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Precipitation thresholds regulate net carbon
exchange at the continental scale
Zhihua Liu 1,2, Ashley P. Ballantyne 1, Benjamin Poulter3, William R.L. Anderegg4, Wei Li 5,

Ana Bastos 5,6 & Philippe Ciais 5

Understanding the sensitivity of ecosystem production and respiration to climate change is

critical for predicting terrestrial carbon dynamics. Here we show that the primary control on

the inter-annual variability of net ecosystem carbon exchange switches from production to

respiration at a precipitation threshold between 750 and 950mm yr−1 in the contiguous

United States. This precipitation threshold is evident across multiple datasets and scales of

observation indicating that it is a robust result and provides a new scaling relationship

between climate and carbon dynamics. However, this empirical precipitation threshold is not

captured by dynamic global vegetation models, which tend to overestimate the sensitivity of

production and underestimate the sensitivity of respiration to water availability in more mesic

regions. Our results suggest that the short-term carbon balance of ecosystems may be more

sensitive to respiration losses than previously thought and that model simulations may

underestimate the positive carbon–climate feedbacks associated with respiration.
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Terrestrial net ecosystem carbon exchange (NEE) currently
absorbs the equivalent of approximately 25% of all
anthropogenic CO2 emissions1 and plays a significant role

in regulating the variability of the global carbon (C) cycle2–4.
Despite the importance of terrestrial NEE, its response to climate
is a major source of uncertainty in future climate predictions5.
Terrestrial NEE represents the small imbalance between CO2

assimilation through gross primary production (GPP) and CO2

release through total ecosystem respiration (TER). GPP and TER
are coupled over the long term through the distribution of carbon
assimilated to ecosystem carbon pools and their subsequent
turnover leading to TER. Yet, GPP and TER can be decoupled on
temporal scales going from years to centuries if one of these fluxes
is perturbed by environmental conditions, and small decoupled
variations in GPP or TER fluxes can result in large variations in
NEE. Studies have shown that inter-annual variability (IAV) of
terrestrial NEE and its sensitivity to climate has increased during
the past 50 years3,6,7, but whether such an increase in NEE
variability is due to the climate sensitivity of ecosystem produc-
tion or respiration remains difficult to determine8–11.

A rich history of multiyear site-based data has revealed that the
sensitivity of ecosystem production to precipitation decreases as
water availability becomes more abundant12–17. Global analyses
suggest that fluctuations in global land NEE are either due to
water-controlled production in dry land ecosystems18,19, or due
to temperature-controlled respiration in tropical ecosystems3.
These competing hypotheses, i.e., water vs. temperature, were
recently reconciled by Jung et al.20 who found that water-driven
GPP and TER responses compensate each other, dampening
water-driven NEE variability regionally, and therefore leaves a
dominant temperature signal at global scale. However, previous
conclusions were either based on ecosystem-scale measurements,
or based on the water availability and NEE simulated by global
vegetation models, or on data-driven empirical models used to
extrapolate NEE globally, which are difficult to verify at the
regional scale. Therefore, we still lack a good empirical under-
standing of climate sensitivity of ecosystem production and
respiration and their consequences on net terrestrial carbon
dynamics at regional scales21. Using a dense network of well-
constrained observations across the contiguous United States
(CONUS), we began by testing whether the widespread
assumption that production is the primary control on IAV of
NEE is true at the continental scale. We then investigated what
processes control the IAV of NEE and how do they respond to
water availability. Finally, we studied whether the state-of-the-art
dynamic global vegetation model (DGVM) can capture the pro-
duction and respiration dynamics in response to continental-scale
water availability patterns.

We first calculated the per-pixel temporal correlation between
IAV of gridded observation-based fluxes (e.g., detrended GPP and
NEE using GPP derived from MODIS observations of the fraction
of light absorbed by plants using a light-use efficiency model
(GPPMODIS) and mean NEE from atmospheric CO2 inversions
constrained by a dense network of atmospheric CO2 concentra-
tion observations, given atmospheric transport models (NEEACI)
on an ecosystem scale using a dense network of 17 eddy covar-
iance sites from across the representative biomes in CONUS (see
Methods: Temporal correlation between IAV of GPP and NEE).
Then, we compared the sensitivity of GPP and TER derived from
these observation-constrained estimates with the results from an
ensemble of ten DGVMs. Here precipitation was chosen as the
main controlling variable for carbon fluxes, based on previous
analyses13–15 and our own sensitivity analysis (see Methods:
Sensitivity analysis). Precipitation is a simple measure of eco-
system water availability that is accurately measured across
CONUS, and there are several lines of evidence for strong

relationships with ecosystem production in this region15. Tem-
poral sensitivities (δt and γt) were calculated from linear regres-
sion models in which ecosystem carbon fluxes (i.e., GPP or TER)
are regressed against climate factors (i.e., precipitation and tem-
perature) that varied over time. These values of δt and γt indicate
the apparent sensitivities of carbon flux anomalies to unit change
in climate factor for a given ecosystem over time14. In addition,
spatial sensitivities (δs and γs) were calculated from nonlinear
models based on ecosystem flux data combined from grid cells or
ecosystem sites and used to indicate the apparent sensitivities of
mean carbon fluxes to a unit change in climate factor along cli-
mate gradients, generally across different ecosystem types14.
Lastly, we conducted a simple respiration modeling experiment of
increasing complexity based on empirically derived models of
heterotrophic respiration (see Methods: Ecosystem respiration
modeling experiments) in order to allow a process-oriented
evaluation of DGVM results. We show a precipitation threshold
between 750 and 950mm yr−1, below which the IAV of NEE is
regulated by ecosystem production and above which IAV of NEE
appears to be regulated by ecosystem respiration across CONUS.
This precipitation threshold is evident across multiple datasets
and scales of observation, but not captured by DGVMs, likely due
to inaccurate simulation of heterotrophic respiration to envir-
onmental constraints.

Results and Discussion
Spatial and temporal correlation between GPP and NEE.
Contrary to the finding that ecosystem production is the primary
factor controlling continental-scale variations in net carbon
exchange19,22,23, we find that mean annual GPP and NEE occupy
different climate spaces (Supplementary Fig. 1) and do not
necessarily covary spatially (Fig. 1a, b) or temporally (Fig. 1c) at
regional scales. First, looking at spatial variations, ecosystem GPP
is much more strongly controlled by mean annual precipitation
(MAP; r= 0.93, p < 0.001) than by mean annual temperature
(MAT; r= 0.38, p < 0.001), and increases with precipitation
(Supplementary Fig. 2a), such that the highest mean annual GPP
appears in the relatively warm and wet southeastern United States
(Fig. 1a). In contrast, the largest NEE (i.e., a strong carbon sink) is
found at intermediate levels of MAP (~750–1200 mm yr−1), and
then decreases at both higher MAP ( > 1200 mm yr−1) and higher
MAT (>20 °C) (Supplementary Fig. 2b), such that the highest
mean annual NEE appears in the relatively cool and wet
North Central United States (Fig. 1b). The spatial inconsistency
between patterns of observed mean annual GPP and NEE sug-
gests that the most productive ecosystems do not necessarily have
the largest NEE uptake. This happens because NEE reflects
not only current GPP but also the legacy of past ecosystem
exposure to climate, the effect of management such as biomass
harvest, and disturbances that decouple spatially annual NEE
from GPP.

To test the commonly held assumption that photosynthesis is
the main process regulating inter-annual NEE24, we calculated
Pearson’s product moment temporal correlations between four
independent GPP proxies and two NEE estimates at 1° spatial
resolution from 2000 to 2014 across CONUS (n= 8 data
products). Mean Pearson’s r from the resulting eight gridded
observation-based fluxes showed that there is a significant
positive correlation between GPP and NEE in more xeric (e.g.,
semiarid western grassland or shrubland) ecosystems, but only a
very weak correlation in more mesic (e.g., eastern deciduous
broadleaf forest) ecosystems (Fig. 1c). This sharply contrasting
pattern is independent of the combination of GPP and NEE
datasets used (Supplementary Fig. 3) and of their spatial or
seasonal resolution (Supplementary Fig. 4), which suggests that
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this relationship is not an artifact of the observationally
constrained dataset used. Wildfire CO2 emission (Supplementary
Fig. 5) and human activities, such as agriculture (Supplementary
Fig. 6) also did not substantially change the temporal correlation
between GPP and NEE along the precipitation gradient in the
CONUS. In contrast, mean Pearson’s r between GPP and NEE
from the ensemble of TRENDY DGVM simulations (n= 10
models) showed a universally positive temporal correlation across
the CONUS that was stronger in more xeric western ecosystems
(Fig. 1d). Mean Pearson’s r from TRENDY DGVM simulations
became higher than that from observation-constrained estimates

in all regions where MAP is >~750 mm yr−1 (Fig. 1e). The
varying strengths of GPP and TER controls on IAV of NEE along
the continental precipitation gradient appear to be a robust
pattern among observational datasets that is not well captured by
DGVMs, in which NEE remains highly coupled to GPP across the
entire CONUS.

NEE sensitivity along the precipitation gradient. To explore the
underlying processes that control NEE sensitivity along the pre-
cipitation gradient, we compare the spatial and temporal
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Fig. 1 Relationship between production and net ecosystem carbon exchange along the precipitation gradient. Relationship between estimates of GPP (gross
primary production) constrained by MODIS (Moderate Resolution Imaging Spectroradiometer) satellite observations and NEE (net ecosystem carbon
exchange) constrained by atmospheric measurements in inversions varies along the precipitation gradient in the contiguous United States (CONUS). The
spatial pattern of mean annual GPP (a, MOD17 GPP, 2000–2014) and NEE (b, ensemble mean from four atmospheric CO2 inversion models between
2000 and 2014, a positive value indicates land as carbon sink) in the CONUS. c Mean temporal Pearson’s r between gridded observation-based GPP
estimates (n= 4) and gridded NEE estimates (n= 2) between 2000 and 2014 (Supplementary Fig. 3). Dots indicate that correlation is significant if greater
than four individual combinations are significant at 0.1 level in Supplementary Fig. 3. d Mean temporal Pearson’s r between modeled GPP and NEE by ten
dynamic global vegetation models (DGVMs) from TRENDY project between 2000 and 2010 (Supplementary Fig. 15). Dots indicate a correlation is
significant if more than five individual DGVM is significant at 0.1 level in Supplementary Fig. 15. e Mean Pearson’s inter-annual r between detrended GPP
and NEE along the precipitation (and GPP) gradient in the CONUS, suggesting precipitation as the dominant control on GPP variations and GPP is the
primary control on the inter-annual variation of NEE. Shaded areas are the mean ± one standard deviation within each precipitation bin. a–d were created in
the R environment for statistical computing and graphics (https://www.r-project.org/)
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sensitivity of production and respiration to climate controls.
Regarding temporal sensitivities, we find that the IAV of both
GPP and respiration is primarily driven by precipitation (Sup-
plementary Fig. 7 and Supplementary Table 1) and thus focused
our analysis on their sensitivities to precipitation (Fig. 2). Both
observational datasets showed decreased IAV sensitivities of GPP
(δtGPP and δsGPP) and TER (δtTERand δsTER) in response to
increasing precipitation, but the slope of GPP sensitivity is steeper
than TER (Supplementary Figs. 8–9 and Supplementary Table 1),
which results in a precipitation threshold above which the IAV
and local spatial gradients of NEE are controlled by GPP in more
xeric ecosystems (Δδt > 0 or Δδs > 0) and by respiration in more
mesic ecosystems (Δδt<0 or Δδs<0, Fig. 2). This precipitation
threshold is the highest for temporal sensitivity using gridded
observation-based fluxes (i.e., inversions of NEE and gridded GPP
data products) (δt: MAP= 950 ± 90 mm yr−1, Fig. 2a) and lowest
for spatial sensitivity using EC observations (δs: 750 ± 75 mm yr
−1, Fig. 2b). The different precipitation thresholds between dif-
ferent observations may be due to data uncertainties in the large-
scale gridded observation-based fluxes. The results also indicated
that gridded observation-based fluxes, due to averaging out the
ecosystem-scale variability, show lower sensitivity than in the EC
observation (for both δt and δs). Furthermore, the spatial sensi-
tivity (δs) is larger (a steeper slope) than the temporal sensitivity
(δt) (Fig. 2). This is likely because δs reflects gradients of different

vegetation types across precipitation, while δt only includes the
short-term temporal response of fluxes to precipitation varia-
bility14. The legacy effect of previous year’s precipitation on
current-year’s production may also contribute to the lower δt25,26.
The sensitivity of GPP to precipitation decreases from dry grass/
shrub ecosystem to wet forest ecosystems, also consistent with
independent ecosystem-scale measurements13,15.

Although TRENDY models also simulate the decreasing
sensitivity of GPP and TER with increasing precipitation
(Supplementary Fig. 10), they do not appear to show the same
sensitivity threshold behavior than observation-based fluxes. The
δtGPP is always higher than δtTER in the TRENDY models across
the CONUS (Supplementary Fig. 10), and DGVMs appear to
overestimate the sensitivity of GPP to precipitation in the more
mesic ecosystems of CONUS. Thus, in more mesic ecosystems,
DGVM simulations show that GPP is the dominant control on
terrestrial NEE variability, while observationally constrained
estimates show that TER is the dominant control on terrestrial
NEE variability. This threshold in precipitation and model–data
mismatch is also evident when looking at the fraction of
precipitation being lost as evapotranspiration, indicating that
water surplus may cause a shift in NEE variability to more
respiration control (Supplementary Fig. 11).

Potential mechanism for the data–model mismatch. We then
explore which ecosystem process—production or respiration—
leads to this model–data mismatch. The per-pixel Pearson’s
temporal r between GPPMODIS and TRENDY GPP (GPPTRENDY)
is universally positive in the CONUS (Supplementary Fig. 12),
indicating that the mismatch is not likely due to GPP but rather
due to TER in the more mesic ecosystems. Indeed, our results
indicate that TER inverted from gridded observation-based fluxes
(TERinv=GPPMODIS–NEEACI) shows a significant temporal
correlation with TRENDY TER (TERTRENDY) in the more xeric
ecosystems where MAP < 750 mm yr−1 (r= 0.72, p < 0.001)
(Fig. 3a), but less of a correlation in the more mesic ecosystems
where MAP > 750 mm yr−1 (r= 0.302, p > 0.1) (Fig. 3b). This
suggests that DGVM TER simulations may be less realistic in
more mesic regions than in more xeric regions and thus
respiration most likely explains the mismatch between DGVMs
and observations in more mesic ecosystems.

Total respiration is the sum of autotrophic respiration (Ra) by
plants, and heterotrophic respiration (Rh) by soil microbes. The
Rh, which composes about half of TER, is jointly controlled by
carbon supply, soil properties, and by climate-dependent
decomposition rates. We hypothesized that the relative influence
of carbon supply versus environmental control on decomposition,
especially soil moisture, over Rh is a function of water availability
to drive the decoupling between GPP and TER, and thus varying
the strength of temporal correlation between GPP and NEE along
the precipitation gradient. To test this hypothesis, we used three
simple empirical ecosystem respiration models with varying
complexity and factors that included SOC (C), temperature (T),
soil moisture (M), and current-year productivity (P) as a proxy of
fresh input to litter in the fast SOC pools. These ecosystem
respiration models aimed to identify key environmental factors
that may help improve respiration simulation within DGVMs.
We found that TERTRENDY and all empirical ecosystem respira-
tion models were able to simulate the IAV of TERinv in the more
xeric ecosystem (r= 0.72–0.869, p < 0.01), except for TERCT

model (r= –0.203, p > 0.05) (Fig. 3a). By contrast, in the more
mesic ecosystem, only the TERCTMP model captured the variance
of TERinv (r= 0.66, p < 0.001) (Fig. 3b), and resulted in the lowest
RMSE (Fig. 3c) and statistically indistinguishable estimate of TER
when compared with TERinv (for the best TERCTMP model:
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mean ± sd= 1211 ± 31 g Cm−2 yr−1; TERinv: 1242 ± 41 g Cm−2

yr−1). Then, we partitioned TERCMTP into Ra being a GPP-
dependent estimate, and Rh consisting of a GPP-dependent
component standing for a fast-responding labile component of
Rh and a GPP-independent term standing for Rh of slower soil
carbon pools27. Comparison with an observed soil respiration
database (SRDB v3)28 confirms that the TERCMTP model
performed better at simulating TER, Ra, and Rh than the DGVM
simulations (Supplementary Fig. 13c). In particular, the TERCMTP

simulations of Rh are much better at explaining the IAV of
TERinv (r= 0.44, p < 0.1) than DGVM-simulated Rh (r= 0.25, p
> 0.1) in more mesic regions. This suggests that DGVMs do not
effectively simulate Rh and thus TER as water availability
increases across the CONUS. Temporal correlation between
IAV of gridded GPPMODIS and Rh from TERCMTP and TRENDY
reveals that Rh may control the decoupling between GPP and
NEE in the mesic CONUS areas (Fig. 4a, b).

Underestimation of the influence of soil moisture and soil
carbon on Rh is a possible explanation of why DGVMs were not
able to effectively simulate Rh in mesic ecosystems. DGVMs have
routinely incorporated temperature and moisture constraints on
Rh, but the effects of moisture on decomposition rate are much
more uncertain than temperature, especially in warmer and
wetter environments29,30, and also soil-dependent31. Currently,

global land surface models like the ones in TRENDY appear to
overestimate temperature effects on decomposition rates29,32, and
lead to faster soil carbon turnover time and stronger
carbon–climate feedbacks32,33, and therefore may override the
influence of soil moisture and soil carbon on Rh34. In addition,
experimental studies have shown that the sensitivity of microbial
respiration to soil moisture increases in wetter ecosystems35, and
may contribute to the higher observed TER variability in the
more mesic ecosystems. Partitioning TERCMTP into Rh and Ra
confirms that Rh contributed more to IAV of TER than Ra in
mesic regions than in the arid regions (0.50, calculated as S.D. of
Rh divided by S.D. of TERCMTP, vs. 0.40 in the drier region).
Therefore, our analysis suggests that the model–data mismatch in
more mesic ecosystems is most likely due to the poorly
understood response of heterotrophic respiration to wetter
conditions.

Large amounts of SOC are a major source of carbon supply for
microbial decomposition36, and can sustain Rh when the GPP
anomalies are low and fresh labile carbon supply to Rh is being
suppressed, therefore explaining why NEE variations tend to be
more buffered against changes in GPP in more mesic ecosystems
(r= –0.22, p= 0.43). Therefore, Rh may be more limited by
environmental conditions, rather than by carbon supply in more
mesic ecosystems, while Rh may be more limited by carbon
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supplied through productivity in drier ecosystems. Consistent
with this interpretation, we see that SOC shows a similar increase
across the continental precipitation gradient (Supplementary
Fig. 14). Therefore, accurate simulation of Rh requires capturing
the relative influence of carbon supply (e.g., production and SOC)
and environmental constraints (e.g., soil moisture) under
different hydrological conditions. However, GPP and Rh appear
to be too tightly coupled in DGVM simulations in mesic
ecosystems across the CONUS, suggesting that Rh may be overly
dependent upon production in global land surface models, and
therefore underestimate the influence of environmental con-
straints in the IAV of the Rh. This may help explain in part why
land surface models tend to underestimate turnover times27.

We also hypothesized that human land-use activity is a second
plausible driver to cause the spatial mismatch between production
and net carbon exchange in CONUS (Fig. 1a, b). The spatial
inconsistence between annual mean GPP and NEE, especially in
the Midwestern United States is most likely due to harvest of
these intensive agricultural ecosystems. Agriculture statistics show
that Midwest states account for about 21.2% of total agricultural
land, but contributes to about 45.7% of crop export of the United
States in 2012. The region exports roughly 0.08 Pg C yr−1 of crop
products37, which is approximately half of the Midwest regional
mean NEE (0.18 Pg C yr −1) and one-third of CONUS mean NEE
(0.3 Pg C yr −1) between 2000 and 2014 in the region. The
amount of carbon harvested in croplands needs to be better
represented in DGVMs which lack realistic simulations of crop
yields and often parameterize harvest as a fixed fraction of daily
net primary production and do not consider the lateral transport

of C in harvested goods. Removal of crop yields also means
reduced SOC inputs into the soil, and the production of harvest
residues that will decompose faster than natural litter, e.g.,
because of tillage, should increase the control of NEE by Rh
(Fig. 1c).

Our results help to understand the climate sensitivity of key
carbon cycle processes and potential ways to improve DGVM
simulations at the continental scale. Previous studies have shown
that moisture-regulated productivity in the arid or semiarid
region is the dominant control on IAV of global land net carbon
exchange;18,19 however, in these studies, they relied heavily on
DGVM simulations that appear to be overly sensitive to the GPP
response to water availability. To the extent that IAV is a useful
diagnostic of long-term carbon–climate sensitivity, our results
indicate that moisture-regulated respiration in mesic ecosystems
can be another major mechanism regulating the variability of
NEE. As the water balance of ecosystems within the United States
is projected to be drier in certain regions and wetter in others38,
our analysis will facilitate the identification of potential critical
thresholds which, if crossed, can abruptly change the carbon
balance of ecosystems in CONUS. Our analysis highlights
heterotrophic respiration as one of the most poorly understood
carbon cycle processes and thus the most difficult to accurately
simulate in land surface models, especially in more
mesic ecosystems. Therefore, better understanding of the
environmental controls of heterotrophic respiration may help
improve carbon turnover times in model simulations, thereby
reducing the amount of uncertainty in future carbon–climate
feedbacks.
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(heterotrophic respiration) derived from the TERCTMP empirical model. Satellite-derived estimates of GPP (gross primary production) are correlated with
Rh predictions from the TERCTMP model (a) and TRENDY-derived estimates of GPP are correlated with Rh (b), and TERinv anomalies are correlated with
TERCTMP Rh, and TRENDY Rh in regions below 750mm yr−1 (c) and above 750mm yr−1 (d). The correlation coefficients (r values) in c and d showed the
temporal correlation between TERinv anomaly and model Rh anomaly. Symbols *,**,*** indicate significant level at 0.1, 0.05, and 0.001 levels. a, b were
created in the R environment for statistical computing and graphics (https://www.r-project.org/)
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Methods
Temporal correlation between IAV of GPP and NEE. We calculated the temporal
correlation between IAV of detrended GPP and NEE using Pearson’s product
moment correlation (Pearson’s r) at pixel level over the CONUS. For gridded
observation-based fluxes, four gridded GPP or photosynthetic capacity indices
combined with two gridded NEE estimates, resulting in eight individual Pearson’s r
maps between IAV of GPP and NEE (Supplementary Fig. 3), were used to produce
mean Pearson’s r (Fig. 1c) at 1° resolution from 2000 to 2014. For each pixel, if
more than four individual correlations were significant, then the mean Pearson’s r
is considered as significant. For TRENDY simulation, the mean Pearson’s r was
calculated from detrended fluxes from each individual model (n= 10) at 1° reso-
lution from 2000 to 2010 (Supplementary Fig. 14). For each pixel, if more than 5
individual correlations out of 10 TRENDY DGVM simulations were significant,
then the mean Pearson’s r is considered as significant. Significance level at 0.1 was
used in this study.

To test the robustness of temporal correlation between IAV of GPP and NEE,
the same procedure was also applied at 3° spatial resolution and to growing-season
fluxes (May–Oct) (Supplementary Fig. 3a, c, and d). To further reduce the
uncertainties caused by pixel-level estimates for NEEACI, we also calculated the
correlation between IAV of GPP observed by MODIS (GPPMODIS) or TERinv and
NEEACI at the subcontinental scale (i.e., for the two regions with MAP above
and below 750 mm yr−1). The TER inverted from gridded observation-based
fluxes (TERinv) is calculated as the difference between GPPMODIS and NEEACI (i.e.,
TERinv =GPPMODIS–NEEACI). Although GPPMODIS and NEEACI may be subject to
large uncertainties at pixel level, we minimized this uncertainty and its influence on
our main conclusion by using an ensemble mean from multiple data sources and
regional estimates rather than pixel-level values (see Methods: Sensitivity analysis).
For TRENDY simulations, GPP, TER, and NEE are calculated as ensemble mean of
ten DGVMs from 2000 to 2010. We found a significant positive Pearson’s r
between IAV of GPP and NEE in more xeric regions (MAP < 750mm yr−1) from
both observations and TRENDY simulations, but correlations tended to diverge in
the more mesic region (MAP > 750 mm yr−1). TERinv and GPPMODIS have a
correlation with NEEACI of comparable absolute value but opposite sign in more
mesic regions. In contrast, GPP still had a significant positive correlation with NEE
in mesic regions in the TRENDY ensemble.

To test whether disturbance changes the temporal correlation between IAV of
GPP and NEE, we compared the wildfire CO2 emission with GPPMODIS and
NEEACI, and found that wildfire CO2 emissions are much smaller in magnitude
(0.021 ± 0.0039 Pg C yr−1), compared to GPPMODIS (6.29 ± 0.26 Pg C yr−1) and
NEEACI (0.30 ± 0.13 Pg C yr−1) (Supplementary Fig. 5). To test whether human
activities (e.g., agriculture) change the temporal correlation between IAV of GPP
and NEE, we masked out regions with high human influence index (HII) with
different thresholds (HII > 0.4 or HII > 0.3). We found that human activity had
little influence on the temporal correlation between GPP and NEE along the
precipitation gradient across the CONUS (Supplementary Fig. 6).

To visualize the temporal correlation between IAV of GPP and NEE along
precipitation and GPP gradients, we plot the mean and standard deviation of
Pearson’s r within each mean GPPMODIS and precipitation bins (Fig. 1e). Mean
GPP and precipitation for each pixel was calculated from 2000 to 2014. We use
precipitation from monthly, 0.5° spatial resolution from Climate Research Unit at
the University of East Anglia. Mean annual GPP and precipitation was binned into
14 equal intervals. Mean and SD of mean Pearson’s r from constrained global
observations (Fig. 1c), DGVM simulations (Fig. 1d), mean annual GPP, and mean
annual precipitation (MAP) were summarized in each interval, and plotted along
the GPP/precipitation gradient (Fig. 1e).

Finally, the soil organic carbon (SOC) content was plotted along the
precipitation and GPP gradients to show its potential influence of the Pearson’s r in
CONUS (Supplementary Fig. 14). The 0–100-cm SOC stock map was interpolated
from measured SOC points by Rapid Carbon Assessment (RaCA) by the USDA-
NRCS Soil Science Division in 2010 using Kriging method.

Sensitivity analysis. Temporal sensitivity (γtflux and δ
t
flux): The temporal sensitivity

was used to indicate the inter-annual sensitivity of carbon flux to change in climate
factor for a given ecosystem over time. Therefore, the temporal sensitivity was
calculated from each time-series measurement in which ecosystem production and
respiration and climate factors have varied over time. Temporal relationship
between ecosystem production and respiration and climate factors from long-term
site-level data are usually modeled as linear regardless of ecosystem types14. In this
analysis, the temporal model was formulated as

Δflux ¼ γtfluxΔTempþ δtfluxΔPrep ð1Þ

where Δflux (i.e., GPP or TER), ΔTemp, and ΔPrep are annual anomalies for gross
carbon flux, temperature, and precipitation, respectively. Therefore, γtGPP γtTER

� �
and

δtGPP (δ
t
TER) indicate the apparent temporal sensitivity of GPP (TER) to the absolute

change (Δ) of Temp and Prep controls. A summary for the temporal sensitivity was
included in Supplementary Table 1, and the δtGPP and δtTER were used to generate
Supplementary Fig. 2a and Supplementary Figs. 8–10. Annual anomalies (ΔTemp
and ΔPrep) were calculated by removing the mean from the time-series data.

To calculate the relative contribution of Prep and Temp anomalies to the
carbon flux anomalies (Supplementary Fig. 7), we follow the previous approach20.

The product of a given sensitivity (e.g., δtGPP) and the corresponding climate-
forcing anomaly (e.g., ΔPrep) constitutes the flux anomaly component driven by
this climate factor. Thus, ΔGPP ¼ γtGPPΔTempþ δtGPPΔPrep estimates the
contributions of temperature (γtGPPΔTemp) and precipitation (δtGPPΔPrep)
anomalies to the carbon flux anomalies (ΔGPP).

Spatial sensitivity (γsflux and δ
s
flux): The spatial sensitivity was used to indicate the

sensitivity of carbon fluxes across climate gradients (and ecosystem types). The
spatial sensitivity was calculated from a spatially explicit gridded model and
observation-based datasets. Spatial models are usually nonlinear between
ecosystem productivity and respiration and climate factors when they span large
gradients in climate14. We model the ecosystem production and respiration flux as
a function of mean Temp and Prep using a polynomial function (up to two orders)
to capture the nonlinear environmental effects.

flux ¼ α0 þ α1Tempþ α2Temp2 þ α3Prepþ α4Prep
2 ð2Þ

Finally, the first-order derivative flux–climate curve is calculated as the spatial
sensitivity of the flux to climate factors. We derived γsGPP γsTER

� �
and δsGPP (δsTER) to

indicate the apparent spatial sensitivity and temporal sensitivities of GPP and TER
to the change of Temp and Prep controls over space. A summary for the spatial
sensitivity values is included in Supplementary Table 1, and the δsGPP and δsTER were
used to generate Supplementary Fig. 2b and Supplementary Figs. 8–10.

Bootstrapping: to ensure that the sensitivity of ecosystem production and
respiration to climate factors is not affected by extreme values, we performed 100
bootstrap analyses by randomly selecting a subset of data in each model. The
confidence intervals of sensitivity in Fig. 2 and Supplementary Figs. 8–10 confirm
that the threshold of ecosystem production and respiration to precipitation is not
particularly sensitive to a few extreme values.

Sensitivity calculation for EC measurement: EC measurements provide direct
observations of net ecosystem CO2 exchange and estimated GPP and TER fluxes
with climate variables. A total of 17 sites with at least 5 years of data, representing
the major ecosystems across the CONUS were obtained from the FLUXNET2015
database (Supplementary Table 2 and Supplementary Fig. 16). Wetland sites and
sites with recent major disturbance were excluded from our analyses. Daily GPP
and TER were estimated as the mean value from both the nighttime partitioning
method39 and the light response curve method40. More details on the flux
partitioning and gap-filling methods used are provided by ref. 41. Daily values were
summed to annual values, and then used to estimate the sensitivity of productivity
(i.e., GPP) and respiration (i.e., TER) to annual Temp and Prep. The temporal
sensitivity (i.e., γtGPP; γ

t
TER ; δ

t
GPP; and δ

t
TER, Supplementary Table 1) for each

individual eddy-covariance site was calculated from time-series measurements and
plotted along the precipitation gradient for each bootstrap replicate
(Supplementary Fig. 8a). The spatial sensitivity (i.e., γsGPP, γ

s
TER, δ

s
GPP, and δsTER,

Supplementary Table 1) was calculated from all 17 flux sites and plotted along the
precipitation gradient (Supplementary Fig. 8b).

Sensitivity calculation for gridded observation-based fluxes: first, we used
National Ecological Observatory Network (NEON) ecodomains to calculate spatial
and temporal sensitivity of GPP and TER to Prep and Temp. There are 17 NEON
ecodomains in the CONUS and these ecodomains were designed strategically to
capture the variability in ecological and climatological conditions. Within each
ecodomain, we summarize mean GPPMODIS, NEEACI, TERglobal_obs, Prep, and
Temp from 2000 to 2014. The temporal sensitivity (i.e., γtGPP; γ

t
TER ; δ

t
GPP; and δ

t
TER,

Supplementary Table 1) for each individual NEON ecodomain was calculated
from annual anomalies and plotted along the precipitation gradient for
each bootstrap replicate (Supplementary Fig. 9a). The spatial sensitivity
(i.e., γsGPP; γ

s
TER ; δ

s
GPP; and δ

s
TER Supplementary Table 1) was calculated from long-

term mean (2000–2014) gross carbon flux and climate of all 17 NEON ecodomains
and plotted along the precipitation gradient (Supplementary Fig. 9b). The NEON
ecodomains were obtained from (http://www.neonscience.org/data/maps-spatial-
data).

The data uncertainties with GPPMODIS and NEEACI may affect the spatial and
temporal sensitivity of constrained global observations. The GPPMODIS uncertainty
was mainly from its inputs (including MODIS observations of FPAR, LAI, land
cover, and daily meteorological data) and algorithms42. Of these, meteorological
data contribute to the largest uncertainty at the global scale, but this uncertainty is
lower in regions with dense observations, such as CONUS43. Validation with EC
measurement suggested that GPPMODIS shows reasonable spatial patterns and
temporal variability across a diverse range of biomes and climate regimes44. The
annual NEEACI is the ensemble mean NEE of four atmospheric CO2 inversions to
reduce the uncertainty, primarily due to limited atmospheric data, uncertain prior
flux estimates, and errors in the atmospheric transport models45. In North
America, the largest uncertainty in NEEACI is in the Midwestern United States,
where agriculture dominates the landscape.

Sensitivity calculation for TRENDY simulation: The same procedure to
calculate temporal and spatial sensitivity for constrained global observations is
applied to the TRENDY simulations except (1) the temporal span is from 2000 to
2010; (2) GPP, NEE, and TER were the ensemble mean annual GPP and TER
across ten DGVMs. The temporal and spatial sensitivity calculated from TRENDY
simulations are plotted in Supplementary Fig. 10.
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Comparing the climate sensitivity of GPP and TER along the precipitation
gradient (Fig. 2). To compare the relative sensitivity of productivity and respiration
to precipitation, we calculated the difference (Δδt or Δδs) between the sensitivity of
GPP to precipitation (δtGPP andδsGPP) and sensitivity of TER to precipitation (δtTER
and δsTER) for each bootstrapping replicate (i.e., blue point minus red point in
Supplementary Figs. 8–10 for each bootstrapping replicate). Because δtTER and δsTER
were positive, a positive Δδt or Δδs indicates that GPP is more sensitive to
precipitation than TER. Mean and 90 percentile of Δδt or Δδs (n= 100) was plotted
along the precipitation gradient (Fig. 2). The Δδt or Δδs were summarized as a
change in carbon flux (unit: gC m−2 yr−1) in response to 100-mm change in
precipitation.

Robustness of climate sensitivity of GPP and TER along the water availability
gradient. We used two other water availability indices, including mean annual
precipitation minus evapotranspiration (P-ET, mm yr−1) and the ratio between
MAP and potential evapotranspiration (P/PET, unitless), to test the robustness of
the climate sensitivity of GPP and TER along the water availability gradient. The P-
ET integrates the temperature effect on water demand and is widely used to
represent climate water deficit. The P/PET is an indicator of the degree of dryness
of the climate at a given temperature. We calculated the sensitivity of GPP and TER
to these two water availability indices for constrained global observation and
TRENDY simulation (Supplementary Fig. 11). We did not report the sensitivity of
GPP and TER to water deficit for constrained EC observation, as ET/PET was not
included in the dataset. Monthly ET/PET data at 0.5° resolution were from MOD16
ET product (http://www.ntsg.umt.edu).

Ecosystem respiration modeling experiment. We designed a simple ecosystem
respiration modeling experiment to diagnose why the DGVMs fail to capture the
precipitation threshold of the sensitivity of production and respiration to pre-
cipitation. We used three empirical respiration models derived from publications
with increasing complexity and factors that include observed SOC (C), temperature
(T), soil moisture (M), and current-year production (P), and then compare them
with TERinv (g Cm−2 yr−1).

TERCT model. According to the models previously validated against a global
database of soil respiration (Rs) observations46, Rs can be predicted in response to
soil C content (SoilC, Mg ha−1) and temperature (Temp, °C) as follows:

TERCT ¼ SoilC ´ 64 ´ 1:720:21 ´Temp ð3Þ

TERCTM model. On the basis of TERCT model, the effect of soil moisture (SoilM,
m3 m−3) on Rs can be modeled as follows:46

TERCTM ¼
SoilC ´ 64 ´ 1:720:21´Temp ´ SoilM�2:1

0:55�2:1

� �6:6481 ´ SoilMþ0:007
0:55�0:007

� �3:23 ð4Þ

TERCTMP model: TERCTMP model is a photosynthesis-dependent respiration
model that is calibrated and validated against eddy-covariance data27. TERCTMP

combines the joint influences of temperature (f(Temp)), precipitation (f(Prep),
mm yr−1), and substrate availability, including SOC (SoilC) and current-year
production (P, g C m−2 yr−1), on ecosystem respiration, and can be described as
follows:

TERCTMP ¼ R0 þ k2 ´Pð Þ´ f ðTempÞ ´ f ðPrepÞ ð5Þ

where

R0 ¼ constantþ a1 ´ LAImax þ a2 ´ SoilC ð6Þ

f ðTempÞ ¼ eE0 ´
1

Tref�T0� 1
Temp�T0ð Þ ð7Þ

f ðPÞ ¼ a ´ kþ Prep ´ 1� að Þð Þ
kþ Prep ´ 1� að Þð Þ ð8Þ

In the TERCTMP model, R0 is the reference respiration rate at the reference
temperature (Tref) (15 °C), E0 is the activation energy, and T0=−46.02 °C. In the
response of respiration to precipitation (f(Prep)), k (mm) is the half-saturation
constant of the hyperbolic relationship and a is the response of total respiration to
null Prep. LAImax is the maximum leaf area index within a pixel. LAI at 1-km2

spatial resolution is derived from MODIS observations (MOD15A2, v6)47.
Current-year GPP was used in the TERCTMP model as there is no evidence for
lagged effects of GPP on TERinv or TERCTMP Rh (Supplementary Fig. 17).
Conceptually, this model can be considered as the sum of a GPP-dependent term
comprising autotrophic respiration (Ra) and the fast-responding labile component
of heterotrophic respiration, and a GPP-independent term standing for

heterotrophic respiration (Rh) of slower carbon pools. Therefore, TERCTMP can be
partitioned into Ra and Rh as follows:

Ra ¼ k2 ´P ´ f ðTempÞ ´ f ðPrepÞ ð9Þ

Rh ¼ R0 ´ f Tempð Þ ´ f Prepð Þ ð10Þ

All the coefficients used in TERCTMP were taken from the original study27,
where 104 globally distributed sites from the FLUXNET networks were used to
derive plant functional-type specific parameters.

Model evaluation: using TERinv as a benchmark, we calculated the spatially
averaged root-mean-squared error (RMSE) between four TER models (three
empirical respiration models described above and one ensemble TRENDY TER
(TERTRENDY) and TERinv (Fig. 3c). We also calculated the temporal correlation
between four TER models and TERinv at the subcontinental scale (MAP above and
below 750mm yr−1) (Fig. 3a, b).

We also compared the TERCTMP and TERTRENDY with a global soil respiration
database v3 (SRDB v3). Only measurements after 2000 were selected, and wetlands
and deserts were excluded as well as disturbed ecosystems (Supplementary Fig. 18).
A total of 123 site-year data were used. Of all the SRDB v3 data, a total of 18 site-
years explicitly measure the Rh and Ra, and these were selected to validate Ra and
Rh from TERCTMP model and TRENDY simulations (Supplementary Fig. 13).
Comparison between annual TER, Ra, and Rh from TERCTMP model and TRENDY
DGVM simulations and the SRDB v3 showed that TERCMTP model explained
significantly more variation in measured Rh in SRDB (v3) than DGVM simulations
did (Supplementary Fig. 13c).

Temporal correlation between Rh derived from TERCTMP model and TRENDY
simulations and GPPMODIS and GPPTRENDY were calculated at pixel level (Fig. 4a,
b) and at the subcontinental scale (MAP above and below 750 mm yr−1, Fig. 4c, d).

Datasets. Gridded observation-based fluxes. We used four remotely sensed
observations of GPP or photosynthetic capacity indices, including MODIS 17 GPP
(GPPMODIS), solar-induced chlorophyll fluorescence (SIF), normalized difference
vegetation index (NDVI), and fraction of photosynthetically active radiation
(FPAR). The GPPMODIS is a product of maximum light-use efficiency, the FPAR,
incoming radiation, and two scalar reduction factors that represent limitations on
photosynthesis through temperature and vapor pressure deficit42,48. Monthly
GPPMODIS at 0.05° resolution from 2000 to 2014 was obtained from the NTSG
group (http://www.ntsg.umt.edu/). Annual mean GPP from 2000 to 2014 was used
to produce Fig. 1a. SIF is sensitive to the electron transport rate of plant photo-
synthesis as well as the fraction of absorbed radiation49,50, from the Global Ozone
Monitoring Experiment-2 (GOME-2) for the period 2007–2014. The SIF data are
retrieved near the λ= 740 nm far-red peak in chlorophyll fluorescence emission.
Details of the retrieval of SIF from GOME-2 measurements can be found in ref. 49.
Monthly GOME-2 SIF at 0.05° resolution from 2007 to 2014 was used. NDVI is an
index of landscape-integrated vegetation greenness and photosynthetic capacity,
which is related to photosynthetic potentials under ideal environmental conditions,
and thus NDVI reflects an inherent vegetation photosynthetic property. NDVI is
from monthly, 0.05° MODIS MOD13C2 (C6) from 2000 to 2014, and only the data
flagged as “good-quality” were used. FPAR is the fraction of absorbed photo-
synthetically active radiation that a plant canopy absorbs for photosynthesis and
grows in the 0.4–0.7-nm spectral range. FPAR is from 8-day, 1-km resolution
MODIS MCD15A2 (C5) from 2000 to 2014, and only the data flagged as “good-
quality” were used. All the GPP or photosynthetic capacity indices were aggregated
into an annual time step at 1° spatial resolution.

We used two gridded NEE estimates, including a NEE from an ensemble of four
atmospheric CO2 inversions (ACI) (NEEACI) and a NEE upscaled from eddy
covariance flux data for North America (EC-MOD)51. Atmospheric CO2 inversions
estimate carbon exchange between the earth surface and atmosphere by utilizing
atmospheric CO2 measurements, a key observational component of the global
carbon cycle (e.g., their observed temporal and spatial gradients). ACIs defer
mainly because of choices for atmospheric observations, transport model, spatial
and temporal flux resolution, prior fluxes, observation uncertainty and prior error
assignment, and inverse method. Therefore, different ACI are likely different in
spatial distribution and magnitude of carbon flux45. Four different ACI products,
including Carbon-Tracker 2015 (CT2015)52, Carbon-Tracker Europe 2015
(CTE2015)53, CAMS54, and Jena CarboScope v3.855,56, were obtained from 2000 to
2014, and resampled to 1° resolution using the nearest neighborhood at an annual
time step. For each year from 2000 to 2014, an ensemble annual mean NEE was
calculated across four ACIs (termed as NEEACI). Positive NEE indicates CO2 from
atmosphere to land ecosystem, and thus carbon sink for land ecosystem. Annual
mean NEEACI from 2000 to 2014 was used to plot Fig. 1b. The EC-NEE was
developed from eddy covariance (EC) flux data, MODIS data streams,
micrometeorological reanlaysis data, stand age, and aboveground biomass data
using a data-driven approach at the UNH51. EC-MOD NEE is obtained at 8-day
time step at 1-km resolution between 2000 and 2012 and was aggregated into an
annual time step at 1° spatial resolution. GPP and TER from the EC-MOD
approach were not used, because they are not directly measured and inherently
correlated with NEE.
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TRENDY DGVM simulations. We used simulations of ten DGVMs from the
TRENDY v2 ensemble57 for the period 2000–2010: Hyland58, JULES59, LPJ60, LPJ-
GUESS61, NCAR-CLM462, ORCHIDEE63, OCN64,65, SDVGM66, and VEGAS67.
The model ensemble stems from the TRENDY Inter-model Comparison (“Trends
in net land_atmosphere carbon exchange over the period 1980_2010”) that
provided bottom-up estimates of carbon cycle processes for the Regional Carbon
Cycle Assessment and Processes (RECCAP). Our analysis uses simulations from
the “S2” storyline that includes time-varying atmospheric CO2 concentrations and
climate and fixed land cover for 2005. All simulations were based on climate
forcing from the CRU-NCEPv4 climate variables at 6-h resolution for the years
1901–2010, including precipitation, snowfall, temperature, short-wave and long-
wave radiation, specific humidity, air pressure, and wind speed. GPP, NEE, and
TER were summarized at 1° spatial resolution at an annual timescale from 2000 to
2010 for each model.

EC observations. A total of 17 sites with at least 5 years of data, representing the
major ecosystems across the CONUS were obtained from FLUXNET2015 database
(Supplementary Table 2 and Supplementary Fig. 16). Consistent with NEEACI,
positive NEE denotes uptake by the biosphere, and negative values indicate carbon
losses.

Climate data. Monthly gridded temperature (Temp) and precipitation (Prep) at
0.5° spatial resolution from 2000 to 2014 were obtained from Climate Research
Unit (CRU TS v. 3.25) at the University of East Anglia68.

Global soil respiration database. The global soil respiration database (SRDB v3)28

encompasses all published studies that report at least one of the following data
measured in the field (not laboratory): annual total soil respiration (Rs), mean
seasonal Rs, a seasonal or annual partitioning of Rs into its source fluxes (i.e., Ra and
Rh), Rs temperature response (Q10), or Rs at 10° C from 1961 to 2012. In this
analysis, we use records containing annual Rs (Ra or Rh, if present) after 2000 in the
CONUS (Supplementary Fig. 18). Wetland and desert records were excluded. In total,
we obtain 123 site-year annual Rs measurements, and 18 site-year Ra and Rh
measurements.

Wildfire emission. Monthly gridded CO2 emission from wildfire at 0.25°
resolution is from global fire emission database (GFED4s, with small fires).
Information about the algorithms, data, and uncertainties for the product can be
found in ref. 69.

Human influence index. The human influence index (HII), an indictor of human
impacts on the environment and ecosystem, was obtained from the Global Human
Footprint Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2)70. The
HII was created from nine global data layers covering human population pressure
(population density), human land use and infrastructure (built-up areas, nighttime
lights, and land use/land cover), and human access (coastlines, roads, railroads, and
navigable rivers), and normalized by biome and realm.

Data availability
All data analyzed in this study are publicly available. Gridded
GPP by MODIS is obtained from the Numerical Terradynamic
Simulation Group data portal (http://www.ntsg.umt.edu/data),
NDVI and FPAR by MODIS is obtained the Land Processes
Distributed Active Archive Center (LP DAAC: https://lpdaac.
usgs.gov/), and SIF by GOME2 is obtained from NASA Aura
Validation Data Center (AVDC) (https://avdc.gsfc.nasa.gov/pub/
). TRENDY simulation is obtained from http://dgvm.ceh.ac.uk/
index.html. Eddy-covariance data are from FLUXNET2015
Dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/).
Climate data are from Climate Research Unit (https://crudata.
uea.ac.uk/cru/data/hrg/). Global soil respiration database (SRDB,
v3) is obtained from ORNL DAAC (https://daac.ornl.gov/SOILS/
guides/global_srdb_v3.html). Carbon tracker is obtained from
NOAA Earth System Research Laboratory (https://www.esrl.
noaa.gov/gmd/ccgg/carbontracker/), Carbon Tracker Europe
from Wageningen University (http://www.carbontracker.eu/),
Jena CarboScope is from MPG (http://www.bgc-jena.mpg.de/
CarboScope/), and CAMS from ECMWF (http://apps.ecmwf.int/
datasets/data/cams-ghg-inversions/).
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