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The pleiotropic effects of the glutamate 
dehydrogenase (GDH) pathway 
in Saccharomyces cerevisiae
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Abstract 

Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino 
acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate 
and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and 
Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the 
role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of 
the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and 
sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in 
yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features 
for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features 
constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and 
maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We 
also conclude that the discussed  pleiotropic features intersect with basic metabolism and set a new background for 
further glutamate-dependent applied research of biotechnological interest.
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Background
Ammonium assimilation into carbon chains follows 
specific biosynthetic routes that lead to the production 
of non-essential amino acids including glutamate. Ini-
tial observations in bacteria showed two major mecha-
nisms that can be used for the production of glutamate. 
The glutamine synthetase (GS) and glutamate synthase 
(GOGAT) (GS–GOGAT) mechanism that occurs when 
cells grow in low ammonia concentrations and the glu-
tamate dehydrogenase (GDH) pathway that has a lower 
energy cost and is used by the cells in excess of ammo-
nium and phosphate [1].

Central nitrogen metabolism in Saccharomyces cer-
evisiae hosts the same two conserved mechanisms for 
glutamate production [2–5]. GS–GOGAT pathway in 
yeast has a marginal contribution in glutamate synthesis 
both in fermentation and respiratory conditions, while 
the GDH pathway has the prominent role [5, 6]. Yeast 
strains lacking the GDH route, present a proline utiliza-
tion pathway (PUT) that can contribute together with 
the GS–GOGAT in glutamate biosynthesis and nitrogen 
assimilation [7]. The relative contribution of PUT is being 
dictated by the nitrogen sources [7]. To our knowledge, S. 
cerevisiae is the only organism having three pathways for 
glutamate synthesis (Fig. 1) with the produced glutamate 
responsible for the 85% of the total cellular nitrogen and 
glutamine for the remaining 15% [8–10].

In this review, we summarize the current state of 
knowledge on the GDH pathway in S. cerevisiae and we 
aim to present the pleiotropic effects of the pathway in 

Open Access

Microbial Cell Factories

*Correspondence:  pmara@whoi.edu 
4 Present Address: Woods Hole Oceanographic Institution, Woods Hole, 
MA 02543, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0072-0238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-018-1018-4&domain=pdf


Page 2 of 13Mara et al. Microb Cell Fact          (2018) 17:170 

addition to its well-described role in glutamate metabo-
lism. We discuss the findings presented in recent research 
and primary literature papers and we make a coherent 
argument about the topic.

The GDH pathway in S. cerevisiae
In yeast, glutamate can be synthesized through the acti-
vation of the GDH pathway when ammonium is pre-
sent in abundant levels. This can be achieved through 
the activation of MEP permeases (Mep1, Mep2, Mep3) 
that facilitate the entrance of ammonium in the cell and 
its retention in the cytoplasm [9, 11]. Under sufficient 
ammonium levels, the GDH pathway catalyzes the syn-
thesis of glutamate using α-ketoglutarate and ammonium 
through the NADP linked action of GDH (1):

The NADP-dependent GDH enzyme in yeast is 
encoded by GDH1 and GDH3 [12]. GDH1 and GDH3 
are paralogous genes with GDH3 originating from an 
ancestral event of whole-genome duplication [6, 13] or 
interspecies hybridization [14]. Despite the high con-
servation of GDH1 and GDH3, Gdh1p exhibits higher 
utilization rates of α-ketoglutarate under glucose con-
ditions compared to Gdh3p [15, 16]. This observation 
makes Gdh1 the primary (hyperbolic) NADP-GDH 
enzyme and Gdh3 the cooperative NADP-GDH iso-
form in the GDH pathway of S. cerevisiae. A recent 
study addressed the question whether the different uti-
lization rates of α-ketoglutarate by Gdh1p and Gdh3p 
correlate with their evolutionary origin [6]. The authors 

(1)
α-ketoglutarate + NH4+ + NAD(P)H

→ Glutamate + NAD(P)+

compared the NADP-GDH activity of S. cerevisiae with 
that in closely related yeast species. The kinetic prop-
erties of NADP-GDH activity that derived from yeast 
species with either constitutively respiratory metabo-
lism, or intermediate fermentative capacity were simi-
lar to the Gdh1 and Gdh3 isoforms of S. cerevisiae and 
complemented the total NADP-GDH activity. Based on 
this it was concluded that the different utilization rates 
of α-ketoglutarate by Gdh1p and Gdh3p were inde-
pendent of their evolutionary origin [6].

In terms of localization, Gdh1p is found in the cyto-
sol and the nucleus as opposed to Gdh3p that is local-
ized in the mitochondria and the nucleus [17, 18]. 
This different localization seems to be evolutionarily 
retained due to the urge of a wise cellular exploitation 
of α-ketoglutarate that in many organisms acts as a sig-
nal and coordinates carbon and nitrogen metabolism 
[19]. Growing evidence shows that modulation of the 
intracellular α-ketoglutarate levels could constitute an 
important mechanism of metabolic control that can 
also interfere with many physiological processes [6, 20]. 
Enzyme purification experiments showed that Gdh1p 
and Gdh3p are hexamers (a6 50 kDa oligomeric struc-
ture) with the in  vivo total NADP-GDH pool being a 
quite dynamic mixture of Gdh1p and Gdh3p monomers 
[15]. It was observed that under glucose fermentative 
growth the pool consisted mainly of Gdh1p monomers 
[12, 15]. GDH3 is a glucose-repressed gene and conse-
quently the presence of Gdh3 protein in the pool was 
very low [15, 21–23].

The allosteric regulation of NADP-GDH activity is 
influenced by α-ketoglutarate and NADP, and not by 
small molecules (e.g. GTP, AMP) or amino acids as has 
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Fig. 1 Glutamate production and nitrogen assimilation in S. cerevisiae. The figure was adapted from Fig. 1 [7]. GDH1 glutamate dehydrogenase 1, 
GDH3 glutamate dehydrogenase 3, PUT1 proline oxidase, PUT2 Δ1-pyrroline-5-carboxylate dehydrogenase, GLN1 glutamine synthetase (GS), GLT1 
NAD(+)-dependent glutamate synthase (GOGAT), TCA  tricarboxylic acid cycle
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been reported for other GDH proteins, including human 
GDH [24].

GDH1 transcriptional regulation and phase‑specific 
degradation of Gdh1 protein
The regulation of GDH1 under glucose conditions is per-
formed by nitrogen catabolite repressor (NCR)-sensitive 
activators, Leu3p and activators exclusive for respira-
tory growth such as the HAP complex that coordinates 
nuclear and mitochondrial gene expression [21, 25, 26]. 
Under ethanol conditions, GDH1 derepression is medi-
ated by the Gcn4 and Hap4 transcriptional activators 
and is amplified by Gln3 [21, 27]. Experiments measur-
ing the β-galactosidase activity of GDH1 promoted-lacZ, 
and nucleosome scanning assays in cells grown in glucose 
or ethanol with ammonia as nitrogen source, found that 
GDH1 transcription occurs throughout all growth phases 
in yeast [6, 15, 21, 23]. This is achieved through different 
members of the SAGA remodeling complex that mod-
ify the chromatin for GDH1 expression under different 
carbon sources [21]. The constant expression of GDH1 
implied that its transcription proceeds normally during 
the different growth phases including the diauxic shift, 
when yeast cells reprogram their metabolism to enter 
the respiration phase. However, during the post-diauxic 
shift, the Gdh1p/Gdh3p ratio decreases and most of the 
NADP-GDH activity is attributed to Gdh3p [15]. The 
decrease of the NADP-GDH activity in ethanol grow-
ing cells was initially referred to be controlled through 
post-translational modifications [28] that could modulate 
the proportion of Gdh1p versus Gdh3p monomers that 
constitute the NADP-GDH pool [21]. Indeed, proteomic 
studies revealed that Gdh1p can be a potential target of 
ubiquitin attachment [29, 30]. Additional studies showed 
that Gdh1 protein is subjected to a “stationary phase-spe-
cific degradation” that occurred at the diauxic shift [23]. 
Through a series of point mutations and protein quantifi-
cation experiments, it was concluded that Lys-426 (K426) 
in the C-terminal box is essential for the observed sta-
tionary phase-specific degradation of Gdh1p [23].

This phase specific degradation of Gdh1p and its sub-
stitution by Gdh3p in the NADP-GDH activity pool 
seems to be favorable under glucose deprivation. As dis-
cussed above, Gdh1p utilizes α-ketoglutarate at higher 
rates compared to Gdh3p, and contributes to glutamate 
production when yeast cells ferment, and thus are in 
the exponential phase. Glucose deprivation signifies the 
entrance of the yeast cells into a stationary-phase survival 
mode. The transition from fermentation to stationary 
phase conditions is accompanied by a dramatic growth 
reduction and a sharp drop in protein synthesis charac-
teristic for stationary phase survival [31, 32]. In addition, 
transitioning to stationary phase, requires yeast cells to 

recruit different defense mechanisms that will protect 
them from ROS-mediated damage that influences lifes-
pan [33]. Lee et al. [23] suggested that the consequence 
of significant decrease in protein synthesis will be also 
reflected as significant decrease in amino acid synthe-
sis, since a variety of amino acids, including glutamate, 
become unnecessary in stationary phase cells. Therefore, 
it may be more beneficial for yeast to substitute Gdh1p 
with Gdh3p through the phase-specific expression of 
GDH3 and the simultaneous degradation of Gdh1p [23]. 
The authors observed that Gdh3p seems to be more 
suitable for the stationary phase survival in which glu-
tamate is mainly required for ROS defense mechanisms 
(discussed below). The role of GDH1 gene in glutamate 
biosynthesis was also investigated in aerobic metabo-
lism [16]. It was observed that yeast cells lacking GDH1 
were unable to divide in acetate/raffinose media, contain-
ing ammonia as primary nitrogen source. Furthermore, 
13C-enrichement experiments confirmed that incorpora-
tion of 13C into glutamate was nearly undetectable when 
gdh1Δ cells were incubated in [1, 2-13C]-acetate/raffi-
nose. The NADP-GDH activity was measured to be less 
than 15% in gdh1Δ cells compared to wild type, confirm-
ing the important and primary contribution of Gdh1p in 
glutamate synthesis under aerobic conditions as well [16].

GDH3 transcriptional regulation and the role of the GDH 
path in ROS‑mediated apoptosis
The transcription of GDH3 occurs extensively during the 
stationary phase [15, 23]. The activity of Gdh3p presents 
a 20 to 140-fold increment when cells are grown under 
aerobic conditions [12]. Under these conditions the 
majority of the total NADP-GDH activity is attributed 
to Gdh3p monomers that can contribute up to 70% to 
the pool, especially when cells enter or remain in aero-
bic metabolism for several days [15]. Under acetate/raf-
finose conditions with ammonia as the only nitrogen 
source, yeast cells lacking GDH3 gene had a significant 
impairment in glutamate synthesis [16]. The increase of 
the NADP-dependent GDH activity observed in gdh1Δ 
mutants was presumably due to Gdh3p that seems to 
play a prominent role in glutamate metabolism under 
aerobic conditions [12, 16]. However, glutamate synthesis 
under aerobic conditions was insufficient and required 
additionally the activity of Gdh1p [16]. The expression of 
both GDH3 and GDH1 is required to achieve wild-type 
growth in respiration [12, 16]. The transcriptional regu-
lation of GDH3 is controlled by carbon sources and not 
by nitrogen catabolite repression as in the case of GDH1 
[22, 34]. The glucose-repressed expression of GDH3 is 
attributed to the condensed chromatin organization of its 
promoter. Remodeling of the chromatin at the promoter 
region under non-fermentative carbon sources or under 
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carbon limiting conditions is performed by the SWI/
SNF and SAGA complexes [22]. In addition, microarray-
based deacetylation maps in yeast revealed that GDH3 
gene is located in a HAST domain (Hda1-Affected Sub-
Telomeric region) where several metabolic genes are 
glucose-repressed through the action of Hda1 (histone 
deacetylase 1) [35]. Under diauxic shift, HDA1 gene is 
downregulated and through the counteracting activ-
ity of Gcn5p acetyltransferase (the catalytic subunit of 
the SAGA), SWI/SNF complex allows the expression of 
GDH3 under respiratory conditions [35]. Gdh3p is stable 
without being susceptible to post-translational modifica-
tions or to phase-specific degradation as Gdh1p. How-
ever, it has a lower catalytic capacity in  vivo compared 
to Gdh1p and thus it cannot fulfill the extended needs 
or substitute the role of Gdh1p during the exponential 
growth phase in glucose. As such, impairment or lack of 
GDH3 does not affect either glutamate production or the 
survival and growth rates of glucose-grown cells [6, 15]. 
The low activity of GDH3 is not attributed to its promoter 
but to dissimilarities in the amino acid sequence between 
the two expressed Gdh isoforms. These dissimilarities 
allows Gdh3p to be more fit for processes that take place 
in specific cellular compartments like the mitochondria 
[23]. This is plausible in accelerated evolution which in 
many instances permits only one of two paralogues to 
diverge from ancestral functions and to acquire either 
new or complementary capabilities that favor new meta-
bolic adaptations [13]. Based on this it was observed that 
the GDH pathway through GDH3, and not GDH1, is nec-
essary for the resistance to stress-induced apoptosis in 
stationary-phase yeast cells [23]. Specifically, yeast cells 
lacking GDH3 exhibited sensitivity to thermal and oxida-
tive stress as well as oxidative stress-dependent accumu-
lation of ROS that led to apoptotic cell death [23].

Yeast is equipped with mitochondrial enzymes that 
scavenge free radicals. Among the ROS-scavenging 
mechanisms, glutathione system (GSH system) is prob-
ably the most important intracellular oxidative defense 
mechanism [23]. The GSH system consists of glutathione 
(GSH), glutathione reductase and glutathione peroxi-
dase (GPx). Hydrogen peroxide  (H2O2) detoxification is 
performed by GPx which requires glutathione as reduc-
ing power [36]. GSH biosynthesis requires glutamate as 
primary substrate [36, 37]. Glutamate concentration in 
stationary yeast cells lacking GDH3 was 20% less com-
pared to wild type cells [23]. This caused glutamate defi-
ciency subjecting the cells to GSH depletion and thus the 
observed ROS accumulation that led to apoptosis  [23]. 
A similar phenomenon was observed when stationary 
GDH3 mutant yeast cells, were exposed to thermal stress 
[23]. In addition, it was observed that GDH3 deletion 
potentiated ROS generation when yeast cells were treated 

with ebselen, an antioxidant compound responsible for 
ROS-mediated cytotoxicity in excessive amounts [38]. 
Gdh3p was considered the molecular target of ebselen 
which ceased NADP-GDH activity through the forma-
tion of selenyl-sulfide bonds with cysteine residues. It 
was also observed that the NADP-GDH inactivation 
might had a critical function in the proteolysis of H3 his-
tone in yeast [38–40], as discussed below.

The role of GDH path in ammonia production
The GDH pathway in S. cerevisiae is also responsible for 
the degradation of glutamate. Contrary to mammals and 
other organisms, the GDH pathway in yeast presents 
decoupled functions in terms of glutamate biosynthesis 
and glutamate catabolism. The NADP-GDH activity of 
Gdh1 and Gdh3 isoforms is unidirectional and specific 
for glutamate synthesis, while glutamate catabolism is 
performed via the action of the oxidizing form of GDH 
(NAD-GDH) that is also present in the GDH pathway. 
The NAD-GDH activity in yeast is encoded by GDH2 
gene and catalyzes the oxidative deamination of gluta-
mate to α-ketoglutarate and ammonium [4] (Fig. 2) (2):

The presence of the NAD-GDH enzyme was initially 
described with an unclear role in glutamate metabolism 
[2]. Years later, it was shown that GDH2 is encoded on 
chromosome IV of S. cerevisiae with a protein-coding 
sequence containing more than 1000 amino acids, and a 
strict mitochondrial function that is post-translationally 

(2)
Glutamate + NAD+

→ α-ketoglutarate+ NH4+ +NADH
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NADP-GDH

NAD-GDH
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NADPH NAD

NADPHNAD
Fig. 2 Schematic presentation of the GDH pathway. Synthesis of 
glutamate occurs through the action of NADP-GDH (encoded by 
GDH1 and GDH3 genes). NAD-GDH activity (encoded by GDH2) is 
responsible for glutamate degradation and release of ammonium 
and α-ketoglutarate. GDH2 glutamate dehydrogenase 2
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regulated by phosphorylation [41, 42]. As shown, Gdh2p 
can be converted from an active NAD-dependent gluta-
mate dehydrogenase to an inactive form by phosphoryla-
tion through cAMP-dependent and cAMP-independent 
protein kinases [42]. However, the functional phospho-
rylation sites have not yet been identified [43].

Initially, it was speculated that yeast cells lacking 
GDH1 could use GDH2 to promote glutamate biosynthe-
sis using ammonia as sole nitrogen source [4]. Through 
experiments performed both in S. cerevisiae and in A. 
nidulans this speculation was gradually abandoned [4]. 
The NAD-GDH levels were much higher in cells grown 
in the presence of glutamate compared to those obtained 
from cells grown in ammonia. Furthermore, the concen-
tration of the NAD co-factor in the cytoplasm was higher 
under glucose growth conditions, and thus, it was forcing 
the reaction towards glutamate degradation in order for 
the NAD–NADH equilibrium to be obtained [4].

Through the enzymatic activity of Gdh2p the break-
down of glutamate provides adequate levels of ammonia 
in yeast cells [4, 9, 44]. Indeed, the catabolism of gluta-
mate via the NAD-GDH activity is the major pathway of 
ammonia generation in  vivo. In experiments performed 
under glucose minimal conditions with glutamate as 
the only nitrogen source, GDH2 deletion caused limited 
growth and impaired utilization of the specific amino 
acid leading to low amounts of intracellular ammonia [4].

The role of GDH2 in glutamate homeostasis was fur-
ther examined in cells grown under aerobic conditions 
[16]. Under acetate/raffinose conditions with ammonia 
as nitrogen source, the NAD dependent activity of GDH 
was 20-fold higher compared to that in cells grown in 
glucose. The disruption of GDH2 was not deleterious to 
glutamate homeostasis as expected [16]. In fact, gdh2Δ 
cells presented wild type growth and did not display any 
deficiencies due to glutamate homeostasis impairment 
neither under glucose nor under non-fermentable carbon 
sources [16, 44].

GDH2 transcriptional regulation and interaction with GDH3
GDH2 is subjected to transcriptional regulation by glu-
cose [44]. Specifically, it is repressed in glucose and 
elevated under non-fermentable carbon sources and 
amino acids as nitrogen source [16, 44]. This strict con-
trol is expected due to the anapleurotic role of Gdh2p 
in Krebs cycle. It is known that Gdh2p replenishes the 
α-ketoglutarate levels under aerobic conditions [44]. 
It was considered that the transcriptional activation of 
GDH2 would require gene regulators necessary in res-
piratory growth. However, GDH2 transcription is inde-
pendent of the HAP complex, but is regulated by the 
GATA-type transcriptional activators Gln3 and Ure2 
[44, 45]. It was shown that GDH2 regulation requires two 

activation and four repression sites present on its pro-
moter. One activation site promotes transcription under 
glucose starvation [44], while the other one  (UASNTR) is 
implicated in nitrogen catabolite repression [46]. Under 
nitrogen limitation, Gln3 binds to the  UASNTR and to 
an adaptor protein (Hfi1) responsible for the integrity of 
the SAGA transcription activator complex [47]. In the 
presence of preferred nitrogen sources, the expression 
of GDH2 is repressed by the transcriptional regulator 
Ure2 which sequesters Gln3 into the cytoplasm [4, 45]. 
It is also found that the expression of GDH2 is regulated 
by the concurrent action of Gcn4 and Gln3 [48]. These 
two regulatory networks have been thought to interact 
[49–51], putting forward the existence of a physiological 
relation between Gln3 and Gcn4 [52–54]. Under nitro-
gen derepressive conditions and amino acid deprivation, 
Gcn4 and Gln3 form part of a transcriptional complex 
that binds on GDH2 promoter and dictates its expression 
[48].

GDH2 genetically interacts with GDH3 and controls 
stress-induced apoptosis [23]. The role of GDH2 was 
investigated in stress-induced apoptosis in stationary 
phase cells that lacked GDH3 [23]. It was observed that 
deletion of GDH2 gene in a gdh3Δ background increased 
the resistance under thermal or oxidative stress by 
decreasing ROS accumulation. The apoptosis was sup-
pressed by GDH2 deletion through the elevated levels of 
glutamate and glutathione present in the double mutant. 
Under the tested conditions, deletion of GDH2 com-
pensated the depletion of intracellular glutamate and 
glutathione (GSH) followed by stress-induced apoptotic 
cell death and reinforced further the idea that Gdh2p is 
responsible only for glutamate catabolism and not its 
production [23].

Additional roles of the GDH pathway
Gdh1p and Gdh3p in nitrogen catabolite repression (NCR)
Saccharomyces cerevisiae can utilize a wide variety of 
nitrogen-based compounds [8]. Despite the broad nitro-
gen assimilation, not all nitrogen sources can support 
yeast growth equally well or trigger the same cellular 
responses [34]. Using these two assumptions, the nitro-
gen sources in yeast are empirically classified into “rich” 
or “preferred” and “poor” or “non-preferred” [55]. The 
“preferred” nitrogen sources are incorporated into glu-
tamate through the GDH or GS–GOGAT pathways and 
the resulting carbon substrates are readily integrated 
in metabolism. The “poor” nitrogen sources, includ-
ing branched-chain amino acids, aromatic amino acids, 
and methionine, are transferred to α-ketoglutarate by 
transaminases, forming glutamate [55, 56]. However, 
the resulting deaminated carbon compounds are con-
verted through the Ehrlich pathway, to non-catabolizable 
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and growth-inhibitory fuse oils [57]. In addition, under 
“poor” nitrogen sources, activation of the general con-
trol of amino acid biosynthesis (GAAC) mechanism is 
observed. GAAC activation is mediated by the transcrip-
tion factor (TF) Gcn4 responsible for the expression of 
a large number of genes involved in amino acid biosyn-
thesis [55, 58]. Although we recognize the importance 
of GAAC mechanism, we consider that a more detailed 
discussion on the regulation of GAAC under “poor nitro-
gen” sources has been reviewed elsewhere [55, 56] and 
exceeds the purposes of this review.

The preferential expression of genes involved in nitro-
gen metabolism is primarily controlled in S. cerevisiae 
by a transcriptional mechanism known as nitrogen cat-
abolite repression (NCR). Through NCR, baker’s yeast 
can downregulate the expression of genes involved in the 
utilization of non-preferable nitrogen sources when pref-
erable nitrogen compounds are available [11, 59]. NCR 
mechanism comprises four transcription factors (Gln3, 
Gat1, Dal80 and Gzf3) with a zinc-finger DNA binding 
domain that recognizes the GATA motif in the promoter 
of target genes [60]. NCR in yeast is additionally con-
trolled by Ure2, a transcription factor responsible for the 
translocation of the four latter TFs into the nucleus [61]. 
According to different experimental studies, in the pres-
ence of ammonium, Ure2 binds Gln3 in the cytoplasm 
and prevents its translocation to the nucleus [60, 62]. 
This allows Dal80 and Gzf3 to repress the expression of 
NCR-sensitive genes involved in utilization of alternative 
nitrogen sources [60]. Ure2 releases Gln3 under nitrogen 
starvation or in the presence of non-preferable nitrogen 
sources [34], and upon release, Gln3 translocates into the 
nucleus. Gln3 and Gat1 act together, mediating the tran-
scription of NCR-sensitive genes [63, 64].

NCR has been described to respond to glutamine and 
glutamate deficiencies through the activation of Gln3 or 
Gat1 respectively, while ammonium is considered a dis-
tinct signal for NCR that acts independently of the glu-
tamine and glutamate levels [34]. In addition, NCR is 
controlled by TOR signaling that mediates cell growth 
and metabolism under different nitrogen and carbon 
sources. Experimental studies showed that inhibition of 
TORC1 resulted in nuclear accumulation of Gln3 and 
Gat1 and transcriptional depression of NCR-sensitive 
genes [52, 54]. However, as discussed below, growing lit-
erature suggests that TORC1 is not the only regulator of 
these specific GATA-type transcription factors [34, 61, 
65, 66]. Specifically, GDH1 was found to have a promi-
nent role in nitrogen-responsive activities [34]. Under 
nitrogen repressive conditions the derepression of NCR-
sensitive genes, like GAP1 (general amino acid permease 
1), was due to the drastic effect that GDH1 deletion 
had on the localization and function of the essential 

GATA-type activator, Gat1. It was observed that lack 
of GDH1 mediated the accumulation of Gat1 into the 
nucleus and thus derepressed the transcription of GAP1 
gene. This finding also questioned the role of GDH1 on 
the other GATA-type activator, Gln3. Upon GDH1 dele-
tion, a highly derepressed expression of DAL5, a NCR-
sensitive gene that requires both Gat1 and Gln3 for its 
expression, was observed. GDH1 deletion caused ammo-
nium accumulation as expected, but surprisingly did not 
affect the subcellular distribution and the concentrations 
of glutamine as well as glutamate [34]. This suggested 
that the Gat1 and Gln3-mediated expression of DAL5 
and GAP1 was independent of the glutamine/glutamate 
levels. Indeed, the GDH1-based repression of DAL5 and 
GAP1 was strongly correlated with the activity of Gdh1 
enzyme per se [34]. As shown, GAP1 gene was depressed 
in yeast strains encoding a mutation responsible for the 
inactivation of the catalytic site of Gdh1  (Gdh1pK110L). 
On the contrary, the transcriptional repression of GAP1 
was strong when the NADP-GDH activity was restored 
by expressing the GDH3 gene, and partially restored, 
when the bacterial GDHA was expressed in gdh1 mutant 
strains [34]. However, the signals for the GDH-depend-
ent negative regulation of NCR-sensitive genes require 
further investigation.

Gdh1 and Gdh3 enzymes in chromatin regulation in yeast
The role of Gdh1p in transcriptional silencing was found 
to be crucial through the proteolysis of H3 histone in 
yeast (“H3-clipping” in the N-tail) [40]. This effect has 
been described previously in animal tissues [39, 67]. In 
yeast however, the proteolysis of H3 histone had been 
observed initially in sporulating and stationary phase 
cells, through the action of the vacuolar serine protease 
Prb1 [68]. Recent studies revealed that deletion of GDH1 
gene increased “H3-clipping” in log phase cells revealing 
an inhibitory role of Gdh1p on the N-terminus cleav-
age  of H3 [40]. Another observation was that Gdh1p 
mediated the silencing of sub-telomeric regions through 
the recruitment of SIR complex [40]. This highlighted the 
association of an enzyme primarily described in metab-
olism, with epigenetic processes. Specifically, GDH1 
deletion led to decreased binding of Sir2 protein on the 
telomeres, causing elevated transcript levels of genes 
affected by the loss of the SIR complex [40]. GDH1 was 
found to regulate chromatin through its catalytic activity 
[40]. Specifically, upon GDH1 deletion, the elevated lev-
els of α-ketoglutarate, and not those of NADH, resulted 
in the  observed telomeric silencing defects [40]. The 
authors described  physical association of Gdh1p on spe-
cific telomeric loci that were under the transcriptional 
control of SIR complex. Additional experiments showed 
that α-ketoglutarate levels changed when Gdh1p was 
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depleted from the nucleus. This suggested that Gdh1p 
possibly affects the levels of α-ketoglutarate at the SIR-
regulated telomeric loci.

The intracellular levels of α-ketoglutarate seems 
to have a “mechanistic” role also in other organisms. 
Experiments in mice and nematodes (Caenorhabdi-
tis elegans) showed that modulation of the intracellular 
levels of α-ketoglutarate interfere with gene transcrip-
tion and longevity [52, 53, 69]. Moreover, modulation 
of α-ketoglutarate levels found to interfere with the epi-
genetic state and cellular fate of mouse embryonic stem 
cells [70]. GDH3 is also implicated in both metabolism 
and chromatin configurations [40]. Specifically, loss of 
telomeric silencing was observed in the double gdh1Δ 
gdh3Δ mutant grown both in ethanol and glucose. Under 
ethanol conditions deletion of either GDH gene led to 
mild silencing defects. Also, increased expression of 
GDH3 partially complemented the gdh1Δ phenotype. 
This demonstrated overlapping functions of the two iso-
forms that affect heterochromatin regulation [40].

The contradictory roles of GDH1 and GDH2 in cold‑growth 
defects in yeast strains
The role of GDH1 and GDH2 found to be contradictory 
when investigated in yeast strains under cold-growth 
conditions [71]. Using recombinant strains of S. cerevi-
siae, it was observed that overexpression of GDH1 had 
detrimental effects on yeast growth at 15  °C creating a 
cold-sensitive yeast phenotype. On the contrary, overex-
pression of GDH2 was favoring yeast growth providing a 
growth advantage in the same conditions [71].

The GDH pathway interferes with the recycling of the 
essential coenzymes NADH–NAD by controlling the lev-
els of α-ketoglutarate [72]. NADH–NAD homeostasis is 
crucial for proper cellular responses under environmen-
tal changes [73]. Ballester-Tomás et  al. [71], suggested 
that growth temperatures below the optimal require a 
proper redox NADH–NAD balance that was probably 
disrupted through the overexpression of GDH1. How-
ever, under the examined conditions, the overexpression 
of GDH2 seemed to regulate this NADH–NAD imbal-
ance, through the increased oxidation of NADH [71]. 
This was in accordance with previous studies reporting 
that increased NADH oxidation altered the distribution 
of metabolic fluxes and sustained yeast growth at sub-
optimal temperature conditions [74, 75]. Furthermore, 
an additional study showed the activity of NAD-related 
genes governs cold growth in yeast and that GDH2 is a 
cold-growth favoring gene [76].

Shifts to low growth temperatures create increased 
intracellular  H2O2 levels and induced expression of anti-
oxidant genes implicated in glutathione synthesis [77, 
78]. Under cold-growth conditions, Ballester-Tomás et al. 

[71] showed that concurrent ectopic overexpression of 
GDH1 and GDH2 compensated the observed accumula-
tion of ROS. The authors suggested that this is consistent 
with the role of GDH1 and GDH2 in glutamate synthesis 
and its possible implication to oxidation stress defense 
through the glutathione system. Specifically, glutamate 
can prevent cold-induced ROS accumulation through the 
synthesis of glutathione that requires glutamate as a pre-
cursor molecule and serves in ROS removal.

Implications of the GDH pathway in actin cytoskeleton, 
endocytosis and iron deficiency
Proper function of Gdh3p has a role in the sphingolipid-
dependent suppression of reduced viability on starvation 
(RVS) defects that include inability to grow under nutri-
ent starvation or osmotic stress [79]. RVS genes encode 
the calmodulin-binding, actin-associated, amphiphysin-
like lipid raft proteins Rvs167 and Rvs161 which are not 
essential for yeast viability. However, the Rvs proteins 
contain a conserved BAR domain that appears to regu-
late endocytosis, actin cytoskeleton structure and nuclear 
events. As such, under nutrient depletion, recessive 
mutations or total loss of the RVS genes, cause growth 
abnormalities and cytoskeletal and endocytosis defects 
[80, 81]. Specifically, it was observed that the proper 
function of Gdh3p altered the growth defects provoked 
upon RVS and SUR4 deletions in yeast [79]. SUR4 in yeast 
encodes an elongase involved in fatty acid and sphin-
golipid biosynthesis. As it seems, Gdh3p participates 
in a sphingolipid-dependent manner to the restoration 
of growth under glucose starvation. In addition, Gdh3p 
was found to physically interact with three domains of 
the Rvs167p which forms with Rvs161p a complex, that 
regulates cell polarization, actin cytoskeleton, endocyto-
sis and cell cycle [79]. The role of Gdh3p in that configu-
ration is not known and it will be interesting to examine 
whether its catalytic activity is primarily involved.

Iron deficiency has a significant impact on amino acid 
biosynthesis in yeast [10]. It has been observed that many 
transcripts involved in amino acid metabolism are regu-
lated during iron deficiency and that most of the amino 
acids affected include an iron-dependent step in their 
synthesis [82]. Transcriptomic analysis showed that upon 
iron deficiency, genes implicated in the GS–GOGAT 
pathway were downregulated while genes of the GDH 
pathway were upregulated [10]. Specifically, yeast cells 
exhibited a sixfold downregulation of GLT1 (encodes 
the NAD-dependent glutamate synthase–GOGAT) as 
opposed to GDH3 that was 4.5-fold upregulated under 
the same conditions [10]. This made GDH pathway an 
iron-independent pathway compared to GS-GOGAT 
that is iron-dependent. The reason for this differentia-
tion lies on glutamate synthase that is a Fe–S requiring 
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enzyme. Indeed, under iron deficiency the activity of 
glutamate synthase presents a 20-fold decrease [82]. As 
already mentioned, the vast majority of nitrogen-con-
taining molecules in yeast acquire their nitrogen from 
glutamate and to a lesser extent from glutamine, so con-
tinuous synthesis of these two amino acids is critical and 
highly regulated under iron-limiting conditions.

Can the GDH pathway provide additional information 
on the role of GABA shunt in Saccharomyces cerevisiae?
Although the purpose of this review focuses on the 
known pleiotropic effects of the GDH pathway, we con-
sider that it will be beneficial for the reader to briefly 
describe the GABA shunt in S. cerevisiae and suggest 
possible interactions with the GDH pathway. The GABA 
shunt is a pathway utilized in many organisms for the 
conversion of glutamate to succinate, via the formation 
of γ-aminobutyric acid (GABA) and succinic semialde-
hyde [83, 84]. The pathway involves the decarboxyla-
tion of glutamate by Gad1p and the sequential action of 
GABA aminotransferase (Uga1p) and succinic semial-
dehyde dehydrogenase (Uga2p) for the production of 
succinate. In S. cerevisiae, the expression of UGA1 and 
UGA2 is upregulated by GABA, whereas the expression 
of GAD1 has been linked with calcium levels since Gad1p 
is a calmodulin-binding protein [85, 86]. In addition, the 
expression of GAD1 is proposed to be regulated by TOR 
signaling [87]. Experimental studies showed that yeast 
utilizes and stores GABA as nitrogen source and can 
transport it using the inducible GABA-specific transport 
protein (encoded by UGA4), general amino acid per-
mease Gap1 and proline-specific permease Put4 [88–90].

GABA shunt is still poorly understood in yeast, and 
has received less attention compared to other studied 
nitrogen pathways in S. cerevisiae [84, 87]. However, it 
is suggested that it has a role in cellular oxidative stress 
defense and is upregulated during the stationary phase, 
under nitrogen starvation [91]. Studies performed in 
yeast cells have shown that expression of GAD1 pro-
vided increased tolerance to oxidative agents compared 
to GAD1  mutant strains, while deletion of UGA1 and 
UGA2 rendered the cells hypersensitive compared to 
wild type strains [86]. The authors observed that the 
role of GABA shunt in oxidative stress was strictly 
dependent on the presence of the intact GABA cata-
bolic pathway, and suggested the importance of GABA 
as a signal to stress responses, as described in other 
organisms [92]. A recent study attributed the strong 
growth inhibition of UGA2 yeast mutants, to the accu-
mulation of succinate semialdehyde that is considered a 
potential toxic intermediate of GABA catabolism [93]. 
Finally, mutations in the GABA shunt genes resulted 
in yeast strains with reduced heat-stress tolerance 

compared to wild type [84]. The heat susceptibility 
observed in the mutant strains was correlated with the 
high intracellular ROS concentrations produced under 
the same growth conditions.

As discussed above, the GDH pathway has a role in 
cellular ROS defense in stationary phase cells and is 
linked with NADPH availability and NADH oxida-
tion during yeast growth under suboptimal conditions. 
Although to our knowledge, there is no direct evidence 
of crosstalk between the GDH pathway and the GABA 
shunt, we speculate that the GDH pathway may inter-
fere with the decarboxylating step of the GABA shunt 
by controlling the available glutamate via the action of 
Gdh1, Gdh2 and Gdh3 proteins under specific condi-
tions. We also speculate that the GDH pathway may 
also control the fate of the last reaction of the GABA 
shunt, which involves the degradation of GABA to 
γ-aminobutaric acid, instead of succinate, as previ-
ously described in S. cerevisiae (Fig. 3). γ-aminobutaric 
acid is a substrate produced from GABA degradation 
through the action of γ-aminobutaric acid dehydro-
genase. γ-aminobutaric acid can be utilized for the 
production of polyhydroxybutyrates (PHB), a type of 
complex macromolecules that accumulate as discrete 
granules in the cytosol of many microorganisms and 
serve as energy-storage molecules under imbalanced 
nutrient conditions [94]. During the last decades the 
properties of PHBs have been extensively investigated 
in bacteria [95–97]. Besides their role as carbon storage 
molecules, they were described as biopolymers with 
similar properties to common plastics with the unique 
ability to biodegrade [94]. Efforts to utilize bacteria for 
the production of PHBs in an industrial scale resulted 
in low yields of PHBs, leading to the search of other 
biotechnological platforms [87]. As discussed above, 
GDH pathway in yeast has an anapleurotic role and 
replenishes α-ketoglutarate for the production of suc-
cinate in Krebs cycle. GABA shunt also facilitates Krebs 
cycle by providing succinate via GABA catabolism. If 
the fate of GABA catabolism, favoring the production 
of γ-aminobutaric acid over succinate, is partially con-
trolled by GDH pathway, then formation of PHBs via 
GABA under specific conditions, opens new opportu-
nities to use S. cerevisiae for PHB-related compounds.

Conclusions
The GDH pathway has a key role in glutamate homeo-
stasis and ammonium assimilation in yeast cells. Syn-
thesis of adequate levels of glutamate utilizing two GDH 
enzymes with different metabolic activities reflects a 
unique evolutionary advantage of S. cerevisiae. This abil-
ity can fulfill the requirements of both fermentative and 
respiratory metabolic growth under ammonium excess. 
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This leads to an efficient exploitation of the carbon 
sources available at each given growth phase. The other 
essential adaptation in the GDH pathway of S. cerevisiae 
is the expression of a third GDH enzyme localized in the 
mitochondria that is primarily responsible for the degra-
dation of glutamate and the anapleurosis of Krebs cycle 
by providing α-ketoglutarate. The presence of three GDH 
enzymes in yeast assures rapid nitrogen assimilation and 
glutamate biosynthesis during fermentation and pro-
motes the wise use of α-ketoglutarate without disturb-
ing the proper function of Krebs cycle under respiratory 
conditions.

During the past years, cumulative evidence showed 
that the GDH pathway affects a broader range of cel-
lular activities (Fig.  4). This is an established example 
showing that cellular metabolic status coordinates the 
correct function of different cellular compartments. 
Indeed, the GDH pathway through the action of Gdh1p 
and Gdh3p showed a strong positive effect on epigenetic 
processes that promote telomeric silencing. Additionally, 
the metabolic capacity of Gdh1p and Gdh3p isoforms is 
essential in the regulation of α-ketoglutarate levels that 
seems to be the signal also for the NCR-regulated gene 
expression. These findings demonstrate new roles for 
the two conserved NADP-GDH enzymes that were pri-
marily described for their role in glutamate production. 
Additionally, the increased metabolic activity of NADP-
GDH through GDH1 overexpression seemed to alter the 
NAD–NADH levels and thus yeast growth under subop-
timal temperatures.

The GDH pathway was also implicated in the regula-
tion of ROS under different conditions. The lack of GDH3 
provoked yeast cells sensitivity to thermal and oxidative 

stress leading to apoptotic cell death due to ROS accu-
mulation. Furthermore, treatment of gdh3Δ yeast strains 
with the drug ebselen, potentiated ROS generation and 
possibly affected the function of NADH-GDH as a his-
tone H3 protease, as it was also observed in chicken [67]. 
GDH2 was found to genetically interact with GDH3 and 
GDH1 and regulate ROS levels. Finally, the GDH path-
way was found to be the iron-independent pathway that 
regulates glutamate production in yeast cells grown in 
iron limiting conditions. The importance of the GDH 
pathway in glutamate homeostasis, nitrogen assimilation 
and its role to various cellular functions is not restricted 
only to yeast cells. It has been observed that glutamate 
production through the appropriate function of GDH 
pathway has a role in the mitochondrial retrograde sign-
aling that affects changes in nuclear gene expression 
related to nutrient sensing and TOR signaling [26, 98], 
aging [99, 100] metabolism [20] and as recently shown, 
in different types of cancer [101–108]. Furthermore, mal-
function of the GDH pathway has been implicated in sev-
eral other human diseases including diabetes [109–111], 
neurodegenerative disorders [112], as well as congenital 
syndromes that affect mainly children [113].

Saccharomyces cerevisiae is a model organism fre-
quently used for biotechnological purposes [114–117]. 
Being a successful biotechnological tool for many dec-
ades, yeast still remains a cell factory that can be used 
for further challenges regarding genetic engineering and 
maintenance of redox balances, biosynthesis of basic 
metabolites and control of biosynthetic pathways [114]. 
Hosting three different and independent GDH enzymes 
makes S. cerevisiae an excellent system for better under-
standing the GDH-derived glutamate and its fate on post 
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translational modifications, epigenetics, chromatin regu-
lation, signaling, oxidative stress defense mechanisms and 
efflux processes essential for redox homeostasis. Finally, 
the decoupled functions of the GDH pathway in S. cerevi-
siae, in terms of glutamate biosynthesis and catabolism 
can be used as a model to address important biotechno-
logically related questions on the role and regulation of 
organic substrates like α-ketoglutarate. This seems to be 
important due to the significance of α-ketoglutarate in 
stress responses, lifespan extension, cellular senescence, 
tumor suppressing conditions and human diseases.
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