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ABSTRACT Recent advances in high throughput sequencing have transformed the study of wild organisms
by facilitating the generation of high quality genome assemblies and dense genetic marker datasets. These
resources have the potential to significantly advance our understanding of diverse phenomena at the
level of species, populations and individuals, ranging from patterns of synteny through rates of linkage
disequilibrium (LD) decay and population structure to individual inbreeding. Consequently, we used PacBio
sequencing to refine an existing Antarctic fur seal (Arctocephalus gazella) genome assembly and genotyped
83 individuals from six populations using restriction site associated DNA (RAD) sequencing. The resulting
hybrid genome comprised 6,169 scaffolds with an N50 of 6.21 Mb and provided clear evidence for
the conservation of large chromosomal segments between the fur seal and dog (Canis lupus familiaris).
Focusing on the most extensively sampled population of South Georgia, we found that LD decayed rapidly,
reaching the background level by around 400 kb, consistent with other vertebrates but at odds with the
notion that fur seals experienced a strong historical bottleneck. We also found evidence for population
structuring, with four main Antarctic island groups being resolved. Finally, appreciable variance in individual
inbreeding could be detected, reflecting the strong polygyny and site fidelity of the species. Overall, our
study contributes important resources for future genomic studies of fur seals and other pinnipeds while also
providing a clear example of how high throughput sequencing can generate diverse biological insights at
multiple levels of organization.
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Advances in short read sequencing technologies, in particular Illumina
sequencing, havemade it possible to generate genomeassemblies as well
as dense genetic marker datasets for practically any organism (Ekblom
and Galindo 2011; Ellegren 2014). However, assemblies based solely on
short read data tend to be highly fragmented, even with assembly

strategies that incorporate medium length insert libraries (Gnerre
et al. 2011). Consequently, although such assemblies can be generated
rapidly and cheaply, there has been growing interest in technologies
that incorporate longer range information to improve scaffold
length and contiguity. For example, Pacific Biosciences (PacBio)
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single molecule real-time (SMRT) sequencing generates read lengths
in the order of several kilobases (kb) that have proven effective in gap
filling, resolving complex repeats and increasing contig lengths across
diverse taxa (English et al. 2012; Conte and Kocher 2015; Pootakham
et al. 2017).

In parallel to these and related developments in genome sequencing
technologies, reduced representation sequencing approaches such as
restriction site associated DNA (RAD) sequencing (Baird et al. 2008;
Peterson et al. 2012) are providing unprecedented levels of genetic
resolution for population genetic and genomic studies (Morin et al.
2004; Stapley et al. 2010; Seeb et al. 2011). By sequencing and assem-
bling short stretches of DNA adjacent to restriction cut sites and
interrogating the resulting tags for sequence polymorphisms, RAD
sequencing can facilitate the acquisition of large genome-wide
distributed single nucleotide polymorphism (SNP) datasets incorpo-
rating multiple individuals.

The above approaches show great promise for studying wild
populations where genomic resources are typically absent. For exam-
ple, information from model organisms with well-characterized
genomes can facilitate studies of their wild relatives as long as pat-
terns of synteny between the two can be established. Knowledge of
synteny can facilitate gene annotation, assist in gene mapping and
help to elucidate the genetic basis of fitness variation by identifying
genes closely linked to loci responsible for inbreeding depression
(Johnston et al. 2011; Ekblom and Wolf 2014; Kardos et al. 2016b).

High density SNP markers mapped to a reference genome can
furthermoreprovide insights intoprocesses that shape levels of variation
within genomes. For example, the positional information of genomic
loci can be used to characterize patterns of linkage disequilibrium
(LD). LD is a central concept in population genetics because it is
closely associated with factors such as effective population size (Ne),
genetic drift, historical fluctuations in population size, population
structure, inbreeding and recombination (Slatkin 2008). Understand-
ing the strength and extent of LD can aid in the inference of de-
mographic history and has important implications for identifying
genetic variants underlying key fitness traits through genome-wide
association analyses or quantitative trait locus mapping (Carlson et al.
2004; Miller et al. 2015; Kardos et al. 2016). Nevertheless, the genomic
pattern of LD has only been described in a handful of wild organisms.
Typically, LD decays within a few tens to hundreds of kilobases (kb)
in large and unstructured populations (Poelstra et al. 2013; Kawakami
et al. 2014; Vijay et al. 2016), but can extend for several megabases
(Mb) in smaller, isolated, heavily bottlenecked and/or inbred popu-
lations of species such as wolves and sheep (Hagenblad et al. 2009;
Miller et al. 2011).

In addition to facilitating the characterization of genome-wide
patternsof variation,densegenomicmarkers canalsobeused todescribe
variation at the population and individual level, evenwithout positional
information. For example, studies are increasingly employing approaches

such as RAD sequencing to obtain large datasets in order to reliably
characterize population genetic structure (Malenfant et al. 2015;
Benestan et al. 2015; Younger et al. 2017) and many are uncovering
patterns that had previously gone undetected (Reitzel et al. 2007;
Ogden et al. 2013; Vendrami et al. 2017). A precise understanding
of population structure is critical for the delineation of management
units for conservation (Bowen et al. 2005) as well as for avoiding
false positives in genome-wide association studies (Johnston et al.
2011). Knowledge of population structure can also help to elucidate
contemporary and historical barriers to gene flow (McRae et al. 2005;
Hendricks et al. 2017) as well as patterns of extinction and recolo-
nization (McCauley 1991).

Amajor topic of interest at the level of the individual is the extent to
which inbreeding occurs in natural populations (Kardos et al. 2016) and
its consequences for fitness variation and population demography
(Keller and Waller 2002). Pedigree-based studies, typically of isolated
island populations and often involving polygynous species, have un-
covered widespread evidence of inbreeding in the wild (Marshall et al.
2002; Townsend and Jamieson 2013; Nietlisbach et al. 2017). However,
the extent of inbreeding in large, continuous and free-ranging popula-
tions remains open to question. On the one hand, simulations have
suggested that inbreeding will be absent from the vast majority of wild
populations with the possible exception of highly polygynous and/or
structured populations (Balloux et al. 2004). On the other hand,
associations between microsatellite heterozygosity and fitness (hetero-
zygosity fitness correlations, HFCs) have been described in hundreds of
species (Chapman et al. 2009) and it has been argued that these are
highly unlikely to arise in the absence of inbreeding (Szulkin et al.
2010). Due to the high sampling variance of microsatellites, there has
been growing interest in the use of high density SNP data to reliably
quantify inbreeding, and recent empirical and simulation studies sug-
gest that this can be achieved with as few as 10,000 SNPs (Kardos et al.
2015; 2018). Consequently, with approaches like RAD sequencing, it
should be possible to quantify the variation in inbreeding in arguably
more representative wild populations.

The Antarctic fur seal (Arctocephalus gazella) is an important ma-
rine top predator that has been extensively studied for several decades,
yet many fundamental aspects of its biology remain poorly understood.
This highly sexually dimorphic pinniped has a circumpolar distribution
and breeds on islands across the sub-Antarctic, with 97% of the pop-
ulation concentrated on South Georgia in the South Atlantic (Figure 1).
The species was heavily exploited by 18th and 19th Century sealers and
was thought to have gone extinct at virtually all of its contemporary
breeding sites (Weddell 1825). However, in the 1930s a small breeding
population was found at South Georgia (Bonner 1964; Payne 1977),
which in the following decades increased to number several million
individuals (Boyd 1993). While it is generally believed that the species
former range was recolonized by emigrants from this large and rapidly
expanding population (Boyd 1993; Hucke-Gaete et al. 2004), onewould
expect to find little or no population structure under such a scenario.
However, a global study using mitochondrial DNA resolved two main
island groups (Wynen et al. 2000) while microsatellites uncovered
significant differences between South Georgia and the nearby South
Shetland Islands (Bonin et al. 2013), implying that at least two relict
populations must have survived sealing.

Antarctic fur sealshavebeen intensively studied for severaldecadesat
a small breeding colony on Bird Island, South Georgia, where a scaffold
walkway provides access to the animals for the collection of detailed life
history and genetic data. Genetic studies have confirmed behavioral
observations of strong polygyny (Bonner 1964) by showing that a hand-
ful of top males father the majority of offspring (Hoffman et al. 2003).
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Furthermore, females exhibit strong natal site fidelity, returning to
within a body length of where they were born to breed (Hoffman
and Forcada 2012), while adults of both sexes are highly faithful to
previously held breeding locations (Hoffman et al. 2006). Together
these behavioral traits may increase the risk of incestuous matings.
In line with this, heterozygosity measured at nine microsatellites has
been found to correlate with multiple fitness traits including early
survival, body size and reproductive success (Hoffman et al. 2004;
2010; Forcada and Hoffman 2014). However, such a small panel of
microsatellites cannot provide a very precise estimate of inbreeding
(Slate et al. 2004; Balloux et al. 2004; Miller et al. 2014) and therefore
high density SNP data are required to generate more detailed in-
sights into the variance in inbreeding in the population.

Here, we used PacBio sequencing to improve an existing Antarctic
fur seal genome assembly comprising 8,126 scaffolds with an N50 of
3.1 Mb (Humble et al. 2016). We additionally RAD sequenced 83 in-
dividuals, mainly from South Georgia but also from an additional five
populations, to generate a large dataset of mapped genetic markers.
The resulting data were then used to investigate synteny with the dog
(Canis lupus familaris) and, within the focal SouthGeorgia population,
to characterize the pattern of LD decay as well as the variance in
inbreeding. Finally, using data from both RAD sequencing and
27 microsatellites, we investigated the strength and pattern of popu-
lation structure across the species range and compared the ability of
the two marker types to resolve genetic differences between island
groups. Our hypotheses were as follows: (i) We expected to find
strong synteny between the fur seal and dog, the closest relative with
an annotated, chromosome-level genome assembly; (ii) Given that
Antarctic fur seals are free-ranging with large population sizes, we
predicted that LD would decay very rapidly, although it is also possible

that the historical bottleneck could have resulted in elevated levels of
LD; (iii) We hypothesized that nuclear markers would detect the same
two island groups as previously found with mitochondrial DNA as
well as possibly resolve finer scale structuring. We furthermore pre-
dicted that RAD sequencing would provide greater power to capture
genetic differences than microsatellites; (iv) Finally, we anticipated
finding variation in inbreeding consistent with knowledge of the spe-
cies mating system as well as previous studies documenting HFCs.

MATERIALS AND METHODS

Hybrid genome assembly and PacBio DNA
library preparation
We first used the program GapCloser v1.12 to fill gaps in the existing
fur seal genome v1.02 (Humble et al. 2016) (NCBI SRA: BioProject
PRJNA298406) based on the paired end information of the original
Illumina reads. This approach closed 45,852 gaps and reduced
the amount of N space in the assembly from 115,235,953 bp to
78,393,057 bp (v1.1, Table 1). Following this, we generated SMRT
sequencing data from the DNA used for the original genome assem-
bly (NCBI SRA: BioSample SAMN04159679) following the protocol
described in Pendleton et al. (2015). First, 10 mg of pure genomic
DNA was fragmented to 20 kb using the Hydroshear DNA shearing
device (Digilab, Marlborough, MA) and size-selected to 9–50 kb using
a Blue Pippin according to the standard Pacific Biosciences SMRT bell
construction protocol. The library was then sequenced on 64 PacBio
RSII SMRT cells using the P6–C4 chemistry. This yielded a total
of 58 Gb (�19x) of sequencing data contained within 8,101,335
subread bases with a mean read length of 7,177 bp (median = 6,705 bp;
range = 50–54,622 bp).

Figure 1 Individual assignment to genetic clusters based on STRUCTURE analysis for K = 4 using 27,592 SNPs. Each horizontal bar represents a
different individual and the relative proportions of the different colors indicate the probabilities of belonging to each cluster. Individuals are
separated by sampling locations as indicated on the map.
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Next, we used PBJelly v15.8.24 and blasr (https://github.com/
PacificBiosciences/blasr) with default parameters to align the PacBio
sequencing reads to the gap-closed assembly to generate a hybrid ge-
nome assembly (v1.2). Lastly, we followed a two-step strategy to remove
any indels introduced by single molecule real-time sequencing (Ross et al.
2013).We first usedQuiver (contained in the SMRT/2.3.0 suite: Genomic-
Consensus v0.9.2) with the refineDinucleotideRepeats option to perform
initial assembly error correction. Due to this step being computationally
demanding, we ran it separately for each scaffold. Next, we mapped the
original Illumina reads (Humble et al. 2016) to the quiver assembly (v1.3)
usingBWAMEMv0.7.15 (Li 2013) and used Picard tools to sort andmark
duplicates.We then used PILONv1.22 (Walker et al. 2014) to perform the
final error correction step to generate assembly v1.4.

Genome alignment
We aligned the fur seal scaffolds from assembly v1.4 to the dog genome
(Canis lupus familiaris assembly version CanFam3.1, GenBank acces-
sion number GCA_000002285.2) using LAST v746 (Kiełbasa et al.
2011). First, the dog genome was prepared for alignment using the
command lastdb. We then used lastal and last-split in combination
with parallel-fastq to align the fur seal scaffolds against the dog genome.
Using the program MafFilter v1.0.0, we then processed the resulting
multiple alignment format (maf) file and estimated pairwise sequence
divergence between the two species (Dutheil et al. 2014). Finally, we
extracted alignment coordinates from the maf file using bash com-
mands to allow subsequent visualization with the R package RCircos
v1.2.0 (Zhang et al. 2013).

Sampling and DNA extraction
Tissue samples were collected from 57 Antarctic fur seal individuals
fromBird Island, SouthGeorgia.These comprised24 triads consistingof
24pups, 16mothers and17 fathersofwhichfivemothers and two fathers
sired multiple offspring (Figure S1). Additional samples were obtained
from the main breeding colonies across the species range (Figure 1):
Cape Shirreff in the South Shetlands (n = 6), Bouvetøya (n = 5),
Kerguelen (n = 5), Heard Island (n = 5) and Macquarie Island (n = 5).
Skin samples were collected from the inter-digital margin of the fore-
flipper using piglet ear notching pliers and stored in 20% dimethyl
sulphoxide saturated with NaCl at –20�. Skin samples from the South
Shetlands were collected using a sterile 2mm biopsy punch and stored
in 95% ethanol. Total genomic DNA was extracted using a standard
phenol-chloroform protocol (Sambrook et al. 1989).

Microsatellite genotyping
All samples were genotyped at 27 polymorphic microsatellite loci (see
Table S1), previously found to be in Hardy-Weinberg equilibrium

(HWE) in the study population at South Georgia and unlinked (Stoffel
et al. 2015; Peters et al. 2016). These loci were PCR amplified in three
separate multiplex reactions (see Table S1) using a Type It Kit
(Qiagen). The following PCR profile was used for all multiplex reac-
tions except for multiplex one: initial denaturation of 5 min at 94�;
28 cycles of 30 sec at 94�, 90 sec at 60�, and 30 sec at 72�, followed by a
final extension of 30 min at 60�. The PCR profile of multiplex one only
differed from this protocol in the annealing temperature used, which
was 53�. Fluorescently labeled PCR products were then resolved by
electrophoresis on an ABI 3730xl capillary sequencer and allele sizes
were scored using GeneMarker v1.95. To ensure high genotype qual-
ity, all traces were manually inspected and any incorrect calls were
adjusted accordingly.

RAD library preparation and sequencing
RAD libraries were prepared using a modified protocol from Etter et al.
(2011) with minor modifications as described in Hoffman et al. (2014).
Briefly, 400 ng of genomic DNA from each individual was separately
digested with SbfI followed by the ligation of P1 adaptors with a unique
6 bp barcode for each individual in a RAD library, allowing the pooling
of 16 individuals per library. Libraries were sheared with a Covaris S220
and agarose gel size-selected to 300–700 bp. Following 15–17 cycles
of PCR amplification, libraries were further pooled using eight differ-
ent i5 indices prior to 250 bp paired-end sequencing on two Illumina
HiSeq 1500 lanes.

SNP genotyping
Read quality was assessed using FastQC v0.112 and sequences were
trimmedto225bpanddemultiplexedusingprocess_radtags inSTACKS
v1.41 (Catchen et al. 2013). We then followed GATK’s best practices
workflow for variant discovery (Poplin et al. 2017). Briefly, individual
reads were mapped to the Antarctic fur seal reference genome v1.4
using BWA MEM v0.7.10 (Li 2013) with the default parameters.
Any unmapped reads were removed from the SAM alignment files
usingSAMtools v1.1 (Li 2011). We then used Picard Tools to sort
each SAM file, add read groups and remove PCR duplicates. Prior
to SNP calling, we performed indel realignment to minimize the
number of mismatching bases using the RealignerTargetCreator
and IndelRealigner functions in GATK v3.6. Finally, HaplotypeCaller
was used to call variants separately for each individual. Genomic VCF
files were then used as input to GenotypeGVCFs for joint genotyping.
The resulting SNP dataset was then filtered to include only biallelic
SNPs using BCFtools v1.2 (Li 2011) to obtain a dataset of 677,607
SNPs genotyped in 83 individuals. Subsequently, we applied a variety
of filtering steps according to the analysis being performed as shown
in Figure S2 and described below.

n Table 1 Genome assembly statistics for successive improvements to the original Antarctic fur seal genome assembly

v1.0.2 ALLPATHS3 v1.1 GapCloser v1.2 PBJelly2 v1.3 Quiver v1.4 Pilon

Number of scaffolds 8,126 8,126 6,170 6,170 6,169†

N90a 890,836 (768) 888,912 (768) 1,624,547 (387) 1,511,352 (387) 1,542,705 (387)
N50a 3,169,165 (233) 3,165,747 (233) 6,454,664 (108) 6,076,522 (108) 6,207,322 (108)
N10a 8,459,351 (25) 8,458,289 (25) 17,733,103 (11) 16,529,571 (11) 16,861,656 (11)
Longest scaffold (bp) 13,012,173 12,999,316 34,690,325 32,399,786 33,062,611
Total size (bp) 2,405,038,055 2,403,626,805 2,426,014,533 2,268,217,244 2,313,485,084
Gaps present (%) 4.79 3.26 0.62 0.57 0.55
Number of gaps 136,284 90,432 45,102 22,783 20,611
Average gap size (bp) 845.56 866.87 331.16 570.37 613.39
a
Size in bp (number of scaffolds)

†
Excluding the mitochondrial genome, which was filtered out by Pilon.
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SNP validation
To provide an indication of the quality of our SNP dataset, we
attempted to validate a representative subset of loci using Sanger
sequencing. First, we randomly selected 50 loci whose 70 bp flanking
sequence contained no secondary SNPs and mapped uniquely to the
fur seal reference genomeandwith initial depth of coverage andminor
allele frequency (MAF) filters of 5 and 0.05 respectively. We then
designed oligonucleotide primers using Primer 3 (Untergasser et al.
2012) to PCR amplify each putative SNP together with 100–200 bp
of flanking sequence. Each locus was PCR amplified in one fur seal
individual that had been genotyped as homozygous at that locus and
one that had been genotyped as heterozygous. PCRs were carried
out using 1.5 mL of template DNA, 20 mM Tris–HCl (pH 8.3),
100 mM KCl, 2 mM MgCl2, 10x Reaction Buffer Y (Peqlab), 0.25 mM
dNTPs, 0.25 mol/L of each primer and 0.5U of Taq DNA poly-
merase (VWR). The following PCR profile was used: one cycle
of 1.5 min at between 59� and 62� depending on the primers used
(Table S2), 60 sec at 72�; and one final cycle of 7 min at 72�. 5 mL
of the resulting PCR product was then purified using shrimp
alkaline phosphatase and exonuclease I (NEB) following the man-
ufacturer’s recommended protocol. All fragments were then se-
quenced in both directions using the Applied Biosystems BigDye
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific)
and analyzed on an ABI 3730xl capillary sequencer. Forward
and reverse reads were aligned using Geneious v10.2.3 (Kearse
et al. 2012). Heterozygous sites were identified as those with
two peaks of roughly equal intensity but with around half the
intensity of a homozygote.

Linkage disequilibrium decay
Prior to quantifying linkage disequilibrium, we filtered the SNP
dataset as shown in Figure S2A. First, to minimize the occurrence
of unreliable genotypes, we removed individual genotypes with a
depth of coverage below eight or above 30 using VCFtools (Danecek
et al. 2011). Genotypes with very low depth of coverage have a
greater likelihood of being called incorrectly as it can be difficult
to distinguish between homozygotes and heterozygotes when very
few reads are present. Similarly, genotypes with very high depth of
coverage are more likely to be spurious as high coverage can result
from misalignment due to the presence of paralogous loci or repeats
(Fountain et al. 2016). Second, as including SNPs from short scaf-
folds can downwardly bias LD values, we retained only SNPs located
on the longest 100 scaffolds of the assembly (min length = 6.6 Mb,
max length = 33.1 Mb). Third, as an additional quality filtering
step, we used information on known parental relationships to iden-
tify loci with Mendelian incompatibilities using the mendel func-
tion in PLINK v1.9 and removed these from the dataset. Fourth,
to minimize any possible confounding effects of population struc-
ture and relatedness, we focused on adult individuals sampled from
the single largest population of South Georgia. Fifth, to provide an
informative dataset while further minimizing genotyping error, we
discarded SNPs with a MAF of less than 0.1 and/or called in less
than 50% of individuals using PLINK. As a final quality control step,
we also removed SNPs that did not conform to Hardy-Weinberg
equilibrium (HWE) with a p-value threshold, 0.001 using the–hwe
function in PLINK.

Using the final dataset of 25,068 SNPs genotyped in 33 individuals
(Figure S2A), we used the –r2 function in PLINK to quantify pairwise
LD between all pairs of SNPs located within 500 kb of each other. We
visualized LD decay with distance by fitting a nonlinear regression
curve using the nls package in R, where the expected value of r2 under

drift-recombination equilibrium (Eðr2Þ) was expressed according to
the Hill and Weir function (Hill and Weir 1988):

E
�
r2
� ¼

�
10þ r

ð2þ rÞð11þ rÞ
��

1þ ð3þ rÞð12þ 12r þ r2Þ
nð2þ rÞð11þ rÞ

�

where n is the number of gametes scored, P = 4Nec, Ne is the effective
population size and c is the recombination fraction between sites
(Remington et al. 2001).

Population structure
Prior toquantifyingpopulation structure,wefiltered the full SNPdataset
as shown in Figure S2B. We did not initially filter the dataset for SNPs
with low depth of coverage, as for the analysis of population struc-
ture we wanted to retain as many SNPs as possible that were genotyped
across all of the populations. We also did not remove individuals with
large amounts of missing data in order to maximize the representation
of all populations in the final dataset. Nevertheless, because closely
related individuals can bias population genetic structure analysis by
introducing both Hardy-Weinberg and linkage disequilibrium
(Rodríguez-Ramilo and Wang 2012; Wang 2017), we used known
parentage information to remove adults and related pups (full and
half siblings) from the South Georgia dataset. This strategy also en-
abled us to attain a more even number of samples per population
(Puechmaille 2016). Second, SNPs with a MAF of less than 0.05 and/
or called in less than 99% of individuals were discarded using VCFtools.
Third, we removed SNPs that were out of HWE at the population
level with a p-value threshold , 0.001 using the –hwe function in
PLINK. Fourth, SNPs were pruned for LD using the –indep function
in PLINK.We used a sliding window of 50 SNPs, a step size of 5 SNPs
and removed all variants in a window above a variance inflation factor
threshold of 2, corresponding to r2 = 0.5.

Using the final dataset of 27,592 SNPs genotyped in 37 individuals
(Figure S2B), we first visualized population structure by performing a
principal components analysis (PCA) using the R package adegenet
(Jombart 2008). We then used a Bayesian clustering algorithm imple-
mented by the program STRUCTURE to identify the number of genetic
clusters (K) present in the dataset. We performed STRUCTURE runs
for values of K ranging from one to six, with five simulations for each
K and a burn-in of 100,000 iterations followed by 1,000,000 Markov
chain Monte Carlo iterations. We used the admixture and correlated
allele frequency models without sampling location information. The
R package pophelper (Francis 2017) was then used to analyze the
STRUCTURE results, parse the output to CLUMPP for averaging
across iterations and for visualizing individual assignment proba-
bilities. The optimal K was selected based on the maximum value
of the mean estimated ln probability of the data (Ln Pr(X | K)) as
proposed by Pritchard et al. (2000) and the DK method of Evanno
et al. (2005). For comparison, we also implemented the above anal-
yses using microsatellite data for the same individuals.

Inbreeding coefficients
Prior to quantifying inbreeding, we filtered the SNP dataset as shown in
Figure S2C. First, we wanted a dataset with as few gaps as possible so we
discarded one individual with more than 90%missing data. Second, we
removed individual genotypes with a depth of coverage below eight or
above 30 using vcftools. Third, we removed loci with Mendelian in-
compatibilities, and fourth, we again restricted the dataset to the focal
population of South Georgia. Fifth, we discarded SNPs with a MAF of
less than0.05and/or called in less than70%of individuals usingvcftools.
Finally, we filtered the SNPs for HWE as described previously and
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pruned linked SNPs out of the dataset using the –indep function in
PLINK with the parameters shown above.

Using the final dataset of 9,853 SNPs genotyped in 56 individuals
(Figure S2C), we calculated four genomic estimates of individual in-
breeding: standardized multi-locus heterozygosity (sMLH; Coltman
et al. 1999), an estimate based on the variance of additive genotype
values (F̂I), an estimate based on excess homozygosity (F̂II) and an
estimate based on the correlation of uniting gametes, which gives more
weight to homozygotes of the rare allele at each locus (F̂III) (Yang
et al. 2011). sMLH was calculated using the sMLH function in the
R package inbreedR (Stoffel et al. 2016) and F̂I ; F̂II and F̂III were
calculated in GCTA v1.24.3 (Yang et al. 2011). When inbreeding
varies among individuals, heterozygosity measured at one part of
the genome will be correlated with heterozygosity measured at an-
other, a phenomenon termed identity disequilibrium (ID) (Weir and
Cockerham 1973; Szulkin et al. 2010). We quantified the extent of ID
using the measure g2 in the R package inbreedR (Stoffel et al. 2016)
where significant g2 values provide support for variance in inbreed-
ing in the population. Finally, we compared the resulting g2 value
with the variance in our inbreeding coefficients to determine the
expected correlation between estimated (f̂ Þ and realized ð f �Þ levels of
inbreeding (Szulkin et al. 2010) given as:

r2ð f̂ ; f �Þ ¼ g2

s2ð f̂ Þ
Data availability

The PacBio sequencing reads and the final Antarctic fur seal genome
assembly are available at theEuropeanNucleotideArchive (ENA)under
BioProject ID PRJEB26995. The raw RAD sequencing reads are available
at the short-read archive (SRA) of the National Biotechonology Centre of
Information (NCBI) under BioProject ID PRJNA473050, SRA accession
SRP148937. Code for the analysis is available at https://github.com/
elhumble/seal_rad_2018. Supplemental material and SNP genotypes
are available at Figshare: https://doi.org/10.25387/g3.6713975.

RESULTS

Hybrid genome assembly
We used PacBio sequencing to improve an existing Antarctic fur seal
genome assembly. Using PBJelly, we were able to close a total of 45,394
gaps, resulting in a 40% reduction in overall gap space (assembly v1.2,
Table 1). Subsequent assembly correction with Quiver resulted in a
total of 11,319,546 modifications to the PBJelly assembly consisting
of 291,179 insertions, 1,117,226 substitutions and 9,911,141 deletions.
Finally, PILON corrected 653,246 homozygous insertions (885,794 bp),
87,818 deletions (127,024 bp) and 34,438 single-base substitutions and
closed an additional 2,172 gaps in the Quiver assembly. Overall, gap
closing and error correction resulted in a hybrid Antarctic fur seal
assembly with a total length of 2.3 Gb (v1.4, Table 1). The number of
scaffolds in the genome was reduced from 8,126 to 6,169 such that 50%
of the final assembly is now contained within the longest 108 scaffolds
(Table 1).

Genome synteny
To investigate synteny between the Antarctic fur seal and the dog, we
aligned the fur seal scaffolds to the dog genome (CanFam3.1). We
estimated overall sequence divergence between the two species to be
13.8%. Visualization of the full alignment revealed that all of the dog
chromosomes are represented in the fur seal assembly (Figure S3).
Alignmentof the40 longest fur seal scaffolds (min length=10.7Mb,max

length = 33.1 Mb) revealed strong chromosomal synteny between the
two genomes, with the vast majority of the fur seal scaffolds mapping
exclusively or mainly to a given dog chromosome (Figure 2). Specifically,
for 37 of the scaffolds, over 90% of the total alignment length was to a single
dog chromosome, with 26 of those aligning exclusively to a single dog
chromosome. Only one scaffold (S4 in Figure 2) aligned in roughly equal
portions to two different dog chromosomes (62% to D5 and 38% to D26).

RAD sequencing and SNP discovery
RAD sequencing of 83 fur seal individuals generated an average of
5,689,065 250 bp paired-end reads per individual. After mapping
these reads to the reference genome, a total of 677,607 biallelic SNPs
were discovered using GATK’s best practices workflow for variant
discovery (see Materials and methods for details), with an average
SNP coverage of 727. We then filtered the dataset in three different
ways (Figure S2) to generate datasets suitable for the analysis of LD
decay, population structure and inbreeding respectively.

SNP validation
To provide an indication of the quality of our SNP dataset, we used
Sanger sequencing to validate 50 randomly selected loci. For each locus,
we sequenced a single heterozygote and a single homozygote individual
based on the corresponding GATK genotypes. For 40 of these loci, we
successfully obtained genotypes for both individuals (Table S2). Con-
cordancebetween theGATKandSanger genotypeswashigh,with76/80
genotypes being called identically using both methods, equivalent to a
validation rate of 95%. The four discordant genotypes were all initially
called as homozygous with GATK but subsequently validated as
heterozygous with Sanger sequencing.

LD decay
The pattern of LD decay within South Georgia was quantified based
on 25,068 SNPs genotyped in 33 individuals and located on the
100 longest fur seal scaffolds. LD was found to decay rather rapidly,
with r2 reaching the background level by around 400 kb (Figure 3).
Strong LD (r2 .= 0.5) decayed by 5 kb and moderate LD (r2 .= 0.2)
by around 15 kb.

Population structure
Next, we used a dataset of 37 pups genotyped at 27 microsatellites and
27,592SNPs toquantify thepatternand strengthof population structure
across the species circumpolar range. PCA of the microsatellite dataset
uncovered weak clustering with South Georgia, the South Shetlands
and Bouvetøya tending to separate apart from Kerguelen, Heard and
Macquarie Islands along the first PC axis (Figure 4A). However, consider-
able scatter and no clear pattern of separation was found along either PC2
or PC3 (Figures 4A and 4C). By contrast, population structure was more
clearly defined in the PCA of the SNP dataset. Specifically, the first PC axis
clearly resolved two distinct island groups, the first comprising South
Georgia, the South Shetlands and Bouvetøya and the second comprising
Kerguelen, Heard Island and Macquarie Island (Figure 4B). Within the
first island group, Bouvetøya clustered apart from South Georgia and the
South Shetlands along PC2 (Figure 4B) while all three locations
clustered apart from one another along PC3 (Figure 4D).

To testwhetherpopulation structure couldbe detectedwithout prior
knowledge of the sampling locations of individuals, we used a Bayesian
approach implemented within STRUCTURE (Pritchard et al. 2000).
This program works by partitioning the data set in such a way that
departures from Hardy-Weinberg and linkage equilibrium within the
resulting groups are minimized. Separately for the microsatellite and SNP
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datasets, five replicate runs were conducted for each possible number of
clusters (K) ranging from one, implying no population differentiation,
through to six, which would imply that all of the populations are genet-
ically distinct. For the microsatellite dataset, Ln Pr(X | K) and DK both
peaked at two, indicating support for the presence of two genetically
distinct populations (Figure S4A and C). Membership coefficients for
the inferred clusters are summarized in Figure S5A and indicate the pres-
ence of aWestern population comprising individuals fromSouthGeorgia,
the South Shetlands and Bouvetøya, and an Eastern population compris-
ing individuals from Kerguelen, Heard Island and Macquarie Island.

For the RAD dataset, Ln Pr(X | K) also peaked at two but remained
high forK= 3 and 4, whileDK reached itsmaximumatK= 4 (Figure S4B
and D). To explore this further, we plotted membership coefficients for
K = 2–6 for both the microsatellite and SNP datasets. For the former, no
evidence of population structure was found beyondK= 2, with successive
increases in Kmerely introducing additional admixture (Figure S5A). By
contrast, for the latter, plots corresponding to K values greater than two
clearly resolved further hierarchical structure (Figure S5B). Results for
K = 4 are shown in Figure 1, in which Kerguelen, Heard and Macquarie
Islands are resolved as a single population, while South Georgia, the
South Shetlands and Bouvetøya can be readily distinguished based on
their corresponding group membership coefficients.

Inbreeding
Finally, we investigated inbreeding in the focal population at SouthGeorgia
using data from 9,853 SNPs genotyped in 56 individuals (Figure 5A).

Identity disequilibrium differed significantly from zero (0.0052; bootstrap
95% confidence interval = 0.0008–0.0091, P = 0.023, Figure 5B) providing
evidence for variance in inbreeding within the sample of individuals. Each
individual’s level of inbreeding was quantified from the SNP dataset using
four different genomic inbreeding coefficients (sMLH, F̂I , F̂II and F̂III). All
four of these measures were inter-correlated, with correlation coefficients
(r) ranging from 0.69 to 0.84. (Figure 5C–E). Furthermore, the variances of
all four measures fell within the 95% confidence interval of g2 (Figure 5B),
suggesting that the expected correlation between the estimated and realized
level of inbreeding does not differ significantly from one.

DISCUSSION
Advances in high throughput sequencing technology have afforded
researchers theopportunity togenerategenomeassembliesandgenomic
marker datasets for virtually any species from which high quality DNA
can be collected. These resources allow a broad variety of questions in
ecology and evolution to be addressed with greater power and precision
than was possible with traditional methods. In this study, we utilized
PacBio sequencing to refine an existing Antarctic fur seal genome
assembly and combined this with RAD sequencing to characterize
synteny with the dog genome, elucidate the rate of LD decay, resolve
global population structure andquantify the variance in inbreeding.Our
results provide new insights atmultiple levels of organization that enrich
our understanding of an important Antarctic marine top predator and
indicate the general promise of these and related approaches for tackling
broad-reaching questions in population and evolutionary genetics.

Figure 2 Synteny of the longest
40 Antarctic fur seal scaffolds
(10.7–33.1 Mb; right, prefixed
S) with dog chromosomes (left,
prefixed D). Mapping each fur
seal scaffold to the dog genome
resulted in multiple alignment
blocks (mean = 2.1 kb, range =
0.1–52.8 kb) and alignments
over 5 kb are shown.
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Genome alignment
Animportantoutcomeof this study is a significantly improvedAntarctic
fur seal genome assembly. This was achieved through three iterative
steps involving gap filling, inclusion of long PacBio reads and assem-
bly error correction respectively. Overall, the number of scaffolds was
reduced by around one quarter, whileN50 almost doubled to over 6Mb
andtheproportionofgapswas reducedbyaroundanorderofmagnitude
to around half a percent. This represents an improvement over existing
pinniped assemblies such as the walrus (Odobenus rosmarus divergens,
GenBank accession number GCA_000321225.1) and Weddell seal
(Leptonychotes weddellii, GenBank accession number GCA_000349705.1),
which both have lower N50 values (2.6 and 0.9 Mb respectively). The
improved Antarctic fur seal genome will therefore serve as an important
resource for the wider pinniped community. However, there is still con-
siderable room for improvement as a handful of other marine mammal
genome assemblies incorporating longer range information show higher
levels of contiguity, such as the polar bear (Ursus maritimus, N50 =
15.9 Mb), killer whale (Orcinus orca, N50 = 12.7 Mb) and Hawaiian
monk seal (Neomonachus schauinslandi, N50 = 22.2 Mb) (Liu et al.
2014; Foote et al. 2015; Mohr et al. 2017).

To further quantify genome quality and to explore patterns of
synteny, we mapped the scaffolds of our new assembly to the dog
genome. The resulting alignment revealed almost complete coverage of
the dog chromosomes. This is in line with the observation that the total
length of the assembly has not changed appreciably between versions
and suggests that the assembly is near-complete, with the exception
of the Y-chromosome for which sequence data are currently lacking
as the genome individual is a female. In general, carnivore genomes
show high levels of synteny (Arnason 1974; Ferguson-Smith and
Trifonov 2007), with pinnipeds in particular exhibiting highly con-
served karyotypes indicative of slow rates of chromosomal evolution
(Beklemisheva et al. 2016). By contrast, the domestic dog has an
extensively re-arranged karyotype differentiated from the ancestral car-
nivore karyotype by over 40 separate fission events (Nie et al. 2011).
To provide insights into the extent of conservation of chromosomal

blocks between seals and dogs, we mapped the longest 40 fur seal scaf-
folds to the dog genome.We found a clear pattern whereby all but one of
the scaffolds mapped exclusively or mainly to single chromosomes, in-
dicating the conservation of large genomic tracts often several Mb in
length. The remaining scaffold mapped to two dog chromosomes in
roughly equal proportions, suggestive of either a fission event in the
lineage leading to dogs or a fusion event in the lineage leading to seals.
By focusing only on the largest scaffolds, we had little power to detect
multiple chromosomal rearrangements, although these are to be
expected given a substantial increase in the number of chromosomes
in dogs (2n = 74) relative to the seal (2n = 36) (Gustavsson 1964;
Arnason 1974). Nevertheless, the observed high degree of synteny is
consistent with previous studies revealing both strong sequence
homology and the conservation of polymorphic loci between seals
and dogs (Osborne et al. 2011; Hoffman et al. 2013).

SNP discovery and validation
Our study identified a total of 677,607 SNPs in a discovery pool of
83 individuals. These markers will be useful for future studies includ-
ing the planneddevelopment of a high-density SNParray.However, not
all SNPs are suitable for every analysis due to differential sensitivity to
missing data, low depth of sequencing coverage and the inclusion of
low frequency alleles (Shafer et al. 2017). We therefore carefully
considered how best to filter our SNP dataset for each of our main
analyses. For LD decay, we applied relatively strict filters as we sought
a high-quality dataset with consistently high coverage across individu-
als. For population structure, it was important to have as many SNPs
as possible represented in all of the sampling locations, so we did not
remove genotypes with low coverage but instead filtered the data to
retain SNPs genotyped in at least 99% of individuals. Conversely,
for the estimation of inbreeding, we honed in on a reduced subset
of higher quality SNPs with greater average depth of coverage, that
were in Hardy-Weinberg and linkage equilibrium, and which showed
no evidence of Mendelian incompatibilities.

Even with stringent filtering, it is possible to retain SNPs in a dataset
that have been called incorrectly. We therefore attempted to validate
50 randomly selected loci by Sanger sequencing selected individu-
als with homozygous and heterozygous genotypes as determined
from the RAD data. For the 40 loci that we were able to successfully
sequence, around 95% of the Sanger genotypes were identical to the
RAD genotypes. Although this validation step required additional
experimental effort, our results compare favorably with other studies
(Cruz et al. 2017; Bourgeois et al. 2018) and thus give us confidence
in the overall quality of our data.

Linkage disequilibrium decay
We used the genomic positions of SNPs mapping to the largest
100 scaffolds to quantify the pattern of LD decay in the focal population
of South Georgia. We found that LD decays rapidly, with moderate LD
extending less than20kb.This isdespite the specieshavingexperienceda
population bottleneck in the 19th century, which would be expected to
increase LD. A direct comparison with other organisms is hindered
both by a paucity of data for most species and by the use of different
measures for quantifying LD. However, our results are broadly in line
with other wild vertebrate populations such as Alaskan gray wolves,
polar bears and flycatchers, where moderate LD also extends less than
10–30 kb (Gray et al. 2009; Malenfant et al. 2015; Kardos et al. 2016).
Extended LD has been documented in a number of species but in most
cases this is associated with extreme bottlenecks, such as those experi-
enced during domestication (Harmegnies et al. 2006; McKay et al.
2007; Meadows et al. 2008). Although Antarctic fur seals are generally

Figure 3 Plot of linkage disequilibrium (r2) against physical distance
between SNPs in the Antarctic fur seal. LD was calculated using 25,068
filtered SNPs from the 100 largest scaffolds of 33 South Georgia
adults. Gray points indicate observed pairwise LD values. The dark
gray curve shows the expected decay of LD in the data estimated
by nonlinear regression.

2716 | E. Humble et al.



believed to have also experienced a strong historical bottleneck, a recent
Bayesian analysis suggested that this may have been less severe than
thought, with the effective population size probably falling to several
hundred (Hoffman et al. 2011). Furthermore, the population recovered
from the bottleneck within a few generations, which could have miti-
gated the increased genetic drift and inbreeding effects that elevate and
maintain strong LD. Additionally, the population is currently estimated
to number around 2–3 million individuals (Boyd 1993) and is one of
the most genetically diverse pinnipeds (Stoffel et al. 2018). Therefore,
given that LD is a function of both recombination rate and population
size (Hill 1981), the rapid decay of LD in this species might also be a
reflection of high long-term effective population sizes.

Population structure
To provide further insights into the recovery of Antarctic fur seals
globally, we quantified population structure across the species geo-
graphic range.Microsatellite genotypesprovided evidence for twomajor
geographic clusters, the first corresponding to South Georgia, the South
Shetlands and Bøuvetoya, and the second corresponding to Kerguelen,
Heard and Macquarie Island. By contrast, the RAD data uncovered an
additional level of hierarchical structure, resolving South Georgia, the
South Shetlands and Bøuvetoya as distinct populations. This is consis-
tent with simulation studies suggesting that thousands of SNPs should
outperform small panels of microsatellites at resolving population
structure (Haasl and Payseur 2011) as well as with more recent empir-
ical studies that have directly compared microsatellites with SNPs
(Ra�sić et al. 2014; Vendrami et al. 2017). Furthermore, many of our
populations had sample sizes of around five individuals yet could still
be clearly distinguished from one another. This is in line with a recent

simulation study suggesting that sample sizes as small as four individ-
uals may be adequate for resolving population structure when the
number of markers is large (Willing et al. 2012). Thus, our results have
positive implications for studies of threatened species for which exten-
sive sampling can be difficult but where understanding broad as well as
fine-scale population structure is of critical importance.

It is generally believed that Antarctic fur seals were historically
extirpated from virtually all of their contemporary breeding sites across
the sub-Antarctic, with the possible exception of Bøuvetoya, where
sealing expeditions were more sporadic (Christensen 1935) and around
a thousand breeding individuals were sighted just a few decades after
the cessation of hunting (Olstad 1928). South Georgia was the first
population to stage a major recovery, probably because a number of
individuals survived at isolated locations inaccessible to sealers around
the South Georgia mainland (Bonner 1964). Consequently, several
authors have speculated that emigrant individuals from the expanding
South Georgia population may have recolonized the species former
range (Boyd 1993; Hucke-Gaete et al. 2004). However, Wynen et al.
(2000) resolved two main island groups with mtDNA, while Bonin
et al. (2014) found that significant differences between the South
Shetland Islands and South Georgia with microsatellites. Our results
build on these studies in two ways. First, the two major clusters we
resolved using both microsatellites and RAD sequencing are identical
to those identified byWynen et al. (2000), suggesting that broad-scale
population structure is not simply driven by female philopatry but
is also present in the nuclear genome. Second, within the Western
part of the species range, we not only found support for the South
Shetlands being different from South Georgia, but also Bøuvetoya,
suggesting that relict populations probably survived at all three of

Figure 4 Scatterplots showing
individual variation in principal
components (PCs) one and two
(panels A and B), and one and
three (panels C and D) derived
from a principal component anal-
ysis conducted using 27 microsa-
tellites (panels A and C) and
27,592 SNPs (panels B and D).
The amount of variance explained
by each PC is shown in
parentheses.
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these locations. By contrast, no sub-structure could be detected
within the Eastern part of the species range, which taken at face
value might suggest that a single population survived sealing in
this region. Consistent with this, historical records suggest that
fur seals went locally extinct at Heard and Macquarie islands (Page
et al. 2003; Goldsworthy et al. 2009) and these populations may
therefore have been recolonized by surviving populations in the
Kerguelen archipelago. Thus, our study highlights the importance
of relict populations to species recovery while also providing some
evidence in support of local extinctions having occurred.

Inbreeding
Delving a level deeper, we investigated individual variation in the form
of inbreeding. A recent meta-analysis has shown that small panels of
microsatellites are almost always underpowered to detect variation in
inbreeding (Miller et al. 2014). By contrast, a handful of recent studies
have shown that tens of thousands of SNPs are capable of accurately
quantifying inbreeding (Hoffman et al. 2014; Huisman et al. 2016;
Bérénos et al. 2016; Chen et al. 2016; Kardos et al. 2018). While em-
pirical studies to date have largely focused on small, isolated popula-
tions where inbreeding may be common, it is less clear how prevalent
inbreeding could be in larger, free-ranging populations. We found
several lines of evidence in support of inbreeding in fur seals. First, g2
was significantly positive indicating identity disequilibrium within the
sample of individuals. Second, the variance of all genomic inbreeding
coefficients was found to lie within the 95% confidence intervals of
g2 and therefore we can expect our estimates to reflect the realized level
of inbreeding in the population. Third, all inbreeding coefficients were

strongly intercorrelated, suggesting that our markers are uncovering
consistent information about variation in genome-wide homozygosity
caused by inbreeding.

Our results are in some respects surprising given that Antarctic
fur seals number in the millions and are free-ranging and highly vagile.
However, the species is also highly polygynous, with a handful of top
males fathering the majority of offspring (Hoffman et al. 2004) and
females exhibiting strong natal site fidelity (Hoffman and Forcada
2012), which could potentially lead to matings between individuals
with shared ancestry. As demographic effects can also generate var-
iance in inbreeding sensu lato, we also cannot discount the possibility
that the historical bottleneck contributed toward the variation we see
today. To test this, we would need to quantify the length distribution
of runs of homozygosity, which would require denser SNP data.

Ourworkbuildsuponanother recent study thatusedRADsequencing
to quantify inbreeding in wild harbor seals (Hoffman et al. 2014) where a
higher estimate of g2 was found, indicative of a greater variance in in-
breeding within the sample. However, the study focused on stranded
seals, many of which died of lungworm infection andmay therefore have
been enriched for unusually inbred individuals. In the current study,
pups were sampled at random from within a single breeding colony,
together with their parents. Consequently, our sample should be more
representative of the underlying distribution of inbreeding within the
population. In line with this, our estimate of g2 is more similar to those
obtained in wild populations of other polygynousmammals such as Soay
sheep and red deer (Bérénos et al. 2016; Huisman et al. 2016).

Our results are consistent with previous studies documenting HFCs
for numerous traits in the South Georgia population (Hoffman et al. 2004;

Figure 5 (A) Distribution of genomic inbreeding coefficients (F̂ III) for 56 individual fur seals from South Georgia; (B) Distribution of identity
disequilibrium (g2) estimates from bootstrapping over individuals. The vertical dashed line represents the empirical g2 estimate and the horizontal
black line shows the corresponding 95% confidence interval based on 1000 bootstrap replicates. The vertical colored lines represent the variance
in four different inbreeding coefficients. Panels C, D and E show pairwise Pearson’s correlation coefficients between F̂III and F̂I, F̂ II and sMLH.
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2010; Forcada and Hoffman 2014) and suggest that these may well
reflect inbreeding depression. More generally, literally hundreds of
studies have documented HFCs across the animal kingdom (Coltman
and Slate 2003) and it has been strongly argued that these HFCs are
highly unlikely to occur when there is no variance in inbreeding
(Szulkin et al. 2010). The fact that we found variation in inbreeding
in a large, free-ranging population is consistent with this notion and
therefore contributes toward a growing body of evidence suggesting
collectively that inbreeding could be more common in wild popula-
tions than previously thought.

Conclusion
We have generated an improved genome assembly for an important
Antarctic marine top predator and used RAD sequencing to provide
diverse insights from the level of the species through the population to
the individual. Focusing on the larger South Georgia population, we char-
acterized rapid LD decay and uncovered significant variation in individ-
ual inbreeding, while population-level analyses resolved clear differences
amongislandgroupsthatemphasize theimportanceofrelictpopulations to
species recovery. RAD sequencing and related approaches might conceiv-
ably be applied to other wild species to characterize patterns of LD decay,
elucidate fine scale population structure and uncover the broader preva-
lence of inbreeding and its importance to wild populations.
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