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The present data in brief article provides additional data and
information to our research article “Micro- and nanostructures
reflect the degree of diagenetic alteration in modern and fossil
brachiopod shell calcite: a multi-analytical screening approach (CL,
FE-SEM, AFM, EBSD)” [1] (Casella et al.). We present fibre mor-
phology, nano- and microstructure, as well as calcite crystal
orientations and textures found in pristine, experimentally altered
(hydrothermal and thermal), and diagenetically overprinted bra-
chiopod shells. Combination of the screening tools AFM, FE-SEM,
and EBSD allows to observe a significant change in microstructural
and textural features with an increasing degree of laboratory-
based and naturally occurring diagenetic alteration. Amalgamation
of neighbouring fibres was observed on the micrometre scale level,
vier Inc. This is an open access article under the CC BY license
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whereas progressive decomposition of biopolymers in the shells
and fusion of nanoparticulate calcite crystals was detected on the
nanometre scale. The presented data in this article and the study
described in [1] allows for qualitative information on the degree of
diagenetic alteration of fossil archives used for palaeoclimate
reconstruction.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
Subject area
 Crystallography

ore specific subject area
 Micro- and nanostructure of modern and fossil biogenic carbonate

archives

ype of data
 Figures, text file

ow data was acquired
 Microtome: Leica Ultracut equipped with glass knives and DiATOME

diamond knife
Critical Point Drying: BAL-TEC CPD 030
FE-SEM: Hitachi S5200 field emission SEM
EBSD: Hitachi SU5000 field emission SEM equipped with a Nordlys II
EBSD detector and AZTec acquisition software
AFM: JPK Instruments NanoWizard II equipped with a nþ-silicon
cantilever, measurements were conducted in contact mode
ata format
 Analysed

xperimental factors
 Thermal and hydrothermal alteration experiments

xperimental features
 Thermal alteration experiments on modern brachiopod specimens were

performed under dry conditions at 100 °C (for 72 hours, and three
months), and at 400 °C (for 48 hours).
Hydrothermal alteration experiments on modern brachiopod speci-
mens were conducted in either simulated meteoric or burial fluids at
175 °C for 28 days.
Pristine, thermally and hydrothermally altered, and fossil brachiopod
shell fragments were embedded in epoxy resin and successively ground
and polished for further investigations [see 1, 2].
ata source location
 Friday Harbor Laboratories, University of Washington, U.S.A. (Ter-
ebratalia transversa),
Signy and Rothera Islands, Antarctica (Liothyrella uva),
Upper Ordovician Dillsboro Formation, Indiana, U.S.A (Platystrophia
laticostata), Lower Jurassic Ait Athmane Formation of the Central High
Atlas Basin, Morocco (Quadratirhynchia attenuata) ,
Luc-Sur-Mer, Normandy, France (Digonella digona) and, Bakony
Mountains, Hungary (Lobothyris punctata).
ata accessibility
 Data is with this article
Value of the data

� The data provides fundamental, quantitative and qualitative information on the assessment of the
degree of (diagenetic) alteration of brachiopod shells.

� Hydrothermal alteration experiments mimicking diagenetic alteration may be applied to other
biogenic hard tissues and inorganic mineral assemblages (e.g., rocks) in order to objectively
compare the degree of diagenetic overprint.
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� Data analysed by multi-analytical screening methods (FE-SEM, EBSD, AFM) may provide crucial
information on the history of fossils used in research fields such as reconstruction of the
palaeoclimates and palaeoenvironments.

� A comparison between microstructure and texture analyses of our data with isotope analysis may
provide more detailed understanding of diagenetic overprint of fossil samples.
1. Data

Among marine biocarbonates, calcitic brachiopod shells are one of the most used archives in
palaeoclimate and palaeoecological research [3–8]. In the past few decades, basic knowledge on
microstructural and textural patterns of pristine brachiopod shells was established [9–20]. Here, we
focus on additional insights on microstructural and nanostructural characteristics caused by
(mimicked) diagenetic alteration by using biochemical etching (Figs. 1–2), FE-SEM (Figs. 1–5), EBSD
orientation and texture data evaluation (Figs. 6–10), and AFM imaging (Figs. 11–13) of pristine,
thermally, hydrothermally, and diagenetically altered brachiopod shells. Based on FE-SEM imaging
and EBSD measurements, high-resolution data on pristine, (hydro-) thermally altered, and fossil
brachiopod specimens was obtained and subsequently analysed. We compare micro- and nanos-
tructural data of pristine and (hydro-) thermally or diagenetically altered brachiopod shells, i.e., the
presence of organic matrices, and the shape of calcite fibres of the fibrous secondary shell layer.
Texture analysis deduced from EBSD measurements on fossil brachiopods with varying degrees of
Fig. 1. FE-SEM images of pristine T. transversa showing different fibre characteristics. (A) Fibres of the fibrous secondary layer
exhibit uneven surfaces after mechanical fracturing (black dashed rectangle). (B) Irregularly shaped small mineral units as well
as organic matrices can be observed in the primary layer (yellow star) of the T. transversa shell. Each single fibre of the fibrous
secondary layer is surrounded by a biopolymer matrix (white arrow), and is comprised of nanoscopic biocomposite meso-
crystals (white star).



Fig. 2. FE-SEM images of microtome cut, polished, etched and critical point dried surfaces of the fossil brachiopod Q. attenuata.
As the fossil shell is devoid of organics (membranes around the fibres, network of fibrils within the fibres), it becomes brittle
and fractures when cut with a microtome knife (white stars in A and B).

Fig. 3. FE-SEM images of L. uva thermally altered under dry conditions at 100 °C for 72 hours. The morphology and arrays of
fibres are well kept (A), and each fibre is surrounded by an organic membrane (white arrows in B).
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diagenetic overprint shows the relation between the degree of crystallographic co-orientation and
diagenetic history experienced by biogenic minerals. AFM imaging of hydrothermally and fossil
brachiopod shells provides supporting and more detailed data on fibre morphologies and their
internal structure.



Fig. 4. FE-SEM images of L. uva shells thermally altered under dry conditions at 100 °C for three months. New, large, irregularly
shaped calcite units developed (white stars in A and B, yellow dashed outlines in A) as the original basic mineral units of the
skeleton amalgamate.

Fig. 5. FE-SEM image of a L. uva shell thermally treated at 400 °C for 48 hours. Organic membranes are entirely decomposed;
new calcite formation starts to occur as neighbouring fibres amalgamate (white arrows).
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2. Experimental design, materials and methods

2.1. Experimental designs of simulated diagenetic alteration

2.1.1. Thermal alteration
Thermal alteration was carried out in order to observe the decomposition of the enclosing organic

membranes. Sample material used in thermal alteration experiments was heated in an oven at 100 °C
for 72 h and for three months, as well as at 400 °C for 48 h.
2.1.2. Hydrothermal alteration
Hydrothermal alteration experiments were performed in the presence of either simulated

meteoric (10mM NaCl aqueous solution) or simulated burial (100mM NaCl þ 10mM MgCl2 aqueous
solution) fluid. Both solutions were prepared using high-purity deionised water [1,2,21]. Sample
material and 10ml of fluid were inserted into a polytetrafluoroethylene crucible which was placed
inside a metal autoclave. Experiments were conducted at 100 °C for 28 days using either simulated
meteoric or burial fluid. Pressure conditions during the hydrothermal alteration experiments corre-
sponded to the vapour pressure of water at the given temperature.



Fig. 6. EBSD band contrast images of pristine and thermally altered L. uva shells show the change and distortion of micro-
structure of the fibrous layer with progressive alteration times and temperatures. Relative to pristine L. uva (A), a slight dis-
tortion of the microstructure can be observed in shell samples altered at 400 °C and for 48 h (B). New mineral formation and
fibre amalgamation was observed after thermal alteration for three months at 100 °C (white stars in C). Alteration for four
months at 100 °C caused significant fibre amalgamation (white stars in D), microstructure destruction (yellow dashed rectangle
in D) and new calcite formation.
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2.2. Pristine and fossil brachiopod materials

2.2.1. Investigated pristine brachiopods
Modern brachiopod specimens of Terebratalia transversa (Sowerby, 1846) and Liothyrella uva

(Broderip, 1833) were utilised in biochemical studies for establishing baselines of pristine brachiopod
shell micro- and nanostructures, as well as in thermal and hydrothermal alteration experiments



Fig. 7. EBSD band contrast image of hydrothermally altered T. transversa shell. Alteration occurred at 175 °C for 28 days and was
carried out in simulated burial fluid. Shell areas where the original fibre morphology was distorted by alteration (yellow
rectangle) can be observed close to regions where the shell microstructure was little affected (white rectangle). Note that
amalgamation of fibres occurred occasionally (white arrows).

Fig. 8. EBSD band contrast image of hydrothermally altered T. transversa shell. Alteration occurred at 175 °C for 28 days and was
carried out in simulated burial fluid. In some parts of the shell the original fibrous shell microstructure was distorted by
amalgamation of fibres due to alteration (yellow dashed rectangles). The amalgamation of fibres can be explained by lateral
growth of the inorganic rhombohedral calcite (IRC) of one nanocomposite mesocrystal biocarbonate (NMB) fibre growing into
the neighbouring fibre. Note that altered shell areas are next to shell areas which appear to be little affected by alteration
(white dashed rectangle).
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mimicking diagenetic alteration of biogenic carbonates. Sampling sites of both live collected bra-
chiopods were Friday Harbor Laboratories, University of Washington, U.S.A., and Signy and Rothera
Islands, Antarctica, for T. transversa and L. uva, respectively.
2.2.2. Investigated fossil brachiopods
Four fossil equivalents were chosen from basins which experienced different burial depths and

diagenetic temperatures. Platystrophia laticostata (James, 1871) was collected from the Upper Ordo-
vician Dillsboro Formation, Indiana, U.S.A. The Jurassic brachiopods Lobothyris punctata (Sowerby,
1812) and Quadratirhynchia attenuata (Dubar, 1931) were collected at the Bakony Mountains, Hun-
gary, and Ait Athmane Formation of the Central Atlas Basin, Morocco, respectively. Digonella digona
(Sowerby, 1815) is the youngest of all Jurassic brachiopod samples and its sampling site was located
at Luc-Sur-Mer, Normandy, France. Further information on all utilised brachiopod specimens is
given in [1].



Fig. 9. EBSD band contrast images and colour-coded orientation maps with corresponding pole figures of fossil brachiopod D.
digona (A, C, E) and cement found between the pedicle and brachial valves (A, B, D; see Fig. 10D in [1]). Recrystallised calcite is
present in the fossil D. digona shell (white stars in C) and as precipitate within endopunctae (yellow arrows in C) and cement
(white stars in B). (A) Yellow numbers show MUD values of individual calcite grains found within the cement. The number of
corresponding data points used for the calculation of each MUD value is given in white. (D) MUD values of two selected
recrystallised calcite grains of the cement (coloured, white stars in B) are similar to each other (683 and 713) and show
characteristics of a single crystalline phase due to the superposition of crystallographic axes on the pole figures. (E) In contrast,
the crystallographic axes of newly formed calcite found within the shell of D. digona show high misorientation on the pole
figures and, thus, a significantly lower MUD value of 45 is obtained.
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Fig. 10. EBSD colour-coded orientation maps showing recrystallised calcite inside the shells of the fossil brachiopods L.
punctata (A), D. digona (B) and P. laticostata (C). MUD values are given in yellow, the number of calcite data points within a large
calcite crystal is shown in white.
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Fig. 11. Lateral deflection AFM images of hydrothermally altered T. transversa shell pieces. Alteration was carried out in simulated
meteoric fluid at 175 °C and lasted for 28 days. The degradation of organic membranes, the amalgamation of neighbouring fibres
(white arrows in A), and new calcite formation (A, B) can be observed at sites of former membranes located between two fibres.
The dashed white rectangle in (A) indicates the location of the shell area shown in (B).

Fig. 12. Vertical deflection AFM images of fossil D. digona shell pieces. Degradation of organic membranes (white arrows in A)
and amalgamation of neighbouring fibres into larger units (white stars in A) can be observed in the Jurassic brachiopod
specimen. (B) Formation of inorganic rhombohedral calcite (IRC) crystallites occurred within a single calcite fibre of the fibrous
secondary layer.
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2.3. Microtome cutting and polishing

Brachiopod shell fragments of pristine and fossil brachiopod species were mounted on 3mm thick
cylindrical aluminium rods using super glue. In order to obtain plane surfaces, the samples were



Fig. 13. Lateral deflection AFM images of fossil P. laticostata shell pieces showing (A) the distortion of neighbouring calcite of
the fibrous secondary layer caused by diagenetic overprint. (B) Fibres of fossil P. laticostata lack the enclosing organic mem-
branes and consist of inorganic calcite crystallites.
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microtome cut using a Leica Ultracut ultramicrotome equipped with glass knives. Subsequently, the
cut specimens were polished by stepwise removal of material in a series of slices with successively
decreasing thicknesses (90 nm, 70 nm, 40 nm, 20 nm, 10 nm, and 5 nm) using a DiATOME diamond
knife. Each step was repeated 15 times [22].

2.4. Selective biochemical etching

Microtome-polished shell surfaces were etched and the organic matter fixed, simultaneously,
while immersed in a solution of 0.1M HEPES (pH¼ 6.5) and 2.5% glutaraldehyde for 180 seconds. The
etching procedure was stopped by a dehydration step in 100% isopropyl 3 times for 10minutes each.
Subsequently, specimens were critical point dried using a BAL-TEC CPD 030 (Liechtenstein) device
and rotary coated with 3 nm of platinum.

2.5. FE-SEM imaging

For FE-SEM imaging, selected sample material was prepared by microtome cutting and polishing
following a selective biochemical etching treatment. However, the major preparation technique for
SEM imaging and EBSD measurements of brachiopod samples was carried out as follows. Brachiopod
shells were longitudinally cut from the umbo to the commissure and, subsequently, embedded in
epoxy resin. Shell surfaces were conventionally ground and polished in sequential steps down to a
grain size of 1 mm (particle size of polishing agent). The preparation was finalised by an etch-polishing
step utilising colloidal alumina with particle sizes of approx. 0.05 mm in a vibratory polisher. Subse-
quently, sample surfaces were rotary coated with 4–6 nm of carbon.

FE-SEM imaging was carried out at 4, 5, or 10 kV using a Hitachi S5200 electron microscope.

2.6. EBSD measurements, band contrast and analysis of calcite orientation data

For EBSD measurements, brachiopod shells were conventionally ground and polished as described
above. Sample surfaces were rotary coated with 4–6 nm of carbon.
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EBSD measurements were conducted at 20 kV using a Hitachi SU5000 FE-SEM equipped with a
Nordlys II EBSD detector and AZTec acquisition. Obtained EBSD data was evaluated using CHANNEL
5 HKL evaluation software [23,24].

Data on crystal orientation is shown as band contrast images and colour-coded crystal orientation
maps with corresponding pole figures. EBSD band contrast represents the quality of the Kikuchi
diffraction pattern in each measured point, thus, strong EBSD signals result in a bright image point
and weak or absent signals (e.g., due to pores, organic matter, amorphous phases) result in dark
image points. Crystallographic orientation maps were derived from EBSD scans. A measure of co-
orientation within single crystals or ensembles of crystals are given by the multiple of uniform dis-
tribution (MUD). High MUD values indicate highly co-oriented crystallographic axes (e.g., MUD of
4 700 in inorganic single crystals [25]) and, thus, a strong texture. Low MUD values down to
1.0 reflect randomly oriented crystallographic axes, thus, a weak or no texture.

2.7. AFM imaging

For AFM imaging, brachiopod specimens were prepared by two different preparation techniques,
i.e., microtome cutting using glass knives and polishing using a diamond knife, as well as by con-
ventional grinding and polishing as is described above (see subchapters 2.3 and 2.5). The latter
includes an additional step, i.e., cleaning of the highly polished sample surface for 10min. using high-
purity deionised water in an ultrasonic bath, rinsing with ethanol and subsequent air drying. Rotary
coating was not applied prior to AFM imaging.

Atomic force microscopy was conducted on hydrothermally altered and fossil brachiopod shells.
Images were taken in contact mode.
Acknowledgements

We would like to thank the German Research Council (DFG) for financial support in the colla-
borative research initiative CHARON (DFG Forschergruppe 1644, grant agreement number SCHM 930/
11-1). Furthermore, the project has received funding from the European Union´s Horizon 2020
Research And Innovation Programme under grant agreement number 643084. We acknowledge
helpful reviews by two anonymous reviewers, E. Harper, C. Garbelli, A. Pérez-Huerta, I. Montanez
(editor), and the managing editor for data in brief articles.
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/
10.1016/j.dib.2018.05.041.
References

[1] L.A. Casella, E. Griesshaber, M. Simonet Roda, A. Ziegler, V. Mavromatis, D. Henkel, J. Laudien, V. Häusserman, R.D. Neuser,
L. Angiolini, M. Dietzel, M. Eisenhauer, A. Immenhauser, U. Brand, W.W. Schmahl, Micro- and nanostructures reflect the
degree of diagentic alteration in modern and fossil brachiopod shell calcite: a multi-analytical screening approach (CL, FE-
SEM, AFM, EBSD), Palaeogeogr. Palaeoclimatol. Palaeoecol. 502 (2018) 13–30.

[2] L.A. Casella, E. Griesshaber, X. Yin, A. Ziegler, V. Mavromatis, D. Müller, A.-C. Ritter, D. Hippler, E.M. Harper, M. Dietzel,
A. Immenhauser, B.R. Schöne, L. Angiolini, W.W. Schmahl, Experimental diagenesis: insights into aragonite to calcite
transformation of Arctica islandica shells, Biogeosciences 14 (2017) 1461–1492.

[3] H.A. Lowenstam, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and
their bearing on the history of the oceans, J. Geol. 69 (1961) 241–260.

[4] J. Veizer, P. Fritz, B. Jones, Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans, Geochim.
Cosmochim. Acta 50 (1986) 1679–1696.

[5] U. Brand, Biogeochemistry of late Paleozoic American brachiopods and secular variation of seawater composition, Bio-
geochemistry 7 (1989) 159–193.

https://doi.org/10.1016/j.dib.2018.05.041
https://doi.org/10.1016/j.dib.2018.05.041
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref1
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref1
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref1
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref1
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref1
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref2
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref2
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref2
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref2
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref3
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref4
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref4
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref4
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref5
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref5
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref5


L.A. Casella et al. / Data in Brief 19 (2018) 299–311 311
[6] N.R. Bates, U. Brand, Environmental and physiological influences on isotopic and elemental compositions of brachiopod
shell calcite: implications for the isotopic evolution of Paleozoic oceans, Chem. Geol. Isot. Geosci. Sect. 94 (1991) 67–78.

[7] L. Angiolini, F. Jadoul, M.J. Leng, M.H. Stephenson, J. Rushton, S. Chenery, G. Crippa, How cold were the Early Permian
glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod
shells, J. Geol. Soc. Lond. 166 (2009) 933–945.

[8] C. Garbelli, L. Angiolini, F. Jadoul, U. Brand, Micromorphology and differential preservation of Upper Permian brachiopod
low-Mg calcite, Chem. Geol. 298-299 (2012) 1–10.

[9] V. Barbin, K. Ramseyer, J.P. Debenay, E. Schein, M. Roux, D. Decrouez, Cathodoluminescence of recent biogenic carbonates -
an environmental and ontogenetic fingerprint, Geol. Mag. 128 (1991) 19–26.

[10] W.W. Schmahl, E. Griesshaber, R.D. Neuser, A. Lenze, R. Job, U. Brand, The microstructure of the fibrous layer of ter-
ebratulide brachiopod shell calcite, Eur. J. Miner. 16 (2004) 693–697.

[11] W.W. Schmahl, E. Griesshaber, K. Kelm, A. Goetz, G. Jordan, A. Ball, D. Xu, C. Merkel, U. Brand, Hierarchical structure of
marine shell biomaterials: biomechanical functionalization of calcite by brachiopods, Z. Kristallogr. 227 (2012) 793–804.

[12] E. Griesshaber, K. Kelm, A. Sehrbrock, W.W. Schmahl, W. Mader, J. Mutterlose, U. Brand, Amorphous components in the
shell material of the brachiopod Megerlia truncata, Geochim. Cosmochim. Acta 71 (Supplement S) (2007) (A354-A354).

[13] E. Griesshaber, W.W. Schmahl, R. Neuser, T. Pettke, M. Blüm, J. Mutterlose, U. Brand, Crystallographic texture and
microstructure of terebratulide brachiopod shell calcite: an optimized materials design with hierarchical architecture, Am.
Mineralo. 92 (2007) 722–734.

[14] E. Griesshaber, R.D. Neuser, U. Brand, W.W. Schmahl, Texture and microstructure of modern rhynchonellide brachiopod
shells - an ontogenetic study, in: A.D. Rollett (Ed.), Applications of Texture Analysis, John Wiley & Sons, Hoboken, NJ, USA,
2007.

[15] E. Griesshaber, R.D. Neuser, W.W. Schmahl, The application of EBSD analysis to biomaterials: microstructural and crys-
tallographic texture variations in marine carbonate shells, Semin. Soc. Esp. Mineral. 7 (2010) 22–34.

[16] M. Cusack, Y. Dauphin, P. Chung, A. Pérez-Huerta, J.-P. Cuif, Multiscale structure of calcite fibres of the shell of the bra-
chiopod Terebratulina retusa, J. Struct. Biol. 164 (2008) 96–100.

[17] M. Cusack, A. Pérez-Huerta, M. Janousch, A.A. Finch, Magnesium in the lattice of calcite-shelled brachiopods, Chem. Geol.
257 (2008) 59–64.

[18] M. Cusack, Biomineral electron backscatter diffraction for palaeontology, Palaeontology 59 (2015) 171–179.
[19] A.J. Goetz, E. Griesshaber, R.D. Neuser, C. Lüter, M. Hühner, E. Harper, W.W. Schmahl, Calcite morphology, texture and

hardness in the distinct layers of rhynchonelliform brachiopod shells, Eur. J. Mineral. 21 (2009) 303–315.
[20] A.J. Goetz, D.R. Steinmetz, E. Griesshaber, S. Zaefferer, D. Raabe, K. Kelm, S. Irsen, A. Sehrbrock, W.W. Schmahl, Inter-

digitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells, Acta Biomater. 7 (2011) 2237–2243.
[21] A.-C. Ritter, V. Mavromatis, M. Dietzel, F. Wiethoff, E. Griesshaber, L.A. Casella, W.W. Schmahl, J. Koelen, R.D. Neuser,

A. Leis, D. Buhl, A. Niedermayr, S.M. Bernasconi, A. Immenhauser, Exploring the impact of diagenesis on (isotope)geo-
chemical and microstructural alteration features in biogenic aragonite, Sedimentology 64 (2017) 1354–1380.

[22] H. Fabritius, P. Walther, A. Ziegler, Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber
(Crustacea, Isopoda), J. Struct. Biol. 150 (2005) 190–199.

[23] N.H. Schmidt, N.O. Olesen, Computer-aided determination of crystal-lattice orientation from electron channeling patterns
in the SEM, Can. Mineral. 27 (1989) 15–22.

[24] V. Randle, O. Engler, Introduction to Texture Analysis, CRC Press, Amsterdam, 2000.
[25] F. Nindiyasari, A. Ziegler, E. Griesshaber, L. Fernández-Díaz, J. Huber, P. Walther, W.W. Schmahl, Effect of hydrogel matrices

on calcite crystal growth morphology, aggregate formation, and co-orientation in biomimetic experiments and biomi-
neralization environments, Cryst. Growth Des. 15 (2015) 2667–2685.

http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref6
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref6
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref6
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref7
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref7
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref7
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref7
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref8
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref8
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref8
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref9
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref9
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref9
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref10
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref10
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref10
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref11
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref11
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref11
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref12
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref12
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref13
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref13
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref13
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref13
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref14
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref14
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref14
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref14
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref15
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref15
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref15
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref16
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref16
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref16
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref17
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref17
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref17
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref18
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref18
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref19
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref19
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref19
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref20
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref20
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref20
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref21
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref21
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref21
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref21
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref22
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref22
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref22
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref22
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref22
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref23
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref23
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref23
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref24
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref25
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref25
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref25
http://refhub.elsevier.com/S2352-3409(18)30547-X/sbref25

	Archival biogenic micro- and nanostructure data analysis: Signatures of diagenetic systems
	Data
	Experimental design, materials and methods
	Experimental designs of simulated diagenetic alteration
	Thermal alteration
	Hydrothermal alteration

	Pristine and fossil brachiopod materials
	Investigated pristine brachiopods
	Investigated fossil brachiopods

	Microtome cutting and polishing
	Selective biochemical etching
	FE-SEM imaging
	EBSD measurements, band contrast and analysis of calcite orientation data
	AFM imaging

	Acknowledgements
	Supporting information
	References




