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Abstract. We use the magnetic field measurements from
four spacecraft of the Cluster-II mission (three events from
2005 to 2015) for the analysis of turbulent processes in the
Earth’s magnetotail. For this study we conduct the spec-
tral, wavelet and statistical analysis. In the framework of
statistical examination, we determine the kurtosis for se-
lected events and conduct extended self-similarity evalua-
tion (analysis of distribution function moments of magnetic
field fluctuations on different scales). We compare the high-
order structure function of magnetic fluctuations during dipo-
larization with the isotropic Kolmogorov model and three-
dimensional log-Poisson model with She–Leveque parame-
ters. We obtain power-law scaling of the generalized diffu-
sion coefficient (the power index that varies within the range
of 0.2–0.7). The obtained results show the presence of super-
diffusion processes. We find the significant difference of the
spectral indices for the intervals before and during the dipo-
larization. Before dipolarization the spectral index lies in the
range from −1.68±0.05 to −2.08±0.05 (∼ 5/3 according
to the Kolmogorov model). During dipolarization the type of
turbulent motion changes: on large timescales the turbulent
flow is close to the homogeneous models of Kolmogorov and
Iroshnikov–Kraichnan (the spectral index lies in the range
from −2.20 to −1.53), and at smaller timescales the spectral
index is in the range from −2.89 to −2.35 (the Hall–MHD
model). The kink frequency is less than or close to the aver-
age value of the proton gyrofrequency.

The wavelet analysis shows the presence of both direct and
inverse cascade processes, which indicates the possibility of
self-organization processes, as well as the presence of Pc pul-
sations.

1 Introduction

The physical process responsible for the onset of magne-
tospheric substorms remains an unsolved mystery in spite
of more than 5 decades of intense research efforts after the
discovery of this episodic disturbance in the ionosphere and
the magnetosphere. Many potential processes have been pro-
posed by e.g. Nishida and Hones (1974), Rostoker and East-
man (1987), Samson (1998), Rothwell et al. (1988), Lui et al.
(1991), Haerendel (1992), Kan (1998), and Streltsov et al.
(2010). Soon after the turn of the century, two prominent
scenarios of substorm development emerged with different
emphasis on the initial substorm onset location and the as-
sociated physical mechanism (Baker et al., 1996). The first
model is the Near-Earth Neutral Line (NENL) model with
the onset location in the middle of the tail at distances of 15–
30 Earth radii in which a large-scale process involving re-
connection of magnetic field lines is invoked by Baker et al.
(1996) and Nishida (1978). The second one is the Current
Disruption (CD) model in which a plasma instability at dis-
tances of 6–15 Earth radii is invoked initially by Lui (1991),
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Roux et al. (1991), and Samson (1998), followed by mag-
netic reconnection at further downtail distances (Lui, 1991).
The distinguishing characteristics of these two scenarios are
the initial onset location and the associated physical process.

A four-satellite ESA mission, named Cluster-II, and a five-
satellite NASA mission, named Time History of Events and
Macroscale Interactions during Substorms (THEMIS), were
launched to identify the location where the substorm distur-
bances are initiated in the magnetotail (Angelopoulos, 2008).

The strategy adopted by these missions is to have some
satellites situated at different downtail distances to identify
the originating location of substorm disturbance. This strat-
egy turns out not to be foolproof as magnetic reconnection
was later recognized to be localized in the local time extent
and not a large-scale process as originally envisioned (Naka-
mura et al., 2004). Because of the spatial limitation of mag-
netic reconnection, satellite observations have not led to a
compelling conclusion to settle the mystery as observations
of the propagation direction of substorm disturbances in the
tail yielded diversified results with many reports on results to
be consistent with one or the other of the scenarios, i.e. no
consistency with one particular model (Angelopoulos, 2008;
Lui, 2009; Akasofu, 2012, 2017; Panov et al., 2013; Hwang
et al., 2014). A complication in distinguishing the two sce-
narios is the presence of the so-called pseudo-breakups (Ze-
lenyi and Veselovskiy, 2008; Lopez, 1990; Lui, 2002, 2004;
Runov et al., 2012).

On the other hand, both scenarios have common con-
sequences such as impulsive particle acceleration, dipolar-
ization, and formation of a current wedge (Zelenyi and
Veselovskiy, 2008; Lui, 2004). Several plasma instabilities
have been proposed to play a role in these substorm sce-
narios. External and internal plasma environments with the
presence of heavy ions affect the occurrence of these insta-
bilities. Instabilities in the CD model include the balloon-
ing instability (Roux et al., 1991; Cheng and Lui, 1998) and
the cross-field current instability (Lui, 2004). Although mag-
netic reconnection is not a plasma instability process, it re-
quires an instability such as ion tearing instability (Schindler,
1974; Sitnov and Schindler, 2010) to form an X-line for its
existence. Besides, magnetic reconnection can involve tur-
bulence, but one should not forget about the work of Speiser
(1970) describing the magnetic reconnection without noise
(i.e. turbulence). Heavy ions play a significant role in the
development of substorms since their presence changes cur-
rent sheet thickness and its structure, leading to favourable
conditions for magnetic reconnection and the generation of
Kelvin–Helmholtz instability (Kronberg et al., 2014, 2017a,
b).

Investigation of the magnetotail is significantly compli-
cated by the presence of turbulence due to instability result-
ing in a “catastrophic” alteration of the flow and magnetic
field structure (Barenblatt, 2004; Frik, 1999; Frisch, 1995).
Complex turbulent processes that occur in the Earth’s mag-
netosphere cannot be described within the analytical MHD

flow models. To consider the properties of turbulence at dif-
ferent temporal and spatial scales, one should adopt methods
of statistical physics and the cascade model developed in hy-
drodynamic theories. Also note that, when considering a sta-
tistical system to be characterized by self-similarity, it can be
regarded as a physical characteristic of a fractal size equal to
the effective Larmor radius of particles and properties of tur-
bulent processes associated not only with the physical mech-
anisms of instability, but also with symmetries that describe
the scale invariance (Savin et al., 2011; Chen et al., 2017).

An analytical or numerical solution of the turbulent plasma
dynamics (in three-dimensional geometry) and determina-
tion of turbulence features at large timescales are not cur-
rently possible. Therefore, statistical properties of turbulence
associated with large-scale invariance are determined exper-
imentally along with estimation of spectral indices in the as-
sumption of power laws for plasma parameters. This allows
one to get an idea of the physical properties of plasma turbu-
lence and a description of the transport processes in the tur-
bulent regions in qualitative and quantitative terms (Kozak
et al., 2012, 2015; Hadid et al., 2015). This approach has
yielded important insights into the turbulent plasma char-
acteristics, mainly in the magnetosheath. Plasma turbulence
in the magnetotail is a key feature for dipolarization in the
CD model. The multiscale nature of plasma turbulence at a
CD site has also been explored by analysis from the non-
linear dynamics approach or from wave identification by
e.g. Lui and Najmi (1997), Consolini and Lui (1999, 2000),
Lui (2002), Consolini (2005), Lui et al. (2008), Yoon et al.
(2009), Le Contel et al. (2009), Zhou et al. (2009), and Mok
et al. (2010).

In this work, the spectral and statistical approach was
carried out to examine the features of the magnetic field
dipolarization in the Earth’s magnetotail for three events
(12 September 2015, 15 October 2005, 1 October 2005). The
methods and approaches used in the work are described in
detail and tested in the works by Kozak and Lui (2008),
Kozak et al. (2011, 2012, 2015, 2017), Savin et al. (2011,
2014), and Kronberg et al. (2017a). Acceleration processes
of protons and electrons associated with wave activity ob-
served during dipolarization events in 2005 were previously
studied in papers by Grigorenko et al. (2016). This work pro-
vides the statistical review estimates on the features of turbu-
lent and dynamic processes at small timescales.

2 Used experimental data

The data of the magnetic field for this analysis were ob-
tained by the spacecraft (SC) of the Cluster-II mission in
the near-Earth tail for three events (two events in 2005 and
one event in 2015) during the dipolarization of the magnetic
field (see Fig. 1a, b). The sampling rate is 22.5 Hz. The mag-
netic field data are obtained by the fluxgate magnetometer
(FGM) (Balogh et al., 2001). In the course of the study, the

Ann. Geophys., 36, 1303–1318, 2018 www.ann-geophys.net/36/1303/2018/



L. V. Kozak et al.: Turbulent processes in the Earth’s magnetotail 1305

Figure 1. (a) Absolute values of the magnetic field in GSE. 1 – intervals for the moments before dipolarization; 2 – intervals during the
dipolarization of the magnetic field. (b) Examples of magnetic field dipolarizations in GSM. The observations are shown from satellites
closest to the current layer. 1 – intervals for the moments before dipolarization; 2 – intervals during the dipolarization of the magnetic field.
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peculiarities were considered of the magnetic field fluctua-
tions for moments prior to dipolarization (relative level of
fluctuations ∼ 0.05–0.24 (interval 1) and during the dipolar-
ization of the magnetic field (relative fluctuation level∼ 0.8–
1 (interval 2) (Fig. 1a, b). The spacecrafts were at the geocen-
tric distances 11–17RE in the anti-sunward direction in the
pre-midnight sector (Fig. 2).

The event of 2015 satisfies the most the conditions of dipo-
larization for the CD model by Lui (2018). For the CD model,
large magnetic fluctuations predominantly occur around the
neutral sheet of the magnetotail where Bz� Bx,By . During
CD, the level of magnetic fluctuations dBz/Bz0 can reach
the order of one or more, where Bz0 is the Bz value before
CD onset. This type of event typically lasts for several min-
utes. The Bz component could become negative, in spite of a
strong background positive Bz component from the dipole
magnetic field. It is accompanied by particle energization
and intense fluctuating electric fields. The cross-tail current
breaks up into filaments and may reverse its direction. The
associated plasma flow pattern is not organized by the Bz po-
larity, unlike magnetic reconnection.

In the dipolarization region the fluctuations of the mag-
netic field greatly differ from the region before dipolar-
ization: in particular for the event on 1 October 2005
the magnetic field variations normalized to the current
mean value are δBx/Bx ∼ 0.5–1, δBy/By ∼ 1, δBz/Bz ∼
1, and δB/B ∼ 0.8–1; for the event on 15 October 2005
– δBx/Bx ∼ 0.2–0.5, δBy/By ∼ 0.3–1, δBz/Bz ∼ 0.4–0.8,
and δB/B ∼ 0.5–1; for the event on 12 September 2015 –
δBx/Bx ∼ 0.5–1, δBy/By ∼ 0.5–0.7, δBz/Bz ∼ 0.8–1, and
δB/B ∼ 0.8–1.

Since the region of dipolarization is traced by four space
vehicles, we were able to estimate the speed and direction
of the dipolarization front (DF) motion, the thickness of the
front (Table 1). The estimated values of plasma characteris-
tics in the dipolarization region (interval 2) are collected in
Table 2.

Moreover, according to Fu et al. (2012), during the dipo-
larization the variation of Bz for different satellites can be
represented as

Bfit =
a

2
tanh

(
1t

b/2

)
+

(
c+

a

2

)
, (1)

where 1t = t − tDF represents the interval from 60 s before
to 15 s after the dipolarization front. a, b, and c are fitting
coefficients, and σ is a standard error.

The calculated values of the coefficients are also given in
Table 1.
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Figure 2. The locations of the satellites.

Table 2. Estimated values of plasma characteristics in the dipolarization region.

SC Average proton- Number density Electron plasma Ion plasma Electron inertial Ion inertial
cyclotron frequency of electrons, frequency, frequency, length, λe, length,

〈fCp 〉 (Hz) ne (cm−3) ωpe (s−1) ωpi (s−1) (km−1) λi (km−1)

12 Sep 2015

C1 0.25 0.25 2.82× 104 6.58× 102 10.63 455.52
C2 0.22 0.2 2.52× 104 5.89× 102 11.89 509.29
C3 0.28 0.35 3.34× 104 7.79× 102 8.98 384.99
C4 0.28 0.2 2.52× 104 5.89× 102 11.89 509.29

15 Oct 2005

C1 0.19 0.5 3.99E× 104 9.31× 102 7.52 322.1
C2 0.13 0.5 3.99× 104 9.31× 102 7.52 322.1
C3 0.27 0.5 3.99× 104 9.31× 102 7.52 322.1
C4 0.3 0.5 3.99× 104 9.31× 102 7.52 322.1

1 Oct 2005

C1 0.13 0.4 3.57× 104 8.32× 102 8.4 360.12
C2 0.07 0.4 3.57× 104 8.32× 102 8.4 360.12
C3 0.14 0.4 3.57× 104 8.32× 102 8.4 360.12
C4 0.16 0.4 3.57× 104 8.32× 102 8.4 360.12

3 Results of the research

3.1 Spectral analysis

Within the spectral analysis, the spectral power density
(PSD) was built from the frequency f , and the power-law
dependence PSD(f )∼ f a was determined. To determine the
PSD of the signal for a series of N measurements Xn, a
discrete Fourier transform (Daly and Paschmann, 2000) was
used:

PSD=
2N
fs

∣∣∣∣∣ 1
N

N−1∑
n=0

Xn exp
(

2πinj
N

)∣∣∣∣∣
2

, (2)

where n= 0,1. . .N − 1, j = 0,1. . .N/2.
To find the break points and the slope of the spectrum,

we used a piecewise linear approximation of logPSD from

log(f ) in the frequency range 0.005–∼ 1.0 Hz for the pre-
dipolarization interval and 0.01–3.0 (events 1 October 2005
and 15 October 2005) and 0.01–1.0 (event 12 Septem-
ber 2015) Hz for dipolarization. The limitation of frequen-
cies at a high level is due to the presence of instrumental
noise, and at the low-frequency range due to the amount of
data sampling and the edge effect of the smoothing proce-
dure. The PSD results for the absolute value of the magnetic
field are shown in Fig. 3 and Table 3.

During the time before the dipolarization (interval 1), for
all events and spacecrafts, there is no sharp change in the
PSD power law in the inertial interval (the exponent varies
in the range from −2.08 to −1.68). During dipolarization
(interval 2), the situation is significantly different. There is
an increase in the “steepness” of PSDs for higher frequen-
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Table 3. The results of PSD analysis.

Event SC Interval 1 Interval 2

Slope Average slope Kink frequency, Slope Average slope Slope Average slope
f ∗, Hz lower f ∗ lower f ∗ higher f ∗ lower f ∗

12 Sep 2015

C1 −1.7535± 0.022

−1.86± 0.10

0.14 −1.6340± 0.031

−1.59± 0.07

−2.8914± 0.038

−2.77± 0.20
C2 −1.8758± 0.036 0.12 −1.6619± 0.034 −2.4966± 0.04
C3 −1.8722± 0.036 0.15 −1.5310± 0.042 −2.8527± 0.033
C4 −1.9552± 0.046 0.15 −1.5421± 0.044 −2.8473± 0.029

15 Oct 2005

C1 −1.6800± 0.017

−1.86± 0.16

0.19 −2.1634± 0.020

−2.03± 0.33

−2.5265± 0.036

−2.50± 0.23
C2 −2.0042± 0.019 0.07 −1.5395± 0.026 −2.7969± 0.016
C3 −1.8452± 0.023 0.08 −2.1995± 0.028 −2.3461± 0.023
C4 −1.9003± 0.045 0.08 −2.1992± 0.044 −2.3504± 0.047

1 Oct 2005

C1 −2.0794± 0.034

−2.04± 0.04

0.13 −1.6442± 0.026

−1.66± 0.18

−2.8159± 0.045

−2.73± 0.16
C2 −2.0237± 0.046 0.07 −1.8831± 0.031 −2.4860± 0.048
C3 −1.9987± 0.026 0.08 −1.5828± 0.033 −2.8022± 0.035
C4 −2.0665± 0.038 0.1 −1.5261± 0.045 −2.8221± 0.032

cies than the kink frequency, which means more efficient
energy transfer from large to smaller scales. For practically
all spectra of interval 2, the kink frequency is less than or
close to the average value of the proton gyrofrequency (Ta-
ble 2). The kink frequency determines the characteristic fre-
quency of the type change (i.e. the energy transfer rate) of
the turbulent cascade in the inertial range. In particular, for
events 12 September 2015 and 15 October 2005 the break
corresponds to about half of the proton frequency ωc/2.
The fact that the break is observed at frequencies smaller
than the proton gyrofrequency may indicate a significant
effect of heavy ions at the distances considered (accord-
ing to the measurements of the density by the CIS instru-
ment (Rème et al., 2001) for event 1 October 2005, in the
region of the magnetic field dipolarization, the percentage
of oxygen ions in relation to protons (〈n(O+)〉/〈n(H+)〉) is
21.1±10.0% (SC C3) and 9.3±1.5% (SC C4), and the per-
centage of helium in relation to protons (〈n(He+)〉/〈n(H+)〉)
∼ 2.4±0.3% (SC C3) and ∼ 4.8±0.7% (SC C4); for event
15 October 2005 – 〈n(O+)〉/〈n(H+)〉 ∼ 11.1± 1.0% (SC
C4) and 〈n(He+)〉/〈n(H+)〉 ∼ 3.4± 0.5% (SC C4); for the
12 September 2015 event – 〈n(O+)〉/〈n(H+)〉 ∼ 18.9±
7.3% (SC C4) and 〈n(He+)〉/〈n(H+)〉 ∼ 15.8± 5.4% (SC
C4)). At the same time, the exponent lies in the range from
−2.2 to −1.53 on large timescales of 0.01−ωc/2, and at
smaller timescales ωc/2–3 Hz, the value lies in the range
from −2.89 to −2.35. The greatest difference at different
timescales is observed for the 2015 event.

3.2 Wavelet analysis

Within the framework of the wavelet analysis for a series
of measurements Xn (n= 0,1. . .N − 1) with time step δt ,
a Morlet wavelet (Torrence and Compo, 1998) was used:

90(η)= π
−

1
4 eiω0ηe−

η2
2 , (3)

where ω0 is the dimensionless frequency, and η the dimen-
sionless time.

The continuous wavelet transform of the discrete signal
Xn is defined as the convolution of the mother wavelet whose
argument is scaled and transmitted with a signal (Farge,
1992; Grinsted et al., 2004; Jevrejeva et al., 2003):

Wn(s)=

N−1∑
n′

xn′9
∗

[
(n′− n)δt

s

]
, (4)

where (∗) is the complex conjugate, |Wn(s)|
2 is the wavelet

power spectrum, and s is the wavelet scale. Index 0 in 90
denotes that the function is normalized.

The results of the continuous wavelet transform of the
magnetic field module in the dipolarization region are shown
in Figs. 4 to 6. The time range was chosen to include the dipo-
larization interval (interval 2) with some margin (±5 min) to
exclude the influence of the edge effects of the wavelet trans-
form on the explored intervals. The upper limit of the wavelet
transform is limited by the Nyquist frequency. The sampling
frequency of the measurements makes it possible to analyse
the presence of high-frequency fluctuations in addition to the
low-frequency components.

In Fig. 4 the wavelet analysis of the magnetic field mag-
nitude for the event on 12 September 2015 is presented. In
this case C3 and C4 were located ahead of C1 and C2, with
C2 being the furthest in the magnetotail. Inverse and direct
cascades are present in wavelet analysis at multiple times:
13:47:30 (dipolarization onset) and 13:53:00, both spanning
0.02–0.2 Hz in the frequency domain. This signal broadens
for C1 and C2 wavelets and breaks up into smaller time-
frequency forms: e.g. the signal on 13:53:00 UT becomes
stronger in time and frequency domains of 1 min and 0.01 Hz
correspondingly. Wavelet transform for C1 is characterized
by a prevalence of intensity enhancements in the wide fre-
quency range at an earlier stage of the turbulent phase of
dipolarization at 13:47:30–13:50:30 as compared to trans-
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Before dipolarization After dipolarization

Figure 3. The results of spectral analysis.

forms for C2, C3, and C4. Also for C1, it is interesting to
note the fact of coexistence of the inverse and direct cas-
cades simultaneously starting at 13:47:30, and wherein the
first one lasts for 2 min with frequency decrease from 0.015
to 0.008 Hz and the more intense second one lasts for 2.5 min
with slight frequency increase from 0.015 to 0.02 Hz.

Figure 5 presents the wavelet transform for event 15 Oc-
tober 2005. Taking into account the cone of influence (COI),
there are no strong enhancements presented for C3 and C4.
For both these satellites, only high-frequency short signals
are present. Transformations for C1 and C2 have a much
richer frequency content. The component 0.008–0.01 Hz is
present on all wavelet analysis, with the maximum amplitude

www.ann-geophys.net/36/1303/2018/ Ann. Geophys., 36, 1303–1318, 2018
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Figure 4. The results of wavelet analysis for event 12 September 2015. The cone of influence is shown by the shaded region.

shown at the C2 satellite. For C1 this signal has a broader
structure, starting from 06:56 until 07:18, with frequency
spanning from 0.005 to 0.02 Hz. Both of the satellites hold
the same structure of short-term high-frequency signals up to
1 Hz.

Figure 6 demonstrates the wavelet analysis for the event
on 1 October 2005. The third and fourth SCs were located
relatively close, with the first and second slightly behind in
the magnetotail. Although the onset of dipolarization begins
at 04:49, where the Bz component becomes comparable with
magnetic field magnitude B, the signal up to this moment
is not devoid of high-amplitude changes. Transforms for C3
and C4 show strong signals in the frequencies ranging from
0.002 to 0.004 Hz, which span 10 min, with different times
for intensity maxima: 04:39 for the third SC and 04:42 for
the fourth. In both cases, a structure of inverse cascade can be
traced before dipolarization onset: the frequency decreases
from 0.005 to 0.002 Hz. The second inverse cascade lasts for
10 min starting from 04:57 in the time domain with a grad-
ual decrease in the frequency range from 0.015 to 0.005 Hz,

while at higher frequency it breaks up into smaller wave
forms. Wavelet decomposition for C2 differs from the oth-
ers, primarily by the absence of any cascade during the tur-
bulent phase of dipolarization with a distinct component at
0.0035 Hz which spans for 8 min. It is interesting to note that
just for this SC the spectral slope of the PSD spectrum is less
in absolute value in comparison with other SCs:−2.5 against
−2.8. The relatively short components, with durations of less
than 2 min, extend in the frequency range from 0.02 up to
0.2 Hz. For C1 there is an enhancement with long duration
at 0.004 Hz, which spans more than 20 min, and one with a
gradual increase in frequency up to 0.007 Hz, i.e. direct cas-
cade. Such prolonged intensity enhancements are observed
with a wide frequency coverage beginning with 0.002 up to
0.01 Hz. A large number of high-frequency components ap-
pears in measurement signals from both satellites.

Thus, during the dipolarization, the magnetometers of all
spacecraft recorded powerful signals with periods of 50, 100,
125, 166, and 200 s, corresponding to Pc4 (45–150 s) and Pc5
(150–600 s) pulsations, as well as direct and inverse cascade
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Figure 5. The results of wavelet analysis for event 15 October 2005. The cone of influence is shown by the shaded region.

processes. The presence of inverse cascade processes indi-
cates that together with the decay of the vortex structures,
self-organization also takes place, i.e. smaller vortices are
grouped into larger vortices. In the analysed events Pc pul-
sations were observed by all satellites – in the spatial range
of 11–17RE. The largest number of cascade processes is ob-
served at a distance of 15–16RE, and the largest number of
inverse cascades is in the range 13–14RE.

3.3 Statistical analysis

In the presence of intermittency in magnetic field fluc-
tuations, the energy cascade is characterized by non-
homogeneous non-linear transfer of energy among smaller
and smaller structures, with the result of concentrating the
energy on limited regions of space.

This effect becomes more and more intense at smaller and
smaller scales. More properly, intermittency corresponds to
scale-dependent, non-Gaussian, heavy-tailed probability dis-
tribution functions (PDFs) of the field fluctuations (Frisch,

1995). Non-Gaussianity of the PDFs, which increases as the
spatial scale decreases, is indeed due to the presence of the
intense, phase-correlated fluctuations, due to the transfer of
energy between contiguous eddies. It should be pointed out
that spectral properties of the field are not essentially affected
by intermittency. This is normally studied through the scal-
ing properties of PDFs, or through their high-order moments
(the structure functions), for which models and theoretical
results exist (Frisch, 1995). The observation of intermittency
implies that a non-linear, non-homogeneous energy transfer
takes place in the system (Zimbardo et al., 2010).

In order to determine the presence of intermittence, an
analysis of the value of the excess for all the SCs of the con-
sidered events has been performed, and the Hölder parame-
ter h for spacecraft C1 has been determined. In this case, the
statistical properties of the magnitude value of the magnetic
field fluctuations at different timescales were analysed. The
use of the Taylor hypothesis for various regions of the mag-
netospheric tail is detailed in Borovsky and Funsten (2003).
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Figure 6. The results of wavelet analysis for event 1 October 2005. The cone of influence is shown by the shaded region.

Figure 7. The results of kurtosis.

The value of the kurtosis was determined by the moments
of the second and fourth orders from the formula by Zacks

(1971):

K(τ)=
S4(τ )

(S2(τ ))2
, (5)
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Figure 8. The example of Hölder exponents.

where Sq(τ )= 〈|B(t+ τ)−B(τ)|q〉 is the structure function
of qth order, 〈. . .〉 is the time average of the data, τ is the
timescale (time shift), multiple of measurements discretiza-
tion 0.0445 s. When determining the excess value of the mag-
netic field fluctuations, the dependence of the functionsK(τ)
from the scale parameter τ was constructed. The significance
of excesses for different mission SC and different events is
shown in Fig. 7. It is clearly seen from the graphs that for
the interval 1 (dotted line) for almost all satellites the value
of K(τ) varies about 3 (in the range from 2 to 5), which is
close to the normal distribution. The only exception is the
measurement on the C1 spacecraft for 1 October 2005. Also,
for interval 1, the spin tone of SC rotation is clearly observed
by sheer accident near the gyrofrequency. For the dipolar-
ization region (interval 2, solid line), the function K(τ) on
small scales varies from 100 (C1, 12 September 2015) to 8
(C3, C4, 15 October 2005).

For SC C3 and C4, changes in the value of kurtosis are
very similar. The largest jump is observed for C1, 12 Septem-
ber 2015. A sharp drop in the kurtosis is observed on the
scales to the ion-cyclotron frequency (Table 2).

The “gap” of values for interval 2 for very small τ can be
explained by the instrumental error of observations.

Thus, for a region of dipolarization at small timescales, we
have a distribution with a sharper vertex and broad wings (the
excess value is greater than 3) than for a normal distribution.

The presence of intermittency is indicated by the analysis
of the first-order structure function (Fig. 8). For a self-affine
signal, S(τ)≈ τ−h, where h is the Hölder exponent (note
that the Hölder exponent is the Hurst exponent of first order,
h= 0.5 for Brownian motion). The higher value of h after-
ward indicates a persistent signal with a longer correlation
than a random noise and may imply the occurrence of re-
organization during dipolarization (Chang, 1992; Consolini

and Lui, 2000). In our case, the Hölder exponent is in the
range h≈ 0.659± 0.005 at the time of dipolarization.

Also, for the interval prior to dipolarization, the variations
“caused” by the presence of spacecraft spin effects in the data
are clearly visible.

To compare the type of turbulent processes with the avail-
able models of turbulent processes, an analysis of the high-
order structural function was done, allowing one to charac-
terize the properties of heterogeneity at small timescales.

In this case, the structural function is determined by the
ratio:

Sq(τ )= 〈|B(t + τ)−B(t)|
q
〉 ∼ τ ζ(q), (6)

where 〈. . .〉 is the time average of the data, and τ is the time
step.

The existence of the criterion of generalized self-similarity

for an arbitrary pair of structural functions Sq(τ )∼ Sp(τ )
ζ(q)
ζ(p)

allows one to find ζ(q) and estimate the types of turbulent
and diffusion processes (Dubrulle, 1994). In this case, the
non-linear functional dependence ζ(q) from the order of the
moment q for experimental data is a consequence of the in-
termittency of processes. For the interpretation of the non-
linear spectrum ζ(q), the log-Poisson model of turbulence
is used, in which the power index of the structural function
is determined by the relation (Dubrulle, 1994; She and Lev-
eque, 1994; Kozak et al., 2011)

ζ(q)= (1−1)
q

3
+

1

1−β

[
1−β

q
3

]
, (7)

where β and 1 are parameters that characterize intermit-
tency and singularity of dissipative processes, respectively.
It is important to note that within the framework of this
model a stochastic multiplicative cascade is considered, and
the logarithm of dissipation energy is described by the Pois-
son distribution. For isotropic three-dimensional turbulence,
1= β = 2/3 (SL) (She and Leveque, 1994).

The power law of the type Sq(τ )∼ τ
ζ(q) (i.e. self-

similarity – linear dependence) is observed on limited
timescale intervals (Fig. 9). For the considered satellite mea-
surements, this interval is close to the value of the ion-
cyclotron frequency during dipolarization (Table 2).

The results of scaling the moments of the probability den-
sity function for different orders of q in the analysis of small-
scale turbulence and comparing them with the Kolmogorov
model are shown in Fig. 10. The results of the ESS analy-
sis of the satellite measurements indicate the heterogeneity
of turbulent processes during the dipolarization to describe
what can be a log-Poisson cascade model with fitting param-
eters. The obtained values of the parameters β and 1 are
given in Table 4. In addition, the obtained values can be used
to determine the characteristics of the diffusion transfer of
plasma. In this case, the properties of diffusion are consid-
ered within the concept of a multi-fractal multiplicative cas-
cade (Lovejoy et al., 1998). The coefficient of generalized
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Figure 9. Dependence of the order of the structure function for dif-
ferent timescales during dipolarization (event 15 October 2005).

Table 4. ESS-analysis parameters and diffusion coefficients.

Event SC β 1 R(−1)=
1[1/β − 1]

12 Sep 2015

C1 0.5± 0.029 0.77± 0.026 0.77
C2 0.6± 0.018 0.45± 0.019 0.30
C3 0.52± 0.091 0.43± 0.009 0.40
C4 0.58± 0.016 0.46± 0.014 0.33

15 Oct 2005

C1 0.51± 0.015 0.67± 0.012 0.64
C2 0.68± 0.025 0.72± 0.019 0.34
C3 0.34± 0.027 0.22± 0.026 0.43
C4 0.51± 0.026 0.24± 0.028 0.23

1 Oct 2005

C1 0.45± 0.015 0.41± 0.013 0.5
C2 0.51± 0.013 0.2± 0.021 0.2
C3 0.45± 0.024 0.21± 0.019 0.26
C4 0.51± 0.026 0.54± 0.018 0.52

diffusion is determined by the parameters of the structural
function ζ(q) (intermittency and singularity) by the relations
by Lovejoy et al. (1998) and Prokhorenkov et al. (2015):

D ∝ τR, R = R̃(−1), R̃(q)= q − ζ(3q),
R =1(1/β − 1). (8)

This approach is used to estimate the transfer in a statistically
inhomogeneous medium, and the index R, in general, is de-
termined by the fractal properties of the medium and char-
acterizes (on average) the topological properties (connection
properties that determine the transfer) of a stochastic struc-
ture of turbulence.

The resulting values of R lie within the range from 0.20
to 0.77 (Table 4). Given that the law of particle displacement
over time is given by the formula by Treumann et al. (1990),
Chechkin et al. (2008), and Zaburdaev et al. (2015), 〈δx2

〉 ∝

Dτ ∝ τ δ with an indicator δ ∝ 1+R ≈ 1.20–1.77> 1, this
dependence means the existence of super-diffusion.

4 Conclusions

As a result of the analysis, it can be concluded that the rel-
ative variations of the magnetic field during the dipolariza-
tion exceed the value before dipolarization by more than 5
times. The distribution functions of magnetic field fluctua-
tions during the disruption of the current layer indicate the
non-Gaussian statistics of processes, as well as the excess of
large-scale perturbations generated by the source.

Comparing the structure functions of the magnetic field
fluctuations during dipolarization with the Kolmogorov
model, it is impossible to describe turbulent processes on
small timescales using a homogeneous model. Using the co-
efficients of intermittency and singularity of turbulent pro-
cesses found in the ESS analysis, the power law of the gen-
eralized diffusion coefficient on the scale was obtained (the
power index varies within the range from 0.2 to 0.77), indi-
cating the presence of super-diffusion processes.

One of the important results is the significant difference
of the spectral indices for the intervals before and during the
dipolarization. Before dipolarization the spectral index lies
in the range from −1.68± 0.05 to −2.08± 0.05 (∼ 5/3 ac-
cording to the Kolmogorov model), and during dipolarization
the type of turbulent motion changes: on large timescales the
turbulent flow is close to the homogeneous models of (Kol-
mogorov, 1941) and Iroshnikov–Kraichnan (1959) (the spec-
tral index lies in the range from −2.20 to −1.53), and at
smaller timescales the spectral index lies in the range from
−2.89 to−2.35 (the Hall–MHD model). The kink frequency
is less than or close to the average value of the proton gy-
rofrequency. The Hall–MHD model includes the Hall term
in the magnetic induction equation. The Hall term is propor-
tional to the ion inertial length c/ωpi, which means this term
is important for the small scales (Galtier and Buchlin, 2007).
Both the standard MHD and the electron MHD can be recov-
ered from Hall–MHD by taking appropriate limits. By con-
sidering magnetic turbulence spectra for scales smaller than
c/ωpi, Galtier and Buchlin (2007) found a number of spec-
tral indexes, which go from α = 7/3 when magnetic energy
dominates kinetic energy to α = 11/3 when kinetic energy
dominates magnetic energy.

Also, within the framework of the research the following
results were obtained:

– the higher the PSD value, the greater the value of the
height of the excess;

– the log-Poisson model of turbulent processes with She–
Leveque parameters corresponds to variations in the
value of K(τ) in the range of 30–40; and

– the spectral indices correlate with the values of the dif-
fusion coefficient.

The wavelet analysis showed the presence of both direct and
inverse cascade processes, as well as the presence of Pc pul-
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Figure 10. The results of ESS analysis (during DP). Ratio of the power of the qth-order structural function to the third-order function power.
The experimental data for the magnetic field are marked with the symbol; the solid line corresponds to the value calculated using the formula
in the log-Poisson cascade model for 1= β = 2/3 (SL), and the dotted line corresponds to the q = 3 (K41).

sations. The presence of Pc pulsations in the region of dipo-
larization was also discussed in Panov et al. (2013, 2015).

Thus, during dipolarization the large-scale and multi-
fractal disturbances of the magnetic field are observed and
the presence of inverse cascade processes also indicates the
possibility of self-organization processes.
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