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Abstract: Quantitative equivalent water thickness on canopy level (EWTcanopy) is an important land
surface variable and retrieving EWTcanopy from remote sensing has been targeted by many studies.
However, the effect of radiative penetration into the canopy has not been fully understood. Therefore,
in this study the Beer-Lambert law is applied to inversely determine water content information
in the 930 to 1060 nm range of canopy reflectance from measured winter wheat and corn spectra
collected in 2015, 2017, and 2018. The spectral model was calibrated using a look-up-table (LUT) of
50,000 PROSPECT spectra. Internal model validation was performed using two leaf optical properties
datasets (LOPEX93 and ANGERS). Destructive in-situ measurements of water content were collected
separately for leaves, stalks, and fruits. Correlation between measured and modelled water content
was most promising for leaves and ears in case of wheat, reaching coefficients of determination
(R2) up to 0.72 and relative RMSE (rRMSE) of 26% and in case of corn for the leaf fraction only
(R2 = 0.86, rRMSE = 23%). These findings indicate that, depending on the crop type and its structure,
different parts of the canopy are observed by optical sensors. The results from the Munich-North-Isar
test sites indicated that plant compartment specific EWTcanopy allows us to deduce more information
about the physical meaning of model results than from equivalent water thickness on leaf level (EWT)
which is upscaled to canopy water content (CWC) by multiplication of the leaf area index (LAI).
Therefore, it is suggested to collect EWTcanopy data and corresponding reflectance for different crop
types over the entire growing cycle. Nevertheless, the calibrated model proved to be transferable in
time and space and thus can be applied for fast and effective retrieval of EWTcanopy in the scope of
future hyperspectral satellite missions.

Keywords: hyperspectral; spectroscopy; equivalent water thickness; canopy water content;
agriculture; EnMAP

1. Introduction

The quantification of water stored in agricultural plants plays an essential role in understanding
the impact of cultivated areas on the earth’s water cycle. Due to its close association to biochemical
factors, such as vegetation transpiration [1] and net primary production [2], the knowledge of
quantities of water contained within agricultural crops is crucial, particularly for the development
of environmental process models [3,4]. Moreover, quantifying canopy water content is important in
regards to the water use efficiency of plants [5], evaluation of plant physiological status and health [6,7],
and crop ripening monitoring [8].

Within the optical spectral domain (400 nm–2500 nm), absorption by vegetation liquid water
occurs in the near-infrared (NIR) at 970 nm and 1200 nm and in the shortwave infrared (SWIR) at
1450 nm and 1950 nm [9,10]. Due to a higher absorption coefficient in the SWIR [11] most of the
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early studies combined those wavelengths with water insensitive wavelengths in the NIR to define
empirical narrow-band indices for water content retrieval [12–15]. However, the strong absorption
by water may saturate those bands at high water contents in optically thick canopies [16]. Moreover,
absorption by atmospheric water vapor at 1450 nm and 1900 nm results in noisy measurements
which renders these spectral regions unsuitable for further analysis [9], both for top-of-atmosphere
(TOA) and top-of-canopy (TOC) spectroscopy. Some vegetation biophysical variables may disturb
the signal of water: for instance Jacquemoud, et al. [17] noted that the leaf area index (LAI) masks
the water signal between 1000 nm and 1400 nm and advised caution when using such indices for
water retrieval. The comparatively low 970 nm water absorption depth is embedded in an area of
generally high vegetation reflectance in the NIR. Due to low absorption it is expected that radiation at
970 nm penetrates deeper into the canopy reflecting a larger portion of its total water content without
a tendency to saturation [18–22]. Therefore, Peñuelas, et al. [6,7] developed the 970 nm water index
(WI) to retrieve relative plant water concentration (PWC). In the following, other studies also focused
on the 970 nm absorption to estimate canopy water content [3,5,23,24].

Methodologically, the definition of a narrow-band spectral index to retrieve vegetation water
content information constitutes the parametric regression type of methods. Their simplicity and thus
computational feasibility make them highly desirable for large-scale remote sensing applications.
However, a fundamental problem of parametric regression methods is their lack of generality and
transferability [25]. Since indices are not solely influenced by liquid water, but also affected by leaf
internal structure and leaf dry matter [26] or canopy structure, LAI and soil background [15,27,28],
the established regression-based relationships and estimated quantities of water stored in a canopy are
limited to local conditions [29]. Accordingly, the obtained results are site-, time- and crop-specific [30].
Moreover, as more hyperspectral image data with a continuous spectral coverage become accessible,
the limited use of a small number of bands does not correspond to the up to date possibilities in view
of the available data information density.

For the implications given, physically based model inversion methods have been introduced as a
promising alternative to retrieve biochemical and biophysical vegetation variables. Radiative transfer
models (RTM) describe interactions between solar radiation and vegetation constituents using physical
laws. Their ability to generate an infinite number of simulated spectra with known input parameters
conversely allows their inversion in order to estimate the underlying parameters. For the inversion of
RTMs, a variety of strategies have been applied. These include numerical optimization algorithms,
look-up table (LUT) approaches, artificial neural networks (ANN) and other machine learning
algorithms (for an overview please refer to Verrelst, et al. [25,31]). Although RTM-based inversion
methods are considered to be physically sound, the techniques require profound knowledge, are often
computationally demanding and are mathematically highly non-linear [31,32]. Another limitation of
RTM-inversion is the ill-posed nature or equifinality of model inversion. Many different parameter
sets may be equally valid in terms of their ability to reproduce a measured reflectance spectrum (for a
discussion of this topic see Atzberger and Richter [33]).

In view of future hyperspectral satellite missions like Italian PRISMA [34], US HyspIRI [35],
Israeli-Italian SHALOM [36], European CHIME [37], and German EnMAP [38] fast and efficient
retrieval methods for large datasets are required. Mathematically simpler physically-based approaches
have been applied before to circumvent the equifinality problem and to reduce the computational
effort of RTM-based model inversion. Green, et al. [39,40] originally incorporated the Beer-Lambert
law to separate liquid water from atmospheric water vapor and determine both to allow the retrieval
of surface reflectance from measured AVIRIS radiance. Thereby, the Beer-Lambert law was applied to
directly infer the path length through optically active liquid water, i.e., the equivalent water thickness
(EWT), from a measured reflectance spectrum using water absorption coefficients for pure liquid
water [41,42]. Since multiple NIR scattering, and the attendant increase in optical path length at
both the leaf and the canopy scale are not accounted for in the simple Beer-Lambert law [43,44],
absolute quantification of EWT can only be achieved by calibration. Subsequently, validation has to
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be performed on accurate in-situ measurements. Studies that aimed at separating all three phases of
water were not designed to quantify canopy water content in absolute terms and therefore accurate
measurements were not carried out [45–48]. On the other hand, studies which derived water content
explicitly by applying the Beer-Lambert law often relied on the assumption that upscaling leaf EWT
to canopy water content (CWC) could be done by a simple multiplication with the leaf area index
(LAI) (see references [5,23,25,49,50]). In other publications, biomass sampling strategies have not
been designed to deduce the single water components of a canopy that an optical sensor can actually
detect (e.g., references [21,51–53]). Consequently, validation of these approaches could not approve
translation into transferable and generally applicable retrieval tools [42].

Therefore, the objective of the present study was to test the performance of the Beer-Lambert law
to retrieve crop water content from spectra with a contiguous spectral coverage around 970 nm and
perform validation separately for leaves, stalks, and fruits by means of the two very different crop
types: corn and winter wheat.

2. Materials

2.1. Munich-North-Isar Test Site

2.1.1. Biomass Sampling and Water Content Determination

Biomass collection was performed in 2015, 2017, and 2018 at three winter wheat fields (triticum
aestivum) and two corn fields (zea mays) of communal farmland 30 km north of Munich (southern
Germany) east of the river Isar (Table 1, Figure 1).
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Figure 1. Munich-North-Isar test sites overview (left) and exemplary 2017 simulated 30 × 30 m corn
EnMap-pixel with 9 ESUs (right).

Table 1. Munich-North-Isar winter wheat and corn test sites, locations, periods of sample collection,
number of biomass samples, and number of spectral measurements at cloud-free days.

Crop Type Coordinates Sampling Period No. of Samplings No. of Spectral
Measurements

Winter wheat 48◦14′51.46′′N 11◦42′24.10′′E 10 April–29 July 2015 17 7
Winter wheat 48◦14′56.70′′N 11◦43′03.60′′E 29 March–17 July 2017 16 12
Winter wheat 48◦14′52.27′′N 11◦42′57.06′′E 04 April–13 July 2018 12 7

Corn 48◦17′06.56′′N 11◦42′49.98′′E 8 June–15 September 2017 11 8
Corn 48◦14′56.70′′N 11◦43′03.60′′E 25 May–29 August 2018 13 6
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Within the fields, three different sampling points were selected based on long-term biomass
distribution pattern observations (TalkingFields Base Map: www.talkingfields.de) representing low,
medium, and high persistent relative fertility.

Plant leaf water content is commonly expressed as equivalent water thickness (EWT, Equation (1))
corresponding to a hypothetical thickness of a single layer of water averaged over the whole leaf
area [10]:

EWT =
FW−DW

A

[
g cm−2

]
or [cm],

[
kg m−2

]
or [mm] (1)

where FW is the fresh sample weight, DW is the oven dry weight and A is the leaf area. While EWT
refers to the water content on leaf level, canopy water content (CWC, Equation (2)) is commonly
derived through extrapolation by means of the LAI:

CWC = EWT ∗ LAI (2)

Due to the linkage of LAI to the whole canopy, CWC may be biased towards the leaf fraction.
Furthermore, CWC does not allow inferring the actual water detectability of plant components in a
canopy from total detected water. Consequently, in this study total EWTcanopy (EWTleaf + EWTstalk +
EWTfruit) will be defined as the above-ground total equivalent water layer averaged over one square
meter of ground surface (Equation (3)).

total EWTcanopy = ∑(FWleaves+stalks+fruits −DWleaves+stalks+fruits)∗Ag
−1 (3)

where Ag denotes the ground area. To monitor the development of total amounts of water stored
in the canopy throughout the growing season, biomass samples were collected on a weekly basis.
In case of wheat, a minimum transect of 50 cm along a sowing track or an area of 0.25 m2 was cut
at soil level. For corn, 2–3 plants were cut. In-field plant density was obtained by counting plants
and rows per meter. The samples were separated into leaf, stalk and fruit compartments, weighed in
fresh state and oven-dried until constant weight for 24 h at 105 ◦C before dry weight was determined.
EWTleaf, EWTstalk, EWTfruit (EWTear and EWTcob, respectively) and total EWTcanopy per cm2 (Table 2)
were calculated from laboratory results (specific water contents per ground area) and from farm
management metadata (plants per meter and row spacing). The phenology was determined according
to secondary growth stages of the BBCH-scale [54].

Table 2. Statistics (range, mean, standard deviation) for in-situ measured EWTleaf, EWTstalk, EWTfruit,
total EWTcanopy and BBCH-range. Values correspond to measurements with available spectral
reflectance data.

Year 2015 2017 2018

Crop Type Winter Wheat Winter Wheat Corn Winter Wheat Corn

BBCH range [-] 22–87 25–87 30–85 28–87 32–83
EWTleaf: range [cm] 0.007–0.179 0.005–0.182 0.009–0.104 0.045–0.121 0.095–0.161

mean (std) [cm] 0.066 (0.058) 0.082 (0.050) 0.059 (0.035) 0.082 (0.027) 0.132 (0.023)
EWTstalk: range [cm] 0.012–0.256 0.003–0.275 0.008–0.295 0.019–0.268 0.252–0.619

mean (std) [cm] 0.123 (0.084) 0.144 (0.089) 0.161 (0.115) 0.126 (0.099) 0.472 (0.126)
EWTfruit: range [cm] 0.000–0.100 0.000–0.112 0.000–0.248 0.000–0.148 0.000–0.306

mean (std) [cm] 0.044 (0.045) 0.045 (0.045) 0.068 (0.100) 0.048 (0.068) 0.171 (0.123)
Total EWTcanopy: range [cm] 0.041–0.417 0.019–0.490 0.017–0.606 0.064–0.503 0.347–1.019

mean (std) [cm] 0.233 (0.141) 0.271 (0.145) 0.289 (0.221) 0.256 (0.170) 0.775 (0.227)

2.1.2. Spectroscopic Measurements

At each study site, a 30 × 30 m grid of nine 10 × 10 m squares was marked out delineating the
elementary sampling units (ESU). This grid layout was designed to trace the geometric properties of
one EnMAP pixel; hence, regarding the viewing geometry and grid location, the sensors descending
orbit and inclination angle of 97.96◦ was accounted for (Table 1). At each sampling date with clear
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sky conditions (Table 1) all nine ESUs were revisited and spectral measurements were taken using an
Analytical Spectral Devices Inc. (ASD, Boulder, CO, USA) FieldSpec3 Jr. spectroradiometer with an
effective spectral resolution of 3 nm in the VIS (≤700 nm) and 10 nm in the NIR and SWIR (≤2500 nm).
Five nadir measurements were conducted per ESU at a height of 25 cm above the canopy, the same
height at which the white reference panel (OptoPolymer, Munich, Germany) could be fully observed
with the instruments field of view of 25◦. Throughout the measurements, the sensor was slightly
moved back and forth manually while maintaining the observation angle to obtain a representative
spectral sample of the canopy. The five recorded spectra were averaged per ESU and a spatial mean
of the nine ESUs was calculated to provide reflectance of the complete 30 × 30 m grid. Further,
post-processing included splice-correction, white reference baseline calibration, and slight smoothing
using a Savitzky-Golay-Filter with a frame size of 13 nm.

Note that it was not possible to conduct destructive sampling at exactly the same locations where
the continuous spectral measurements were taken. However, due to averaging of spectral sampling
points over the 30× 30 m sampling area, it was possible to capture the in-field variability and therefore
to represent average field water conditions.

Altogether, the collected dataset comprised destructively measured, plant compartment specific
water content samples with corresponding spectral measurements at 26 dates for wheat and 14 dates
for corn over three and two years, respectively (see Tables 1 and 2).

2.2. Leaf Optical Data

Preliminary tests of the EWTcanopy retrieval model presented in this study were performed on two
different leaf optical datasets. The LOPEX93 database was established in 1993 by the Joint Research
Centre (JRC, Ispra, Italy). It associates transmittance and reflectance in the range of 400–2500 nm
with biophysical and biochemical measurements of 66 leaf samples from 45 species [55]. In total,
the database comprises 330 spectra with corresponding measurements of EWT. Secondly, tests were
performed on the ANGERS database containing 276 reflectance spectra and EWT measurements of
43 species [56]. While woody species make up the majority of the ANGERS database, both datasets
represent a large variety of leaf internal structure and spectra.

2.3. Radiative Transfer Models and Look-Up Tables

To check consistency between leaf optical data and modelled spectra, large look-up tables (LUT)
using the RTMs PROSPECT and PROSAIL were created. PROSAIL [17] is coupling the Leaf Optical
Properties Spectra model PROSPECT [57] and the turbid medium canopy reflectance model 4SAIL
(Scattering by Arbitrary Inclined Leaves) [58,59]. The latest recalibrated version PROSPECT-D [60,61]
simulates bidirectional-hemispherical reflectance and transmittance in the optical domain as a function
of leaf pigments (chlorophyll a+b content Cab, carotenoids Car, and anthocyanins Canth), dry matter
Cm, and brown pigments Cbrown as well as a leaf mesophyll structure parameter N, and EWT(Cw).
The canopy model SAIL calculates a bidirectional reflectance factor of 1-D turbid medium plant
canopies. With regard to leaf optical properties and reflectance of the underlying soil (psoil),
it implements canopy structure (LAI), average leaf inclination angle (ALA) or optionally, ellipsoidal leaf
inclination distribution (LIDF), and hot spot size parameter (hspot) for a given illumination and viewing
geometry (observation zenith angle (OZA), relative azimuth angle (rAA) between sun and sensor,
and the solar zenith angle (SZA)).

Considering the impact of plant foliar water on the 970 nm absorption band, during LUT
generation, all parameters with sensitivity in the NIR region were uniformly distributed over a
wide value range (Table 3). Leaf pigments, having no effect on reflectance in the NIR [26,44],
remained constant.
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Table 3. Parameter ranges for PROSPECT-D and PROSPECT-D + 4SAIL (PROSAIL) LUT. Specified
ranges are uniformly distributed, single values are fixed.

PROSPECT-D-Parameters Range Notation [Unit] 4SAIL-Parameters Range Notation [Unit]

N 1.0–3.0 [-] LAI 0.5–8.0 [m2 m−2]
Cab 55 [µg cm−2] ALA 0–90 [deg]
Cw 0.0002–0.07 [g cm−2] hspot 0.01–0.5 [-]
Cm 0.001–0.02 [g cm−2] OZA 0 [deg]

Cbrown 0.0–1.0 [-] SZA 35–50 [deg]
Car 15 [µg cm−2] rAA 0 [deg]

Canth 5 [µg cm−2] psoil 0.0–1.0 [-]

3. Methods

3.1. The Beer-Lambert Law and Retrieval Method Development

The Beer-Lambert law is mathematically formulated as Equation (4):

Φ = Φ0e−α(λ)d. (4)

Passing through a medium of thickness d the incident radiation intensity Φ0 is exponentially
attenuated with increasing penetration depth. The absorption characteristics of a medium are defined
by its wavelength-dependent absorption coefficients α(λ). In this study, due to the accurate spectral
resolution in the 970 nm domain [61], water absorption coefficients for pure liquid water as determined
by Kou, et al. [11] are used. Furthermore, it is assumed that within the absorption band at 970 nm,
water is the only quantity-depending, varying active absorber and that variance within absorption
of further components is neglectable. Thus, concluding from Equation (4), the absorption depth
of measured fresh leaves or canopies at 970 nm is uniquely dependent on the thickness of the
optically active water layer (see also discussion in Section 3.2). For dry leaves or senescent canopies,
absorption by liquid water is neglectable, resulting in a strictly linear reflectance signature at 970 nm.
For the retrieval of EWTcanopy, Equation (4) is rearranged in accordance with Bach ([51]; Equation (5)),
where R0 is the measured reflectance, d is the thickness of the optically active water layer, and R′ is the
d-dependent reflectance:

R′ =
R0

e−α(λ)d
(5)

Using Equation (5), d is iteratively optimized so that an objective function—the sum of absolute
residuals between the modelled reflectance and the linear connection between the descending
and ascending vertices of the 970 nm absorption—is minimal (Figure 2). The wavelength range
considered by the plant water retrieval (PWR) model has been limited to 930–1060 nm based on
preliminary minimization of the standard deviation of yielded EWT results from the PROSPECT
LUT. Describing the thickness of the optically active water layer, the results can directly be compared
to measured EWT on leaf level (Equation (1)), CWC (Equation (2)) and EWTcanopy (Equation (3)).
The algorithm was implemented in Python, where retrieval of EWT for 50,000 spectra was completed
in 69 s on an Intel Core i5-3570K @ 3.40 GHz.

3.2. Global Sensitivity Analysis

The PWR model expects the thickness of optically active water to reflect the vegetation water
content detected by a hyperspectral sensor. Both the PROSPECT and PROSAIL LUT were subjected to
a global sensitivity analysis (GSA) to identify and evaluate the impact of contributing parameters in
the 970 nm domain and to validate the performance of the model. The Fourier amplitude sensitivity
test (FAST) identifies the main effects (first-order sensitivity effects), i.e., the contribution (STi) to
the variance of the model output by each input variable and interactions with other variables [62].
The contribution of parameters to the 970 nm absorption depth and shape is assessed by its distribution
width using the variance-to-mean ratio (VMR).
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Within PROSPECT (Figure 3a) N contributes to 98% of leaf reflectance at the vertices left and right of
the 970 nm water absorption band. At 970 nm Cw is the highest contributing parameter in terms of VMR
(10−2). Minor influence on the shape of the absorption band is caused by Cbrown at the descending vertex
(VMR = 10−3). Cm and parameter interactions also affect overall reflectance at 970 nm but interference
with its shape is smaller by more than two orders of magnitude (10−4). Regarding PROSAIL (Figure 3b),
Cw likewise is the strongest shape-determining factor at 970 nm in terms of VMR (10−2). However,
the 970 nm absorption shape is affected by canopy structural parameters (ALA, LAI, hspot, psoil) and
parameter interactions. The sum of influential parameter VMR may exceed Cw VMR, which may result
in masking of the water signal when unfavorable parameter combinations occur.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 18 
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Figure 3. FAST first-order sensitivity coefficients and interactions (STi) to reflectance (900–1080 nm) for
PROSPECT (a) and PROSAIL (b) parameters. Due to high contribution of the leaf structure coefficient
N within PROSPECT, only the upper contribution range ≥ 0.935 is shown. Below, influences of
parameters that affect the shape of the water absorption band considered within the PWR model
(930–1060 nm) are quantified by the variance-to-mean ratio (VMR).
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The retrieval method was first tested on all the spectra within both the PROSPECT and
the PROSAIL LUT (Figure 4). With a coefficient of determination (R2) of 0.96 the approach
indicates a strong correlation between PROSPECT modelled water content Cw and retrieved
optically active water content EWT (Figure 4a). However, the high relative root mean square
error (rRMSE = RMSE ∗meanobservations

−1) of 286% with an intercept close to zero revealed a
strong systematical offset. The growing spread of results towards higher values of Cw suggests
a simultaneously increasing influence of other parameters due to the exponential radiative transfer
from specific absorption coefficients to transmission and reflectance [57].Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 18 
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Applied to PROSAIL spectra (Figure 4b) the R2-results (0.68) are significantly lower and although
model results correspond to LUT Cw-values, both regression residuals and intercept do not show a
systematic bias. However, within the created LUT, several parameter combinations can be considered
unrealistic [63], masking or flattening the water signal due to model parameter related interference
with the shape of the 970 nm absorption band. The resulting outliers and overall spread of modelled
Cw-values render the PROSAIL LUT unsuitable for further calibration of the model.

3.3. Using PROSPECT for Calibration of the PWR Model

The model was further tested on the LOPEX93 [55] and ANGERS [56] datasets, which showed
a similar systematical bias as model results from PROSPECT spectra (Figure 5a,c,e). Since the
overestimation seemed to be solely defined by the slope of the regression line, the water absorption
coefficients in Equation (5) were adjusted by multiplying the slope of the PROSPECT LUT linear
regression model as a constant (Equation (6)):

R′ =
R0

e−α(λ)d∗3.52343
(6)

The calibration procedure accounts for unknown effects of the leaf surface and of leaf
internal structure on reflectance in the 970 nm domain [61] and for potential multiple leaf internal
scattering [44,64]. Using the calibrated water absorption coefficients (Equation (6)), minimization of
the objective function is achieved more quickly, resulting in lower modelled values of EWT that are
consistent with the measured order of magnitude. Subsequently, the altered absorption coefficients in
the 930 to 1060 nm range were used for an improved water content retrieval. Applied to the PROSPECT
LUT (Figure 5b), EWT was estimated with a much smaller error (rRMSE = 12%). Applying the
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algorithm with updated coefficients to LOPEX93 data, measured EWT was estimated with R2 = 0.93
and rRMSE = 22% and for ANGERS data with 0.93 and 39% respectively (Figure 5d,f).Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 18 
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4. Results

The minimization process for retrieving optically active water using the PWR model with
recalibrated absorption coefficients (factor 3.52342, Equation (6)) was applied to both in-situ winter
wheat and corn spectral data. The results were compared to combinations of destructively measured
leaf, stalk, and ear or cob water contents. For further analysis, the BBCH-scale was included to relate
to growth stage dependencies of the model results.

4.1. Winter Wheat Data

Considering only the measured water content of wheat leaves, the results showed low correlation
(Figure 6a: R2 = 0.27; rRMSE = 81%); however, annotated BBCH-values showed good results for
tillering (20+) and stalk elongation stages (30+) and progressing senescence (87). On the other hand,
heading (47+) and flowering stages (60+) as well as ear development and ripening stages (70+) were
invariably overestimated by the model. The sum of leaf and stalk water content yielded better results
(Figure 6b: R2 = 0.68; rRMSE = 52%) in particular for early growth stages. However, as growth
proceeds, strong underestimation of EWTleaf + EWTstalk occurs due to saturation.
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The best results were obtained when combining the measured water contents of leaves and ears
(Figure 6c: R2 = 0.72; rRMSE = 26%). Thereby, model results adequately reflected measured EWTleaf
+ EWTear across all phenological stages over three years. Aggregating measured EWTleaf, EWTstalk
and EWTear (= total EWTcanopy) yet again largely resulted in an underestimation (Figure 6d: R2 = 0.77;
rRMSE = 66%); only tillering stages were modelled with reasonable accuracy.

4.2. Corn Data

Regarding the two-year corn dataset, best results were achieved for leaf water contents (Figure 7a:
R2 = 0.86; rRMSE = 23%) with a minor tendency to underestimation towards higher growth stages.
Despite good correlation, the combination of leaf and stalk measured water content was largely
underestimated by the model (Figure 7b: R2 = 0.91; rRMSE = 95%). Aggregated EWTleaf and EWTcob
resulted in both lower correlation and error (Figure 7c: R2 = 0.61; rRMSE = 84%) due to underestimation
when cobs were registered.
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In relation to total measured EWTcanopy, both correlation and underestimation are large (Figure 7d:
R2 = 0.87; rRMSE = 101%). In view of phenological dependencies, low water contents were consistently
modelled with high accuracy during early leaf development stage (BBCH = 18) and beginning stalk
elongation (30–32). Furthermore, unlike for wheat, no clear growth stage related dependencies
were recognizable.
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5. Discussion

5.1. Inversion of the Beer-Lambert Law for Water Content Retrieval

A simple physically based model was developed which applies the Beer-Lambert law to inversely
retrieve optically active water content on leaf and canopy scale. In view of the fact that only one
parameter—the thickness of the optically active water layer d—needs to be inverted, the algorithm
allows a fast processing of large hyperspectral datasets. As shown by a GSA of the PROSPECT
LUT in the 970 nm domain, interference of other parameters is marginal (Figure 3a) rendering Cw

to be the dominant driver of leaf reflectance in this spectral region (R2 = 0.96; Figure 4a). However,
this does not apply to the PROSAIL LUT where, according to GSA, the cumulative influence of
leaf and canopy structural parameters may mask the water signal (Figure 3b). Hereby, two issues
interact: first, the 4SAIL model assumes a horizontally homogenous canopy, which may not be valid
for complex canopy architectures and clumped vegetation through, e.g., formation in rows [65–67].
Second, unrealistic parameter combinations may occur in LUTs [63]. Both issues may unfavorably
affect modelled reflectance in the 970 nm domain, reducing the predictive power of Cw for water
content information (R2 = 0.57; Figure 4b) and rendering the PROSAIL LUT unsuitable for calibration
of the presented PWR model. When applied to PROSPECT spectra the linear offset of the regression
model indicates that the absorption coefficients of pure liquid water differ from those of leaves,
because reflectance in interaction with the leaf surface and multiple leaf internal reflections are not
accounted for [44,64]. Using the slope of the regression from the PROSPECT LUT results as a factor
to calibrate the absorption coefficients, the absolute quantification of PROSPECT Cw, LOPEX93 and
ANGERS EWT significantly improved (Figure 5). The high correlation of R2 = 0.96 between PROSPECT
Cw and modelled EWT approved application of the model to in-situ measured TOC data. Nevertheless,
using PROSPECT for calibration implies that potentially occurring canopy architectural effects on
radiation [68] are being neglected. Hence, the PWR model considers the 970 nm absorption to be caused
solely by liquid water. In addition, since reflected radiance in the 930–1060 nm range is also affected by
atmospheric water vapor [16,46], the process of accurate atmospheric correction is a critical prerequisite
when the PWR model is applied to future available hyperspectral TOC reflectance acquired from space.

5.2. Dependency of Canopy Water Detection on Canopy Structure

Absolute measures of EWTcanopy were inversely extracted from a three-year TOC winter wheat
and two-year corn spectral dataset by means of the proposed PWR model. The results indicated
a strong correlation between water absorption centered around 970 nm and measured EWTcanopy.
However, the comparison of retrieved EWTcanopy from in-situ spectra with measured aggregations
of plant compartment specific water contents raises the question, how deep radiation at 970 nm
penetrates into the canopy and thus, which amounts of water actually can be observed by optical
sensors [21]. Although absorption by water and vegetation in the NIR is low and penetration depth
of radiation is higher in this wavelength range [6,69], the presented results showed that not all of
the contained canopy water is detected by the sensor. Our results suggest that in the case of winter
wheat modelled EWTcanopy largely reflects the absolute water contained in the leaves and present ears
(Figure 6c). Taking only EWTleaf as a reference, EWTcanopy is overestimated due to the presence of
EWTear, which manifests in the spectral response but is not reflected by the in-situ data (Figure 6b,d).
This also implies potential water content overestimation for wheat when referencing is done based on
CWC records, which in the case of barley can be seen in the results of Vohland [3]. On the other hand,
including measured EWTstalk, the underestimation resulting with advanced growth stage indicates
that radiation at 970 nm cannot penetrate increasingly hardened stalk tissue and thus cannot transport
information about the water contained within. This has also been noted by Sims and Gamon [21] and
Champagne, et al. [53]. This finding is further supported by the fact that residual water in ripe wheat
(BBCH = 87) is consistently underestimated, rendering the PWR model unable to detect residual water
in senescent wheat.
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Despite good results of modelled EWTcanopy for EWTleaf of corn, the results indicate a tendency
to underestimation towards higher water contents (Figure 7a) due to maximum radiation transmission
through stacked leaves [18]. Once stalks and cobs have developed, the underestimation of total corn
EWTcanopy reveals the limited ability of NIR radiation to penetrate the thick stalk/cob tissues or the
canopy depth or both (Figure 7b–d).

In summary, the retrieval results of winter wheat and corn vary because—depending on canopy
structure—different plant components manifest in the 970 nm water absorption band. Several other
studies also raised the fact of canopy structural influence on crop variables retrieval [68,70–73].
Cereal crops with prominent ears will not be satisfactorily modelled if the ear water content is not
included in the in-situ measurements as it can be seen in the study of Champagne, et al. [53]. On the
contrary, when modelling corn water content it may be sufficient to only collect leaf samples since only
the water fraction of the leaves can be estimated directly from optical sensors. The specific structure of
corn mostly covers the stalks and cobs, masking the water stored in these plant compartments.

In recent studies, mostly parametric regression models based on vegetation indices [3,49],
derivative- [5,23], or integration-based [50] indices have been applied to retrieve crop canopy water
content information from hyperspectral data. Verrelst, et al. [74] obtained very good CWC correlation
on SPARC03 data (R2 = 0.95) by applying Gaussian process regression with integrated sequential
backward band removal. Cernicharo, et al. [24] used both an ANN and a LUT approach to estimate
CWC from CHRIS/PROBA data (R2 = 0.82 and R2 = 0.64, respectively). Earlier studies which presented
retrieval methods based on the Beer-Lambert law include Champagne, et al. [53] with good results
for corn but an overestimation of wheat canopy water content, because EWTear has not been sampled
separately (index of agreement D = 0.80 and D = 0.38, respectively). The findings of this study are
also confirmed by the Beer-Lambert law based study of Sims and Gamon [21], in which best results
for water content of thin tissues were obtained (R2 = 0.66), whereas total canopy water content was
underestimated (R2 = 0.35).

The presented PWR model is considered superior to empirical regression models by its physical
basis, allowing insights into the physical meaning of results, while outperforming other Beer-Lambert
law based approaches by the possibility to infer absolute measures of canopy water content from
measured TOC reflectance spectra. This absolute quantifiability of canopy water content represents
a novelty among available retrieval approaches. Besides, the accurate underlying data basis proved
transferability of the model to different sites and crop types and, given that a sensor detects the
maximal depth of the 970 nm water absorption, promises applicability also to hyperspectral data on
an operational basis.

6. Conclusions

The proposed PWR model based on the inversion of the Beer-Lambert law effectively succeeds
in the determination of wheat EWTleaf and EWTear with consistent results over a three-year dataset
(R2 = 0.72; rRMSE = 26%). For corn EWTleaf was estimated from two-year data with even better results
(R2 = 0.86; rRMSE = 23%). Since the detectability of canopy water content fractions seems to be largely
dependent on the crop type, its canopy structure, depth, and growth stage, it is recommended to
collect EWTleaf, EWTstalk and EWTfruit data and corresponding reflectance for different crop types over
all phenological stages along the growing cycle. However, an evaluation is needed to assess limits of
canopy water content retrieval in terms of optical radiation penetration depth through thick canopies
and tissues, also in view of a possibly improved retrieval from off-nadir spectroscopy [75]. Our study
could proof the transferability of the developed PWR model to other sites and crop types and represents
a novelty in crop water content absolute quantifiability. The PWR model will be provided as a slim and
applicable tool within the open source software EnMAP-Box [76] to accurately and efficiently retrieve
water content information from ground-based, airborne and spaceborne hyperspectral data, as it will
become available through future missions.
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