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Abstract: Titania is a promising material for numerous photocatalytic reactions such as water splitting
and the degradation of organic compounds (e.g., methanol, phenol). Its catalytic performance can be
significantly increased by the addition of co-catalysts. In this study, Au and Au/Ag nanoparticles were
deposited onto mesoporous titania thin films using photo-deposition (Au) and magnetron-sputtering
(Au and Au/Ag). All samples underwent comprehensive structural characterization by grazing
incidence X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM). Nanoparticle distributions and nanoparticle size distributions were correlated
to the deposition methods. Light absorption measurements showed features related to diffuse
scattering, the band gap of titania and the local surface plasmon resonance of the noble metal
nanoparticles. Further, the photocatalytic activities were measured using methanol as a hole scavenger.
All nanoparticle-decorated thin films showed significant performance increases in hydrogen evolution
under UV illumination compared to pure titania, with an evolution rate of up to 372 µL H2 h−1 cm−2

representing a promising approximately 12-fold increase compared to pure titania.

Keywords: noble metal nanoparticles; core-shell structures; photodeposition; magnetron
sputtering; photocatalysis; hydrogen production; localized surface plasmon resonance; structure-
property relationships

1. Introduction

For decades, mankind has relied heavily on unsustainable energy sources such as coal, oil, gas or
nuclear power [1–3]. In recent years, concerns over climate change, environmental pollution, resource
depletion, and safety issues have led to global efforts towards the development of sustainable and clean
energy sources [1–5], with some of the most promising approaches making use of the almost unlimited
energy of the sun [2,6–12]. One of these approaches is photocatalytic water splitting, where solar

Nanomaterials 2018, 8, 502; doi:10.3390/nano8070502 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-6755-0002
https://orcid.org/0000-0002-7603-1984
https://orcid.org/0000-0001-7916-1533
http://www.mdpi.com/2079-4991/8/7/502?type=check_update&version=1
http://dx.doi.org/10.3390/nano8070502
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 502 2 of 16

energy is used to photogenerate charge carriers in a semiconductor. The excited electrons then reduce
protons, producing “green” hydrogen, which can be stored, transported, and finally converted back to
energy using fuel cells. This approach therefore opens a promising route towards a carbon-neutral
energy landscape.

Titania in the rutile phase was the first material found to have conduction and valence band
positions suitable for photocatalytic water splitting [13–15]. It also has several other desirable properties
such as high corrosion-resistance, abundance, low price, and non-toxicity [16]. Therefore, titania,
both in the rutile and in the low-temperature anatase modification, is still one of the most studied
materials for water splitting and other photocatalytic applications like the degradation of organic
compounds [5,15,17–19]. Its biggest drawback is the comparatively large band gaps of 3.2 eV for
anatase and of 3.0 eV for rutile, corresponding to absorption edges at wavelengths of 386 and 416 nm,
respectively [13,16,17,20]. Accordingly, significant light absorption and photogeneration of charge
carriers can only occur within or near the UV region, which accounts for merely 5% of the total energy
of the solar spectrum [21,22]. This limits the theoretical maximum efficiency to 1.3% for anatase and
2.2% for rutile [17]. As the performance strongly depends on the band gap, it can be enhanced by
either introducing additional electronic states into the band gap via doping and/or by depositing
a second light-absorbing material that absorbs within the visible region and acts as a photosensitizer
for titania [21,23,24]. Popular photosensitizers, that are also used in solar cells, are (metal) organic
dyes [25–30]. They are, however, often unstable under UV radiation and in the chemical environment
present during water splitting [25].

More suitable for this application are nanoparticles based on noble metals such as Au, Ag or Cu.
In these metals, light can induce a localized collective electron oscillation, a so-called “plasmon”,
near the nanoparticle surface [22,23,31,32]. The energy of this surface plasmon strongly depends
on the size, shape and dielectric constant of the nanoparticle as well as of the surrounding
medium [22,23,32,33]. By optimizing these parameters, the wavelength of the localized surface
plasmon resonance (LSPR) can be shifted to the desired range, allowing for visible or even near-infrared
light absorption [22,23,32–35]. These plasmon-induced electrons can transfer to an electron-acceptor
such as titania [24], increasing visible light-induced charge separation and enhancing the efficiency of
photoreactions. If the LSPR frequency is at or near the semiconductor band gap, the electromagnetic
field stemming from the plasmon excitation can lead to charge carrier formation in the supporting
semiconductor [36–38]. Under these conditions, the large scattering cross section of the plasmon
oscillation in noble metal nanoparticles enhances the optical pathway of the incident photons leading
to increased light absorption [39]. In addition to their function as photosensitizer, noble metal
nanoparticles can enhance the performance of the semiconductor as co-catalysts by providing
chemically active sites with low activation barriers [40], prolonging charge carrier lifetime [40], and
serve as a reservoir for electrons generated in the titania by UV light [24,41–43].

Several studies on photosensitizing titania using noble metal nanoparticles were carried out on
suspended powders [40,42,44–48]. In contrast, we deposited Au-based nanoparticles onto anatase
thin films. Compared to powdered samples, immobilizing the catalyst allows for precise control
over morphology, light absorption and catalytic behavior, and therefore for high reproducibility
of the measured photocatalytic performance [49,50]. The samples are also easier to handle, and
agglomeration of particles is not an issue. The performance typically depends greatly on the
morphology of the sample, and studying the correlation of synthesis conditions, morphology and
properties is of paramount importance. In this study, two different methods were used to deposit
metallic nanoparticles. First, gold nanoparticles were prepared by in situ photodeposition, which is
a widely established approach that works well at the laboratory scale [51]. Second, both gold and
silver/gold nanoparticles, which often show significantly increased catalytic activity compared to the
respective monometallic nanoparticles [52,53], were deposited by a radio frequency (RF) magnetron
sputtering process followed by an annealing step [54,55]. In comparison to photodeposition, physical
deposition processes such as this one can often be scaled up to an industrial scale. Care was taken that
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the noble-metal loading of the two Au-TiO2 samples was comparable. The crystal structures of all
phases were confirmed via grazing incidence X-ray diffraction, and the morphologies of the samples
were analyzed using scanning and transmission electron microscopy. As expected, both synthesis
methods resulted in considerably different particle distributions, particle size distributions and defect
structures. We further measured the UV-vis spectra and the photocatalytic evolution of hydrogen
from water using the sacrificial electron donor methanol. Methanol was chosen as past studies had
shown it to be an excellent hole scavenger, allowing us to neglect surface kinetics in the discussion and
simplifying the complex behavior of this system [56–58]. All results were correlated to each other, and
we hope that our combined findings contribute to an in-depth understanding of the interplay between
synthesis, structure, and properties.

2. Materials and Methods

Titania films were deposited onto fluorine-doped tin oxide substrates (fluorine doped tin oxide
(FTO), TCO 22-7, Solaronix, 25 × 25 mm, Aubonne, Switzerland) by a direct current (DC) reactive
magnetron sputtering process previously described by Kruth et al. [54]. The cylindrical Ti target
(Ti-133, Bekaert Advanced Coatings NV, Deinze, Belgium, 135 mm diameter, 58.5 mm length) was
sputter-cleaned in an Ar atmosphere at 8 kW for 5 min. After stabilizing the process conditions in
an O2/N2/Ar atmosphere (6 standard cm3/min (sccm) O2, 3 sccm N2, and 60 sccm Ar) at 3 Pa for
8 min, TiO2 was plasma-deposited at a magnetron power of about 5.3 kW and a magnetron voltage
of 450 V. To transform the resulting amorphous TiO2 into anatase, the samples were annealed for 1 h
at 400 ◦C with a heating rate of 10 ◦C/min in an oxygen atmosphere at a flow rate of 0.05 standard
L/min (slm).

Au and Au/Ag core-shell nanoparticles were deposited onto the titania films described above
using a RF-magnetron sputtering process previously published by Peglow et al. [55]. Au and Ag
sputtering targets (both of 3 mm thickness, two inch diameter and purity of 99.999%, MaTeck, Juelich,
Germany, were placed at respective distances of 9.5 and 5.5 cm from the substrate. Small sputtering
rates were achieved by shielding the magnetic field with a 1 mm thick iron disk (99.95%, MaTeck)
placed between the magnetron and the two targets. The deposition was performed at a magnetron
power of 50 W at a working pressure of 5 Pa in an argon atmosphere (15 sccm gas flow). After each
deposition, the samples were annealed by placing them in a quartz tube that was inserted into a tube
furnace (Zirox GmbH, Greifswald, Germany, kept at 400 ◦C by a thermal controller (Eurotherm 2416,
Limburg an der Lahn, Germany) for 30 min. The O2 atmosphere (0.05 slm) was regulated using a gas
flow controller (MKS Instruments Multi Gas Controller 647B, Andover, MA, USA). Au nanoparticles
were synthesized by depositing gold over a period of 300 s, resulting in a nominal layer thickness of
(6.6 ± 0.7) nm. Deposition was followed by an annealing step, a second, 300 s long deposition step and
a final annealing step leading to an estimated total layer thickness of (13.2 ± 1.5) nm. To obtain Au/Ag
core-shell nanoparticles, Au-deposition for 188 s resulted in a nominal layer thickness of (4.1 ± 0.5)
nm and was followed by Ag-deposition over 36 s, resulting in a nominal layer thickness of (2.5 ± 0.1)
nm, and one final annealing step.

A second series of Au nanoparticles was prepared by in situ photodeposition onto titania films
following a synthesis procedure described by Gärtner et al. [40]. The temperature of a double-walled
reaction vessel was adjusted to 25 ◦C by a thermostat. The titania film (25 × 25 mm) was inserted into
the reactor with a glass holder. Subsequently, the gold precursor (NaAuCl4·2 H2O, 3.1 mg) was added.
The whole system was evacuated and flushed with argon to remove any other gases. Then, 40 mL
freshly distilled water and 40 mL methanol were added under argon counter flow, resulting in a final
concentration of the gold precursor of about 0.1 mmol/L. The photodeposition was initiated with
a Hg-lamp (7.2 W output, Lumatec Superlite 400, Deisenhofen, Germany) equipped with a 320–500 nm
filter [40]. A swift color change from light yellow to dark red occurred, with the formed hydrogen
escaping by a bubbler. The reaction was stopped after 3 h and the sample was washed with deionized
water and ethanol prior to drying in air.
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Phase identity and average crystallite sizes were determined by grazing incidence X-ray
diffractometry (GIXRD). Diffractograms were obtained using a Bruker D8 Advance (Billerica, MA, USA)
with a Cu-Kα source. The measurement was carried out in a 2θ-range of 20◦–80◦at an incident angle
of 0.5◦, with a step width of 0.02◦ and a measurement time of 5 s per step. Crystallite sizes were
calculated from the (200) reflection of Au as well as the (200) and (101) reflections of anatase using
a combination of the Stokes–Wilson and the Variance model and fitting the correlated integral widths
by a Pearson VII function [59].

Scanning electron microscopy (SEM) was performed on a JEOL JSM 7500F (Tokyo, Japan) with
a field emission gun, a semi-in-lens conical objective lens, and a secondary electron in-lens detector.
At an acceleration voltage of 15 keV, a resolution of 1.0 nm was achieved.

A comprehensive structural analysis was carried out using a FEI Titan 80-300 transmission electron
microscope (TEM, Hillosboro, OR, USA). Bright-field (BF) and high-resolution TEM (HRTEM) images
were recorded on a Gatan UltraScan 1000 CCD (Pleasanton, CA, USA), scanning TEM (STEM) images
with a Fischione Model 3000 high angle annular dark-field (HAADF) detector (Export, PA, USA) and
energy-dispersive X-ray (EDX) spectra with an EDAX detector (Mahwah, NJ, USA). Samples were
prepared by either scratching material of the substrate and depositing it onto a TEM grid with a holey
carbon film or by preparing a cross-section according to a procedure adapted from Strecker et al.
so that the sample was prepared at room temperature [60].

The optical properties of the different samples were investigated using a PerkinElmer Lambda
UV-vis 850 spectrophotometer with a L6020322 150 mm integrating sphere and a Spectralon Reflectance
Standard (>99% R, USRS-99-020, PerkinElmer Inc., Waltham, MA, USA). The UV-vis spectra were
recorded by measuring the diffuse transmission at wavelengths from 250 nm to 850 nm. Calculation of
the absorbance A was carried out under the assumption that no reflection occurs at the sample using
Equation (1) [54,61],

A = −log10(IT/I0), (1)

where A is the absorbance in arbitrary units, IT is the measured transmission intensity in percent and
I0 is the incident light intensity, which equals 100%.

Photocatalytic hydrogen evolution experiments were performed under argon atmosphere and the
strict exclusion of oxygen using freshly distilled and degassed solvents. The sample was introduced
into a double-walled, thermostatically-controlled reaction vessel by a glass holder and aligned in
parallel to the planar optical window. This setup allowed for a reproducible experimental arrangement
and a direct illumination of the sample without blocking by the cooling water. Furthermore, a complete
irradiation of the 25 × 25 mm thin film layer was ensured. Subsequently, the photoreactor was
connected to an automatic gas burette and repeatedly evacuated and filled with argon in order to
exclude any oxygen. Then, the solvent mixture (80 mL), composed of water and methanol in a ratio of
1/1 (v/v), was added, fully covering the layer. The temperature of the whole system was maintained
at 25 ◦C by a thermostat. After stirring for at least 10 min at 300 rounds per minute to reach thermal
equilibrium, the reaction was started by switching on a Hg-lamp (Lumatec Superlite 400, Deisenhofen,
Germany) equipped with either a 320–500 nm or a 400–700 nm filter. In both cases, the light intensity
was set to 7.2 W. The amount of evolved gases was continuously monitored by the automatic gas
burette, while the gas composition was analyzed by gas chromatography. A more detailed description
of the experimental setup can be found in the literature [40].

3. Results and Discussion

3.1. Structural and Morphological Characterization

GIXR diffractograms (Figure 1a) indicate the phase identities of all samples [62–64]. Annealing
of the titania films led to crystallization of the material in the anatase modification, with an average
crystallite size of approximately 25 nm. This is in agreement with earlier results [27,54]. Monometallic
Au and bimetallic Au/Ag nanoparticles crystallize in the face-centered cubic Fm-3m symmetry
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(space group 225), with the lattice parameters of Ag and Au being too similar to differentiate between
the two phases. The (200) peaks of Au and Au/Ag did not show any overlap with those of other
phases and were used for further analysis (Figure 1b). The intensities of the (200) peaks of Au
in photodeposited and plasma-deposited Au-TiO2 are similar, indicating similar metal loading.
In contrast, a weaker peak is observed for plasma-deposited Au/Ag-TiO2, explicable by the lower
metal loading. Calculated average crystallite sizes of all three samples were comparable at around
6–7 nm, with no drop for the bimetallic sample with significantly lower metal loading. It should,
however, be considered that crystallite size calculations from XRD are limited to average values for
crystalline domains and only assume the presence of ideal, spherical crystallites.
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Figure 1. (a) Grazing incidence X-ray (GIXR) diffractograms of the three noble metal-decorated samples
and (b) close-up of the Au/Ag (200) peaks. The intensities of the curves in (a) were shifted vertically
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In Figure 2, electron microscopy images of the three samples are shown. Top-view images were
acquired by scanning electron microscope (SEM) (Figure 2a–c), cross-sections by HAADF-STEM
(high angle annular dark-field cross-section scanning transmission electron microscopy) (Figure 2d–f).
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Figure 2. Top-view SEM (scanning electron microscopy) and cross-section scanning transmission
electron microscopy (STEM) images of photodeposited Au-TiO2 (a,d), plasma-deposited Au-TiO2 (b,e)
and plasma-deposited Au/Ag-TiO2 films (c,f).

The titania layer is polycrystalline, approximately 300 nm thick and composed of individual
pillars, each of them grown on top of a FTO pyramid. This microstructure is typical for ZI thin
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film growth [65,66]. The fibrous titania pillars are in the anatase modification, with 3–5 nm wide
pores elongated in the direction perpendicular to the TiO2/FTO interface. The porosity of the titania
was quantified from HAADF-STEM images. The signal intensity I in such images scales with the
mean atomic number Z raised by an exponent y (Equation (2)) [67]. As the FTO and the underlying
SiO2 substrate are compact layers, y can be calculated. This calculation, as well as those following,
were done using several hundred acquisition points for each material and working with average
values. The mean atomic number of the titania layer is given by:

ITitania

IFTO
=

(
ZTitania

ZFTO

)y
→ ZTitania= ZFTO· y

√
ITitania

IFTO
, (2)

The porosity is then equal to the ratio of the mean atomic numbers of the measured, porous and
the theoretical, compact layer and was determined as ~10%, indicating low porosity.

The photodeposited Au nanoparticles are found both on top of the columns and incorporated into
pores of the TiO2 layer. The latter indicates that some of the pores are open at the surface and can be
filled with the gold precursor solution during the photodeposition process. In contrast, RF-sputtered
Au and Au/Ag nanoparticles are found on top of the titania layer which is typical for such sputter
deposition processes. The particles located in the cavities are significantly smaller than the grains
formed on top of the columns (Figure 2). Compared to plasma-deposited Au-TiO2, approximately half
of the nominal layer thickness was deposited during the synthesis of plasma-deposited Au/Ag-TiO2

(Figure 2b,c). This reduction leads to a sparser distribution of nanoparticles of roughly the same size.
The half-as-high loading was also confirmed by EDX measurements (Table 1). The noble metal content
could be determined by calculating the mass of the TiO2 layer from the thickness and the density
and comparing it with the ratio of noble metals to Ti. In contrast to Au/Ag-TiO2, the Au-loading in
photodeposited Au-TiO2 and plasma-deposited Au-TiO2 is very similar.

Table 1. Noble metal content of the three samples.

Sample Au-Content (µg/cm2) Ag-Content (µg/cm2)

photodeposited Au 17.5 ± 3.7 -
plasma-deposited Au 19.6 ± 6.5 -

plasma-deposited Au/Ag 7.8 ± 3.4 1.4 ± 0.8

In Figure 3, the size distributions of all three samples are shown. As already mentioned,
photodeposited Au nanoparticles grew both inside and on top of the titania layer, which is reflected by
the two different log-normal size distributions used to describe the experimentally determined size
distribution. Photodeposited Au nanoparticles inside the titania layer, which account for 66% of all Au
nanoparticles, have a different size distribution than those found on top of the titania layer (Figure 3a).
However, a log-normal distribution, which has previously been applied to the size distributions of Au
nanoparticles synthesized by several, solution-based synthesis procedures, could be used to describe
both [68]. The size distribution of Au nanoparticles inside the titania is shifted towards smaller
diameters, indicating that the growth is slowed down or stopped within the pores of the TiO2 layer.

To interpret the size distributions of plasma-deposited particles (Figure 3b,c), two underlying
processes, deposition and annealing, have to be considered. Previous studies have shown that
sputter deposition produces thin films, which dewet during annealing [55,69,70]. Some of these
isolated particles then grow via a coarsening mechanism. This coarsening step is expected to
depend strongly on a low surface roughness to prevent particle pinning and facilitate particle
diffusion. We used these assumptions to split each size distribution in two by considering large
nanoparticles on top of smooth TiO2 surfaces as resulting from a coarsening mechanism. With this
assumption, the non-coarsened particles, which account for 86% in plasma-deposited Au-TiO2 and
83% in plasma-deposited Au/Ag-TiO2, can be fit very well to a log-normal distribution. Attempts to
model the other particle fraction with a size distribution failed due to their relative scarcity. Compared
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to pure plasma-deposited Au nanoparticles, the maximum of the log-normal distribution of the smaller,
non-coarsened Au/Ag nanoparticles is shifted from 4 to 10 nm (Figure 3b,c). In spite of the reduced
nominal layer thickness, the increase in size indicates that the initial deposition of Au directs their size,
and not the subsequent Ag deposition or the annealing step. This hints at the observed shift resulting
from Ag being added to a pre-existing Au nanostructure. Of course, this argument only applies to
non-coarsened, small nanoparticles.
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Figure 3. Size distributions of the noble metal nanoparticles in (a) photodeposited Au-TiO2,
(b) plasma-deposited Au-TiO2 and (c) plasma-deposited Ag/Au-TiO2. All size distributions were split
into two sub-distributions each. As explained in the main text, “large particles” refers to particles we
believe have coarsened, “small particles” to those that have not. Please note that the frequency values
only apply to the size distribution of the whole sample, but not to the sub-distributions.

The nanoparticles can possess several different defect structures (Figure 4). The photodeposited
Au nanoparticles can be inside and outside of the titania layer, with each fraction having its own
predominant defect structure. Photodeposited nanoparticles on top of the titania are predominantly
five-fold twinned (Figure 4a), with few occurrences of other defect structures such as grain boundaries.
Such a twinning is energetically favorable for small nanoparticles and therefore very common [71–75].
In contrast, all particles observed within the titania layer were monocrystalline (Figure 4b). However,
a definite correlation of nanoparticle size and defect structure could not be concluded. The existence of
defects not inherent to the metal or of an oxide surface layer large enough to form a defined crystal
structure could be excluded from HRTEM images.

For the plasma-deposited nanoparticles, single-crystallinity, five-fold twinning, stacking faults,
and grain boundaries were observed (Figure 4d,e). As with photodeposited nanoparticles, we could
not conclude a correlation of size and defect structure, with the exception of grain boundaries,
which were very common in big nanoparticles. We tentatively ascribe these to the coarsening process.
These particles also often have little protrusions that fill nooks in the titania substrate. Once again,
other defects can be excluded from HRTEM images.

Bimetallic Au/Ag nanoparticles could potentially be alloyed or form core-shell nanoparticles [76,77].
The melting temperatures of Ag and Au decreases with the nanoparticle size, but are always high
compared to the highest temperature reached during synthesis (400 ◦C) [78–80]. Alloying therefore seems
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unlikely. In accordance, EDX maps confirmed the formation of a uniform, 2–3 nm thick Ag shell around
the Au core. As both metals crystallize in the face-centered cubic structure and their lattice parameters
differ by only 0.2%, we observe defect-free continuation of the crystal structure of Au by Ag without
any phase boundary (Figure 5c) [81]. Previous studies have shown inhomogeneous deposition of gold
and silver, and the core-shell nanoparticles presumably result from nanoparticle attachment during the
annealing treatment [82,83]. Interestingly, former experiments by one of the co-authors, in which the
Ag/Au deposition order was reversed, also yielded Au/Ag-core-shell nanoparticles [55]. The deposition
order can therefore not be the decisive factor when determining which metal becomes the core and
which the shell. Unfortunately, growth mechanism studies so far mostly focus on wet-chemical synthesis
methods and do not apply to our synthesis method [82,83]. Looking at the thermodynamics of the two
possible core-shell configurations, four different energies contribute to the total energy: those of bulk Au
and bulk Ag, the interface energy of the interface between Ag and Au, and the surface energy of the shell
material. Assuming the amount of bulk material is the same in both possible configuration, the volumes
and therefore the enthalpies associated with the interface and the two bulk phases are identical for both
and only the contribution of the surface changes when exchanging core and shell material. As the surface
energy of Au is approximately 40% higher than that of Ag, the total enthalpy is reduced by forming
a silver instead of a gold shell. We assume this to be the dominant driving force for the preferred creation
of Au/Ag core-shell nanoparticles over Ag/Au core-shell nanoparticles [84].
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Figure 4. Representative images of different defect structures of the noble metal nanoparticles.
In (a) and (b) high-resolution TEM (HRTEM) images of the photodeposited Au nanoparticles are
shown: (a) is a five-fold twinned particle on top of the titania and (b) defect-free nanoparticles inside
the titania. (c–e) show plasma-deposited nanoparticles: (c) is representative for small, defect free
nanoparticles, (d) of those with stacking faults and (e) of those with grain boundaries.
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3.2. Optical Properties

Figure 6 shows the absorbance spectra of the Au, Au/Ag and pure TiO2 samples calculated from
diffuse transmission measurements using Equation (1). The strong absorbance at wavelengths shorter
than approximately 400 nm corresponds to the anatase band gap of 3.2 eV [13,16,17,20]. Throughout
the measurement range, the absorbance of the samples never reach an intensity of zero, which is
attributed to Rayleigh scattering at crystalline domains as well as pores of the TiO2 layer, with the
noble metal nanoparticles acting as additional scattering sites [85–88]. Consequently, the intensities of
this background absorption can be correlated to nanoparticle loading and distribution of the different
samples. Nanoparticle-decoration leads to stronger absorbance than pure TiO2, with photodeposited
Au-TiO2 reaching the highest background absorbance, followed by plasma deposited Au-TiO2 and
then plasma-deposited Au/Ag-TiO2. The total noble metal mass in Au/Ag-TiO2 is roughly half that of
both Au-TiO2 samples (Table 1), and it consequently absorbs less than those two. The high absorbance
of photodeposited Au-TiO2 could be attributed to the dense coverage of the titania surface (Figure 2a)
and the additional presence of nanoparticles embedded in TiO2 pores (Figure 2d).

Both plasma- and photodeposited Au-TiO2 have additional absorption bands at 550–800 nm
and 480–580 nm, respectively, caused by the excitation of localized surface plasmon resonances
(LSPR). The positions and shapes of these bands are determined by the particle shape [89], the contact
area with the titania [90], the size [91], and the size distribution [92]. An overlap of these factors
hinders the interpretation of polydispersed particle ensembles. The center of the absorption
band of photodeposited Au-TiO2 matches the LSPR frequency of 520 nm previously described for
isolated spherical gold nanoparticles [93,94]. TEM images confirm the existence of such particles
(Figure 4a), however, many irregularly shaped nanoparticles with diameters more than 100 nm are
found in top view SEM micrographs (Figure 2a). The intense band of plasma-deposited Au-TiO2,
however, is red-shifted. This could be explained by the non-spherical shape of the large Au
nanoparticles [39,94–96], plasmon-coupling [22,94,95,97,98], and/or a large contact area with the
TiO2 [97] as suggested by SEM and TEM micrographs (Figures 2 and 4). Although embedded
nanoparticles were not found in plasma-deposited samples, the particles adapt to the titania surface
(Figures 4 and 5). The band broadening could result from large nanoparticle size and/or shape
distributions. No distinct bands were observed for plasma-deposited Au/Ag-TiO2, even though
two would be expected: one stemming from the outer shell surface, and one from the Au/Ag
interface [99–101]. A possible explanation is the significantly lower metal loading than the two
Au-TiO2 samples, which should lead to weaker plasmon bands. Furthermore, the peak related to the
outer silver shell (which would be expected at around 400 nm) could overlap with the absorbance
band of the TiO2 substrate [99].
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3.3. Catalytic Properties

The photocatalytic performance of the different layers to reduce protons to molecular hydrogen
was studied under visible light illumination (400–700 nm) and under UV-vis illumination (320–500 nm)
with methanol as a hole scavenger (Figure 7, Table 2).

All hydrogen evolution curves (Figure 7) show a strong initial increase during the first minutes,
followed by a smaller, but constant hydrogen evolution rate. The steep rise at the beginning of each
measurement is caused by an increase in pressure in the automatic gas burette due to heating of the
photoreactor upon irradiation with UV-vis light. Within an hour, thermal equilibrium is reached by
external cooling with a thermostat (25 ◦C). Therefore, the later, constant region is more representative
of the catalytic activity and the first hour of each measurement was disregarded when discussing the
curves (Figure 7) or determining the hydrogen evolution rates presented in Table 2. No further loss in
activity could be observed for up to 18 h, indicating stable operation.

Under visible light illumination, the hydrogen evolution rate was zero and no hydrogen was
measured apart from the initial rise (Figure 7). In this regime, light is absorbed in the noble
metal nanoparticles via surface plasmon resonance, and then electrons are injected into TiO2 [42,44].
Given this mechanism and the UV-vis spectra (Figure 6), which show only weak bands attributed to
plasmon formation, the weak hydrogen evolution can be explained.

Under UV illumination, only TiO2 absorbs light and the noble metal nanoparticles act as
co-catalysts (Figure 6) [40–42,44,45] by providing chemically active sites with low activation
barriers [40], prolonging charge carrier lifetime [40], and by serving as an electron reservoir [24,41–43].
Previous photocatalytic experiments under similar conditions revealed a drastic increase in H2

evolution upon deposition of noble metal nanoparticles [40–42,44,45]. This is confirmed in our
experiments, with all samples having a significantly increased hydrogen evolution rate compared to
pure TiO2.
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Figure 7. Hydrogen evolution of all samples from a methanol/water mixture. Conditions:
80 mL MeOH/H2O (1/1, v/v), Lumatec Hg-light source equipped with a 320–500 nm filter,
7.2 W output, 25 ◦C. In addition, the H2 evolution of plasma-deposited Au-TiO2, acquired using
a 400–700 nm filter, is plotted exemplarily (dark grey). Measurements of all samples under the same
visible light illumination yielded perfectly overlapping curves and we therefore chose to present only
the measurement of the sample with the strongest localized surface plasmon resonances (LSPR) band.

Table 2. Comparison of the produced amount of hydrogen and the respective photocatalytic activities
normalized to the evolution of hydrogen per area and time.

Sample Total H2 Volume (mL) H2 evolution Rate a (µL h−1 cm−2) H2 evolution Rate b (µmol h−1 cm−2)

pure TiO2 5.0 31 1.3
photodeposited Au-TiO2 44.1 372 15.2

plasma-deposited Au-TiO2 20.0 152 6.2
plasma-deposited Ag/Au-TiO2 28.2 217 8.9

a calculated as an average over 17 h, starting after the first hour. b calculated by applying the van der Waals equation
at 25 ◦C, which yields a molar volume of 24.48 µL/µmol.
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As mentioned above, all samples onto which noble metal nanoparticles were deposited
outperform pure TiO2. The largest hydrogen evolution rate of 372 µL h−1 cm−2 was measured
for photodeposited Au-TiO2, representing a 12-fold increase. This was followed by plasma-deposited
Au/Ag-TiO2 (217 µL h−1 cm−2, 7-fold) and plasma-deposited Au-TiO2 (152 µL h−1 cm−2, 5-fold).

To interpret this order, we first consider the influence of the hole scavenger methanol.
Two reactions compete at the surface of the noble metal nanoparticle co-catalysts: the transfer of
holes to the electrolyte and the recombination with photogenerated electrons. Adding hole scavengers
leads to the transfer reaction being favored over recombination, and the latter is suppressed. Methanol
is a very efficient hole scavenger, near-perfect transfer can be assumed [56–58], and the kinetics of
surface reactions can be neglected. In contrast, light absorption plays an important role and the order
in which the samples perform is indeed closely correlated to the amount of light being absorbed in the
UV-region. Only plasma-deposited Au/Ag-TiO2 is more efficient than expected from light absorption
measurements. We attribute this behavior to a reduction of bulk recombination caused by the electric
field gradient at the Au/Ag interface, which is known to positively affect the efficiencies of catalytic
reactions [52,53].

4. Conclusions

Au nanoparticles were deposited onto a mesoporous anatase thin film using two different
deposition methods, photo- and plasma-deposition. The second method was further used to prepare
bimetallic Au/Ag nanoparticles. Both methods resulted in different particle distributions and particle
size distributions. Photodeposited nanoparticles both infiltrated the titania itself and were deposited
on top of it, with the latter group of particles being larger on average. In contrast, plasma-deposited
nanoparticles were found only at the surface of the titania.

These differences in the morphology could then be correlated to several materials properties.
Strong light absorption up to about 400 nm is due to the band gap of titania. Above 400 nm, Rayleigh
scattering at crystalline domain boundaries and pores within the TiO2 layer, as well as at noble metal
nanoparticles, leads to a strong background. Both samples with pure Au nanoparticles further show
peaks attributed to LSPR.

The light absorption properties, in turn, strongly influence the photocatalytic performance
of the hydrogen evolution reaction from a methanol/water solution under UV illumination.
In this wavelength range, Au only acts as a co-catalyst and the performance of all samples
but one, plasma-deposited Au/Ag-TiO2, was correlated to the light absorption efficiency.
The higher-than-expected performance of plasma-deposited Au/Ag-TiO2 can be explained by
an electric field gradient at the Au/Ag interface, concluding a comprehensive correlation of structure
and properties. Consequently, this study shows that a systematic investigation of the interplay
of synthesis method, structure and catalytic activity plays an important role in furthering our
understanding of such complex systems. We believe that similar studies, along with those on different
hole scavenger, surface reaction kinetics, thermal stability etc., will eventually lead to commercial
applications and thereby contribute to a sustainable energy mix.
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