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RNA contains methylated A-base derivatives. A methylation to m6A and then demethylation regulate homeostasis in mRNA. It 

is assumed that m6A is mainly demethylated by the α-ketoglutarate dependent oxidase ALKBH5. Here we show that ALKBH5 

also demethylates the dimethylated adenosine m6
2A, which is a non-canonical base present in ribosomal RNA. 

 

RNA contains a large number of modified nucleosides.1,2 Most abundant throughout all RNA species are mono-methylated or 

multiply methylated nucleosides.2 Particularly high levels of methylated nucleosides are detected in transfer RNA (tRNA), but also 

ribosomal RNA (rRNA) and messenger RNA (mRNA) feature such non-canonical nucleosides.1,3 Basically, for all canonical 

nucleosides methylated derivatives exist.1 They all serve different functions.4 The methylated RNA nucleoside m6A was first 

reported in mRNA in 19745,6 and is among the best studied modifications within the set of methylated adenosines (Fig. 1).7 

Fig. 1 selection of natural occurring methylated adenosines in RNA. 

 

Others8–14 and we15 have shown that the nucleoside recruits and repels proteins to control the lifetime of the corresponding mRNA. 

As such the nucleoside is directly involved in regulating mRNA homeostasis.15 Particularly exciting is the observation that the 

nucleoside m6A can be demethylated by α-ketoglutarate dependent oxidases,16 which opens the possibility that methylation and 

demethylation establish a new layer of regulation to facilitate transcriptional control. In addition to m6A, ribosomal RNA also 

contains the double methylated species m6
2A, where two methyl groups are both situated at the exocyclic N6-heteroatom. Because 

the methyl groups are connected to a heteroatom, this oxidation would allow oxidative double demethylation of m6
2A in contrast 

to m2A and m8A, where the methyl group resides on a carbon. Such sequential demethylations performed by a single enzyme are 

known: for example, histone demethylases are able to demethylate mono-, di- and even trimethylated lysines.17,18 Here, we 

investigated if the Fe2+-, α-ketoglutarate-dependent ALKBH5, which is known to demethylate m6A, would be able to demethylate 

naturally occurring m6
2A as well. In contrast to m6A, however, m6

2A is predominately, if not exclusively, found in a conserved 

sequence context of the small ribosomal subunit.2,3 For this study, we first investigated the demethylation of small RNA strands 

containing m6A and m6
2A in different sequence contexts with ALKBH566–292in vitro. Therefore, we synthesized the 



phosphoramidites of m6A and m6
2A and subsequently used them for solid phase RNA synthesis (SPOS) of oligoribonucleotides 

(ORN) 1–4 (Fig. 2). In this study we inserted m6A and m6
2A into their natural sequence context, i.e., 5′-GGm6ACU-3′ for m6A and 5′-

GUGm6
2A-m6

2ACUU-3′ for m6
2A. To address potential sequence bias during the enzymatic studies, we also inserted m6A into the 

sequence of m6
2A and vice versa. In addition to the investigation with pure oligonucleotides, the study was furthermore 

complemented with the putative demethylation of m6
2A in intact ribosomes and in human ribosomal rRNA. 

 The His6-tagged protein human ALKBH566–292 enzyme was overexpressed in E. coli BL21(DE3) from a pNIC28–Bsa4-ALKBH566–292 

plasmid19 using a modified procedure compared to the literature20 data (see the ESI) and isolated in one step via Ni-NTA affinity 

chromatography. This procedure yielded the protein in a purity of 90% (ESI, Fig. S1). The buffer was changed to the assay buffer 

(50 mM Tris HCl, pH 7.5, 15 mM KCl). Stock solutions of diammonium-Fe(ii)-sulfate and α-ketoglutarate were prepared fresh for 

every assay and added to a final concentration of 300 μM. ALKBH566–292 concentrations in the assay buffer were either 10 or 16 

μM. The corresponding oligonucleotides were held constant at 10 μM. Exclusion of oxygen was not needed. The solution was 

incubated at 37 °C for about 1 h (see the ESI). For analysing the demethylation reaction, we desalted the assay solution using a 

Millipore MF™ VSWP-membrane (0.025 μm) and measured the molecular weight of the oligonucleotides using MALDI-TOF mass 

spectrometry. The obtained data are depicted in Fig. 2. 

 

Fig. 2 (A) Oxidation scheme of methylated adenine by ALKBH5 with R being a hydrogen or methyl group. (B-C) MALDI-ToF spectra of the ORN 3-4 and their demethylation 

products (-xMe) at different concentrations of ALKBH566-292. The sodium signals in the spectra are marked with an “x”. (D) HPL chromatogram of the incubation of ORN-

4 with 16 µM ALKBH566-292 (black line) and with a spike in of ORN-2 (red line). 

 

As expected, we observed complete demethylation of m6A in both sequence contexts ORN-1 and ORN-2 (ESI, Fig. S2A and B). This 

is interesting because it shows that the oxidation of m6A, putatively to the corresponding N6-hydroxymethyl-A followed by 

hydrolysis of the hemiaminal (Fig. 2A), has no observable sequence bias under our conditions. In addition, we see that the 

demethylation proceeds also at two directly adjacent m6A to completion. When we analysed the demethylation with the m6
2A 

strands ORN-3 and ORN-4 (Fig. 2B and C), we obtained more complex spectra. We could indeed detect demethylation but with a 

significantly reduced efficiency. When m6
2A is placed in the context of the m6A consensus sequence, the formation of the mono-

demethylated ORN-3 at 10 μM enzyme concentration is seen, furthermore the fully demethylated ORN-3 (-2Me) is clearly visible 

(Fig. 2B). The conversion is about 40%, estimated based on the observed signal intensities. Demethylation in the rRNA context, 

where two directly adjacent m6
2A occur, is shown in Fig. 2C. At 10 μM and an incubation time of 1 h, mono-, di-, and tetra-

demethylations are observed. At a slightly higher enzyme concentration, we detected all expected species with the loss of one–

four methyl groups. The loss of two methyl groups can yield two different species, either one with m6A–m6A or one with m6
2A–A. 

To address this issue, we further performed LC-MS analysis of the ORN-4 assay mixture with and without a spike of ORN-2. Fig. 2D 

shows that both species occur and the m6
2A–A product is the favoured one. In summary, the data show that ALKBH566–292 is able 

to fully demethylate an m6
2A–m6

2A sequence via oxidation of all four methyl groups. Interestingly, the mono- and tri-demethylated 



ORNs do not accumulate. We interpret this effect as an indication that the first demethylation step is rate limiting, while the 

demethylation of m6A proceeds quickly. 

Fig.3 Quantification data of m6A and m6
2A upon incubation with ALKBH566-292 in different concentrations. (A) For quantification isotope labelled standards of m6A and 

m6
2A were used. R’ represents ribose sugar moiety. (B) Represents the amount in ribosomes and (C) the amount in rRNA. The dashed lines shown in (C) indicate that 

the sum of residual m6A and m6
2A. 

We next wanted to study if double-demethylation of m6
2A is also possible on intact rRNA. To this end, we isolated the ribosomes 

from HEK293T cells using ultracentrifugation followed by rRNA isolation. The obtained ribosomes and rRNA are more complex 
than the synthesized oligonucleotides because they contain one m6A per subunit and in addition the m6

2A–m6
2A sequence. These 

m6
2A positions are highly conserved in all species with only very few exceptions.21 For the analysis, due to the large size of the RNA 

strand, we digested the RNA after the assay to the individual nucleosides and measured all four canonical nucleosides plus the 
methylated adenosines m6A and m6

2A via UHPLC-MS/MS using our described procedure (see the ESI). In order to obtain absolute 
quantitative data, we synthesized the isotopologues of m6A and m6

2A that were used for internal calibration (see the ESI). The 
obtained quantitative MS-data are compiled in Fig. 3. In the control studies performed without enzymes, we clearly detected the 
m6A and m6

2A nucleosides at the expected ratios (two of each per rRNA). Upon addition of ALKBH566–292 in two different 
concentrations, we see a clear and strong reduction of the m6A signal, showing that in principle ALKBH566–292 is able to demethylate 
m6A also in ribosomal RNA. Because the sequence context is different, this result argues again that the activity of ALKBH566–292 has 
no observable sequence preference. One has to note that in these experiments ALKBH566–292 is present in great excess over the 
used large rRNA. Interestingly, however, m6A levels are not reduced to zero which we would expect based on the observed full 
demethylation with the smaller RNA strands. For m6

2A, we also see clearly reduced levels, showing that ALKBH566–292 demethylated 
m6

2A also in rRNA. It is interesting to note that at 16 μM enzyme concentration, in contrast to the ORN, the resulting m6A values 
are higher than those observed at 10 μM, despite lower m6

2A levels. We hypothesize that the observed m6A levels are the hemi-
demethylated intermediates that are obtained when ALKBH566–292 oxidizes and demethylates m6

2A. The sum of residual m6A and 
m6

2A levels never exceeds the starting values of m6
2A (Fig. 3D), showing that the full demethylation of m6

2A occurs and that all the 
original m6A was likely demethylated as well.  

Conclusions 

ALKBH5 is an α-ketoglutarate-dependent oxidase that was shown to demethylate m6A in mRNA. We investigated here if the 
enzyme is able to demethylate also the double-methylated m6

2A, which is known to occur in the small subunit of the ribosome. 
We also wanted to know if the enzyme is in addition able to demethylate m6A in rRNA. We show that ALKBH5 demethylates m6A 
in basically all sequence contexts, when used at an equimolar ratio or higher, even when two m6A bases are adjacent to each 
other. It also demethylates m6

2A both in rRNA and in small ORNs. Here, in general demethylation occurs and the mono-
demethylated intermediate (ORN3/ORN4 -1Me; Fig. 2D and E) is detectable. This is very interesting because it shows that the 
enzyme releases its substrate after the first demethylation step. Since the demethylation of the mono-methylated compound m6A 
is much more efficient compared to m6

2A, one would expect direct conversion of m6
2A into adenosine if the substrate is not 

released. We speculate that the substrate release after the first demethylation could be required to reload another α-ketoglutarate 
co-substrate into the active site. It is unclear if the demethylation of m6

2A ALKBH566–292 is a process that occurs in nature. We 
suspect that the small amount of observed demethylation at approximately 100-fold excess of the enzyme relative to the added 
rRNA speaks against this possibility. Indeed, when we performed the demethylation studies with assembled ribosomes, 
demethylation did not occur. This makes demethylation of intact ribosomes unlikely, but it still leaves the possibility that 
demethylation occurs during rRNA maturation similar to the insertion of non-canonical nucleosides into mRNA upon mRNA 
maturation.   
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1. General methods 

Acetonitrile for HPLC-purification of nucleoside standards and oligonucleotides were purchased from 

VWR. Triethylamine and acetic acid (glacial) for HPLC buffer preparation was purchased from Sigma-

Aldrich resp. from Fisher Scientific. Water of LC-MS grade was purchased from Honeywell. Acetonitrile 

of LC-MS grade was purchased from Carl Roth GmbH + Co. KG. Formic acid was purchased from Fluka, 

p.a. for mass spectrometry. Water was purified by an arium® pro DI Ultrapure Water System from 

Satorius Stedim biotech. Nuclease S1 (Aspergillus oryzae) was obtained from Sigma Aldrich, snake 

venom phosphodiesterase I (Crotalus adamanteus) from USB corporation and antarctic phosphatase 

from New England Biolabs. 

 

2. RNA-oligonucleotide solid Phase Synthesis 

The phosphoramidites of m6A and m6
2A were synthesised according to literature1, 2 

The m6A and m6
2A containing RNA oligonucleotides were synthesised on an ABI 394 DNA/RNA 

Synthesizer (Applied Biosystems) using typical reagent concentrations [detritylation: 3% dichloroacetic 

acid in DCM (emp biotech), activator: 0.3 M benzylthiotetrazole in MeCN (Link Technoligies), capping: 

Capping A (ABI) & Capping B (ABI) solution (J.T. Baker), oxidation: Oxidizing (ABI) solution (J.T. Baker)]. 

The oligonucleotide synthesis were carried out on 1 µmol scale with CPG carriers (SynBase CPG 

1000/110) and 0.1 M solutions in MeCN of TBDMS-protected standard RNA phosphoramidites (U, 

dmf-G, Ac-C and Bz-A) obtained from Link Technologies. Both modified phosphoramidites, m6A and 

m6
2A were incorporated into RNA using the standard protocol but the coupling times were increased 

to 20 min. 

After synthesis, the CPG material from the cartridges were treated with 1 mL of AMA solution 

(28% NH4OH in H2O/ 40% MeNH2 in H2O, 1:1) first at room temperature for 5 min and secondly at 65 °C 

for 5 min to ensure complete cleavage of the oligonucleotide from the resin and basic deprotection. 

The AMA solution was removed in vacuo. The residue was dissolved in DMSO (100 µL) and Et3N·3HF 

was added and the mixture was heated to 65 °C for 90 min. After the addition of a NaOAc solution 

(3 M, pH=5.5, 25 µL) the oligonucleotides were precipitated by addition of n-BuOH (1 mL) and cooling 

to -80 °C for 12 h. The suspension was centrifuged at 4 °C with 21130 x g for 60 min to pelletise the 

crude oligonucleotides. Further purification and analysis of the final product was performed on a 

Waters HPLC system (preparative HPLC: 1525 with 2487 UV detector, analytical HPLC: Waters Alliance 

2695 with PDA 2996) with Nucleodur C-18 Columns from Macherey Nagel. The used gradient was 

0.1 M Triethylammonium actetate in water and 80% MeCN. The purified oligonucleotides were 



desalted using Sep-Pak C18 Classic Cartridges (Waters) before further usage and the identity was 

confirmed by MALDI-ToF-MS.  

RNA oligonucleotide sequences 

ORN-1: 5’-G-G-m6A-C-U-3’ 

ORN-2: 5’-G-U-G- m6A - m6A -C-U-U-3’ 

ORN-3: 5’-G-G-m6
2A-C-U-3’ 

ORN-4: 5’-G-U-G- m6
2A - m6

2A -C-U-U-3’ 

3. Biochemical methods 

Ribosome isolation by Ultracentrifugation and rRNA isolation 

Native ribosomes were isolated from pelleted HEK 293T cells. 10∙107 cells were resuspended in 6 mL 

of lysis buffer (50 mM Tris·HCl pH 7.5, 300 mM NaCl, 6 mM MgCl2, 0.5% NP-40 Substitute, 0.2 U/µL 

RNasin). Lysis was performed by incubating the cells in lysis buffer for 30 min at 4 °C. Cell debris was 

removed by centrifugation (Eppendorf FA-45-24-11 rotor, 5 min, 12000 x g, 4 °C). The supernatant was 

than incubated with a final Puromycin concentration of 1 mM for 15 min at RT and another 15 min at 

4 °C. After the incubation the supernatant was loaded on sucrose cushion buffer (50 mM Tris·HCl 

pH 7.5, 300 mM NaCl, 6 mM MgCl2, 30% (w/v) sucrose, 0.2 U/µL RNasin). The ribosomes were pelleted 

by centrifuging for 15 h 30 min (Beckman Coulter TLA 120.2, 24001 x g, 4 °C). 

The supernatant was removed. The pellet was resuspended in resuspension buffer (50 mM Tris·HCl 

pH 7.5, 150 mM NaCl, 6 mM MgCl2, 3.48% (w/v) sucrose) over a time of 2 h on ice. Any possible 

impurity was removed by another centrifugation (Eppendorf FA-45-24-11 rotor, 1 min, 12000 x g, 4 °C). 

The ribosome concentration was determined by measuring the A260. The rRNA was isolated from the 

ribosome solution using the Monarch® Total RNA Miniprep Kit by NEB according to its protocol.  

Protein expression and purification 

A pNIC28-Bsa4 vector which is encoding an N-terminal His6-tagged ALKBH566-292, was transformed into 

Escherichia coli BL21 (DE3). Expression was performed in ZYM-5052 auto induction medium without 

trace metals, for 3 h at 37 °C and 17 h to 20 h at 20 °C and 300 rpm. The cells were harvested by 

centrifugation (Thermo Fisher Scientific Fiberlite™ F10-4 x 1000 LEX rotor, 11970 x g, 4 °C, 8 min) and 

stored at -20 °C. A ratio of 10:1 (1 mL buffer per 0.1 g pellet) was used to resuspend the cell pellet in 

lysis buffer (50 mM Tris·HCl pH 7.5, 150 mM KCl, 10 mM Imidazol). Furthermore cOmplete™ EDTA free 

protease inhibitor (Sigma-Aldrich) and Lysozyme were added. After an incubation of 30 min on ice, the 

cells were lysed by sonification on ice. The cell debris was removed by centrifugation (Thermo Fisher 

Scientific Sorvall SS-34 rotor, 38720 x g, 4 °C, 30 min). The lysate was filtered and applied to a HisTrap 

HP (5 mL) by GE Healthcare. To remove unspecific binding proteins the column was washed with 8% 



elution buffer (50 mM Tris·HCl pH 7.5, 150 mM KCl, 365 mM imidazole). Elution was performed with a 

step gradient over ten column volumes. Purification was evaluated with a 15% SDS-PAGE (Marker 

Thermo Scientific PageRuler Unstained Protein Ladder #26614). On average the purity was at 90% after 

one step. The buffer was changed to the assay buffer (50 mM Tris·HCl pH 7.5, 15 mM KCl) via dialysis 

overnight. After dialysis the enzyme solution was centrifuged for 5 min at 21130 x g and 4 °C to remove 

precipitated protein. The enzyme concentration was evaluated with Bradford. 

 

M PageRuler Unstained Protein Ladder 

1 Fraction 1 

2 Fraction 2 

3 Fraction 3 
 

Supplementary Figure 1 ALKBH5 after one purification step. Fraction 2 was used for the enzyme assay with 

ORN-1 to ORN-4. Estimated purity is 90%. 

ALKBH5 enzyme assay 

ALKBH566-292 was always used directly without freezing it for storage. Every assay was performed in a 

volume of 50 µL and as a triplicate. Only the assay with rRNA and 16 µM ALKBH5 were performed as a 

duplicate. The final assay mixture was 50 mM Tris·HCl pH 7.5, 15 mM KCl, 2 mM L-ascorbate, 300 µM 

α-ketoglutarate, 300 µM diammonium iron(II) sulfate hexahydrate complex. Assays with native 

ribosomes did contain 150 mM KCl instead of 15 mM and also contain sucrose and MgCl2 with a final 

concentration of 3.48% (w/v) and 6 mM. In all assays with rRNA, a murine RNase inhibitor was added 

with a final concentration of 1 U/µL. The L-ascorbate, α-ketoglutarate and diammonium iron(II) sulfate 

hexahydrate solutions were made afresh. The concentration of the synthetic RNA oligonucleotides 

(ORN 1-4) was 10 µM. The rRNA concentration was 101.5 nM (11.9 µg) and ribosome concentration 

was 250 nM. The enzyme concentration was either 10 µM or 16 µM ALKBH566-292. 

All assays with ORNs or rRNA were incubated at 37 °C for 1 h. Assays with native ribosomes were 

incubated in a Thermomixer for 4 h at 37 °C and 1000 rpm. Assays with rRNA and native ribosomes 

were immediately stored at -20 °C for further RNA extraction. Every assay with synthetic RNA 

oligonucleotides was directly desalted (up to 30 min) on a Merck Millipore MF™ VSWP-membrane 

(0.025 µM) for an analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. 

A 3-Hydroxypicolinic acid (3-HPA) matrix was used. The native ribosomes and rRNA extraction from 

the assays was done with the Monarch® Total RNA Miniprep Kit by NEB.  

 



 

Supplementary Figure 2 (A and B) MALDI-ToF spectra of ORN-1 and ORN-2 and their demethylation products 

(-xMe) at different concentrations of ALKBH566-292. The sodium signals in the spectra are marked with an “x”. 

4. Analytical methods 

RNA digestion 

1.0 μg of RNA in 35 μL H2O were digested as follows: An aqueous solution (7.5 μL) of 480 μM ZnSO4, 

containing 18.4 U nuclease S1 (Aspergillus oryzae, Sigma-Aldrich), 5 U Antarctic phosphatase (NEB) and 

specific amounts of labelled internal standards ([D3]-m6
2A, [D3]-m6A) were added, and the mixture was 

incubated at 37 °C for 2 h. After addition of 7.5 μL of a 520 μM [Na]2-EDTA solution, containing 0.15 U 

snake venom phosphodiesterase I (Crotalus adamanteus, USB corporation), the sample was incubated 

for 2 h at 37 °C and then stored at −20 °C. Prior to UHPLC-MS/MS analysis, samples were filtered by 

using an AcroPrep Advance 96 filter plate 0.2 μm Supor (Pall Life Sciences).  

UHPLC/MS-MS analysis of RNA samples.  

Quantitative UHPLC-MS/MS analysis of digested RNA samples was performed using an Agilent 1290 

UHPLC system equipped with a UV detector and an Agilent 6490 triple quadrupole mass spectrometer. 

For exact quantification of m6A and m6
2A internal quantification with the stable isotope dilution 

technique was developed (Supplementary Fig. 2 and Supplementary Tab. 2 and 3). The canonical 

nucleosides (C, U, G, A) were measured and quantified with the UV-detector (Supplementary Tab. 3). 

The source-dependent parameters were as follows: gas temperature 80 °C, gas flow 15 L/min (N2), 

nebulizer 30 psi, sheath gas heater 275 °C, sheath gas flow 11 L/min (N2), capillary voltage 2,500 V in 

the positive ion mode and nozzle voltage 500 V. The fragmentor voltage was 380 V. Delta EMV was set 

to 500 (positive mode). Compound-dependent parameters are summarized in Supplementary Table 1. 

Chromatography was performed by a Poroshell 120 SB-C8 column (Agilent, 2.7 μm, 2.1 mm × 150 mm) 



at 35 °C using a gradient of water and MeCN, each containing 0.0075% (v/v) formic acid, at a flow rate 

of 0.35 mL/min: 0 →6 min; 0 →6.0% (v/v) MeCN; 6 →7 min; 6.0 →40% MeCN; 7 →10.8 min; 40 →80% 

MeCN; 10.8 →12.50 min; 80% MeCN; 12,50 →13.50 min; 80 →0% MeCN; 13.5 →15 min; 0% MeCN. 

The effluent up to 1.1 min and after 14 min was diverted to waste by a Valco valve. The autosampler 

was cooled to 4 °C. The injection volume was amounted to 39 μL. 

Determination of extinction coefficients 

For the following absolute internal quantification of nucleosides the exact concentration of the 

isotopically labeled internal standards needs to be known. In order to measure the concentrations one 

needs to determine the extinction coefficients first. For this determination, m6A and m6
2A were diluted 

in D2O as well as the reference nucleoside U. The absorbance of all three solutions were measured as 

technical quintuplets on the NanoDrop 1000 Spectrophotometer for the λmax of each nucleoside. 

Subsequently, a 1:1 mixture of m6A and U as well as m6
2A and U was prepared, each mixture as a 

technical triplicate. Following 1H-NMR measurements of these mixtures resulted in specific ratios of 

the amount n (m6A) to the amount n (U), respectively n (m6
2A) to n (U). 1H-NMR spectra were recorded 

on Bruker Avance III HD 800 MHz. By applying the Beer-Lambert law one can calculate the actual 

concentration c (U) solution with the literature known extinction coefficient (ελ). With the ratio of n 

(U) to n (m6A), respectively n (U) to n (m6
2A), one can calculate the concentrations c (m6A) and c (m6

2A) 

in each solution. Applying again the Beer-Lambert law results in the desired extinction coefficients of 

the two nucleosides ελ (m6A) and ελ (m6
2A) at a specific wavelength λ (see Supplementary Table 1).  

Quantification of nucleosides 

In order to obtain the internal calibration curves for exact quantification, each standard, namely 

[D3]-m6A and [D3]-m6
2A was analyzed in comparison to the corresponding non-labelled nucleoside with 

constant concentration. Technical triplicates were measured and the linear regression was applied 

using Origin® 6.0 (MicrocalTM). Therefore, the ratio of the area under the curve of unlabeled nucleoside 

(A) to the labelled standard (A*) was plotted against the ratio of the amount of unlabeled nucleoside 

(n) to the labelled one (n*) (see Supplementary Fig. 2). In order to obtain the UV calibration curves for 

quantification of the canonical nucleosides, namely C, U, G and A were measured in a concentration 

series. For every nucleoside two different solutions were diluted with a dilution factor of two in order 

to get five different concentrations for every nucleoside, which were measured as technical triplicates. 

The UV area under the curve (A) was plotted against the amount of the nucleoside (n) (see 

Supplementary Tab. 3). Acceptable precision (< 20% relative s.d. within each triplicate) and accuracy 

(80-120%) was achieved for all calibration curves. The accuracy is calculated as the ratio of the 

measured to the calculated ratios of the areas (A/A*) under the curves in percent. The ratios of the 

areas (A/A*) can be calculated by using the linear equations for the corresponding ratio of amount 



(n/n*). The lower limit of detection was defined as the detected amount, which is three times higher 

than the blank response (LOD). The lower limit of detection (LLOQ) and the upper limit of detection 

(ULOQ) are the lowest, respectively the highest amount (n) and ratio of the amounts (A/A*) fulfilling 

the requirements of the corresponding linear equation.  

LC-MS analysis of ORN-4 

The analysis of the ORN-4 assay with 16µM ALKBH566-292 were analyzed by LC-ESI-MS on a Thermo 

Finnigan LTQ Orbitrap XL and were chromatographed by a Dionex Ultimate 3000 HPLC system with a 

flow of 0.15 mL/min over a Phenomenex SynergiTM 2.5µm Fusion-RP 100 Å C18 column. The column 

temperature was maintained at 30 °C. The used eluting buffers were buffer A (10 mM NH4OAc in H2O 

(pH 7)) and buffer B (MeCN). The elution was monitored at 260 nm (Dionex Ultimate 3000 Diode Array 

Detector). The chromatographic eluent was directly injected into the ion source without prior splitting. 

Ions were scanned by use of a positive polarity mode over a full-scan range of m/z 120-2000 with a 

resolution of 30000.  

 

Supplementary Figure 3 HPL chromatogram of the incubation of ORN-4 with 16 µM ALKBH566-292 (black line) 

and with a spike in of ORN-2 (red line). The measured mass of the different species is shown in square brackets 

([M+3H]+3)  

  



5. Supplementary Tables 

Supplementary Table 1 Determined extinction coefficients for m6A and m6
2A. 

compound ελmax (λmax) [L∙mol-1∙cm-1] ελ=260nm[L∙mol-1∙cm-1] 

m6A 15474 (267 nm) - 

m6
2A 19047 (274 nm) 12623 

 

Supplementary Table 2 Compound-dependent LC-MS/MS-parameters used for the analysis of RNA. CE: 

collision energy, CAV: collision cell accelerator voltage, EMV: electron multiplier voltage. The nucleosides were 

analyzed in the positive ([M+H)]+ species) ion selected reaction monitoring mode (SRM).  

compound Precursor 

ion (m/z) 

MS1 

Resolution 

Product 

Ion (m/z) 

MS2 

Resolution 

Dwell 

time 

[ms] 

CE 

(V) 

CAV 

(V) 

Polarity 

  Time segment 2.4-14 min    

[D3]-m6
2A 299.15 Wide 167.11 Wide 60 2 5 Positive 

m6
2A 296.14 Wide 164.11 Wide 60 2 5 Positive 

[D3]-m6A 285.14 Wide 153.10 Wide 60 2 5 Positive 

m6A 282.12 Wide 150.08 Wide 60 2 5 Positive 

 

 

Supplementary Table 3 Compound-dependent LC-MS/MS ranges of the corresponding linear equations. 

compound n (ULOQ) [pmol] n (LLOQ) [pmol] A/A* (ULOQ) A/A* (LLOQ) 

m6
2A 3.104 0.049 4.13 0.040 

m6A 1.709 0.053 1.18 0.029 



 

 

Supplementary Figure 4 Internal calibration curves for the exact quantification of m6
2A (A) and m6A (B) with 

the corresponding linear equation and coefficient of determination. 

 

 

Supplementary Table 4 Compound-dependent UV ranges and the corresponding linear equations of the 

canonical nucleosides. 

compound linear regression n (ULOQ) [pmol] n (LLOQ) [pmol] 

C y=0.28955x+0.17515 791 24.7 

U y=0.45953x-0.34086 792 24.7 

G y=0.56985x-0.91256 792 24.7 

A y=0.62408x-0.10334 659 20.6 

 

 

Supplementary Figure 5 UV Chromatogram (blue) and MS trace (red: natural modification; black: isotopically 

labelled standard) of rRNA are shown, upon incubation with 16 µM ALKBH566-292 (B) and without ALKBH566-292 (A). 
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