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Abstract: Upcoming satellite hyperspectral sensors require powerful and robust methodologies
for making optimum use of the rich spectral data. This paper reviews the widely applied coupled
PROSPECT and SAIL radiative transfer models (PROSAIL), regarding their suitability for the retrieval
of biophysical and biochemical variables in the context of agricultural crop monitoring. Evaluation
was carried out using a systematic literature review of 281 scientific publications with regard to
their (i) spectral exploitation, (ii) vegetation type analyzed, (iii) variables retrieved, and (iv) choice
of retrieval methods. From the analysis, current trends were derived, and problems identified and
discussed. Our analysis clearly shows that the PROSAIL model is well suited for the analysis of
imaging spectrometer data from future satellite missions and that the model should be integrated
in appropriate software tools that are being developed in this context for agricultural applications.
The review supports the decision of potential users to employ PROSAIL for their specific data analysis
and provides guidelines for choosing between the diverse retrieval techniques.

Keywords: PROSAIL; biophysical and biochemical variables; EnMAP sensor; model inversion;
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1. Introduction

For the retrieval of vegetation biophysical and biochemical properties, most studies traditionally
proposed empirical relationships between the variables and optical data [1–3]. This approach has
the advantage of straightforwardness and often yields good results. However, statistical models
(e.g., a simple linear regression between vegetation indices (VI) and vegetation traits), cannot be
easily generalized and require field measurements parallel to remote observations for calibration
and validation purposes [4]. Additionally, not all relevant spectral information for the specific target
application might be exploited when using only parts of the spectral data cube for modeling. This is
the case for VIs mostly only using two or three bands concurrently and thus limiting the estimation of
variables that exhibit certain levels of nonlinearity with reflectance measurements, such as leaf area
index (LAI) or chlorophyll content [4–6]. Conversely, canopy reflectance models (CRMs) offer the
possibility to significantly reduce the calibration needs. By definition, CRMs generalize well and also
permit the simultaneous analysis of all spectral information in an imaging spectrometer data cube.
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The very first canopy reflectance models (CRM) were established many decades ago, mainly for
the purpose of understanding canopy light interception and absorption, i.e., the complex interaction of
solar radiation with the vegetation canopy, see [7–10]. Since remote sensing data from airborne and
satellite-based platforms have become increasingly available from the late 1980s, these models have
also been exploited for the derivation of biophysical surface properties (e.g., vegetation traits) in the
context of vegetation monitoring, mainly in agriculture and forestry.

CRMs can be classified according to their approach and level of complexity. They are grouped
into four categories [11]:

(i) Geometrical models (e.g., [12]) describe the canopy as translucent geometric shapes. These models
may be sufficient to characterize sparse canopies where multiple scattering and shading only
plays a minor role.

(ii) Turbid medium models (e.g., [13]) treat the canopy as a horizontally uniform plane-parallel layer
with absorbing and scattering particles. These models are better suited for denser canopies than
(i) with the precondition that the vegetation elements are small compared to canopy height.

(iii) Hybrid models are a combination of (i) and (ii) (e.g., [14]). They are complex but versatile models
and can be used to characterize canopies that are neither dense nor sparse.

(iv) Monte-Carlo ray tracing models (e.g., [15]) describe the radiation regime in vegetated canopies most
closely to reality. Obviously, these models are the most complex and computationally-intensive.

Drawbacks of the different CRMs depend on the complexity of the model itself. Compared to
empirical approaches, CRMs usually require stronger computational resources to perform quickly.
Moreover, expert knowledge of model parameterization and inverse schemes are inevitable to permit
successful outcomes.

Comprehensive reviews of CRMs exist, e.g., [11,16]. In the current review we will focus only on
a turbid medium model (category ii): the widespread PROSPECT leaf model [17] combined with the
Scattering by Arbitrary Inclined Leaves (SAIL) canopy model [13,18].

The coupling of the PROSPECT and SAIL models (hereafter for simplicity: PROSAIL) was used
for the first time in 1992 [19] to analyze spectral shifts in the red edge spectral region. Many other
studies followed, leading Jacquemoud et al. in 2009 to publish the first review article of PROSAIL
analyzing the literature from 1992 to 2007 [20]. In recent years, the design and availability of a new
generation of satellite sensor data empowered more complex approaches that can fully exploit the
richer information content in the spectral (e.g., from future EnMAP satellite data), spatial (e.g., from
GeoEye sensors), and temporal domains (e.g., from the Copernicus mission). Due to this growing
interest, the PROSAIL model requires a new evaluation in terms of accuracy and possibilities of
application. This is warranted not only in scientific context but also in view of operational processing
chains for current and future satellite missions. Therefore, the main objective of the present study is to
provide a systematic review of the usage of PROSAIL for vegetation studies focusing on agricultural
applications. A motivation behind this work is the evaluation of the model in view of its final
implementation into the software EnMAP-Box [21], designed to support the use of data from the
German Spaceborne Imaging Spectrometer Mission EnMAP [22] in the context of biophysical and
biochemical variable estimation. Moreover, we aim to support other potential users to apply PROSAIL
for their specific purposes using both multi- and hyperspectral datasets for diverse vegetation types.

The paper is organized in the following way: Section 2 describes the model and its range
of versions. In Section 3, the main PROSAIL applications are pointed out. Section 4 explains the
identification of all peer-reviewed articles of interest. In the Sections 5–9, a statistical overview is
given about the analyzed literature in terms of spectral exploitation (Section 5), vegetation type
analyzed (Section 6), biophysical and biochemical variables of interest (Section 7), applied retrieval
algorithms (Section 8), and geographic situations (Section 9). All these issues are disputed focusing
on the performance of the model and retrievals regarding current trends and existing problems.
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Conclusions (Section 10) summarize the potential suitability of PROSAIL for hyperspectral data
analysis, with a special focus on agricultural areas. Moreover, potential research gaps are highlighted.

2. The PROSAIL Model

2.1. Overview

PROSAIL combines the leaf optical properties model PROSPECT with the turbid medium canopy
radiative transfer model SAIL. The models are coupled so that the simulated leaf reflectance and
transmittance from PROSPECT are fed into the SAIL model, completed with information about soil
optical properties and illumination/observation geometry (see Figure 1).
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The leaf optical properties model PROSPECT is central to the success of PROSAIL as it
simulates the spectral range from 400 to 2500 nm with only a limited number of parameters,
describing the biophysical properties of a single leaf. PROSPECT itself is based on Allen’s generalized
“plate model” [23] and received several modifications. Its first version simulated leaf reflectance and
transmittance as a function of only three input parameters: the internal structure parameter of the leaf
mesophyll (N), chlorophyll a + b concentration (Cab), and leaf water content (Cw) [17]. More recent
versions include additional parameters, such as dry matter content (Cm) or leaf mass per area (LMA),
brown pigments (Cbp), and total carotenoid content (Ccx). More detailed descriptions of the various
model versions can be found in the literature [24]. The newest version “PROSPECT-D” was published
in the year 2017 [25]. In this version, besides a new calibration of specific absorption coefficients (SAC)
of each pigment, leaf anthocyanin content (Canth) was added.

The SAIL radiative transfer model is based on the 1-D model developed by Suits [26] to simulate
bidirectional reflectance of a canopy [20]. PROSAIL also permits to calculate the fraction of absorbed
photosynthetically active radiation (fAPAR), e.g., [27], and the fraction of vegetation cover (fCover),
e.g., [28]. The SAIL model represents the canopy structure in a simple way and requires only a few
parameters [29]. These include leaf reflectance and transmittance (obtained from the PROSPECT
output), leaf area index (LAI), and leaf inclination distribution function (LIDF). In former PROSAIL
versions, only the average leaf inclination angle (ALIA) was required. 4SAIL expects the two input
parameters LIDFa (average leaf slope) and LIDFb (distribution bimodality) which are given for the
diverse distribution functions [30]. If only the average inclination angle is known, LIDFa is set to 0
and LIDFb equals ALIA while angle density functions are calculated as proposed by Campbell [31].
Additionally, information about viewing geometries, i.e., sun and sensor (observer) zenith angles
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(SZA and OZA, respectively) as well as the relative azimuth angle between both (rAA), must be
provided by the user. In 1991, the hot-spot effect was included in the model by Kuusk [32], which led
to renaming into “SAILH” (not applied in the current manuscript). It requires the ratio of leaf size
(width) over canopy height, introduced as the hot-spot size parameter (Hot). The fraction of diffuse
incident solar radiation (skyl) is another input into the model. For more information the reader is
referred to the study of Spitters et al. [33], presenting equations to estimate the share of direct and
diffuse components from daily global irradiance. Moreover, a soil reflectance factor (αsoil) is used to
mimic moisture-induced reflectance changes of the upper soil layer (ρsoil), e.g., as illustrated in [27,34].

Summarizing, the current PROSAIL model calculates the canopy bidirectional reflectance from
400 to 2500 nm in 1 nm increments as a function of up to 16 input parameters, defining pigment and
water content, canopy architecture, soil background, hot spot, solar diffusivity, as well as observation
geometry. All parameters of the PROSPECT and SAIL model family are listed in Table 1, including
their symbols and units. Additionally, crop-specific parameter ranges are listed for crops most often
analyzed by the studies found by the systematic literature search (Figure 2): maize, wheat, rice,
soybean, and sugar beet. Note that these ranges rely purely on values found in the literature and may
underlie changes.

Table 1. Overview of the input parameters of the PROSAIL model with symbols, units and typical
variable ranges published in the literature for five different crops that have been analyzed most often
by the studies (see Section 6).

Parameter Symbol Units Typical Ranges for Crops

Maize
[35–37]

Wheat
[37,38]

Rice
[39,40]

Soybean
[41,42]

Sugar Beet
[43–45]

Leaf Model: (PROSPECT-D)

Leaf structure index N Unit less 1.2–1.8 1.0–2.5 1.0–2.0 1.2–2.6 1.0–1.5

Chlorophyll a + b content Cab (µg/cm2) 0–80 0–80 0–80 0–80 20–45

Total carotenoid content Ccx (µg/cm2) 1–24 1–24 4–17 - -

Total anthocyanin content Canth (µg/cm2) - - - - -

Brown pigments Cbp Unit less 0–1 0–1 0–1 0–1 0–1

Dry matter content, or leaf mass
per area Cm/LMA (g/cm2) 0.004–0.0075 0.001–0.02 0.001–0.02 0.001–0.02 0.004–0.007

Equivalent water thickness, or
water depth EWT/Cw (cm) 0.01–0.03 0.001–0.05 0.001–0.002 0.001–0.05 0.03–0.08

Canopy Model: (4SAIL)

Leaf area index LAI (m2/m2) 0–7 0–8 0–10 0–7 0–4

Average leaf inclination angle * or:
Leaf inclination distribution

function **

ALIA
LIDFa/b

[30]

(◦)
(◦)

20–70
[30] 20–90 20–80 10–75 20–40

Hot spot parameter Hot (m/m) 0.01–0.2 0.01–0.5 0.01–0.1 0.2 0.2–0.4

Soil reflectance ρsoil (%)

Soil brightness factor αsoil Unit less 0.5–1.5 *** or 0–1 ****

Fraction of diffuse illumination skyl Unit less 23% for a standard clear sky [33]

Sun zenith angle SZA/θs (◦)
According to actual conditions during data/image acquisitionViewing (observer) zenith angle OZA/θv (◦)

Relative azimuth angle between
sun and sensor rAA/øSV (◦)

* characterizes an ellipsoidal leaf inclination model; ** spherical, planophile, erectophile, uniform, extremophile
or plagiophile types. LIDF is characterized by LIDFa, which controls the average leaf slope and LIDFb which
controls the distribution’s bimodality; *** to be multiplied with single ρsoil spectrum; **** scaling factor between the
two model-implemented ρsoil spectra (wet versus dry).
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2.2. Model Variants

Originally, the SAIL model was established for the analysis of homogeneous canopies, but over
the years, the model evolved to meet individual study objectives [46]. These model adaptation issues
are only shortly described here as a dedicated chapter of the review paper from Jacquemoud et al. [20]
discusses the model evolution in detail. For instance, to describe heterogeneous canopies with multiple
layers, a multiple layer-structure was added in 2M-SAIL [47]. Decomposing vegetation canopy into
stems and leaves, the SAIL model was converted into “SAIL-2” [48]. A combination of SAIL and
a geometric model (iii—hybrid model) to simulate discontinuous canopies [14] was combined with
PROSPECT to “GeoSAIL” [49]. The most recent variant is the numerically robust and speed-optimized
hybrid two-layer version 4SAIL2. It includes improvements in the modelling of the hot spot and
clumping effects as well as corrected output of canopy absorbance. Crown cover and tree shape factor
are additional parameters to make the model suitable for forest analysis [50,51].

Special model versions for specific applications were also developed, such as SAILHFlood for
submerged vegetation [52]. For the representation of heterogeneous canopies like forests, the “Invertible
Forest Reflectance Model” (INFORM) was established [53], which is essentially a combination of the
“Forest Light Interaction Model” (FLIM) [54], SAILH, and PROSPECT models.
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PROSAIL was also combined with modules calculating atmospheric transfer with the REGularized
canopy reFLECtance (REGFLEC) tool [55,56]. In some studies PROSAIL was coupled with the soil
reflectance model SOILSPECT [57], a semi-empirical model of soil bidirectional reflectance, e.g., [58].
The soil-leaf-canopy (SLC) [50] combines a modified Hapke soil BRDF model with PROSPECT
and 4SAIL2.

To analyze data outside the classical visible (VIS) to short wave infrared (SWIR) spectral region,
the thermal infrared (TIR) range was included with the SAIL-Thermique model [59,60]. To take into
account chlorophyll fluorescence emission (ChlF), the FluorSAIL model [61] or its newer version
FluorSAIL3 [62] were published. FluorSAIL3 comprises FluorMODleaf for the calculation of leaf-level
fluorescence [61] as well as a model for canopy–atmosphere coupling (MODTRAN5) [62]. The Fluspect
model is another leaf ChlF-CRM also based on PROSPECT [63].

Note that specific SAIL and PROSPECT versions are embedded in the integrated radiative transfer
and energy balance model “Soil-Canopy Observation of Photosynthesis and Energy” (SCOPE) [64].
Moreover, the free ARTMO (Automated Radiative Transfer Models Operator) platform provides the
possibility, amongst others, to elaborate any kind of spectral data with different leaf and canopy RTMs,
such as PROSPECT and SAIL [65].

In the current study, we restrict to the basic model version of the combined PROSPECT + SAIL
model. In this regard, multi-layer or geometrical model versions as well as model extensions for
thermal infrared or fluorescence analysis were excluded from the intense literature analysis.

3. Applications of the PROSAIL Model

PROSAIL has been used in forward mode, i.e., calculation of canopy reflectance using different
input parameters, for diverse purposes (see also Table 2 in Section 4). For example, a common
objective of studies using the model in forward mode was to examine the sensitivity of bi-directional
canopy reflectance to different factors, for instance the effect of parameters on the red edge position
(REP) of vegetation [66]. Other studies evaluated the sensitivity of canopy reflectance to leaf optical
properties [67]. In this way, researchers found for example that the sensitivity of canopy reflectance to
leaf reflectance is significant for large vegetation cover fractions only in spectral domains with low
absorption. Also the influence of the observation geometry on red and near infrared (NIR) reflectance
was investigated [68]. Other factors, such as sensitivity to canopy architecture, soil background
reflectance, and atmospheric conditions were examined [69]. The PROSAIL model was also exploited
for the design of new (improved) vegetation indices, e.g., [70,71].

The adoption of PROSAIL for retrieval of biophysical and biochemical variables from remotely
sensed data is far more frequent than the forward modelling applications. Inversion techniques are
employed when the actual input parameters of the model are the variables of interest: the actual output
of the model—the remotely sensed signals or bi-directional reflectance from vegetated surfaces—then
serves as input for the inverted model (see for instance Figure 7.1. in [4]). The quantification, mapping
and monitoring of biophysical and biochemical vegetation properties have become increasingly
important in the last years for a range of applications [72,73]. There are some specific applications,
such as the correction of imaging spectroscopy data, where biophysical products are used for the
evaluation of surface anisotropy corrections [74]. Other studies use RTM-derived plant traits for
phenotyping [75]. Another common usage is the assimilation of simulated reflectance or remote
sensing based estimates into vegetation dynamic/crop growth models (CGMs), for instance for the
simulation of energy balance or plant growth [47,76].

Very systematic reviews of available algorithms for the retrieval of biophysical variables from
optical remote sensing data were performed by Baret and Buis [4] and recently by Verrelst et al. [77].
The papers give comprehensive overviews of available methods and most of the inversion techniques
that have been applied to the PROSAIL model. Statistical (or canopy biophysical variable-driven)
approaches can be understood as parametric or non-parametric regression models adjusting the
parameters for fitting reflectance values with the variable of interest [4,69,78]. In contrast to parametric
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regression methods, which include for instance simple ratio vegetation indices, orthogonal VIs or
indices based on spectral continuum measures [69], non-parametric methods require a non-explicit
choice on fitting functions and spectral band relationships. Non-parametric methods comprise linear
regression methods, such as stepwise multiple linear regression (SMLR) or principal components
regression (PCR), and non-linear approaches, which were also denoted as machine learning regression
algorithms (MLRA). The large group of MLRAs comprises decision tree learning, artificial neural
networks (ANN), kernel methods, and Bayesian networks (for details see [77]).

Physical or radiometric data-driven approaches rely on finding the best match between measured
and simulated spectra [4]. Iterative numerical optimization or Markov chain Monte Carlo methods
were traditionally applied for this purpose, e.g., [27,79–83]. Since these algorithms have known
drawbacks, like high computational loads and the risk of converging to local minima [84], alternative
minimization techniques such as look-up table (LUT) inversion were developed [6,36,39,85]. To this
date, LUT methods may be one of the most often-used inversion strategies for the PROSAIL model.
However, some of the LUT elements can be solutions of various ill-posed problems [84]. Additionally,
LUT approaches still require relatively long computation time, in particular when variables must be
generated for large areas or from hyperspectral data. This has contributed to the trend that many
machine learning regression algorithms have been promoted in recent years [86,87], such as the
kernel-based algorithm of Gaussian processes regression (GPR) [88]. The combination of the generic
physical approach using a CRM with flexible, fast and effective non-parametric non-linear regression
methods is considered a “hybrid approach” [77].

Over the last decade artificial neural networks have become the most popular MLRA inversion
method [77]. ANNs were frequently applied to derive agronomic variables [43,89,90] and, moreover,
have been the first algorithms to be implemented into operational processing chains for vegetation
variable monitoring [91–93]. The Sentinel toolboxes, for instance, include a procedure for deriving
LAI, fAPAR, fCover, Cab and canopy water content (CWC) from Sentinel-2 data based on the ANN
inversion of PROSAIL [94].

Up to now, only a few studies have tested the PROSAIL model’s suitability for data from the
future German Spaceborne Imaging Spectrometer Mission EnMAP [22]. Currently under development,
the dual-spectrometer instrument EnMAP will deliver data with a spectral sampling distance (SSD) of
6.5 nm in the visible to near-infrared (VNIR, 420–1000 nm) and a SSD of 10 nm in the shortwave-infrared
(SWIR, 900–2450 nm) domain. Images will be acquired with a ground sampling distance of 30 m for
a 30 km-wide area in the across-track direction. The expected launch date will be in 2020 (personal
communication). An overview of the main characteristics of the future sensor is provided by Guanter
et al. [22] and on the mission webpage [95].

Regional validation of LAI retrieval from simulated EnMAP data was promising and the authors
concluded that transferable, consistent, and robust retrieval methods help to exploit the full potential
of a space-borne imaging spectrometer for vegetation studies [96]. Moreover, off-nadir pointing
capabilities of the future sensor can be employed to enhance the data acquisition rate [22], improving
seasonal monitoring of crop development through higher temporal sampling rate. This may slightly
decrease the accuracy of the variable retrievals [38] but certainly enhances the possibility to receive
cloud-free scenes. Acquisitions of spatial hyperspectral data, or “Imaging Spectroscopy”, will continue
to increase in the future. Besides EnMAP, other forthcoming spaceborne imaging spectroscopy missions
include the Italian ASI Hyperspectral Precursor and Application Mission (PRISMA) [97], NASA
HyspIRI [98], the Japanese HISUI HSI sensor for launch on ALOS-3, HYPerspectral X Imagery
(HYPXIM) [99], the Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) [100],
or—in the long run—future ESA Sentinel-10. Suitable radiative transfer models for the analysis of
these new spectral capabilities are therefore required. Many studies confirmed that the use of many
contiguous spectral bands lead to more accurate variable retrievals or provides greater potential
for reducing estimation uncertainties which consequently improves the accuracy and stability of
the resulting biophysical and biochemical products indirectly [42,76,101,102]. Currently, a Scientific
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Processor for managed vegetation is under development, which will include forest and agricultural
modules. This future module of the EnMAP–Box 3 software [21] will allow sophisticated variable
retrieval methods from future EnMAP data, using LUTs and MLRA approaches.

4. Systematic Literature Review

A systematic literature review process was carried out as described in the scheme of Figure 2.
The ISI Web of knowledge [103] was one of the main sources for the identification of relevant
publications as for the review paper from Jacquemoud et al. [20]. However, instead of searching
for the PROSPECT and SAIL model separately, the focus here was to look for studies using the
combined model version. Therefore, the search items “PROSAIL” and “PROSPECT+SAIL” were
applied in all variations for the period of 1992–2017 (see Figure 2). The second search engine used was
ScienceDirect. As shown in Figure 2 in the “screening” part, duplicates from the total of 473 records
were removed and those reference types identified, which were not relevant for the review study, such
as conference proceedings or other non-peer reviewed works or reports. In the next step, titles and
abstracts were screened in order to exclude studies from other research fields with similar naming.
In the eligibility part, 334 records remained to be screened more intensely. We specifically excluded
those studies fulfilling the following pre-defined criteria:

(1) only one of both models was used (PROSPECT or SAIL);
(2) the models were merely cited, mentioned, or planned to be used in the future;
(3) model versions that considerably changed from the original, such as FCR [104], SAIL-2 [48],

4SAIL2 [50], SCOPE [64], or GeoSail [105].

The third exclusion criterion was added, since these more complex model versions are not planned
for implementation into the EnMAP–Box 3 for the retrieval of agricultural products.

Additionally, during the paper writing process from May to November 2017, 23 more articles
were published using PROSAIL (information provided through weekly Web of Science search alert,
last update 16/11/2017). In the end, 281 records were left to fulfill the main criterion of having worked
with the PROSAIL model in forward or inverse modes to analyze remotely sensed data for any purpose
and application (see Supplementary Materials).

The most elaborative part of the study was the intense screening of the remaining articles to
extract information according to the following main themes:

• study type (review/research article);
• application purpose;
• spectral exploitation: hyperspectral data acquired, used or simulated;
• vegetation type analyzed: crops, forest, grassland/shrubs, orchards, or synthetic;
• retrieved biophysical and biochemical products: leaf—and/or canopy variables;
• retrieval method: variable-driven parametric approaches (mainly simple ratio or orthogonal VIs

established using PROSAIL), radiometric data-driven (iterative optimization or LUT inversion
techniques) or hybrid algorithms (combining non-linear non-parametric approaches with the
PROSAIL model);

• Geographic location.

Note that in the discussion and illustration of the literature review for simplicity the term
“parametric” was adapted for all VI-based estimations established using the PROSAIL model.
As explained in the introduction, there are several more methods categorized into parametric
regressions (see [77]), which, however, have not been used in the study context.

A total number of N = 281 articles (Supplementary Materials) were screened and relevant
information according to the above-mentioned criteria were extracted. Amongst those studies,
eight provided reviews over specific topics, such as:
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• methods to derive canopy characteristics from optical remotely sensed data [4,77];
• assimilation techniques for agroecosystem modeling [106];
• Earth Observation (E.O.) products for operational irrigation management [107];
• reviews of thirteen special issue papers that focused on novel approaches for exploiting current

and future advancements in remote sensor technologies [108];
• the first PROSAIL review paper [20];
• the estimation of canopy water content from spectroscopy [109];
• the first review paper about terrestrial imaging spectroscopy and potential applications [29].

The remaining 273 records were classified as research papers using the combined PROSAIL model.
At first, a general overview of PROSAIL usages is given in Table 2. The applications are

distinguished between forward and inverse modes and some exemplary references are given.

Table 2. Examples of applications of the PROSAIL model in forward and inverse modes.

Applications Exemplary References

Forward Modes:

Simulation of canopy reflectance for diverse vegetation types [110,111]
Influence of the illumination/observation geometry on spectral reflectance (and vegetation indices) [41,112,113]

Influence of biophysical and biochemical variables on spectral reflectance (or vegetation indices) [37,114–116]
Sensitivity of canopy reflectance to leaf optical properties/Global sensitivity analysis (GSA) [40,42,67,117,118]

Design, test and adaptation of vegetation indices [69,119–124]
Assimilation of simulated reflectance/vegetation indices into crop growth/vegetation dynamic models [125–130]

Emulation of canopy reflectance [118,131,132]
Model comparisons [79,83]

Inverse Modes:

Biophysical and biochemical variable retrieval [5,28,39,45,133–138]
Influence of the observation geometry on variable retrieval [38,139,140]

Determination of phenology [44,75]
Assimilation of retrieved products into water balance models [76,107]

Simulation and variable retrieval tests for future missions [38,45,87,96]

5. Annual Development and Spectral Exploitation

The histogram of Figure 3 shows the number of published PROSAIL papers from 1992 to 2017.
As indicated by the solid trend line, there is an evident increase of model usage. The same holds true
for studies elaborating hyperspectral data with the model, indicated by the dashed line. The year 2008
shows a significant peak for no obvious reason, even after conferring with the model authors.

The previous review study of Jacquemoud et al. [20] found a number of 29 articles published
between 1992 and 2007 using PROSPECT and SAIL in the coupled version. Compared to this period,
we found an almost tenfold increase up to 2017, implying the increasing importance of the model for
diverse applications. Note that the absolute increase of PROSAIL model usage is in fact in accordance
with the absolute increase of remote sensing and vegetation modelling studies from 1992 to 2017.
Thus, there is no relative increase of works dealing with the PROSAIL model compared to all used
approaches. However, the number of studies using PROSAIL is eminent compared to the application
of other CRMs, such as ACRM, INFORM, GeoSAIL, or SLC models.

One reason for this may be the suitability of PROSAIL for inversions: by the combination of the
canopy (SAIL) and the leaf (PROSPECT) model, a strong spectral constraint is imposed, minimizing
the number of unknown variables and thus enabling the inversion procedure [20]. Nevertheless,
the inversion of the model is still ill-posed, i.e., there is no unique solution, due to the fact that
different combinations of parameters lead to the same spectral signal [4]. Another reason for the
popularity of the model is that, unlike for vegetation indices, preliminary calibration is not needed and
time-consuming and labor-intensive acquisitions of field data simultaneously to sensor-overpasses can
be avoided [90,107,141]. Moreover, PROSAIL incorporates the effects of sun-target-sensor-geometry
and is therefore able to simulate the specific illumination and observation conditions required.
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Simulated reflectance and changing parameter effects of the PROSAIL model agreed well with other
1-D models and even appeared to fit the outputs of more complex models [142]. In the year 2007,
the actual versions of the SAIL model were successfully tested against other 1-D and 3-D models for
homogeneous canopies in the framework of the RAdiation transfer Model Intercomparison (RAMI)
experiment [143]. Overall, many studies concluded that the PROSAIL model constitutes a good
compromise between the real world, model complexity, accuracy, and computation time [82,144]
rendering it suitable for the analysis of hyperspectral data with multiple viewing angles.
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Hyperspectral data used in the studies (blue bars in Figure 3) were mostly collected by
ground-based spectrometer (ASD field spec) and airborne sensors, typically Compact Airborne
Spectrographic Imager (CASI), DLR airborne sensor HySpex, Airborne imaging spectrometer HyMap
or AHS, INTA. Nevertheless, the two operating hyperspectral satellite platform, i.e., ESA’s CHRIS
on Proba, and Hyperion/Earth Observing-One (EO-1), were also exploited by a few studies,
e.g., CHRIS [140,144–146] and Hyperion: [41,112,121]. The collection of hyperspectral data does
not imply that the studies exploited the full spectral range measured. In contrast, most of them
applied parametric regression methods using a few spectral bands (see Section 8). Overall, 45 studies
were identified that specifically used hyperspectral sensor data, combined with numerical or hybrid
PROSAIL inversion schemes for validation activities of agricultural biophysical and biochemical
variables (mainly LAI and Cab). Of those, a total number of N = 18 used field spectroscopy data
(mainly from the FieldSpec instrument families, ASD), N = 17 used air-borne sensor data, such as
HyMAP or CASI and N = 10 used satellite observation (CHRIS/Proba). Only 10% of all PROSAIL
studies used data from hyperspectral satellite systems for diverse purposes, mainly biophysical and
biochemical variable retrieval. This reflects the lower availability of free hyperspectral satellite data in
the last decades compared to multispectral systems.

6. Vegetation Types Analyzed

As shown by the pie chart in Figure 4, tree-types were examined by 17% of the users (i.e., forests
15% and orchards 2%). Natural vegetation, which includes grassland and shrubs, was analyzed by
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14% of the researches. Almost one fifth (i.e., 18%) of the studies investigated the synthetic model
output for their objectives. Nearly half of the PROSAIL studies exploited a diversity of agricultural
crops (49%). A distinction of crop type was only roughly performed, resulting in wheat (32%) as most
often analyzed crop type, followed by maize (19%), and sugar beet (8%). Other crop types comprise
rice, soybean, potato, vineyard, barley, alfalfa, cotton, mustard, sunflower, garlic, and onion.Remote Sens. 2018, 10, 85 11 of 25 
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In summary, literature analysis showed that PROSAIL was successfully used for various
vegetation types, including different crops, forests, grassland, and shrubs. Vegetation with
heterogeneous canopy architecture, such as orchards and forests, was thus investigated by a relatively
high percentage of all studies. This is surprising, considering that there are various RTMs available
which are intended for the description of discontinuous forest canopies, like INFORM [53], two- or
multilayer versions of SAIL or GeoSail [14]. The basic physical assumptions of the turbid medium
model PROSAIL—treating the canopy as a collection of absorbing and scattering tissues randomly
distributed in a horizontal layer—rather recommends the application for homogenous crops. Indeed,
a study estimating water-related variables (leaf and canopy water content) from forest, shrubs, and
grassland found that the PROSAIL model inversion performance was rather limited across sites without
precise in-situ knowledge [133]. For crops, most studies found that PROSAIL achieved reasonably
accurate simulations, e.g., [41,83,110,111,137,147]. Compared to a three-dimensional dynamic maize
model, the PROSAIL model performance was only slightly decreased [81]. Testing the model for
wheat varieties, the overall shape of spectra for all combinations of view zenith and azimuth position
including hotspot and dark spot positions was well simulated. The authors pointed out that the
model’s performance may be suitable for deriving wheat biophysical variables from E.O. data [147].
Another work found similar trends between field-collected spectral data and PROSAIL simulated
reflectance of maize and wheat canopies [78], concluding that both, the model as well as field-collected
spectral measurements have the unique potential to determine crop biochemical variables, such as leaf
chlorophyll content.

7. Biophysical and Biochemical Variables

The biophysical and biochemical variables that were retrieved by inverting the PROSAIL model
(or deviated using PROSAIL-designed VIs) are summarized in Figure 5. The variable of strongest
interest is the leaf area index (LAI). This might be due to the easier retrievability compared to other
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variables. Global sensitivity analysis of the PROSAIL model showed, that LAI is one of the main
driving variables that influence the variations over the whole spectrum. In some spectral regions,
LAI is even the dominant driver [42]. LAI is closely followed by leaf chlorophyll content (Cab) as
demonstrated by the bars in Figure 5. The combination of both—canopy chlorophyll content (CCC)—is
ranked third, which is again related to the retrievability of LAI. The estimation of leaf variables, such
as Cab, from reflectance at canopy scale usually achieves lower accuracies than from leaf-scale signals.
This is due to other (structural) variables, such as LAI and ALIA, strongly influencing the spectral
signal on canopy level [42,145]. However, spectral measurements at leaf scale are restricted to single
field-based or laboratory experiments and cannot be delivered by airborne and spaceborne sensors.
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Figure 5. Biophysical and biochemical variables estimated by the evaluated studies. Leaf variables
(PROSPECT) in bright green: leaf chlorophyll content (Cab), total carotenoid content (Ccx), dry matter
content (Cm), leaf water content (Cw), and fuel moisture content (FMC). Canopy variables (SAIL)
are depicted in dark green: leaf area index (LAI), average leaf inclination angle (ALIA), fraction of
vegetation cover (fcover), fraction of absorbed photosynthetically active radiation (fAPAR), canopy
chlorophyll content (CCC), and canopy water content (CWC). The category ‘others’ includes variables
that were only indirectly derived from PROSAIL, such as plant phenology or nitrogen content.

Besides retrievability, widespread and straightforward techniques for field data collection of LAI
and Cab using optical instruments may be another reason for the special interest in these variables.
Ccx, fuel moisture content (FMC, a combination of Cm and Cw) and ALIA were estimated only in
a few studies, albeit the latter was often highlighted as a problematic variable hindering the correct
estimation of the variables of primary interest such as LAI and Cab [27,89]. Nevertheless, the in-situ
measurement of ALIA is laborious and resource-demanding, which often leads to a lack of data [148].

The retrieval accuracy for Cab and LAI using different inversion methods was satisfying for a number
of crop types that deviate more or less from the turbid medium assumption, such as cotton [145], sugar
beet [136], potato [140], sunflower [149], or rice [39]. There exists, however, also critical work regarding
the suitability of the model. A study investigating maize at early stage found that for row crops with
incomplete coverage and strong leaf clumping, PROSAIL retrieval performance was limited [136].
This was emphasized by another study which pointed out the deficiency of PROSAIL in describing
gap-driven anisotropy caused by the row structures of a (cotton) canopy. Testing the model for rice
instead—a canopy type for which the turbid medium hypothesis may be more valid—PROSAIL
correctly reproduced the typical bowl shaped NIR anisotropy [145]. Retrieval validation results,
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however, must be taken with caution, considering possible uncertainties of the ground-based variable
measurements [90,136]. With the use of more complex and sophisticated models providing a more
realistic canopy structure, such uncertainties might be overcome. It should be kept in mind that such
complex three-dimensional models also require higher computational resources and may be partly
impracticable in the frame of agricultural remote sensing applications, particularly regarding the
increasing dimensionality of spectral, spatial, and temporal domains. However, recent studies have
introduced the concept of emulation; i.e., the use of surrogate functions approximating the complex
model structure, e.g., [132]. If this concept reaches a wider audience, more complex models could
replace turbid medium approaches also within operational processing chains.

More than 85% of the analyzed studies employed the PROSAIL model for the estimation of
biophysical and biochemical variables, using one or several of the discussed retrieval techniques.
Leaf area index, the most frequently estimated variable from the 281 articles investigated,
has an outstanding importance for plant eco-physiological processes, such as photosynthesis,
evapotranspiration, interception, carbon fluxes, as well as for the detection of plant stress and diseases.
Long-term global monitoring of this variable helps to identify dynamic changes in productivity and
to quantify climate impacts on vegetated ecosystems. A review about LAI retrieval including other
examples of applications is provided in [150]. Despite the high number of studies estimating LAI,
still many problems were encountered using the PROSAIL model. One is the saturation of reflectance
values occurring in particular with larger LAI values, reinforced by the complex effect of actual
canopy architecture of the specific vegetation type analyzed [90]. On the other hand, at earliest and
late growth stages with low LAI, the background reflectance dominates the spectral signal and thus
strongly influences the variable retrieval. A solution to this problem was recently suggested [38],
as two different background types were implemented in the inversion: whereas the “normal” soil
reflectance characterizes the vegetative stage, a spectrum of typical non-photosynthetic vegetation was
used to describe the background during the maturing stages of wheat.

The second most frequently estimated variable, Cab, is of high interest due to its close relation
to foliar chemistry parameters, in particular nitrogen, and thus its ability to indicate early plant
stress [151]. The canopy scaled variable CCC is well suited for quantifying canopy level nitrogen
content during early growth stages [152]. The average leaf inclination angle ALIA plays a minor role in
scientific publications, as indicated by the low number of studies dealing with this variable (Figure 5).
Nevertheless, just like LAI, it is a key plant canopy structure parameter affecting the radiation regime
within the canopy and thus indirectly driving photosynthesis and plant productivity [153]. Therefore,
more research is encouraged to investigate the retrieval of ALIA.

8. Variable Retrieval Methods

Researchers, who used the PROSAIL model for biophysical and biochemical variable retrieval,
applied the following approaches:

(a) parametric: indirect use of the model by building an arithmetic combination of two or more
bands (=simple ratio or orthogonal VIs) and relating it to the variable of interest (these parametric
models are then applied to real data, see also introduction);

(b) radiometric-data driven (i): numerical iterative optimization techniques;
(c) radiometric-data driven (ii): look-up tables (LUTs);
(d) hybrid methods: combining a non-linear, non-parametric statistical approach with the physically

based PROSAIL model. (i): ANNs and (ii): other machine learning regression algorithms, such as
GPR or SVM.

Figure 6 shows the frequency of application of the discerned methods. Overall, the parametric
approaches have been used the most, followed by LUTs, ANNs, iterative optimization and finally by
the other MLRAs. In this context, the temporal development of application of the different methods is
of special interest (Figure 7).
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PROSAIL model from 1992 to 2017.

More than one third of all studies designed and/or tested parametric regressions, i.e., broad or
narrow band vegetation indices. The application of this method to estimate the variables of interest
is still a popular approach, though with decreasing tendency, as indicated by Figure 7. However,
the use of VIs in so many studies is not surprising, since they are the most attractive method regarding
calculation complexity and computation power and speed, while still delivering meaningful results,
e.g., [69,78,124,151,154–156]. The reason for this decreasing trend may be attributed to an evanescence
of novelty, because vegetation indices have been exhaustively designed, exploited, and adapted by
the remote sensing community over decades. Their limitations, such as the lack of transferability,
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have been documented and confirmed by numerous studies [4,107]. Most importantly, it is widely
recognized that VIs make only limited use of the full spectral resolution available, in particular
with respect to hyperspectral datasets [5]. Regarding the radiometric-data driven approaches, the
iterative optimization inversion techniques never reached high importance (Figure 7), due to long
processing times and the risk of trapping into local “false” minima of the parameter space [84].
The LUT method instead has been extensively used in the last decade. This is on the one hand because
LUTs can be parameterized to run much faster than iterative optimization techniques. Moreover,
it provides the possibility to overcome the problem of local minima. A number of constraints can be
implemented into the LUT parameterization to improve the estimates, such as a priori information.
Weiss et al. [6] were the first to examine an LUT approach for the PROSAIL model on a synthetic
data set. The study investigated the required size of an LUT and the number of selected best fits to
obtain the solution. Moreover, different samplings of directional reflectance under varying observation
angles were tested to estimate the biophysical and biochemical variables of interest. Note that the
issue of optimal spectral sampling has been treated by many studies but goes beyond the scope of the
present study [5,6,42,90,111,157,158]. The analysis of Weiss et al. has been fine-tuned by follow-up
studies, investigating e.g., multiple solutions and stratification of LUTs for the retrieval of LAI and
Cab of heterogeneous grassland [134]. Moreover, a priori information was shown to improve the
estimates [36,85]. Recent studies optimized the LUT structure in view of specific (future) satellite
sensor missions, such as German EnMAP [22] or ESA’s Sentinel-2 and -3 families by adding noise,
testing multiple best solutions, combining parameters, or applying different cost functions [38,96,159].
One study, which systematically evaluated various LUT regularization options to improve LAI and
Cab retrievals over an agricultural area, concluded that—despite the availability of a range of other
suitable methods—the use of physically sound LUT-based inversion algorithms is advised for the
biophysical and biochemical variable retrieval [65]. However, this study did not evaluate processing
time. Considering the unprecedented hyperspectral data streams to be delivered by future missions,
the LUT-based concepts will be quickly pushed to their limits. The current trend indicates that
novel effective and fast MLRA techniques using PROSAIL (and other RTMs) in a hybrid manner,
may overtake the LUT inversion within the next few years due to their high accuracy and transferability
as proved by several studies [77,132,138], in particular for the analysis of hyperspectral data. Ideally,
a combination of a dimensionality reduction (DR) method to reduce the spectral data load (in sampling
or spectral domains [160]) and machine learning algorithms (e.g., GPR) combined with RTMs should
be applied for the derivation of agronomic products from hyperspectral E.O. data [160]. A further
advantage of these strategies is the provision of uncertainty estimates, for instance through GPR, being
indispensable for variable retrievals [87]. Such hybrid retrieval designs therefore may be the core of
next-generation operational retrievals [138,160].

9. Geographic Locations

High-performance computing (HPC) capabilities are now available off-the-shelf facilitating
the generation, storage of, and access to large databases of RTM (PROSAIL) simulations. Multiple
measurement sets of wide areas over different years and locations could then be inverted using the
same database, for instance a big LUT with a large space and high diversity of canopy realizations,
soil background, and illumination/viewing conditions, to characterize a wide range of vegetation
properties and conditions [75]. This leads to the topic of the transferability of model results: PROSAIL
has been used in an international context and for many different climate zones, vegetation types, soil
characteristics, under various agricultural management conditions and with different ground, airborne,
and satellite remote sensor types. To give just an insight into the variety of studies and sites with specific
characteristics, the geographic locations of PROSAIL studies were as follows: several studies were
carried out in large European agricultural regions, such as the Marchfeld area in Austria [161] or Lower
Bavaria in Germany [38,96], characterized by temperate continental climate (Climate classification
after Koeppen [162]). The Barrax site in Spain, which is situated in a cold semi-arid climate zone,
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was probably one of the most exploited test sites worldwide [65,76,87,90,159,163–165]. This was
thanks to the successful ESA SPectra bARrax Campaigns (SPARC) in 2003 and 2004, generating a vast
database of geo-biophysical variables simultaneously to ground based, airborne, and spaceborne
remote sensing data acquisitions. In particular, SPARC represented a unique opportunity to exploit
the multi-angular hyperspectral CHRIS/PROBA satellite data. Several studies chose Italian [5,82,166]
or French [35,167,168] locations, characterized by warm oceanic or Mediterranean climate. Dutch [169]
and English [43] test sites are influenced by temperate oceanic climate. Other test sides outside of
Europe are located in south Brazil [170], Maricopa in Arizona, U.S. [75], or California, U.S. [116].
Besides the presence of agricultural regions, this distribution of test sites mainly reflects logistic issues,
i.e., the possibility of collecting ground data in the frame of field campaigns. Moreover, there has been
an increase in the number of Asian study sites, e.g., for Uzbekistan [145], India [171], and in particular
China [151,172,173].

10. Conclusions

Considering the wide area of applications, today PROSAIL has become one of the most popular
radiative transfer tools due to its outstanding features such as simplicity, robustness, and reliability in
terms of consistency of validation results from lab, field-based, airborne, and satellite experiments over
the last 40 years [131,174]. Moreover, the model is available for free in various computer languages
and can be downloaded from a webpage [175].

The main application of the model has been the retrieval of biophysical and biochemical variables
from different multi- and hyperspectral remotely sensed data (85% of all studies). Most of these studies
(~80%) focused on agricultural areas, comprising crops, grassland, orchards, and synthetic vegetation.
The variables of highest interest were LAI and Cab, preferably retrieved with parametric regression
methods (37%), which were established, tested or adapted using the PROSAIL model. Look-up
table based model inversion schemes were applied by 25% of all retrieval studies. Except ANNs,
machine learning regression algorithms, which became popular only recently, were still rarely applied
(<10%). Certainly there will be a positive trend in the usage of these methods because MLRAs
provide a high potential for the analyses of hyperspectral data in terms of availability, effectiveness,
and speed. In view of the requirement to analyze, interpret, and retrieve agricultural products from
future EnMAP and other forthcoming spaceborne imaging spectroscopy missions including HyspIRI,
SHALOM, and PRISMA, future research should focus on such fast, transferable, generic, and hybrid
retrieval techniques based on the PROSAIL model and suitable MLRAs, such as Gaussian processes
regression [118,176]. Beside variable predictions, these models provide an assessment of uncertainty
levels [176], being a pre-condition for most applications in this context. Sophisticated LUT techniques
may also constitute promising estimation methods. In the context of operational processing chains in
which millions of pixels—continuously streamed from new satellite sensors with improved resolution
of time, space and wavelength—have to be analyzed in appropriate rates to provide users with
up-to-date maps of biophysical and biochemical products; emulation should be applied to speed up
the processing [118,131].

There is a clear research gap regarding the retrieval of certain biophysical and biochemical
variables. With the future availability of hyperspectral data sources, the estimation of ALIA and leaf
pigment variables, such as total carotenoid content or anthocyanins being key indicators of plant and
crop health by influencing the nutrient, nitrogen, carbon, and water related mechanisms in plants [25],
should be pushed using capable robust retrieval algorithms.

Finally, we recommend exploiting the full-spectrum data cube, as it will be available from future
spaceborne spectrometers, such as EnMAP, with a full-spectrum model, such as PROSAIL, for diverse
applications and retrieval purposes in the agricultural area. In this context, empirical approaches should
be finally superseded by capable hybrid methods, combining the generic properties of physically based
models, such as PROSAIL, with flexible and computational effective non-parametric approaches [160].
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To emphasize our finding, the following points briefly list the most important recommendations
of the study when hyperspectral data are to be elaborated with the PROSAIL model:

• The model’s spectral capabilities should be fully exploited instead of relying on simple empirical
(parametric) models that require calibration and lack transferability.

• Machine learning regression algorithms should be further investigated in combination with
dimensionality reduction methods [160], being fast and effective for hyperspectral data elaboration
and providing predictions of uncertainties (in case of GPR). This is of particular interest when
these data must be analyzed in near real-time in the framework of hyperspectral spaceborne
missions, such as EnMAP.

• Suitable approaches to estimate plant pigments from hyperspectral data, such as carotenoids
and anthocyanins, which have been implemented in the recent PROSPECT version [25], should
be elaborated.

The emergence of a new generation of spaceborne spectrometers, for the first time, enables
the application of the same hyperspectral instrument in all places on the globe. This will lead to
comparable, i.e., identically calibrated, full-spectrum data from the most diverse and remote parts of
the Earth and even will allow for the generation of hyperspectral time-series, giving access to temporal
dynamics of plant physiological development. Analyzing this huge amount of most diverse data
requires retrieval techniques that are both, independent from in-situ data and computationally fast.
The PROSAIL model, based on our findings, seems to be ideally suited to contribute to this challenge.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/1/85/s1,
References selected by the systematic literature review.
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93. Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C.
Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and
Examples. Remote Sens. 2016, 8, 938. [CrossRef]

94. Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER; Institut National de la Recherche
Agronomique (INRA): Avignon, France, 2016.

95. Heiden, U. EnMAP Web Portal. Available online: http://www.enmap.org (accessed on 8 January 2018).
96. Locherer, M.; Hank, T.; Danner, M.; Mauser, W. Retrieval of Seasonal Leaf Area Index from Simulated EnMAP

Data through Optimized LUT-Based Inversion of the PROSAIL Model. Remote Sens. 2015, 7, 10321–10346.
[CrossRef]

97. Labate, D.; Ceccherini, M.; Cisbani, A.; De Cosmo, V.; Galeazzi, C.; Giunti, L.; Melozzi, M.; Pieraccini, S.;
Stagi, M. The PRISMA payload optomechanical design, a high performance instrument for a new
hyperspectral mission. Acta Astronaut. 2009, 65, 1429–1436. [CrossRef]

98. Roberts, D.A.; Quattrochi, D.A.; Hulley, G.C.; Hook, S.J.; Green, R.O. Synergies between VSWIR and TIR data
for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI)
Decadal Survey mission. Remote Sens. Environ. 2012, 117, 83–101. [CrossRef]

99. Carrere, V.; Bourguignon, A.; Briottet, X.; Chami, M.; Chevrel, S.; Jacquemoud, S.; Marion, R. The French
Hyperspectral Earth Observation Science/Defense mission HYPXIM—A second generation high spectral and
spatial resolution imaging spectrometer. In Proceedings of the Geoscience and Remote Sensing Symposium
(IGARSS), Melbourne, Australia, 21–26 July 2013.

100. Ben-Dor, E.; Kafri, A.; Varacalli, G. SHALOM: An Italian–Israeli hyperspectral orbital mission—Update.
In Proceedings of the International Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18
July 2014.

101. Liu, K.; Zhou, Q.-B.; Wu, W.-B.; Xia, T.; Tang, H.-J. Estimating the crop leaf area index using hyperspectral
remote sensing. J. Integr. Agric. 2016, 15, 475–491. [CrossRef]

102. Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal Exploitation of the Sentinel-2 Spectral
Capabilities for Crop Leaf Area Index Mapping. Remote Sens. 2012, 4, 561–582. [CrossRef]

103. Gillis, J. Web of Science. Available online: www.webofknowledge.com (accessed on 8 January 2018).
104. Kuusk, A. A multispectral canopy reflectance model. Remote Sens. Environ. 1994, 50, 75–82. [CrossRef]
105. Bowyer, P.; Danson, F.M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf

and canopy level. Remote Sens. Environ. 2004, 92, 297–308. [CrossRef]
106. Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective

remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth
Obs. Geoinf. 2007, 9, 165–193. [CrossRef]

107. D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Hanich, L.; Perdigao, A.;
Tapia, J.B.; Vuolo, F. Earth Observation products for operational irrigation management in the context of the
PLEIADeS project. Agric. Water Manag. 2010, 98, 271–282. [CrossRef]

108. Houborg, R.; Fisher, J.B.; Skidmore, A.K. Advances in remote sensing of vegetation function and traits. Int. J.
Appl. Earth Obs. Geoinf. 2015, 43, 1–6. [CrossRef]

109. Ustin, S.L.; Riano, D.; Hunt, E.R. Estimating canopy water content from spectroscopy. Isr. J. Plant Sci. 2012,
60, 9–23. [CrossRef]

110. Andrieu, B.; Baret, F.; Jacquemoud, S.; Malthus, T.; Steven, M. Evaluation of an improved version of SAIL
model for simulating bidirectional reflectance of sugar beet canopies. Remote Sens. Environ. 1997, 60, 247–257.
[CrossRef]

111. Atzberger, C.; Darvishzadeh, R.; Schlerf, M.; Le Maire, G. Suitability and adaptation of PROSAIL radiative
transfer model for hyperspectral grassland studies. Remote Sens. Lett. 2013, 4, 56–65. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2006.07.014
http://dx.doi.org/10.1016/j.jag.2012.06.010
http://dx.doi.org/10.3390/rs8110938
http://www.enmap.org
http://dx.doi.org/10.3390/rs70810321
http://dx.doi.org/10.1016/j.actaastro.2009.03.077
http://dx.doi.org/10.1016/j.rse.2011.07.021
http://dx.doi.org/10.1016/S2095-3119(15)61073-5
http://dx.doi.org/10.3390/rs4030561
www.webofknowledge.com
http://dx.doi.org/10.1016/0034-4257(94)90035-3
http://dx.doi.org/10.1016/j.rse.2004.05.020
http://dx.doi.org/10.1016/j.jag.2006.05.003
http://dx.doi.org/10.1016/j.agwat.2010.08.020
http://dx.doi.org/10.1016/j.jag.2015.06.001
http://dx.doi.org/10.1560/IJPS.60.1-2.9
http://dx.doi.org/10.1016/S0034-4257(96)00126-5
http://dx.doi.org/10.1080/2150704X.2012.689115


Remote Sens. 2018, 10, 85 23 of 26

112. Galvão, L.S.; Breunig, F.M.; Santos, J.R.D.; Moura, Y.M.D. View-illumination effects on hyperspectral
vegetation indices in the Amazonian tropical forest. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 291–300.
[CrossRef]

113. Ishihara, M.; Inoue, Y.; Ono, K.; Shimizu, M.; Matsuura, S. The Impact of Sunlight Conditions on the
Consistency of Vegetation Indices in Croplands-Effective Usage of Vegetation Indices from Continuous
Ground-Based Spectral Measurements. Remote Sens. 2015, 7, 14079–14098. [CrossRef]

114. Du, L.T.; Tian, Q.J.; Wang, L. Impact of Vegetation Structure on Drought Indices Based on MODIS Spectrum.
Spectrosc. Spect. Anal. 2015, 35, 982–986.

115. Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible
band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf.
2013, 21, 103–112. [CrossRef]

116. Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A
PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal
narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50.
[CrossRef]

117. Gu, C.Y.; Du, H.Q.; Mao, F.J.; Han, N.; Zhou, G.M.; Xu, X.J.; Sun, S.B.; Gao, G.L. Global sensitivity analysis of
PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. Int. J. Remote Sens.
2016, 37, 5270–5286. [CrossRef]

118. Verrelst, J.; Sabater, N.; Rivera, J.P.; Munoz-Mari, J.; Vicent, J.; Camps-Valls, G.; Moreno, J. Emulation of Leaf,
Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis. Remote Sens. 2016,
8, 673. [CrossRef]

119. Clevers, J.G.P.W.; Büker, C.; van Leeuwen, H.J.C.; Bouman, B.A.M. A framework for monitoring crop growth
by combining directional and spectral remote sensing information. Remote Sens. Environ. 1994, 50, 161–170.
[CrossRef]

120. Kooistra, L.; Clevers, J. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote
Sens. Lett. 2016, 7, 611–620. [CrossRef]

121. Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.-Y.; Bréda, N.; Genet, H.; Davi, H.;
Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf
chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008,
112, 3846–3864. [CrossRef]

122. Vincini, M.; Frazzi, E. Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll
content in planophile crop canopies. Precis. Agric. 2011, 12, 334–344. [CrossRef]

123. Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices:
Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [CrossRef]

124. Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjon, A.; Aguera, J. Hyperspectral indices and model simulation
for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [CrossRef]

125. Guo, C.; Zhang, L.; Zhou, X.; Zhu, Y.; Cao, W.; Qiu, X.; Cheng, T.; Tian, Y. Integrating remote sensing
information with crop model to monitor wheat growth and yield based on simulation zone partitioning.
Precis. Agric. 2017. [CrossRef]

126. Jarlan, L.; Mangiarotti, S.; Mougin, E.; Mazzega, P.; Hiernaux, P.; Le Dantec, V. Assimilation of
SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model. Remote Sens. Environ. 2008,
112, 1381–1394. [CrossRef]

127. Li, R.; Li, C.-J.; Dong, Y.-Y.; Liu, F.; Wang, J.-H.; Yang, X.-D.; Pan, Y.-C. Assimilation of Remote Sensing and
Crop Model for LAI Estimation Based on Ensemble Kaiman Filter. Agric. Sci. China 2011, 10, 1595–1602.
[CrossRef]

128. Machwitz, M.; Giustarini, L.; Bossung, C.; Frantz, D.; Schlerf, M.; Lilienthal, H.; Wandera, L.; Matgen, P.;
Hoffmann, L.; Udelhoven, T. Enhanced biomass prediction by assimilating satellite data into a crop growth
model. Environ. Model. Softw. 2014, 62, 437–453. [CrossRef]

129. Wu, L.; Liu, X.; Wang, P.; Zhou, B.; Liu, M.; Li, X. The assimilation of spectral sensing and the WOFOST
model for the dynamic simulation of cadmium accumulation in rice tissues. Int. J. Appl. Earth Obs. Geoinf.
2013, 25, 66–75. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2012.07.005
http://dx.doi.org/10.3390/rs71014079
http://dx.doi.org/10.1016/j.jag.2012.07.020
http://dx.doi.org/10.1016/j.rse.2013.07.024
http://dx.doi.org/10.1080/01431161.2016.1239287
http://dx.doi.org/10.3390/rs8080673
http://dx.doi.org/10.1016/0034-4257(94)90042-6
http://dx.doi.org/10.1080/2150704X.2016.1171925
http://dx.doi.org/10.1016/j.rse.2008.06.005
http://dx.doi.org/10.1007/s11119-010-9204-3
http://dx.doi.org/10.1016/j.agrformet.2008.03.005
http://dx.doi.org/10.1016/j.rse.2004.01.017
http://dx.doi.org/10.1007/s11119-017-9498-5
http://dx.doi.org/10.1016/j.rse.2007.02.041
http://dx.doi.org/10.1016/S1671-2927(11)60156-9
http://dx.doi.org/10.1016/j.envsoft.2014.08.010
http://dx.doi.org/10.1016/j.jag.2013.04.002


Remote Sens. 2018, 10, 85 24 of 26

130. Yuping, M.; Shili, W.; Li, Z.; Yingyu, H.; Liwei, Z.; Yanbo, H.; Futang, W. Monitoring winter wheat growth in
North China by combining a crop model and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10,
426–437. [CrossRef]

131. Pérez-Suay, A.; Amorós-López, J.; Gómez-Chova, L.; Laparra, V.; Muñoz-Marí, J.; Camps-Valls, G.
Randomized kernels for large scale Earth observation applications. Remote Sens. Environ. 2017, 202, 54–63.
[CrossRef]

132. Gomez-Dans, J.L.; Lewis, P.E.; Disney, M. Efficient Emulation of Radiative Transfer Codes Using Gaussian
Processes and Application to Land Surface Parameter Inferences. Remote Sens. 2016, 8, 119. [CrossRef]

133. Casas, A.; Riaño, D.; Ustin, S.L.; Dennison, P.; Salas, J. Estimation of water-related biochemical and
biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to
MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [CrossRef]

134. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for
estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112,
2592–2604. [CrossRef]

135. Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and
potato crops by VENµS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [CrossRef]

136. Richter, K.; Atzberger, C.; Vuolo, F.; D’Urso, G. Evaluation of Sentinel-2 Spectral Sampling for Radiative
Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2011, 4, 458–464. [CrossRef]

137. Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of radiative transfer model for retrieval of wheat
biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 2016, 3, 107–118.
[CrossRef]

138. Verrelst, J.; Dethier, S.; Rivera, J.P.; Munoz-Mari, J.; Camps-Valls, G.; Moreno, J. Active Learning Methods
for Efficient Hybrid Biophysical Variable Retrieval. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1012–1016.
[CrossRef]

139. Roosjen, P.P.J.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G.P.W. Improved
estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral
data—Potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14–26. [CrossRef]

140. Vuolo, F.; Dini, L.; D’Urso, G. Retrieval of Leaf Area Index from CHRIS/PROBA data: An analysis of the
directional and spectral information content. Int. J. Remote Sens. 2008, 29, 5063–5072. [CrossRef]

141. Quan, X.W.; He, B.B.; Yebra, M.; Yin, C.M.; Liao, Z.M.; Zhang, X.T.; Li, X. A radiative transfer model-based
method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168.
[CrossRef]

142. Bacour, C.; Jacquemoud, S.; Tourbier, Y.; Dechambre, M.; Frangi, J.P. Design and analysis of numerical
experiments to compare four canopy reflectance models. Remote Sens. Environ. 2002, 79, 72–83. [CrossRef]

143. Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.;
Gobron, N.; Kuusk, A.; Lavergne, T.; et al. Third Radiation Transfer Model Intercomparison (RAMI) exercise:
Documenting progress in canopy reflectance models. J. Geophys. Res. Atmos. 2007, 112. [CrossRef]

144. Cernicharo, J.; Verger, A.; Camacho, F. Empirical and Physical Estimation of Canopy Water Content from
CHRIS/PROBA Data. Remote Sens. 2013, 5, 5265–5284. [CrossRef]

145. Dorigo, W.A. Improving the Robustness of Cotton Status Characterisation by Radiative Transfer Model
Inversion of Multi-Angular CHRIS/PROBA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5,
18–29. [CrossRef]

146. Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral
vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [CrossRef]

147. Barman, D.; Sehgal, V.K.; Sahoo, R.N.; Nagarajan, S. Relationship of bidirectional reflectance of wheat with
biophysical parameters and its radiative transfer modeling using PROSAIL. J. Indian Soc. Remote 2010, 38,
35–44. [CrossRef]

148. Zou, X.; Mõttus, M.; Tammeorg, P.; Torres, C.L.; Takala, T.; Pisek, J.; Mäkelä, P.; Stoddard, F.L.; Pellikka, P.
Photographic measurement of leaf angles in field crops. Agric. For. Meteorol. 2014, 184, 137–146. [CrossRef]

149. Duan, S.B.; Li, Z.L.; Wu, H.; Tang, B.H.; Ma, L.L.; Zhao, E.Y.; Li, C.R. Inversion of the PROSAIL model to
estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral
data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2007.09.002
http://dx.doi.org/10.1016/j.rse.2017.02.009
http://dx.doi.org/10.3390/rs8020119
http://dx.doi.org/10.1016/j.rse.2014.03.011
http://dx.doi.org/10.1016/j.rse.2007.12.003
http://dx.doi.org/10.1016/j.rse.2011.04.018
http://dx.doi.org/10.1109/JSTARS.2010.2091492
http://dx.doi.org/10.1016/j.inpa.2016.04.001
http://dx.doi.org/10.1109/LGRS.2016.2560799
http://dx.doi.org/10.1016/j.jag.2017.10.012
http://dx.doi.org/10.1080/01431160802036490
http://dx.doi.org/10.1016/j.jag.2016.10.002
http://dx.doi.org/10.1016/S0034-4257(01)00240-1
http://dx.doi.org/10.1029/2006JD007821
http://dx.doi.org/10.3390/rs5105265
http://dx.doi.org/10.1109/JSTARS.2011.2171181
http://dx.doi.org/10.1016/j.rse.2015.04.032
http://dx.doi.org/10.1007/s12524-010-0010-1
http://dx.doi.org/10.1016/j.agrformet.2013.09.010
http://dx.doi.org/10.1016/j.jag.2013.05.007


Remote Sens. 2018, 10, 85 25 of 26

150. Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and
Sensors. Sensors 2009, 9, 2719–2745. [CrossRef] [PubMed]

151. Lehnert, L.W.; Meyer, H.; Meyer, N.; Reudenbach, C.; Bendix, J. A hyperspectral indicator system for
rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecol. Indic.
2014, 39, 54–64. [CrossRef]

152. Baret, F.; Houles, V.; Guerif, M. Quantification of plant stress using remote sensing observations and crop
models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [CrossRef] [PubMed]

153. Zou, X.; Mõttus, M. Retrieving crop leaf tilt angle from imaging spectroscopy data. Agric. For. Meteorol. 2015,
205, 73–82. [CrossRef]

154. Cheng, Y.-B.; Zarco-Tejada, P.J.; Riaño, D.; Rueda, C.A.; Ustin, S.L. Estimating vegetation water content
with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes.
Remote Sens. Environ. 2006, 105, 354–366. [CrossRef]

155. Clevers, J.; Kooistra, L. Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and
Nitrogen Content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574–583. [CrossRef]

156. Yi, Q.; Wang, F.; Bao, A.; Jiapaer, G. Leaf and canopy water content estimation in cotton using hyperspectral
indices and radiative transfer models. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 67–75. [CrossRef]

157. Li, L.; Cheng, Y.B.; Ustin, S.; Hu, X.T.; Riano, D. Retrieval of vegetation equivalent water thickness from
reflectance using genetic algorithm (GA)-partial least squares (PLS) regression. Adv. Space Res. 2008, 41,
1755–1763. [CrossRef]

158. Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral
observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [CrossRef]

159. Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. Optimizing LUT-Based RTM Inversion for
Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and-3 Data: Role of Cost Functions.
IEEE Trans. Geosci. Remote Sens. 2013, 52, 257–269. [CrossRef]

160. Rivera-Caicedo, J.P.; Verrelst, J.; Muñoz-Marí, J.; Camps-Valls, G.; Moreno, J. Hyperspectral dimensionality
reduction for biophysical variable statistical retrieval. ISPRS J. Photogramm. 2017, 132, 88–101. [CrossRef]

161. Richter, K.; Rischbeck, P.; Eitzinger, J.; Schneider, W.; Suppan, F.; Weihs, P. Plant growth monitoring and
potential drought risk assessment by means of Earth observation data. Int. J. Remote Sens. 2008, 29, 4943–4960.
[CrossRef]

162. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification.
Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [CrossRef]

163. Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI
mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [CrossRef]

164. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation. ISPRS J. Photogramm. 2013, 82, 83–92. [CrossRef]

165. Gonzalez-Sanpedro, M.C.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area
index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [CrossRef]

166. Castaldi, F.; Casa, R.; Pelosi, F.; Yang, H. Influence of acquisition time and resolution on wheat yield
estimation at the field scale from canopy biophysical variables retrieved from SPOT satellite data. Int. J.
Remote Sens. 2015, 36, 2438–2459. [CrossRef]

167. Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating
maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote
sensing data. Remote Sens. Environ. 2016, 184, 668–681. [CrossRef]

168. Claverie, M.; Vermote, E.F.; Weiss, M.; Baret, F.; Hagolle, O.; Demarez, V. Validation of coarse spatial
resolution LAI and FAPAR time series over cropland in southwest France. Remote Sens. Environ. 2013, 139,
216–230. [CrossRef]

169. Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.; Wang, T. Mapping spatio-temporal variation of grassland
quantity and quality using MERIS data and the PROSAIL model. Remote Sens. Environ. 2012, 121, 415–425.
[CrossRef]

170. Breunig, F.M.; Galvão, L.S.; dos Santos, J.R.; Gitelson, A.A.; de Moura, Y.M.; Teles, T.S.; Gaida, W. Spectral
anisotropy of subtropical deciduous forest using MISR and MODIS data acquired under large seasonal
variation in solar zenith angle. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 294–304. [CrossRef]

http://dx.doi.org/10.3390/s90402719
http://www.ncbi.nlm.nih.gov/pubmed/22574042
http://dx.doi.org/10.1016/j.ecolind.2013.12.005
http://dx.doi.org/10.1093/jxb/erl231
http://www.ncbi.nlm.nih.gov/pubmed/17220515
http://dx.doi.org/10.1016/j.agrformet.2015.02.016
http://dx.doi.org/10.1016/j.rse.2006.07.005
http://dx.doi.org/10.1109/JSTARS.2011.2176468
http://dx.doi.org/10.1016/j.jag.2014.04.019
http://dx.doi.org/10.1016/j.asr.2008.02.015
http://dx.doi.org/10.1016/j.rse.2004.06.005
http://dx.doi.org/10.1109/TGRS.2013.2238242
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.012
http://dx.doi.org/10.1080/01431160802036268
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.1016/j.rse.2011.10.035
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007
http://dx.doi.org/10.1016/j.rse.2007.06.018
http://dx.doi.org/10.1080/01431161.2015.1041174
http://dx.doi.org/10.1016/j.rse.2016.07.030
http://dx.doi.org/10.1016/j.rse.2013.07.027
http://dx.doi.org/10.1016/j.rse.2012.02.011
http://dx.doi.org/10.1016/j.jag.2014.09.017


Remote Sens. 2018, 10, 85 26 of 26

171. Nigam, R.; Bhattacharya, B.K.; Vyas, S.; Oza, M.P. Retrieval of wheat leaf area index from AWiFS multispectral
data using canopy radiative transfer simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 173–185. [CrossRef]

172. Li, H.; Chen, Z.X.; Jiang, Z.W.; Wu, W.B.; Ren, J.Q.; Liu, B.; Hasi, T. Comparative analysis of GF-1, HJ-1,
and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285.
[CrossRef]

173. Li, X.J.; Mao, F.J.; Du, H.Q.; Zhou, G.M.; Xu, X.J.; Han, N.; Sun, S.B.; Gao, G.L.; Chen, L. Assimilating leaf
area index of three typical types of subtropical forest in China from MODIS time series data based on the
integrated ensemble Kalman filter and PROSAIL model. ISPRS J. Photogramm. 2017, 126, 68–78. [CrossRef]

174. Campos-Taberner, M.; Garcia-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.;
Katsantonis, D.; Stavrakoudis, D.; Minakou, C.; Gatti, L.; et al. Exploitation of SAR and Optical Sentinel
Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index. Remote Sens. 2017, 9, 248.
[CrossRef]

175. Baret, F.; Féret, J.B.; Francois, C.; Gitelson, A.; Jacquemoud, S.; Noble, S.D.; Pacheco-Labrador, J.
PROSPECT+SAIL = PROSAIL. Available online: http://teledetection.ipgp.jussieu.fr/prosail/ (accessed on
8 January 2018).

176. Svendsen, D.H.; Martino, L.; Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G. Joint Gaussian
Processes for Biophysical Parameter Retrieval. IEEE Trans. Geosci. Remote Sens. 2017, 1–10. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jag.2014.04.003
http://dx.doi.org/10.1016/S2095-3119(15)61293-X
http://dx.doi.org/10.1016/j.isprsjprs.2017.02.002
http://dx.doi.org/10.3390/rs9030248
http://teledetection.ipgp.jussieu.fr/prosail/
http://dx.doi.org/10.1109/TGRS.2017.2767205
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The PROSAIL Model 
	Overview 
	Model Variants 

	Applications of the PROSAIL Model 
	Systematic Literature Review 
	Annual Development and Spectral Exploitation 
	Vegetation Types Analyzed 
	Biophysical and Biochemical Variables 
	Variable Retrieval Methods 
	Geographic Locations 
	Conclusions 
	References

