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Forecasting Multiphase Magma
Failure at the Laboratory Scale Using
Acoustic Emission Data
Jérémie Vasseur*, Fabian B. Wadsworth and Donald B. Dingwell

Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany

Magmas fracture under high shear stresses, producing radiating elastic waves. At

the volcano scale, eruption is often preceded by accelerating seismicity, while at the

laboratory scales, sample failure appears to be preceded by similarly accelerating

Acoustic Emission (AE). In both cases, empirical relationships between the acceleration

and the time of the singular final event have offered tantalizing possibilities for forecast

of eruptions and material failure. We explore the success of these tools in the laboratory

by briefly reviewing datasets that have been presented previously and comparing the

range of errors on forecast times with the range of errors associated with attempts to

retrospectively forecast eruptions. We demonstrate that the heterogeneity of a system

is crucial to making accurate forecasts on the sample scale, such that homogeneous

systems are inherently unpredictable. We then analyse the effect of having an incomplete

data sequence, as might be the case for real-time forecasting scenarios. We find that for

heterogeneous systems, there is a critical proportion of the sequence that needs to have

occurred before a forecast time converges on relatively low errors. As might be expected,

the final portion of the sequence is the most important, while uncertainty on the start of

the sequence is less important. Finally, we explore the simplest method for scaling the

laboratory results to the volcano scenario.

Keywords: forecasting, porosity, acoustic emissions, precursors, inter-pore distance, porous magma, likelihood,

probability density function

INTRODUCTION

Volcanic eruptions affect ∼600 million people worldwide (based on World Bank population data
and the analyses of Small and Naumann, 2001; Auker et al., 2013), and yet the toolkit available
for forecast of eruption times remains unreliable in many cases (see the analysis by Salvage
and Neuberg, 2016). Most deterministic predictive tools are based on the observation that many
geophysical signals (e.g., strain and seismicity) appear to accelerate toward a singular time, which
coincides approximately with the onset of eruption (Voight, 1988; Voight and Cornelius, 1991;
Kilburn and Voight, 1998; De la Cruz-Reyna and Reyes-Dávila, 2001; Kilburn, 2003; Ortiz et al.,
2003; Smith et al., 2007; Smith and Kilburn, 2010; Bell and Kilburn, 2013; Boué et al., 2015; Salvage
and Neuberg, 2016). This precursory phase of signal acceleration can last for minutes to years
(Linde et al., 1993; Robertson and Kilburn, 2016). Accelerating signals can therefore be used to
infer eruption timing ahead of the event itself, and in near real-time (Voight and Cornelius, 1991).
In most cases, the feasibility of using these signals as predictors of eruption onsets has been assessed
retrospectively, with variable success, such that real-time forecasting is not yet a useful reality.
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A step forward can potentially be made if we understand
the physical underpinning of the acceleration of volcanic signals
toward eruption. The accelerating nature of certain geophysical
signals toward a time-singularity has been interpreted to
represent the coalescence of multiscale fracturing processes
(Kilburn, 2003) scalable down to rock-fracturing processes in
the laboratory (Voight, 1989; Smith et al., 2007; Benson et al.,
2008; Lavallée et al., 2008). This implies that the empirical power-
law relationships that generally describe failure phenomena in
the lab or seismicity approaching an eruption could emerge
from physically-grounded models for nucleation, growth and
coalescence of small-to-large nested fracture systems, which has
been shown to be the case for some rupturing systems (Main
et al., 2017). This also means that there is a class of self-
similarity across a truly vast range of scales, from samples just
a few centimeters long in the laboratory, to volcanic conduits
for which fracturing depths begin at 1,500m and propagate to
the surface during ascent (Neuberg et al., 2006; Thomas and
Neuberg, 2012).

The scalability of laboratory signals to volcanic signals
remains uncertain in detail, but hinges on the assumption that
the point at which a rock or magma fails to remain load-
bearing on a small scale, is analogous to the point at which
fractures in magmatic systems become pervasive over much
longer lengthscales, and an eruption can proceed by material
failure (c.f. Kilburn, 2003; Neuberg et al., 2006). The scaling
laws proposed are therefore relatively simple (Benson et al.,
2008; Tuffen et al., 2008), and are repeated herein. However,
it is clear that more laboratory work could bridge this scale
gap more rigorously. For instance, laboratory investigation of
fault rupture velocities in viscoelastic magma would permit to
constrain slip rates in volcanic conduits in nature and would help
refine those scaling laws as well as volcanic eruption forecasting
models.

In this contribution, we summarize the technical insights
that have arisen from the campaigns of laboratory investigation,
which may shed light on volcanic precursory signal evolution.
We contrast these with some of the geophysical observations
made at the volcano-scale and show where the most compelling
links have been made. We provide new analyses of the failure
of heterogeneous rocks, and contrast those with relatively
homogeneous systems across a range of volcanically-relevant
textural complexity.

HOW SUCCESSFUL HAVE
RETROSPECTIVE OR REAL-TIME
FORECASTING OF VOLCANIC ERUPTIONS
BEEN?

A good starting point in assessing how successful mock-forecasts
can be is when data have been acquired and can be analyzed
retrospectively. We acknowledge that there may be a bias in the
published work toward forecasts that are apparently successful,
while less successful attempts are perhaps less likely to be
reported. Marked exceptions to this are studies for which the
central aim was to find methods of improvement of inaccurate

forecasts such as Boué et al. (2015) and Salvage and Neuberg
(2016).

If we take the time that an eruption has been forecast to
have occurred as tp and the actual eruption time observed as
te, then we can take the error on the forecast as

∣

∣te − tp
∣

∣ /te.
There are a few eruptions for which sufficient information exists
that can be used to find this error magnitude on published
retrospective forecast attempts, which are given in Table 1. We
can see that the minimum error reported is as low as 0.002 for
the Redoubt eruption in 1989–1990 (Voight and Cornelius, 1991)
and as high as 0.36 for Pinatubo volcano erupting in 1991 (Bell
et al., 2013). In these two cases the values refer to the minimum
and maximum differences between the forecast and the
eruption.

In general, there is little evidence in Table 1 that a particular
volcano type, eruption style, or magma composition, results
in a better predictability when using all the forecasts made.
Rather, it seems more likely that variations on the error
of any forecast is dominantly dependent on the placement
and quality of instrumentation, the numerical forecasting
technique applied (c.f. Bell et al., 2011 for a discussion of
techniques), and perhaps the nature of the seismicity (all
data, or discriminated datasets from picking of specific event
types).

QUANTITATIVE BACKGROUND

Here we aim to summarize the theoretical or empirical
formulations that have been used to understand the phenomena
of (1) magma or rock fracture, (2) empirical forecasting tools and
probabilistic variations thereof, and (3) techniques to describe
statistically heterogeneous materials. The latter is especially
useful in linking the concepts in (1) and (2) as shown in part in
Vasseur et al. (2017).

Rock and Magma Failure During Magma
Ascent
Magmas ascend through the Earth’s crust, during which both
the country rock and the magma itself can break (Goto, 1999;
Kilburn, 2003, 2012; Iverson et al., 2006; De Angelis and
Henton, 2011; Thomas and Neuberg, 2012; Dmitrieva et al.,
2013; Kendrick et al., 2014). In many cases, the seismic signals
used to forecast eruptions are simply the entire aggregated
number of events occurring in the vicinity of a volcano (as
used in the original demonstration of Voight, 1988; Table 1).
However, Neuberg et al. (2006) and Salvage and Neuberg
(2016) demonstrate that low-frequency seismicity results from
the repetitive fracturing events occurring at the same depth,
interpreted to originate in the magma itself, and that these events
are especially useful in retrospectively forecasting eruptions.
Similarly, Kilburn (2003) points out that volcano-tectonic (VT)
events resulting from rock fracture ahead of ascending magma
must be the most useful seismic source for accelerating events
that can be used to forecast the onset of a new eruption.
Therefore, we expect that there is utility in low-frequency,
magma-fracture events at established conduits exploited by fresh
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TABLE 1 | Accuracy of published retrospective eruption forecasts.

Eruption Bulk magma

composition

Forecast window (s) Referencesa Forecast error,
∣

∣te − tp
∣

∣ /te

Referencesb

Volcán de Colima, 1994 Andesitic 8.7 × 104 – 6 × 105 De la Cruz-Reyna and

Reyes-Dávila, 2001

0.04–0.17 De la Cruz-Reyna and

Reyes-Dávila, 2001

Volcán de Colima, 1998 Andesitic 1.4-1.6 × 106 De la Cruz-Reyna and

Reyes-Dávila, 2001

0.07–0.17 De la Cruz-Reyna and

Reyes-Dávila, 2001

Volcán de Colima, 2005 Andesitic 3.6 × 104 – 1.8 × 105 Boué et al., 2015 0.07–0.14 Boué et al., 2015

Etna volcano, 1989 Basaltic 3.7 × 107 Bell et al., 2013 0.13–0.18 Bell et al., 2013

Mt St Helens, 1985 Dacitic 3.5 × 105 – 1.8 × 107 Voight and Cornelius, 1991; Bell

et al., 2013

0.006–0.1 Voight and Cornelius, 1991;

Smith et al., 2007; Bell

et al., 2013

Mt St Helens, 1986 Dacitic 3 × 105 – 1 × 107 Voight and Cornelius, 1991; Bell

et al., 2013

0.003–0.09 Voight and Cornelius, 1991;

Smith et al., 2007; Bell

et al., 2013

Pinatubo volcano, 1991 Dacitic 5.6–7.3 × 105 Kilburn, 2003; Bell et al., 2013 0.04–0.36 Kilburn, 2003; Smith and

Kilburn, 2010; Bell et al.,

2013

Redoubt volcano, 1989-90 Andesitic to dacitic 5.2–9.5 × 105 Voight and Cornelius, 1991 0.002–0.006 Voight and Cornelius, 1991

Soufrière Hills volcano, 1995 Andesitic 1.3 × 106 Kilburn and Voight, 1998;

Kilburn, 2003

0.03 Kilburn and Voight, 1998;

Kilburn, 2003

Soufrière Hills volcano, 1997 Andesitic 3.2 × 105 Salvage and Neuberg, 2016 0.03–0.17 Salvage and Neuberg, 2016

Villarrica volcano, 2000 Basaltic-andesitic 6 × 105 Ortiz et al., 2003 0.01 Ortiz et al., 2003

aReference(s) for the forecast window data.
bReference(s) for the forecast error data.

magma repetitively (e.g., at Soufriere Hills volcano, from 1995
onward), and in volcano-tectonic events leading to eruptions
and originating from rock fracture ahead of new magma (e.g.,
Pinatubo, 1991). In either case, it is important to quantify the
stress magnitudes necessary for fracturing to occur, which is
also a useful comparison between the volcano- and laboratory
-scale.

Magma is a viscoelastic fluid or suspension, which can fail
in a brittle manner when shear stresses reach a critical value
τs. For pure liquids without suspended bubbles or crystals, this
value has been empirically found to be of order τs ∼ 108 Pa,
and varies between 100 and 300 MPa (Simmons et al., 1982;
Webb and Dingwell, 1990; Cordonnier et al., 2012b; Wadsworth
et al., 2018). Assuming that the liquid phase originates the
fractures (acknowledging that crystals can break during flow
of two-phase or multiphase magmas; Cordonnier et al., 2009;
Deubelbeiss et al., 2011), we can parameterize these breaking
stresses in terms of the physics of fracturing viscoelastic fluids.
Assuming that Maxwell’s viscoelastic model is appropriate, the
breaking point has been found to occur at a single Deborah
number, De = 10−2 (c.f. Webb and Dingwell, 1990), where
De is the ratio of the stress relaxation time λr and the stress
accumulation time λ (Wadsworth et al., 2018). The stress
relaxation time in Maxwell’s model is λr = µ/G∞, which
contains the temperature- and composition-dependent liquid
viscosity, µ, and the elastic shear modulus G∞. The threshold
De = 10−2, implies that τs = 10−2G∞, which is indeed τs ∼
108 Pa, when G∞ ∼ 1010 Pa across most silicate magmatic
liquid compositions, and independent of temperature (Dingwell
and Webb, 1990). Additional scaling for this threshold has been

made for heterogeneous magmas involving crystals (Cordonnier
et al., 2012a) and bubbles (Kameda et al., 2008). This threshold
provides a clearmagma strength that has been shown to be met at
depth during magma ascent and is the proposed origin of some
of the accelerating seismicity approaching eruption (Goto, 1999).

The onset of solid rock fracture also occurs at threshold
stresses, which in the simplest view, depend on the lithostatic
“confining” pressure, the pressure of fluids in the pore spaces
and the driving distribution of shear stresses (Jaeger et al., 2009).
Additionally, this depends on the size and volume fraction of
heterogeneity elements in the material (Baud et al., 2014). In
detail, it is the distance between two pre-existing cracks, two
crystals or two bubbles—between elements of heterogeneity—
that must be bridged in order for a system-spanning fracture
to occur, and failure to ensue (Sammis and Ashby, 1986; Ashby
and Sammis, 1990). As a leading example relevant to porous
volcanic rocks, the unconfined compressive strength has the form
τs = aKIc/(φ

b
√

πR), where a and b are empirical constants,
R is the radius of the heterogeneity element, and KIc is the
fracture toughness (in Pa.m1/2), which scale with the volume
fraction of heterogeneity φ (Sammis and Ashby, 1986; Zhu et al.,
2011; Heap et al., 2016). Vasseur et al. (2017) found that these
distances between textural heterogeneity elements control the
strength predictably when used in conjunction with a scaled
static fracture-mechanics model. In both the volcanic rock failure
and magma failure, the value of strength is therefore highly
dependent on φ, and, in detail, on the pore size distribution
(Sammis and Ashby, 1986; Vasseur et al., 2017; Wadsworth et al.,
2018). However, the magnitude of strength is similar at τs ∼ 102

MPa when φ → 0.
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The Forecasting Toolbox
Voight (1988) proposed an empirical relationship between the
acceleration of an observable �̈ and its rate �̇, where we use
dot-notation for time-derivatives. This has the general form

�̈ = A�̇α (1)

where A and α are constants. Following Voight (1988), we can
integrate (Equation 1) assuming that �̇ = �̇0 at t = 0 to find
solutions for α = 1 and α 6= 1. Here �̇0 is the background event
rate at t = 0. In most experimental scenarios, �̇0 = 0 at t = 0,
but in the natural case, this may not be true (discussed later).
Nevertheless, for α = 1, the result is an exponential increase of �̇
with t of the form

�̇ (t) = h exp
(

qt
)

(2)

where h and q are constants. An exponential increase of �̇ does
not reach a singularity and so is only predictive of an eruption or
of material failure if we define a critical �̇ beyond which those
critical events will occur. The more common case is that α > 1,
which results in the commonly used Time-Reversed Omori Law
(TROL; Kilburn, 2003; Bell et al., 2013, 2018)

�̇ (t) = k (tc − t)−p (3)

where k, tc and p are constants that are allowed to freely vary such
that best-fit values can be found. The constant p is equivalent to
1/ (α − 1), used in previous work (Equation 1), and controls the
non-linear shape of the approach of � to a singularity at tc. This
singularity represents a predictive quality of Equation (3) if we
assume that a run-away to an infinite �̇ must coincide with a
run-away of behavior to eruption.

These two methods, the exponential (Equation 2) and the
power-law (Equation 3), have a suite of fit-parameters that
are not known a priori and therefore must be acquired by
algorithmic fitting to data. Bell et al. (2013) demonstrated
that statistically reliable fits can be found when a “Maximum
Likelihood” (ML) method is applied to Equations (2) and
(3). The ML parameters are those resulting in a model that
gives the observed data the greatest probability and those that
maximize the likelihood function. The parameters are adjusted
by minimizing the negative log-likelihood function using a
downhill simplex algorithm. The fundamental advantage of the
ML method given here is that it does not require binning of �(t)
data to get binned measures of �̇, and can rather be used directly
on the data themselves. Using this technique, for a time interval

[t0, tn], the log-likelihood for Equation (2) can be written as (Bell,
pers. comm.)

ln (L) = q

n
∑

i = 0

ti + n ln
(

h
)

−
h

q

(

exp
(

qtn
)

− exp
(

qt0
))

(4)

where L is the likelihood and n is the number of events. The same
approach can be taken with the power-law method (Equation 3),
for which the log-likelihood becomes (Bell et al., 2013)

ln(L) =
n

∑

i = 0

ln
(

k (tc − ti)
−p

)

+ K (5)

where

K =
{

k
(

(tc − tn)
1−p − (tc − t0)

1−p
)

/
(

1− p
)

for p 6= 1

k
(

ln (tc − tn) − ln (tc − t0)
)

for p = 1

Finally, for consistency, it may be useful to define a linear
evolution of �̇ with t which is of �̇ = c where c is a constant.
As with the exponential model, it is not clear what use a linear
model can be for forecasting critical events, but it nonetheless
may be a reasonable descriptor of some datasets. For this, the
log-likelihood is as follows (Bell, pers. comm.)

ln(L) = n ln (c) − c(tn − t0) (6)

The best-fit ML parameters for each acceleration model are
established by minimizing the negative of Equations (4–6). The
observable � typically is an acoustic or seismic event count, such
that it is a pure number. For this reason, here we do not present
the non-cumulative best-fit models graphically because they are
not informative—the clarity comes in cumulative form where
the data are effectively stacked and elevated into a line with a
given curvature. Moreover, as we have the advantage of working
with non-binned data, there is no use in looking at a timeline
of event timings, which is what non-cumulative data amount to.
The cumulative form3 of the exponential model (corresponding
to Equations 2 and 4) is (Bell, pers. comm.)

3(t) =
h

q

(

exp
(

qt
)

− exp (qt0)
)

(7)

That of the TROL (corresponding to Equations 3 and 5) is (Bell
et al., 2013):

3(t) =
k

p− 1

(

(tc − t)1−p − (tc − t0)
1−p

)

(8)

And that of the constant rate model (corresponding to Equation
6) is:

3(t) = c(t − t0) (9)

However, other metrics can be used such as strain, in the case
of a constant driving-pressure scenario, or pressure, in the case
of a constant displacement rate scenario. Other metrics that
accelerate toward failure may exist. However, here we focus on
event number as �. The energy of acoustic signals cannot be
used in the same way because the ML method relies on the event
timings in the log-likelihood function. In what follows we will test
each of these approaches against a range of experimental datasets.

Describing Heterogeneous Magmas
Magmas may be heterogeneous in texture. While the most
important distinguishing features might be identified on a
volumetric basis, such as the gas volume fraction (or porosity)
φ, or the crystal volume fraction φx, it may be important to
understand the spatially defined properties. Examples are the
frequency distribution of pore or crystal sizes, the distribution of
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inter-pore or inter-crystal distances, and degrees of anisotropy.
Here we give the method described in Vasseur et al. (2017).

(Torquato et al., 1990) describe the void nearest-neighbor
density function P (R) for a system of random heterogeneous
overlapping particles with a characteristic radius Rp from which
a pore-size density function can be derived (Torquato, 2013):

P
(

R
)

=
3η

(

1+ R
)2

φ
exp

(

−η
(

1+ R
)3

)

(10)

where P
(

R
)

= P (R)Rp, R = R/Rp and η = − ln (φ). The first
moment of Equation (10) allows us to compute the characteristic
mean pore radius between the particles as follows

〈

R
〉

=
∫ ∞

0
RP

(

R
)

dR. (11)

Similarly, a single analytical expression for other metrics such as
an inter-pore and an inter-particle distance can be derived from
the first moment of a nearest neighbor function (Torquato et al.,
1990):

li =
Ŵ (4/3)

η1/3
(12)

whereŴ is the gamma function, and η = − ln (1− φ)when i = 1

(the inter-pore distance; l1 = l1/R) and η = − ln (φ) when i = 2
(the inter-particle distance; l2 = l2/Rp). In porous volcanic rocks,
Equations (10–12) result in typical inter-pore lengths 10−6 <

l1 < 10−4 m. We will use this range later in our discussion of
data scaling from the laboratory to nature.

EXPERIMENTAL METHODS

There is some commonality of technique among deformation
testing equipment. First, most tests are performed on cylindrical
samples in either uniaxial or triaxial deformation rigs (e.g.,
Vasseur et al., 2013; Heap et al., 2017). In AE studies of rock or
magma fracture and failure, it is common to use piezoelectric
transducers. In the case of high-temperature experiments,
these can be in contact with the load frame or deformation
pistons (Lavallée et al., 2008; Vasseur et al., 2015, 2017) or in
direct contact with the sample or sample jacketing system via
waveguides (Benson et al., 2008; Tuffen et al., 2008). Waveguides
attenuate acoustic signals but do not alter frequency-amplitude
ratios (Meredith and Atkinson, 1983).

The data presented herein (and from Vasseur et al., 2015,
2017) were collected using a uniaxial, high temperature, high load
press built by Voggenreiter GmbH (Hess et al., 2007; see Figure 1
for a schematic). A linear variable differential transducer (LVDT)
with a 150mm travel range and a 10−6 m resolution is used
to track displacement of the top piston. The force is monitored
with a Lorenz Messtechnik GmbH K11 load cell with a range
of 300 kN and an accuracy in either tension or compression of
0.05 % of the measured force. The rates of displacement are well-
controlled in the range 8.3 × 10−7to 1 × 10−2 m s−1. A split
3-zone, 12 kW furnace (GERO GmbH) covers approximately
10 times the length of the sample and both pistons and can
heat up to 1,100◦C, accurate to within 2◦C. With appropriate
insulation, the stable hot zone is 0.12m long. At the ends of both
pistons, with a direct path through the pistons to the sample,

FIGURE 1 | Experimental technique employed here. (A) The experimental set up at the Ludwig-Maximilians-Universität, Munich, showing a uniaxial press with high

temperature furnace in the sample zone, capable of applying up to 300 kN. AE sensors are fitted at the top and bottom of the rig in direct contact with the

single-piece pistons which in turn are in direct contact with the sample during operation. (B) An example waveform from a single experiment (see Figure 6). (C) The

STA/LTA characteristic function showing that the detection threshold is exceeded at the onset of the AE event displayed in (B).
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are piezoelectric AE broadband transducers with 125 kHz central
frequency. A 40 dB buffered preamplifier is used to transfer
the AE signals to the Richter data acquisition system (Applied
Seismology Consultants), recording an AE voltage continuously
at 20 MHz sampling rate.

Some samples analyzed herein, and which appear in Vasseur
et al. (2017), were deformed in a similar apparatus at the
Laboratoire de Déformation des Roches (LDR) at the Université
de Strasbourg. This device also used an LVDT transducer
to measure displacement and piezoelectric transducers with
central frequencies in the 100-1,000 kHz range to monitor AE
signals. We refer the reader to Heap et al. (2015) for more
details.

For all tests, cylindrical samples of ∼ 10mm radius and ∼
40mm height were cored from blocks of (1) synthetic samples
of welded glass beads (originally characterized in Vasseur et al.,
2013; see Figure 2 for example 3D textures), or (2) volcanic
rocks fromMtMeager volcano (Canada; Heap et al., 2014, 2015).
We define the piston velocity as v = dL/dt and keep this
constant during any test. The strain rate in the axial direction
is then v/L0, where L0 is the starting sample length. The
samples were deformed at (1) a strain rate of 10−3 s−1 and a
temperature of ∼550◦C (slightly above the glass transition onset
in the viscoelastic regime) and (2) a strain rate of 10−5 s−1

and under room temperature to ensure an elastic response. The
temperature ∼550◦C is chosen to give an example condition
typical of magma deformation, in which the sample is a relaxed
liquid prior to deformation, but is driven to behave in a
viscoelastic way by the application of a strain rate that is high
compared with the relaxation time. At this temperature, the
sample chosen has a viscosity of ∼1012 Pa s, and a relaxation
time of 100 s, making the Deborah number De ≈ 0.1, which
is above the critical value to ensure failure will ensue. AE
event onsets were triggered and recorded automatically from
the continuous acoustic datastreams using an adaptation of an
autoregressive-Akaike-Information-Criterion (AR-AIC) picker
(Beyreuther et al., 2010; Vasseur et al., 2015). The AR-AIC picker
follows this workflow: (i) detection of the onset of a waveform
above the baseline using an STA-LTA detector, (ii) de-noising
of the acoustic signal, and (iii) AIC computation where the

minimum indicates the arrival time. The STA-LTA window was
set to 1 and 20ms, respectively and the STA/LTA threshold was
2. The amplitude in dB and energy (typically in nJ), of each
event were computed based on a resistance reference standard
of 10 k�.

All 42 samples were driven at constant rate as described
above, until failure occurred where mechanical failure is defined
as the point after which the sample is no longer load-bearing
and the force drops to zero. This force-drop is easily picked in
each mechanical dataset and provides excellent resolution on the
measured tc, which can then be compared with the predicted
tp using predictive tools described in section Quantitative
Background.

FORECASTING THE FAILURE OF
MULTIPHASE MAGMAS

We take a staggered approach to data analysis. First, we
consider that effects of material heterogeneity on forecast efficacy
can be best determined by using the complete data set of
acoustic emissions (section The Effect of Porosity). However, we
acknowledge that a true “forecast” would only be useful if it can
be made before the final critical failure event has been reached,
and therefore using less than the complete dataset. Therefore,
in a second step, we analyse the effect of taking an incomplete
sequence of data on the efficacy of forecasts (section Hindcasting
or Simulated Forecasting).

The Effect of Porosity
Using datasets produced for deformation of sintered, variable
porosity, variable grainsize, soda-lime silica glass beads (Vasseur
et al., 2013, 2015), and natural sintered Mt Meager volcanic
rock (Heap et al., 2015; Vasseur et al., 2017), we can apply the
techniques described above to test the efficacy of failure forecast
tools.

First, if we use 100% of the AE sequence, we can use the
log-likelihoods given in Equations (4–6) to fit for the unknown
constants in a linear form Equation (6), an exponential form
Equation (4) and a power-law form Equation (5). In Figure 3 we

FIGURE 2 | Example textures of variably porous sintered materials for which the pore space is rendered in 3-dimensions and colored gray if it is connected from

edge-to-edge in any direction, or green if it is not. The porosities shown are (A) 0.460, (B) 0.290, and (C) 0.014. The box edge length is 0.3mm. The non-pore phase

(glass in this case) is made invisible for clarity. These textures are typical of the types of material microstructures that are deformed in the experiments presented herein

and are especially relevant to granular or variably welded volcanic deposits. These images were obtained in situ at the Paul-Scherer-Institute (the Swiss Light Source

beamline TOMCAT) and are taken with permission from Wadsworth et al. (2017).
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plot the cumulative AE event number with time for low-to-high
porosity samples for both sample types (sintered glass beads and
welded volcanic debris fromMt Meager). The data are compared
with the three model forms (Equations 7–9).

The power-law (Equation 3) includes tc as a fit-parameter,
interpreted to be the best-fit modeled failure time (analogous
to tp described earlier). The value of tp is much greater than
the observed failure time tc when the sample porosity is low
(Figures 3A,E), creating a substantial time-deficit that equates
to a poor predictability. However, as porosity is increased,
tp systematically approaches tc (compare Figures 3A,E with
Figures 3D,H) such that the time deficit is reduced and the
potential for predictability is increased.

In the case of the linear and exponential forms, they fit the
data better at low porosity than at high porosity. Therefore, it
is clear that low-porosity samples do not deform with power-
law precursory signals and rather the precursory signals follow
exponential behavior. Indeed, at very low porosities, the data are
almost linear (Figure 3E). This leads to the proposition that the
power-law behavior in these critical mechanical systems is due to
individually unpredictable events bridging gaps between textural
flaws. And that the power-law predictability is an emergent
property of a complex system, rather than intrinsic to material
failure.

Hindcasting or Simulated Forecasting
In real forecasting scenarios at volcanoes, the beginning of the
precursory sequence may not be detected, and similarly, by
definition, a forecast requires that the end of the sequence is

incomplete. Here we test these scenarios in which a data sequence
may be partially incomplete and how such cases affect the efficacy
of forecast times.

First, if we assume that we can rigorously define the beginning
of the sequence, such that the initial time is well-defined, then we
can test the effect of missing data at the end of the sequence. This
is similar to real-time forecasting scenarios in which we might be
acquiring new data in real time and adding it to the sequence and
at each time-step, the fitting procedure would be repeated using
(Equation 5). Examples of single low- and high-porosity data sets
are given in Figures 4A,B (sintered glass beads) and Figures 4E,F
(Mt Meager volcanic debris), in which fits to 100, 90, 80, and
70% of the time data are shown (given as fractions of the data
sequence 0.7 ≤ f ≤ 1.0). The quality of the fits is similar from
f = 1 down to f = f ′ (where f ′ is about 0.8 for the sintered
glass beads and 0.9 for the welded volcanic debris), and the error
on the forecast time is similar in that window. However, with
sequences of less than f = f ′, the forecast errors become larger for
the high porosity samples. This indicates that the forecast efficacy
is highly dependent on the amount of the sequence that has
occurred, and that this dependence is stronger for high-porosity
samples (see Figures 4C,G). Indeed, for f < f ′, the dependence
of forecast error on porosity is the inverse of the dependence
found for f > f ′, such that it would appear that high-porosity
materials are less well-forecast than low-porosity materials. This
also shows that the forecast error for high-porosity materials
collapses to near zero as the sequence converges on t → tc.
Conversely, for low-porosity samples, we note that the inverse
trend is observed, albeit with a lower degree: the variability in

FIGURE 3 | The cumulative number of AE events as a function of normalized time. For comparison the best-fit power-law (ML-TROL; Equation 8), exponential

(ML-EXP; Equation 7), and linear models (ML-CR; Equation 9) are given. (A–D) are for synthetic samples of variably sintered soda-lime-silica glass beads (Vasseur

et al., 2013, 2015). (E–H) are for variably welded natural samples of Mt Meager deposits (Heap et al., 2014, 2015). Each panel represents a different porosity sample

with low porosity on the left and high porosity on the right. The gray shaded boxes represent the time difference between the observed failure time (left margin of the

box) and the failure time predicted by the extrapolated singularity of the ML-TROL power-law model (right margin of the box), such that the box itself represents the

time-deficit in the forecast. All panels contain information about the coefficient of determination r2 obtained for each fit. Adapted from Vasseur et al. (2017).
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FIGURE 4 | The effect of taking different fractions of a complete dataset. (A–D) are for the synthetic variably sintered glass bead samples, while (E–H) are for the

variably welded Mt Meager datasets. Panels (A,B,E,F) are the data for two porosities, for which the ML-TROL power-law model is fit using increasing fractions of the

data. f = 1 represents the full dataset, while f = 0.7, for example, would indicate that 70% of the total data set, measured from the beginning, has been used in the

fitting. Panels (C,G) are the effect of taking increasing fractions of the data on the failure time accuracy. Contrastingly, in panels (D,H), the curves at f < 1 refers to a

case when data at the beginning of the sequence is missing. A normalized failure forecast of unity (zero on this log axis), represents a perfect forecast. (A,B,E,F)

contain information about the coefficient of determination r2 obtained for each fit.

the forecast error grows as more and more of the sequence is
acquired.

We also check the effect of missing the beginning of the
sequence, analogous to missing low-amplitude events at the
beginning of a precursory phase of activity at a volcano (especially
problematic during long-duration precursory unrest phases;
Robertson and Kilburn, 2016). In Figures 4D,H we show this
effect is relatively independent of porosity and less important
than the data accumulating at the end of the sequence.

Probability and Accuracy
For 0.7 ≤ f ≤ 1.0, we show in Figure 5 the effect of taking
different proportions of the sequence on the forecast error. A
complete sequence f = 1.0 relates to the forecast error for
a complete sequence, and therefore represents a limiting case
where the entire dataset is known ahead of time. Any reports
of the predicted failure time for f = 1.0 are therefore not
forecasts and are instead useful for assessing the quality of the
functional forms for �̇(t) that could be used in forecasts. Here we
see the strong dependence of the error on the sample porosity,
with high-porosity materials being fully predictable with near-
zero error. However, at f = 0.7, for which the uncertainty on
the signal is higher, we note that the variability in the forecast
error for high-porosity materials is larger than for materials with
φ < 0.2, for which it becomes easier to forecast failure. We
cast these as a Probability Density Function (PDF) of a given
forecast error (Figure 5). For a given sample, we do this by
sweeping over a range of initial guesses (using a reasonable initial
value combined with a multiplicative factor varying between 1
and 10 every 0.05) on the fitted parameters in Equation (5),

performing fits and computing the distribution of fitted forecast
errors. The distribution is then converted to a PDF weighted
by the coefficients of determination obtained from the fitting
procedure. Displayed in Figure 5 is thus the intensity of the PDF
obtained for each sample as a color map. The points represent
the results obtained from using a single reasonable initial guess
for each parameter and do not necessarily coincide with the most
probable outcome.

SIMPLE SCALING FROM THE LAB TO THE
FIELD

Across all values of porosity φ, the frequency F of the acoustic
events in the laboratory-scale experiments detailed here ranged
between F = 3 × 104 and F = 1 × 106 Hz. In Figure 6b we
see that an additional complexity associated with high-porosity
samples lies in the clear discrete onset being slightly masked
compared with Figure 6a because the coda from the previous
waveform overlaps with the onset of the new waveform.

In other laboratory set-ups, events at much lower frequencies
are detected; for example in Benson et al. (2008) and Tuffen
et al. (2008), events as low as F = 104 Hz, are found to
be associated with pore fluid movement associated with sudden
fracture propagation. This is only possible in pore-pressure
controlled, jacketed triaxial experiments.

The scaling ratio most commonly deployed compares the
product of a fracture lengthscale L and event frequency F at scale
1 to the same product at scale 2. This assumes that the fracture
lengthscale is associated with the event that produced the signal
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FIGURE 5 | A probability map for what the likely error on a forecast time would be as a function of porosity. We give this for different fractions of a complete sequence

in panels (A–D). A normalized failure forecast of unity (zero on this log axis), represents a perfect forecast. We show that there is a high probability of a perfect forecast

at high porosities, but a low probability of good forecast at low porosities. See text for the details of the probability mapping. Inset to (D) shows the best-fit p exponent

of the TROL obtained using (Equation 5) for f = 1.

FIGURE 6 | Typical waveforms for low porosity (a) and high porosity (b) samples with their related spectrograms (c,d), showing that the peak amplitude and

frequency range does not significantly differ.

frequency. If we use subscripts to denote the two scales, then this
relation is L1F1 = L2F2 (Aki and Richards, 2002; Burlini et al.,
2007). If scale 2 is the volcano scale, and scale 1 is the laboratory
scale, then we can most easily place constraints on L1, F1, and
F2, and use these to predict L2. If we stick to order-of-magnitude
analysis, as shown above, 104 ≤ F1 ≤ 106 Hz and does not appear
to depend on φ. We might expect that L1 depends on φ and is
the inter-pore length given by Equation (12). In a porous system,
such as the sintered system used herein, we see that L1 depends
on the grainsize R. In natural sintered systems in volcanic
environments, the grainsize is typically 10−5 < R < 10−3 m
(Saubin et al., 2016). In turn, across the full range of φ from the
initial packing φ down to low sintered φ > 0.03, using (Equation
12), we find that 10−6 ≤ L1 ≤ 10−4 m (see section Describing
Heterogeneous Magmas). Finally, we know that VT events at
volcanoes are typically 1 ≤ F2 ≤ 10Hz. This renders 10−3 <

L2 < 102m and gives insight into the fracture lengthscales
between flaws on the volcano scale and is consistent with the
pervasive fracture system lengthscales expected in some of the
source-mechanism models for seismogenic eruptions (Neuberg
et al., 2006). This also implies that while fracture lengths in
the laboratory are typically related to the flaw or maximally,
the sample lengths, at the volcano scale these would be much
larger on the millimetric to hundred-meter scale. We work on
the assumption that low-frequency magma-fracture events are
damped events of an original VT-frequency content, congruent
with the model of low-frequency events as magma rupture events
(Neuberg et al., 2006; Thomas and Neuberg, 2012; Salvage and
Neuberg, 2016).

A key difference between the laboratory cases presented here
and natural cases is that laboratory experiments of this kind
tend to be performed at a constant strain rate, allowing the
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stress to evolve in response, until failure. However, in nature, the
magmatic conduit system may be more likely to be in a state of
variable local strain rate (e.g., constant pressure at the conduit
base or constant flux; c.f. Gonnermann andManga, 2003). Future
research should aim to explore scaling from laboratory to nature
across a wide range of conditions and we identify this as a frontier
topic.

CONCLUSIONS

We show that it is the heterogeneity of the system that
most effects the efficacy of forecasts of material failure. Given
this insight, we have presented the simplest scaling from the
laboratory to the natural case on the basis of the relationship
between rupture lengthscale and radiated frequency. On the
laboratory scale, it is the inter-pore lengthscales that fail in each
individual acoustic event, which leads to larger scale failure at
the critical time. By scaling, we see that these events and the
associated frequencies would be equivalent to seismic events
at volcanoes with much larger rupture lengthscales. However,
independent tests of the rupture lengthscales at active volcanoes
are poorly known and would represent fruitful future work.

We explore the effect of having an incomplete dataset during
a deformation episode. We find that the error on an attempted
critical time forecast is substantially affected by missing data
at the end of the sequence. The implication is that in any

real-time scenario, the efficacy of the forecast will improve as
the critical time approaches, especially for highly heterogeneous
systems. Poor constraint on when the deformation episode
began, however, is less important for effective forecasting.

We identify the specifics of scaling heterogeneities from the
laboratory to nature as a frontier topic in need of attention. We
propose that experimental work at larger scales could be used
to validate the scale independence of forecast efficacies in highly
heterogeneous systems, and explore the effect of system size on
the forecasts possible in homogeneous systems. The ability to
scale from laboratory findings to real crises in nature is critical.
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