A similar study has already been conducted by Synge (1949)
(using trilinear coordinates) resulting in the following condition
for stability:

�2�3 + �1�2 + �1�3 ≥ 0.

For the relations of the circulations according to the atmospheric
blocking model, i.e. �1 = −2�2, �2 = �3 > 0, the above
stability criterion is not satisfied resulting in an unstable fixed
point with �2�3 + �1�2 + �1�3 = −3�2

2 < 0. Thus, within
the vicinity of the fixed point, deviations from the fixed point
increase exponentially in time. More precisely, the fixed point
corresponds to a saddle point3 with one neutral, one unstable
and one stable direction. This is illustrated in Fig. 8, where three
simulated trajectories are displayed in the vicinity of a fixed
point (red cross). Each simulation is initialized at a perturbed
state lying on the direction of an eigenvector. For the unstable
case, the trajectory departs from the equilibrium constellation,
whereas the stable trajectory converges towards the equilibrium.
The neutral case corresponds to the uniform expansion of the
equilateral triangle, which results again in a fixed point. How-
ever, trajectories, that do not start directly on the stable or neutral
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direction, are unstable. Therefore, the fixed point is unstable.
See the supplementary material (Section 2), Synge (1949) or
Tavantzis and Ting (1988) for further information.

6.1.1. Model set-up. To illustrate the non-linear behaviour of
the initially unstable motion in the configuration space the po-
sitions of the point vortices have been simulated with perturbed
equilateral triangles. In accordance with the results obtained
from the NCEP statistics (Section 4, Fig. 5c,e), the circulations
of the vortices were set to (�H , �Le, �Lw) = (1.3, 0.65, 0.65) ·
108 m2s−1/s and the side length of the equilateral triangle was
set to 2000 km. The integration is carried out by a Runge–Kutta
method of fourth order as implemented in Matlab (MATLAB,
2013). We used two different perturbed set-ups shown in Fig.
9a,b denoted as constellation 1. In the first simulation (Fig.
9a), we decreased the initial distance between the two lows
to 1800 km. In the second set-up (Fig. 9b), we increased the
distance between the two lows to 3000 km (in accordance to
Fig. 5c). In both cases, the initial triangle constellation is still
isosceles and the distances between the high and the two lows
remain lH Le = lH Lw = 2000 km roughly corresponding to
their mean distance observed in Fig. 5.

6.1.2. Results. Reducing the distance between the two lows
leads to the following observations: The point vortices oscillate
between the isosceles triangle constellations 1 and 4 and two
other, collinear constellations 3 and 5 (Fig. 9a). It can be seen
that the order of the vortices changes after the collinear con-
stellations as the two lows switch their positions. This causes
unstable eigenvectors to switch to stable ones (and reverse)
leading to the attraction to the perturbed equilateral triangle, i.e.
the isosceles triangle. As Constellation 2 moves away from the
isosceles constellation towards the collinear constellation (i.e.
the deviation from the equilateral constellation increases with
time), it corresponds to an unstable point vortex constellation.
Constellation 6, however, converts to the isosceles constellation
(i.e. the deviation from the equilibrium decreases) and thus rep-
resents a stable one. This behaviour can be viewed similar to the
behaviour of real blocking events, where often a transition from
High-over-low to Omega and reverse takes place. Moreover,
variable locations of the lows can be explained, whereas the
high-pressure system is stationary over a longer time period.

An increase of the distance lLeLw of the two lows in ac-
cordance with our statistics leads to an oscillating anticyclonic
point vortex (see Fig. 9b), i.e. in the collinear state the high
is located between both lows. Thereby, the distance between
the high and the southern (northern) low increases (decreases).
Ignoring the northern low, such a collinear state resembles a
High-over-low configuration. In our case, the time between the
isosceles triangle constellation 1 and the collinear state 2 is about
6.2 days and a whole convulsion takes 12.4 days. The triangle
configurations stay close to the isosceles pattern for about 3

days: e.g. constellation 2 in Fig. 9b is reached 1 day after the
initialization (and a mirror constellation would be reached 1 day
before configuration 1). Overall, the translation speed of the three
point vortex system is smaller compared to set-up 1.

6.1.3. Discussion. Although persistent weather patterns are
often denoted as stable weather situations in meteorological
terms, the stability analysis of the corresponding point vortex
system yields an unstable saddle point. This is also confirmed
by Faranda et al. (2016) who indicate that blocking events cor-
respond to an unstable saddle point (in the high dimensional
phase space of the atmosphere) without considering any vortex
models. Schubert and Lucarini (2016), using covariant Lya-
punov vectors, also show that the atmospheric circulation is more
unstable when the flow is blocked compared to non-blocked
flow. This highlights that the concept of ‘stable’ (i.e. persistent)
weather patterns does not necessarily correspond to stability in
a dynamical systems view.

6.2. Clustering behaviour

Faranda et al. (2016) showed that clustering, i.e. an extraordinary
long persistence near a point in phase space, can occur in the
vicinity of unstable fixed points within chaotic attractors causing
the persistence of blocking. These results motivated us to search
for a clustering near the unstable fixed point of the point vortex
blocking model to demonstrate the similarities of the point vortex
blocking model with atmospheric blocking events.

6.2.1. Model set-up. To eliminate the conservative character
of our point vortex model friction was introduced according
to Zhu and Cheng (2010) as Brownian motion. Thereby, (4) is
complemented by a viscous and a noise term:

dl2
i j

dt
= 2

π
�k Aσ

(
1

l2
jk

− 1

l2
ik

)
+ 8ν + √

8νli j Ẇi j , (14)

where ν represents the viscosity coefficient and Wi j the 1D
Brownian motion for each li j . Ẇi j denotes the temporal deriva-
tive of Wi j . Similar to Hasselmann (1976), who regarded weather
as Brownian motion influencing the climate system, this noise
can be considered as the impact of smaller scale phenomena on
the positions of the larger scale blocking vortices. The modified
point vortex system is regarded according to the Itô integral
of stochastic differential equations as in Zhu and Cheng (2010)
and numerical solutions are obtained using the Euler–Maruyama
method. Thereby, Ẇi j = N (0, sd)/

√
dt where N (0, sd) de-

notes a normal distribution of zero mean and standard deviation
sd (Higham, 2001).

We tested several (3721) initialisations (l ′LeLw
= lLeLw ±

30 km and l ′H Le = lH Le ± 30 km in 1 km steps) with different
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initial intervortical distances in the vicinity of the mean isosceles
triangle (lLeLw, lH Le, lH Lw) = (3000, 2000, 2000) km that
followed from the NCEP statistics. Accordingly, the circulations
were set to (�H , �Le, �Lw) = (1.3, 0.65, 0.65) · 108 m2s−1/s.
And the initial orientation of the triangle is σ = +1. The simula-
tions were calculated with R (R Core Team, 2015) for time steps
of 10 min over a total integration time of 4000 h (≈ 166.7 days).
The Brownian motion is modelled as normal distribution of zero
mean and with standard deviation set to sd = 30 km. This sd-
value seems to be reasonable in comparison to the initial config-
uration based on the coarsely resolved NCEP data (2.5◦). For the
viscosity, we used the standard atmosphere kinematic viscosity
at a height of 5500 m (≈ 500 hPa): ν = 2.3·10−5 m2/s. We tested
for clustering near an equilateral triangle constellation. Thereby,
clustering was defined as being close to an equilateral triangle
constellation for at least 10 days over the whole integration time.
The closeness was determined with help of the dimensionless
distance


 =
√

l2
LeLw

+ l2
H Le + l2

H Lw

lLeLw + lH Le + lH Lw
(15)

in phase space. We required 
 < 0.03 for at least 10 days.

6.2.2. Results and discussion. Although only for a fraction
(≈ 1%) of the tested set-ups, it was indeed possible to observe
a clustering of the point vortex model near the equilateral tri-
angle configuration during the integration times. An example is
given in Fig. 10, where the system remains near the fixed point
(l ≈ 2000 km) for about 15 days starting approximately at 105 days
after the integration is initiated. Moreover, we notice that in the
first period up to about 100 days the distance between one of
the two lows and the high remains constant at about 1500 km
and after the clustering the distance between the other low and
the high is similarly stable while the other vortex moves more
freely. This reminds of the High-over-low dipole patterns with an
additional vortex. However, the dipole might also rotate; hence,
the high and low might change their positions. Nonetheless, it
is an impressive result that even though we started far away
from the equilateral triangle configuration the N = 3 point
vortex system clusters close to the equilibrium state for such a
long time period, especially, since we used realistic atmospheric
conditions of the mid-troposphere for slightly viscous flow. This
is a promising outcome that further confirms the applicability
of the point vortex model to atmospheric blockings. However,
further analyses (longer integration times, different set-ups, test
for High-over-low resembling behaviour) might be needed to
give a more substantiated view of the point vortex clustering
behaviour and its relation to atmospheric blocking.

7. Conclusions

The focus of this paper is the corroboration of the applicability
of the point vortex model to atmospheric blocking events. Two
methods to identify and characterize blocking vortices in an
automated way were proposed. The contour method selects the
areas of the blocking vortices as contours of stationary vorticity.
The trapezoid method after Müller et al. (2015) on the other hand
adapts a box/trapezoid to fit the blocking vortices at each time
step. Each method has different uncertainties and benefits. By
considering two independent methods, we are able to evaluate
the robustness of their results. Both methods evaluate a rather
novel atmospheric field: the vorticity determined in the field of
the dimensionless kinematic vorticity number Wk larger than
1 where the Wk > 1 criterion extracts the vortex structures
embedded in the continuous flow field (see also Schielicke et
al., 2016). From 347 blocking periods in total during 1990–2012,
both methods classified each period either as High-over-low or
as Omega blocking. A comparison of the two methods revealed
that the high-pressure systems were appropriately captured while
the identification of the more variable lows is less reliable. The
magnitudes of the circulations, distances and velocities are in
accordance with the case studies of Müller et al. (2015). The
condition of the vanishing total circulation is acceptably well
satisfied, whereas clear deviations from the equilateral triangle
are observed. The magnitude of the translation velocities u� and
ud of the point vortex tripole/dipole fits well with the zonal mean
flow but the zonal mean flow is slightly stronger. Such differ-
ences could lead to non-stationary blocking systems, and it was
indeed observed that many blocking translate slowly. Thus, the
approximate consensus between u� and ud is a first justification
of applying point vortices to atmospheric blocking. Moreover,
we compared the linearized analytic solution of the point vortex
equilibrium with a statistical model. As a result of the multiple
linear regression, we found that the circulation of the high- and
– to a lesser extent – low-pressure systems behave in relation to
the zonal mean flow according to the point vortex model with
statistical significance. This regression analysis, however, could
not confirm a corresponding relationship for the intervortical
distances. We assign this to the higher variability of the locations
of the low-pressure systems and the invalid assumption of the
equilateral triangle. It is commonly known that the persistent
high-pressure system is a major characteristic of blockings. Our
analysis confirms that the high-pressure system as anticyclonic
vortex is dynamically relevant for the blocking phenomenon.

Another central point of this study was the analysis of the
stability of the blocking, i.e. the response to perturbations from
the equilateral triangle. A stability analyses revealed that the
equilateral [..] (or the ideal point vortex blocking model) cor-
responds to an unstable saddle point in accordance with the
findings from Faranda et al. (2016) and Schubert and Lucarini
(2016). By considering the non-linear motion in the whole phase
space (instead of only the local, linear behaviour near the fixed
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point), simulations showed an oscillatory behaviour of the lows
in accordance with real blocking events. Thereby, a transition
from Omega blocking to High-over-low is indicated. If the equi-
lateral triangle is perturbed similar to the observed deviations,
i.e. lows are further apart, the simulation reveals a more vari-
able, oscillating anticyclonic vortex. This behaviour needs to be
further studied in comparison to realistic atmospheric blocking
behaviour, possibly using a higher number of point vortices.
Furthermore, the clustering behaviour described in Faranda et al.
(2016) can also be observed in the point vortex model concerning
the relative distances when friction in terms of noise is included.
This clustering may illustrate the persistent (‘stable’) behaviour
of blocking as well as the difficulty in predicting the onset and
offset of blocking. However, we notice that the reduced point
vortex model does not include effects like divergence, baroclin-
icity, Rossby waves or the Earth’s rotation that also play a role
in modifying the cancellation of the zonal mean flow and the
theoretically calculated translation velocity from the point vortex
blocking model. Other vortices, e.g. those embedded within the
zonal mean flow, have not been taken into account explicitly,
only indirectly in terms of the averaged zonal mean flow.

To answer the research questions from the introduction, we
can conclude that atmospheric blocking, especially their high-
pressure systems, behave in many ways similar to the idealized
point vortex blocking model. We have shown that not only the
stationary behaviour of the blocking high can be modelled with
point vortices, but also the instability and the consequently lim-
ited predictability due to clustering behaviour.
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Notes

1. If more than one longitude exist, that was maximal blocked, the
IBLmax is chosen, that is closest to the average IBLmax.

2. We start the search so far north to exclude subtropical systems. Since
the circulation depends on the area, southerly grid points can have
higher circulation magnitudes than northerly ones.

3. The saddle point arises from the existence of both stable/negative
and unstable/positive eigenvalues.
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