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• Biological responses to multiple
stressors were modeled in the Ebro
River catchment.

• Stressors were modeled for different fu-
ture socioeconomic and climatic scenar-
ios.

• Increased agriculture, urbanization and
nutrients were linked to poor ecological
status.

• The scenarios predicted a future deteri-
oration in the ecological status of water
bodies in the catchment.
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Multiple abiotic stressors affect the ecological status of water bodies. The status ofwaterbodies in the Ebro catch-
ment (NE Spain) is evaluated using the biological quality elements (BQEs) of diatoms, invertebrates and macro-
phytes. Themulti-stressor influence on the threeBQEswas evaluatedusing themonitoring dataset available from
the catchment water authority. Nutrient concentrations, especially total phosphorus (TP), affected most of the
analyzed BQEs, while changes in mean discharge, water temperature, or river morphology did not show signifi-
cant influences. Linear statistical models were used to evaluate the change of water bodies' ecological status
under different combinations of future socioeconomic and climate scenarios. Changes in land use, rainfall,
water temperature, mean discharge, TP and nitrate concentrationsweremodeled according to the future scenar-
ios. These revealed an evolution of the abiotic stressors that could lead to a general decrease in the ecosystem
quality of water bodies within the Ebro catchment. This deterioration was especially evidenced on the diatoms
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and invertebrate biological indices, mainly because of the foreseen increase in TP concentrations. Water bodies
located in the headwaters were seen as the most sensitive to future changes.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Climate change
Land use change
1. Introduction

Global change affects ecosystems at planetary scale (Briner et al.,
2013), and may be particularly important in some world regions. The
Mediterranean basin is one of the regions where climate and land use
alterations, together with intense economic and social changes, will
produce large effects on the ecological quality of water bodies (Cooper
et al., 2013; Skoulikidis et al., 2017). Climate patterns and future projec-
tions in theMediterranean region indicate that bothmean temperature
and monthly distribution of precipitation will change, leading to more
severe extreme events consisting on either high rainfall or droughts
(Ceballos-Barbancho et al., 2008; González-Hidalgo et al., 2010;
López-Moreno et al., 2010). These climate changes, togetherwith snow-
pack reduction, land use change and effects of dam regulation, have al-
ready caused a general decrease in river discharges and a displacement
in seasonality (López-Moreno et al., 2011). In particular, the abandon-
ment of agricultural lands is associated with the increase of forested
area, with the subsequent increase in evapotranspiration and decrease
in runoff (Gallart et al., 2011; Buendia et al., 2016). Riverine water re-
gimesmay be further altered because of irrigation schemes thatmay re-
vert the seasonal hydrological patterns (Piqué et al., 2016). Changes in
discharge patterns may be associated with changes in concentrations
of nutrients and contaminants (Han et al., 2009; Jeppesen et al., 2011),
particularly in urban areas acting as point pollution sources (Brown et
al., 2005). Altogether, present and foreseen changes may lead to a de-
crease in water discharge, alteration of hydrological patterns and pro-
gressive deterioration of water quality (Lehner et al., 2006; Meybeck,
2004). These changes are reflected in the structure of biological commu-
nities inhabiting the river system (Sabater et al., 2016; Tonkin et al.,
2017; Cooper et al., 2013).

The Water Framework Directive (WFD; EC, 2000) establishes that
the “good” ecological status of natural water bodies has to be based on
the chemical, hydromorphological and biological features, compared
with reference conditions (Feio et al., 2014). The biological variables,
or Biological Quality Elements (BQEs), use the composition and abun-
dance of taxa to establish class boundaries in the different water bodies.
For the diatoms, the IPS index (Indice de Polluosensibilité Spécifique,
Cemagref, 1982) characterizes the status of a water body based on dia-
tom community characteristics (Almeida et al., 2014) and the sensitivity
value and abundance of the present taxa. The IBMWP’ is a biotic index
which indicates the sensitivity of the aquatic invertebrate community
to organic pollution (Alba Tercedor et al., 2002). Finally, the IVAM
index is a quality indicator based on macrophytes composition and
cover (Moreno et al., 2006).

The objective of this study is to define the impact of different
stressors associated with global change on the biological communities
in the Ebro catchment (NE Spain). The biological status was described
using the three BQEs (diatoms, invertebrates and macrophytes) men-
tioned above. Stressors are defined anthropogenic disturbances (either
abiotic or biotic) which cause potential injurious changes to organisms
and communities (Segner et al., 2014; Crain et al., 2008), even with
the potential to drive evolutionary processes over geological times
when severe conditions persist (Parsons, 2005). The BQEs response
was analyzed following a conceptual model that relates the ecological
status of water bodies with the most relevant stressors occurring in
the River Ebro (i.e. hydromorphological alterations, discharge reduc-
tion, loss of riparian cover, nutrient enrichment). Finally, the obtained
models were used to define potential changes in the ecological status
of the river under future scenarios of land use and climate change.
2. Study area

The Ebro catchment is located in northeast Spain and covers an area
of 85,550 km2. The Ebro is the longestMediterranean river in the Iberian
Peninsula (total length of 928 km), and it flows from the Cantabrian
Range down into the Mediterranean Sea (Fig. 1). The catchment is
mainly delimited by the Pyrenees in the north and the Iberian Range
in the south. The Ebro shows a high inter-annual and intra-annual
water flow variability associated with its intrinsic Mediterranean char-
acter. The mean discharge at its mouth (Tortosa) for the period 1912–
2012 was 436 m3 s−1, but it ranged from b50 m3 s−1 during the very
dry periods to N12,000m3 s−1 for the highest flood ever recorded (Oc-
tober 1907; Novoa, 1984).

Runoff in the Ebro is regulated by a total of 187 reservoirs,
impounding 2/3 of the mean annual runoff. The largest reservoirs are
in the lower part of the Ebro and constitute the system Mequinenza-
Ribarroja-Flix, with a total storage capacity of around 1.7 km3. Flow reg-
ulation has decreased the magnitude of frequent natural floods down-
stream of the dams (Batalla et al., 2004), and sediment transfer has
reduced up to 90% (Vericat and Batalla, 2006; Tena and Batalla, 2013)
due to the trapping efficiency of the reservoirs complex. These
alterations affect the Ebro delta evolution and have caused ecological
consequences to the lowest river segment (Prats et al., 2011; Sabater
et al., 2008).

The Ebro basin has a Mediterranean climate with continental charac-
teristics, with semi-arid areas in the center and Atlantic areas in thewest-
ern part. Average annual precipitation is 622mm (period 1920–2000),
with high monthly and annual variability and highest rainfalls in spring
and autumn. The rainfall is irregularly distributed within the catchment,
ranging from 900 mm y−1 at the headwaters to 500 mm y−1 in the
Mediterranean zone, and with extreme values from 100 mm y−1 to
3000mmy−1. Averagewater temperatures range from13 °C in the head-
waters to 17 °C in the lower reach.

A broad spectrum of landscapes can be found within the catchment,
including boreal-alpine coniferous forests, mixed deciduous forests, Med-
iterranean evergreen andmixed forest and shrubs, and semi-arid treeless
formations. Historically, the predominant land use was agriculture
(vineyards, orchards and corn), but the progressive abandonment of
rural life has allowed the recovery of woodland and forest (Gallart et al.,
2002). Around half of the population lives in cities mostly located in the
central part of the catchment. The Pyrenees and the Iberian plateau
(40% of the catchment) have low population densities, with values
lower than 5 inhabitants/km2. Industrial activities are important around
the main cities.

The Ebro River has been deeply altered, particularly in its middle
(Ollero, 2007), and lower section (Batalla et al., 2004; Vericat and
Batalla, 2006). Riparian vegetation has been largely replaced by ag-
ricultural development in the fertile floodplain areas, producing dif-
fuse inputs of nutrients and pollutants (Romaní et al., 2010). Mean
annual flow records have decreased nearly 40% in the last 50 years,
both a result from rainfall decrease, irrigation increase and trans-
formation from agricultural land to forest (Gallart and Llorens,
2004; Buendia et al., 2016). Finally, cities scattered in the basin pro-
duce large local inputs of nutrients and pollutants (Sabater et al.,
2009). Overall, hydrological alterations and contaminants challenge
the ecological status of water bodies in the Ebro and their joint ef-
fect could be emphasized according to the loss of dilution capacity
(Han et al., 2009), potentially enhanced in future scenarios of cli-
mate and land use change.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1.Area of study. The Ebro basin. Dots represent the sites used for the statistical analysis. A selection of eight sites (green triangles) was used for the assessment of future scenarios. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Materials and methods

3.1. Conceptual model

The conceptual model identifies the main drivers, pressures and
stressors influencing the ecological status of water bodies in the Ebro
(Fig. 2). In this conceptual model, drivers are anthropogenic activities
(e.g. agriculture, industry) or climate change phenomena (climate
warming, changes in precipitation) that may have an environmental ef-
fect; pressures are direct effects of the drivers, and produce environ-
mental modifications (Feld et al., 2016); and stressors are measurable
variables resulting from an antrophogenic pressure that adversely affect
biological or ecological integrity (Segner et al., 2014). The main drivers,
pressures and stressors used in the model were selected based on the
existing information (Sabater et al., 2009; Barceló and Petrovic, 2011).
Five drivers were considered, i.e. agriculture, climate change, industry,
energy and hydropower, and flood protection. Agriculture is a source
of diffuse nutrient contamination andmodifies the spatial and temporal
distribution of river discharge. Climate change alters rainfall patterns
and leads to biogeochemical alterations related to the water cycle in
the basin. Industrial activities are the origin of point sources of
Fig. 2. Conceptual model proposed for the Ebro basin relationship between abiotic stressors and
the elements in the model. (For interpretation of the references to color in this figure legend, t
contaminants and modify the physical and ecological status of the river
as a side effect of taking benefit of river waters. Finally, hydroelectric
and flood protection infrastructures generate physical and hydrological
alterations that affect river discharge and produce hydromorphologic
changes.

In our conceptual model, the stressors resulting from these pres-
sures are total phosphorus (TP), nitrate concentration and changes in
meanwater discharge, water temperature and land use.Water temper-
ature and discharge are considered in the performed statistical analysis
presented below. The percentage of agricultural surface and the number
of inhabitants were also included as descriptors of land use. Moreover,
altitude andhydro-morphological statuswere considered as a surrogate
of natural variability. The hydro-morphological state was measured
based on the IHF index (Index of Fluvial Habitat), which includes infor-
mation concerning sediment characteristics, frequency of riffle areas,
shade areas, elements of heterogeneity or aquatic vegetation coverage
(Pardo et al., 2002).

Data on abiotic variables and biotic indicators were obtained from
the database available at the web site of the Ebro water authority
(Confederación Hidrográfica del Ebro, CHE; www.chebro.es). This
dataset includes observations related to physical, chemical and
ecological indicators. Different colors are used to improve visualization of the lines linking
he reader is referred to the online version of this chapter.)

http://www.chebro.es
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ecological parameters in a series of siteswithin the catchment. The qual-
ity of the data was good to fair, depending on the site and the specific
variable, and based on the principle of maximal data quality the sites
and periods were selected when abiotic stressors and biotic indicators
were jointly available (Fig. 1 and Table S1). Each BQE observation in a
specific site and given year was paired to the average value of abiotic
variables in the 3 previous months (1 to 3 measurements). The BQE
data were typically obtained during summer and therefore the values
of the abiotic stressors corresponded to mid and late spring conditions.
This resulted in three tables (supplementary material, Tables S2–S4),
one for each of the three biotic indicators considered and the corre-
sponding values of the abiotic variables (Figure 2).

3.2. Statistical analysis

After data compilation, the response of each BQE was modeled as a
function of the abiotic variables. This analysis was carried out using
the protocol developed by Feld et al. (2016), which consisted in an ini-
tial exploratory analysis to rank all the stressors, environmental descrip-
tors and their interactions in relation with their capacity to predict the
focal BQE, followed by the estimation of the predictor's standardized ef-
fect sizes (SES) and significance through linear models, where the BQE
were the response variables. All the analyses were conducted using
the R statistical software (R Development Team, 2017).

Prior to linear model analyses, TP and nitrate concentrations, the
number of inhabitants, and mean discharge were log-transformed,
and agricultural surface was logit-transformed to reduce skewness,
after assessing visually all variable distributions. Then, stressors and en-
vironmental descriptors were standardized to a mean equal to zero and
standard deviation equal to one and checked for collinearity using Pear-
son correlation coefficients (rP). All the stressors were kept as theywere
not highly correlated (rP b 0.65), except for the IBMWP model where
the number of inhabitants was removed to avoid collinearity.

First, a Random Forest analysis was used (randomForestSRC R pack-
age, Ishwaran et al., 2014) to rank stressors influence and identify po-
tential interactions on IPS, IBMWP and IVAM. The number of trees was
set to 3000 and the number of variables used in each split was set to
three (i.e., one third of the number of predictors). After Random Forest
results and expert knowledge, two candidate interactions were identi-
fied: TP x nitrates, and altitude × mean discharge. Second, Linear
Mixed Models were used (LMM, lme4 R package, Pinheiro et al., 2017)
to create global models to model the response of IPS, IBMWP and
IVAM to single and combined stressors. These models included TP, ni-
trates, agricultural surface, number of inhabitants (excluded in the
IBMWP model), IHF, water temperature, mean discharge and altitude
as fixed factors. Each model included different pairwise interactions as
fixed factors, which were selected based on the Random Forest results.
The IPS model included the pairwise interactions agricultural surface
× altitude and number of inhabitants × altitude, the IVAM model only
included the interaction nitrates × agricultural surface, and the
IBMWP model included the interactions nitrate × agricultural surface
andnitrate × altitude. Sitewas considered as a random factor to account
for repeated measures (Zuur et al., 2007). Single and combined abiotic
variables' SES and their significance were then quantified through
multi-model averaging (MuMIM R package, Bartoń, 2016). This statisti-
cal technique ranks all themodels generated using all the possible com-
bination of predictors. Then, a set of topmodels is selected to produce an
averagemodel only if themodel rankingfirst is not unambiguously sup-
ported (model weight b 0.90). Thus, themodels containing all potential
combinations of single and combined abiotic variables were ranked
using Akaike's Information Criterion (AIC, Akaike, 1973). Those models
differing in no more than four AIC units were chosen from the model
ranked first (minimum AIC). A natural average method was adopted
to conduct the model averaging, which consisted in averaging predic-
tors only over models in which the predictor appears and weighting
predictor's SES by the summed weights of these models (Burnham
and Anderson, 2002; p. 152). Candidate models were validated by visu-
ally checking their residuals for normality and homoscedasticity (Zuur
et al., 2007). For each LMM model, two measures of goodness-of-fit
were estimated (Nakagawa and Schielzeth, 2013): marginal goodness-
of-fit (r2m) indicates the variance explained only by the fixed factors,
while conditional goodness-of-fit (r2c) shows the variance accounted
for by both fixed and random terms. The mean average (based on
model weights) of each goodness-of-fit measure for each averaged
model is provided. Code and functions run the statistical analysis are
available in the supplementary material (Appendix A).

The empirical models obtained for IPS, IBMWP and IVAMwere used
to analyze future scenarios (Fig. S1, supplementary material). For this
purpose it was necessary to evaluate future values of the different vari-
ables. Some sites were selected for this analysis aiming to cover differ-
ent geographical areas (headwaters, lowlands and main Ebro river)
and different ecological quality status (good, intermediate, bad). Future
scenarios refer to horizon 2050. The definition of future scenarios is de-
tailed in the following section.

4. Definition of future scenarios

4.1. Integrated scenarios

The Integrated scenarios take into account climate, land use and
watermanagement changes and are based on various Shared Socio-eco-
nomic Pathways (SSPs, IPCC, 2017, van Vuuren et al., 2011). Two inte-
grated scenarios were considered to account for the different
evolutions of the social and environmental conditions. Each scenario
was defined in terms of economic growth, energy consumption, envi-
ronmental directives, social policies and water management. The two
scenarios were denominated as MYOPIC and SUSTAINABLE, and have
been developed during the GLOBAQUA project (Navarro-Ortega et al.,
2015). The development of these scenarios is explained in detail in the
supplementary material (Annex S1).

Land use for the year 2050wasmodeled for both scenarios using the
iCLUE model, a new version of the CLUE model family (Conversion of
Land Use and its Effects) originally developed by Veldkamp and Fresco
(1996) and recently reprogrammed by Verweij et al., 2012. The CORINE
Land Cover data served as input to the model and was reclassified to
thirteen land use classes. The considered categories were: non-irrigated
arable land, permanently irrigated land, vineyards, fruit trees and olives,
grasslands and pastures, complex cultivation patterns, agriculture with
natural vegetation, broad-leaved forest, coniferous and mixed forest,
sealed area, transitional vegetation, open spaces with little vegetation
and water. The land use maps obtained from this process were used
as input for the discharge modeling and the nutrient modeling.

4.2. Climate projections

Climate projections for precipitation andmean air temperaturewere
needed as input for themodeling of nutrients and discharge. These pro-
jections were obtained from different Regional Climate Models (RCMs)
that dynamically downscale various General CirculationModels (GCMs)
at different Representative Concentration Pathways (RCPs 4.5 and 8.5)
provided through the EURO-CORDEX initiative (Kotlarski et al., 2014).
Due to computational restraints, a subset of GCM-RCM combinations
had to be selected for further modeling. A cluster approach was applied
(Wilcke and Bärring, 2016), resulting in three main clusters of GCM-
RCM combinations. The clusteringwas based on climate change signals,
defined as the difference between the future (2050 horizon, 2036–
2065) and reference (1981–2010) period of various variables and sev-
eral temporal scales (annual and seasonal). The simulations were
ranked, based on the proximity to the center of each cluster. In this
way, a score sheet was established to identify the highest scoring
RCMs. The selection led to three combinations of RCM-GCM that kept
most of the spread of the original ensemble over the selected river



Table 1
Results of the models relating IPS, IVAM and IBMWP to single and combined abiotic vari-
ables. Standardized Effect Size (SES) and significance are shown. Significant variables are
highlighted in bold. r2m: variance explained just by the fixed factors; r2c: variance
accounted for by both fixed and random terms.

BQE Abiotic variables SES P-value r2m r2c

IPS Intercept 15.14 0.000 57.0 75.3
TP −0.93 0.001
Nitrates 0.18 0.538
Agriculture −1.09 0.004
Inhabitants −1.34 0.001
IHF −0.47 0.055
Temp 0.18 0.524
Qmean 0.33 0.340
Altitude 0.33 0.474
Agriculture x altitude −0.44 0.211
Inhabitants x altitude −0.24 0.437

IVAM 50.0 57.3
Intercept 4.50 0.000
TP −0.13 0.265
Nitrates −0.17 0.154
Agriculture −0.46 0.001
Inhabitants −0.52 0.002
IHF 0.14 0.168
Temp 0.00 0.970
Qmean 0.17 0.224
Altitude −0.13 0.407
Nitrates × agriculture −0.18 0.151

IBMWP Intercept 126.66 0.000 28.9 50.4
TP −9.66 0.038
Nitrates 2.82 0.560
Agriculture −0.08 0.991
IHF 5.37 0.234
Temp 3.00 0.552
Qmean 1.65 0.743
Altitude 17.67 0.002
Nitrates × altitude 5.97 0.226
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basins (Gampe et al., 2016); these RCM-GCM combinationswere, there-
fore, considered for the subsequent impact modeling. The following
GCM-RCM combinations have been selected for the impact modeling
activities: HadGEM2-ES-RCA4 (hereafter referred to as RCA4), EC-
EARTH-RACMO22E (RACMO22E), EC-EARTH-CCLM4-8-17 (CCLM4).

As climate model simulations are prone to biases at the regional
scale (Dosio, 2016), a bias adjustment is needed before using the simu-
lated series. A distribution-based scaling approach (Yang et al., 2010)
was applied on the selected simulations. The regional reanalysis dataset
MESAN (Hāggmark et al., 2000)was chosen as reference grid for the ad-
justment of precipitation andmean air temperature. The resulting bias-
adjusted simulations show better agreement with the observations and
considerable biases were removed to a large degree.

The resolution of the selected RCMs of 0.11° (~12 km) was not suffi-
cient to cover the processes of hydrological models in heterogeneous
terrain. Therefore, the downscaling algorithm SCALMET (Marke, 2008)
was applied to further disaggregate the RCM simulations to a 1 km
grid. SCALMET uses the lapse-rate approach, which is mass and energy
conserving and respects the climatology and main distribution of the
original simulations. Topography-dependent patterns obvious in the in-
terpolated observation grids are better represented in the downscaled
grids compared to the original bias-adjusted grids. The resulting bias-
adjusted and downscaled datasets were used for themodeling of future
projections for the variables involved in the conceptual model (Fig. 2):
mean discharge, TP and nitrates. Furthermore, projections in air tem-
perature were used as a proxy of changes in water temperature.

4.3. Discharge modeling

The discharge modeling for the application of future scenarios was
performed by using the mesoscale Hydrologic Model (mHM), a grid-
based distributed hydrological model that simulates canopy intercep-
tion, snow accumulation and melting, soil moisture dynamics, infiltra-
tion, deep percolation, surface runoff, evapotranspiration, storage in
the subsurface and groundwater, discharge generation, fast and slow in-
terflow and baseflow (Samaniego et al., 2010; Kumar et al., 2013a). The
spatial distribution of themodel parameters is obtained from catchment
characteristics such as soil types, geological classes and land cover types
using a multi-scale parameter regionalization technique (Samaniego et
al., 2010). Further details on mHM and the source code can be obtained
from www.ufz.de/mhm. The model has been successfully applied in
many river basins across the globe (Samaniego et al., 2010; Kumar et
al., 2013a, 2013b; Rakovec et al., 2016a, 2016b; Zink et al., 2017;
Huang et al., 2017).

The mHMwas run at daily time scale withmeteorological data from
the E-OBS dataset (Haylock et al., 2008) between 1995 and 2014 and
calibrated the model against daily discharge at the most downstream
site of the eight stations for future scenarios (Fig. 1, Table S1) to obtain
themodel parameters for present conditions. Themodel was calibrated
with the Dynamically Dimensioned Search (Tolson and Shoemaker,
2007). To capture high, average and low flows, a combination of the
Nash-Sutcliffe efficiency (NSE) between observed and modeled dis-
charges and their logarithm was used as objective function. Daily dis-
charge data were obtained from the CHE (www.chebro.es). The model
exhibited reasonable skill in capturing the observed dynamics of daily
streamflows with NSEs of between 0.5 and 0.66 for the majority of the
sub-basins in this study. After calibration of the model parameters,
mHM was used to simulate future scenarios of river discharge based
on the climate scenarios described in Subsection 4.4.

4.4. Nutrient modeling

Nutrients (TP and nitrates) in the Ebro basin were estimated as an-
nual loads (t y−1) under the different scenarios in selected reaches
within the basin. The pan-European model Green (Grizzetti et al.,
2012) was used for this purpose. The basin was divided in 18,568
subcatchments of 4.6 km2 size on average. Subbasin reaches were
linked in a node-link system that builds the reach network through
the basin until its outlet. Nutrient sources comprised fertilization of ag-
ricultural land, background deposition, point source loads emitted by
urban waste water treatment plants and industries, and emissions
from scattered households. The model considers a subbasin retention,
which is inversely proportional to annual rainfall in the subbasin and
is applied to the diffuse sources in the subbasin, and a reach retention,
which is proportional to the reach length and is applied to all load enter-
ing the reach. The two retention factors are controlled by two calibra-
tion parameters. The dataset used as model input was updated at
2012, and the retention parameters were calibrated against the Euro-
pean Environmental Agency water quality database for the year 2012
at European scale. No local calibration was performed.

The model was run for all the combinations of socioeconomic (MY-
OPIC and SUSTAINABLE) and climate projections (CCLM4, RACMO22E
and RCA4). Baseline conditions were estimated as mean nutrient loads
for 1981–2010 using MYOPIC CCLM4 rainfall data, current irrigation
amount map, MYOPIC 1995 land use map and 2012 modeled fertiliza-
tion levels. Fertilization changes were based on expert opinions elicited
during workshops for the MYOPIC and SUSTAINABLE scenarios: a de-
crease of 10% in organic fertilizationwas applied in any narrative, an in-
crease of 10% of mineral fertilization in future MYOPIC scenarios and a
decrease of 15% of mineral fertilization in SUSTAINABLE scenarios. The
nutrient loads for future scenarios were assessed as the mean annual
load at each reach for the period 2035–2065 (horizon 2050), using rain-
fall projections and assuming land use and irrigation levels for 2050.

5. Results

Random forest models identified agricultural surface (IVAM and
IBMWP), the number of inhabitants (IPS and IVAM) and altitude (IPS
and IBMWP) as good predictors of the BQE values. For IPS, the potential

http://www.ufz.de/mhm
http://www.chebro.es
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interactions identified by random forest were agricultural surface x alti-
tude and number of inhabitants x altitude. For IVAM, nitrates x agricul-
tural surface was identified as potential interaction, while for IBMWP
the most important interactions were nitrates x agricultural surface
and nitrates x altitude.

Multi-model averaging results highlighted that increasing TP
concentration, agricultural surface and number of inhabitants were
generally linked to low BQE values (poor ecological status). Specific
model results were that increased TP reduced IPS and IBMWP values,
while high agricultural surface and number of inhabitants were
linked to low IPS and IVAM values (Table 1). Additionally, altitude
was positively correlated with IBMWP values. Overall, no interactive
effects were found between abiotic variables, but additive effects
were dominant for IPS and IVAM. Fixed factors explained 57.0% of
Fig. 3. Response of IPS (a, b, c), IVAM (d, e, f) and IBMWP (g, h, i) to single and combined abiot
surface for different altitude levels (b), number of inhabitants for different altitude levels (c), agr
for different altitude levels (i). Different colors represent different levels for the variable not
minimum value within the data set, green represents the mean value within the data set;
references to color in this figure legend, the reader is referred to the web version of this article
the IPS variance, 50.0% of the IVAM variance and 28.9% of the
IBMWP variance. Fig. 3 shows the relationship between the BQEs
and the selected abiotic variables to visualizemain response patterns
of the BQE.

Themeasured values of IPS, IVAM and IBMWP are displayed in Fig. 4
and plotted against the corresponding values obtained from themodels.
The points that are modeled less satisfactorily are labeled indicating the
site number (Fig. 1, Table S1) and the year (in parentheses). BQEs for
sites 14, 23, 29, 34 and 38were overestimated by several of themodels,
while in the sites 2, 32 and 51 were underestimated by empirical
models. Those overestimated sites are mostly located in the mountain
tributaries (14, 38) or in middle height areas (23, 29, 34). The
underestimated sites were located at the mainstem of River Ebro (2,
32) in the middle and upper section.
ic variables. Fitted lines are shown for BQE metrics in response to TP (a, e, g), agricultural
icultural surface for different levels of nitrates (e, h), number of inhabitants (f) and nitrates
shown in the abscise axis (i.e.: b and c: altitude; e, h and i: nitrates): red represents the
purple represents the maximum value within the data set). (For interpretation of the
.)



Fig. 4. Comparison between the measured values of the ecological indicators and the
values calculated with the models obtained from the statistical analysis: IPS (a), IVAM
(b) and IBMWP (c). The labels indicate the site number (Fig. 1) and the year (in
parentheses) of those points with the lowest model fit.
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5.1. BQEs in future scenarios

The model results for the three climate projections (CCLM4;
RACMO22E and RCA4) and the two development scenarios (MYOPIC
and SUSTAINABLE) thatwere tested are shown in Table S5 (supplemen-
tarymaterial). RACMO22E climate projection predicts higher discharges
and the RCA4 climate projection predicts higher air temperatures. The
predicted trends for TP and nitrate concentrations in these scenarios
are less consistent. The socioeconomic scenarios predicted slightly
higher air temperatures in the MYOPIC than in the SUSTAINABLE, with
a large spatial variability in discharge.

When the RCA4 climate projection was aggregated into socioeco-
nomic scenarios, the projected values showed a reduced mean dis-
charge and a higher TP concentration for the MYOPIC and
SUSTAINABLE scenarios compared to the baseline (Fig. 5a and b). Ni-
trates were slightly lower for both future scenarios (Fig. 5c), while
water temperature displayed similar values for the scenarios and the
baseline (Fig 5d).

The predicted estimates for the IPS (Fig. 6a), IVAM (Fig. 6b) and
IBMWP (Fig. 6c) metrics were of lower values in both the MYOPIC and
SUSTAINABLE scenarios relative to the baseline. However, the IVAM
predicted values were slightly lower only in the case of the MYOPIC
model. In general, the predicted BQE values for the SUSTAINABLE sce-
nario were only slightly higher than those found for the MYOPIC
scenario.

6. Discussion

Our analysis indicated that the biological communities in the Ebro
basin, represented by diatom, macrophyte and invertebrate biological
indices (BQEs), were affected by high nutrient concentrations (mostly
phosphorus), agricultural intensification and the increasing number of
inhabitants. These pressures showed detrimental additive effects on
our biological indices, which suggest unlikely multistressor interactive
effects. Our analysis stressed that agriculture and number of inhabitants
accounted for higher fraction of the variance than nutrients (higher size
effects). This fact may be a consequence of agriculture and population
being linked to other impacts (e.g. pesticides and other pollutants, ripar-
ian removal, etc.) which could equally affect the BQEs.

Agricultural and urban intensification are key determinants of the
ecological status across the Ebro river basin (Sabater et al., 2009) and
other geographical areas (Carpenter et al., 1998; Monteagudo et al.,
2012; Gutiérrez-Cánovas et al., 2015). Urban settlements occurring
along the river network result in considerable phosphorous inputs
(Torrecilla et al., 2005), besides other pollutants (e.g. pharmaceuticals,
microplastics, Rosal et al., 2010), not considered here but potentially
reflected by the number of inhabitants. On the other hand, agricultural
intensification is linked to high nitrate (Monteagudo et al., 2012) and
pesticide concentrations in running waters (Stehle and Schulz, 2015),
especially during summer, when the lower discharge and the most in-
tense irrigation period take place. Agricultural nonpoint sources account
for 64% of nitrate loads generated in the central area of the Ebro river
basin, while urban and industrial point sources are responsible for 88%
of phosphate and 71% of dissolved organic carbon loads (Torrecilla et
al., 2005). Rivers exhibiting low flow periods, such as the Ebro or
other arid-climate rivers, are particularly sensitive to nutrient and pol-
lutant inputs given their low capacity to dilute chemical stressors and
the agricultural intensification in those areas (http://drylandsystems.
cgiar.org/content/worlds-dry-areas). Particularly, the co-occurrence of
higher temperatures, lower flow and higher nutrients can result in pri-
mary producer proliferation and eutrophication (Torrecilla et al., 2005).

The analysis allowed to capture a wide range of ecological responses
to these anthropogenic impacts, considering the spectrum of life histo-
ries and stressor sensitivity showed by diatoms,macrophytes and inver-
tebrates (Bonada et al., 2006; Moreno et al., 2006; Sabater et al., 2008).
Despite such variability the BQEs based on these organisms responded
roughly similar to the studied stressors. Both diatoms and macrophytes
are highly sensitive to nutrient variations because their growth is typi-
cally limited by nitrogen and phosphorus availability (Hecky and
Kilham, 1988; Elser et al., 2007; Tornés et al., 2007). Thus, their direct

http://drylandsystems.cgiar.org/content/worlds-dry-areas
http://drylandsystems.cgiar.org/content/worlds-dry-areas


Fig. 5. Predicted values for discharge (a, Qmean), Total Phosphorus (b, TP), Nitrates (c) and air temperature (d). BASE: baseline (current conditions). SUST: sustainable scenario MYOP:
myopic scenario. For each of the SUSTAINABLE and MYOPIC scenarios, we included the values predicted for CLM4, RACMO22E and RCA4 climatic models.
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relationship with nutrients may explain their strong responses to
higher phosphorous, agricultural and urban intensification, and their
higher explained variance compared to the invertebrate model. In-
creased nutrient availability favor fast growing diatoms and macro-
phytes, where such adapted organisms tend to dominate the
community and reduce diversity (Kelly, 2012; Moreno et al., 2006;
Licursi et al., 2016). A greater primary producer biomass is generally
linked to nutrient enrichment, as observed for the Ebro River, where
benthic chlorophyll in the main channel ranged between 7 and 700
mg m−2 during the low flow period (Sabater et al., 2008). On the
other hand, primary producers can control nutrient concentration
when light and temperature are sufficiently high and water regulation
avoids high discharge peaks (Sabater et al., 2008; Artigas et al., 2012).
Thus, when such conditions prevail in the middle and lower Ebro river
sections and tributaries (late spring and summer), macrophytes form
large masses covering N40% of the bottom and water transparency is
high (Ibáñez et al., 2008). Invertebrates were also negatively correlated
Fig. 6. Predicted values for IPS (a), IVAM (b) and IBMWP (c) at the eight sites considered for t
myopic scenario. For each of the sustainable and Myopic scenarios, the values predicted for CL
to nutrient (P) enrichment, but probably this relationship reflects their
response to general impairment of the system (Matthaei et al., 2010).
Invertebrates could also be sensitive to changes in basal food or habitat
heterogeneity (Mundie and Simpson, 1991; Wang et al., 2007; Astorga
et al., 2014); for instance, nutrients can have various indirect effects on
invertebrates such as changing palatability of coarse detritus (Graça,
2001) or the composition and biomass of invertebrate trophic groups
(Wipfli et al., 1998). Remarkably, the invertebrate index increased
with altitude indicating a gradient of natural variation from lowlands
to headwaters, as pollution sensitive organisms tend to be dominant
in cold, well oxygenated waters at mid-higher altitudes (Clarke et al.,
2008; Sánchez-Montoya et al., 2010).

Our predictions using socio-economic and climate scenarios showed
a consistent decrease in water discharge and increasing phosphorus
concentration, which were linked to a mean decrease in the diatom
and invertebrate based BQEs. These changes appeared in the different
scenarios tested, which coincided to show a future increase in
he future scenarios. BASE: baseline, current conditions. SUST: sustainable scenario MYOP:
M4, RACMO22E and RCA4 climatic models were included.



1616 A. Herrero et al. / Science of the Total Environment 630 (2018) 1608–1618
agricultural and urban pressure together with a decrease in the avail-
able water resources. Some of these patterns are already visible inMed-
iterranean and arid-climate rivers, where river discharge has
significantly decreased in parallel to growing human occupation. In
the particular case of the Ebro, the separate analysis in many sub-catch-
ments, has shown a rather general pattern of water resources decrease
(López-Moreno et al., 2011; Buendia et al., 2016). The decrease in water
resources adds to the strong regulation in the basin, which has influ-
enced the basin's hydrology causing a decrease in flood frequency and
magnitude (Batalla et al., 2004). The supply-demand (S:D) imbalance
is growing with rising agricultural demands and growing human den-
sity. The S:D analysis performed by Boithias et al. (2014) showed that
water scarcity could be a general problem for the basin, particularly in
the lower and agricultural plains, and that this could be aggravated if
the extension of irrigated areas would not decrease, which indeed it is
not planned (Ebro Basin Management Plan 2015–2021). These predic-
tions of lower water flow and more intense human activity in the
basin were correlated to the decrease of diatoms and invertebrate indi-
ces, in all future scenarios. The Ebro basin may therefore show poorer
ecological status in the future, despite the current implementation of
waste water treatment plants across the basin (Torrecilla et al., 2005;
Oscoz et al., 2008), and other sanitation efforts. The analysis indicates
that the increasingly lower dilution capacity of the river together with
the higher arrival of phosphorus inputs will challenge these efforts to
maintain or improve the ecological status of the Ebro.
7. Conclusions

Increased total phosphorus, agriculture and urbanization, were
linked to poor ecological status of the Ebro River. The river is expected
to experience further degradation in the future in response to land-
use intensification and climate change. Results suggest that agriculture
and urban intensification can be managed independently, but that ef-
forts to achieve a good ecological integrity in the Ebro catchment need
to consider all these factors, so effectivemitigation and restorationmea-
sures can be implemented in a scenario of shrinking water resources.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.02.032.
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