
Ludwig-Maximilians-Universität München
Faculty for Mathematics, Computer Science and Statistics

Master Thesis

Wearable-based Severity Detection in the Context of Parkinson’s
Disease Using Deep Learning Techniques

Author:

Jann Goschenhofer

Supervisors:

Prof. Dr. Bernd Bischl
Janek Thomas, M.Sc.

4th January 2019

Abstract

One major challenge in the medication of patients with Parkinson’s disease is that the sever-
ity of the disease, reflected in the patients’ motor state, can not be measured using accessible
biomarkers. In this thesis we therefore develop and examine statistical models to detect the
motor state of those patients based on sensor data from a wearable device on a minute level.
We find that deep learning models consistently outperform classical machine learning mod-
els applied on hand-crafted features in this time series classification task. Furthermore, our
results suggest that treating this problem as a regression instead of an ordered regression or
a classification task works best. For consistent model evaluation and training, we adapt the
Leave-one-subject-out validation scheme to the training of deep learning models. We also em-
ploy a class-weighting scheme to successfully handle the problem of high class imbalances in
this domain. In addition, we propose a customized performance measure that reflects the re-
quirements of the involved medical staff on the model. To mitigate the problem of limited
availability of high quality training data, we successfully employ a transfer learning technique
which helps to improve the final model performance substantially. Since trust in the model’s
predictions plays a crucial role in the adoption of those techniques, we additionally extend our
model to quantify prediction uncertainty. Our results suggest that deep learning techniques
offer a high potential to automatically detect motor states of patients with Parkinson’s disease
with great success.

Contents

1 Introduction 1

2 Data 5
2.1 Measurement Device . 5
2.2 Preprocessing . 5
2.3 Labels for Disease Severity . 6
2.4 Data Sets . 6

2.4.1 Data Set I . 7
2.4.2 Data Set II . 7
2.4.3 Data Set III . 8

3 Problem Frame 9
3.1 Framing of the Task . 9

3.1.1 Classification . 10
3.1.2 Ordered Regression . 10
3.1.3 Regression . 13

3.2 Class Imbalances . 13

4 Models 15
4.1 Baseline Models . 15
4.2 Deep Learning Approaches . 15

4.2.1 Fully Convolutional Net . 16
4.2.2 FCN Inception . 16
4.2.3 FCN ResNet . 18
4.2.4 Residual Connected Flow (RCF) . 20
4.2.5 FCN Broad . 22

4.3 Transfer Learning . 22

5 Results 25
5.1 Validation Scheme . 25
5.2 Performance Measure . 27

5.2.1 Expert-based Performance Measure . 27
5.2.2 Class Weighting . 31

5.3 Postprocessing . 31
5.4 Results . 32

5.4.1 Model Comparison . 33
5.4.2 Transfer Learning . 35

6 Uncertainty Modeling 38

7 Conclusion 41

Appendices 43

A Structured Literature Overview 43

B Model Results with Additional Measures 44

C Manually Extracted Features 45

D Prediction Curves for All Patients 46

E Comparison of Transfer and Regular Model Training 49

F Direct Optimization of the Custom-loss 50

G MC Dropout Uncertainty Plots 51

1 Introduction

Parkinson’s disease (PD) is one of the most common diseases of the elderly and, after Alzheimer’s,
the second most common neurodegenerative disease in general (Sama et al. 2012). Two million
Europeans are affected (Ahlrichs and Lawo 2013) and Pringsheim et al. (2014) estimate 1% of
the population aged 60 or older in industrial nations to suffer from PD. PD in its core is a pro-
tein disorder involving alpha-synuclein that is misfolded and leads to so called Lewy-inclusion
bodies (Braak et al. 2003). These specific proteinaceous agglomerations lead to cell-death
primarily involving dopaminergic neurons in the substantia nigra in the brain stem (Jellinger
2009). The resulting lack of Dopamine creates a specific motor disorder, that is parkinsonism
(Berardelli et al. 2001). Lack of Dopamine is associated with the inability of the basal ganglia
to create sufficient movement amplitude and speed, especially for overlearned motor activities.
Key symptoms of parkinsonism are bradykinesia and hypokinesia. Additionally, tremor is ob-
served in 30% to 80% of the PD patients (Hoehn and Yahr 1998).

The motor capabilities of the patients are distinguishable into different states, termed motor
states. These can vary substantially over the course of a day within hours, as the main ther-
apeutic relief, a medication named L-DOPA, has a short plasma half-life of only 80 minutes.
The most prominent symptom is the tremor, a small but heavy shaking of the hand which
comes along with partial paralysis of the patient’s body (Jankovic 2008) and is also referred
to as bradykinesia. In contrast to bradykinesia, an overpresence of dopaminergic medication
can make affected patients execute involuntary choreatic movement patterns which may remind
the untrained observer of a bizarre dance. This hyperkinetic motor state is termed dyskine-
sia (Tsipouras et al. 2011). In a very basic approximation, a patient with Parkinson’s disease
(PxPD) can be in three motor states: 1) the bradykinetic state, also referred to as the OFF
state, 2) a seemingly normal state, also referred to as the ON state, and 3) the dyskinetic state.

Theoretically, if the true motor state of PxPD was known at all times, the medication dose
could be optimized in such a way that the patient has an improved chance to spend the entirety
of his waking day in the ON state. An example for such a closed-loop approach can be found in
Diabetes therapy. Patients suffering from Diabetes can continuously measure their blood sugar
level and apply the individual, correct medication dose of Insulin in order to balance the dis-
ease. This is due to the fact that the blood sugar level serves as a biomarker for Diabetes which
can be measured with low effort by the patient herself. In contrast, there is not yet a validated
method that allows for effortless, autonomous and continuous monitoring of the PD motor
state. Such monitoring could theoretically be provided by a medical expert who evaluates the
patient in a continuous fashion, which is economically and practically not feasible. However, an
inexpensive, autonomous, precise method to assess the PD motor state might allow for major
improvements in customized, individual medication of the PxPD ultimately in order to pro-
long healthy motor state phases resulting in a tremendous increase in the patients’ quality of life.

1

Against this backdrop, we approach to fill this gap and try to evaluate the motor state using
a convenient wearable device located at the patients’ wrist. Therefore, we collected data from
PxPD in a free-living setting and let medical staff evaluate the patients to obtain high quality
labels of the data on a one minute level. Moreover, we propose methods to model the relation
between this raw sensor data and the disease severity labels of the PxPD. What is more, we
introduce a variety of deep learning models which we compare with standard machine learning
techniques as well as a simple baseline model. We discuss the framing of this problem as a
regression, ordered regression or classification task. Finally, we propose a transfer learning
approach and we also show an extension of these models to quantify prediction uncertainty.

Advancements in both, wearable devices equipped with motion sensors and statistical mod-
elling tools accelerated the scientific community in researching solutions for motor state detec-
tion of PxPD since early 2000s. Wearable devices with embedded motion sensors allow the
measurement of patients’ movement behavior and the use of algorithms to map this input to
different motor states. Ghika et al. (1993) did pioneering work in this field by proposing a
first computer-based system for tremor measurement. Ahlrichs and Lawo (2013) offer a com-
prehensive overview on the use of machine learning and wearable devices in a variety of PD
related problems. Lonini et al. (2018) report that the use of one wrist-located sensor is suffi-
cient for this task and that it is more beneficial to collect few data from many patients than
many data from few individuals. Parts of the literature in this domain focuses on the manual
extraction of features from the sensor data that are then fed into machine learning algorithms
such as Support Vector Machines (SVM) (Hssayeni et al. 2018; Sama et al. 2012) or vanilla
Neural Networks (Hammerla et al. 2015; Keijsers, Horstink, and Gielen 2006; 2003; Tsipouras et
al. 2011). Hssayeni, Burack, and Ghoraani (2016) compare the performance of SVMs, k-means
classification and the self-organizing tree map algorithm based on extracted features with deep
learning models that take raw sensor data as an input. The deep learning based models perform
best in their setup. In addition, Eskofier et al. (2016) compare traditional machine learning
models such as SVM, AdaBoost, PART and k-nearest neighbor classification with the use deep
Convolutional Neural Networks (CNNs). The deep learning models show the most promising
results in their case. Um et al. (2018) also apply CNNs on this task, using the same data
set that was used in this thesis but do not compare their model with alternative algorithms.
In table 9, we present a structured overview of this related literature. In the present setting,
where many data is collected from few individuals, a leave-one-subject-out (LOSO) validation
is necessary to yield unbiased performance estimates of the models (Saeb et al. 2017). Thus,
it is surprising that only a minority of the reviewed literature (Eskofier et al. 2016; Hssayeni,
Burack, and Ghoraani 2016; Hssayeni et al. 2018; Tsipouras et al. 2011; Um et al. 2018) de-
ploy a valid LOSO validation scheme. It is also noteworthy, that only Keijsers, Horstink, and
Gielen (2003) propose modelling approaches with a continuous response, while the rest of the
literature tackles this problem as a classification task to distinguish between the different motor

2

states. This is remarkable, as medical doctors need information about the patients on a more
granular level in order to optimize their medication. Amongst the deep learning approaches,
it is surprising that none of the related investigations offer a valid method to detect the opti-
mal amount of training epochs for the model. Um et al. (2018) track the performance on the
validation set whilst training. Then, they take the epoch with the lowest training error as the
optimal amount of training time, which bares the problem of overfitting. Eskofier et al. (2016),
Keijsers, Horstink, and Gielen (2003), Hammerla, Halloran, and Ploetz (2016) and Hammerla
et al. (2015) do not even mention the training time or set the values arbitrarily. Within this
work, we try to close the main literature gaps in this domain: we discuss the optimal framing of
this problem, propose a valid LOSO validation strategy for iterative algorithms such as CNNs,
and compare deep learning models with classical machine learning approaches. In addition, we
investigate different model architectures for time series classification (TSC) that apply to the
present task. In the following, we give an overview on relevant literature in this domain.

TSC, the classification of data that contains a temporal component, was announced as one of
the most challenging data mining problems in the last century by Yang and Wu (2006). Its
applications occur in a broad range of fields from economics (Caiado, Crato, and Peña 2006),
the analysis of electronic health records (Rajkomar et al. 2018), to human activity recognition
(Ronao and Cho 2016). TSC can be distinguished in two different subgroups: 1) traditional
machine learning methods and 2) deep learning based methods. In addition, it is noteworthy
that we use the term TSC for both, the modeling of a categorical as well as a metric response.

In a meta survey, Bagnall et al. (2017), who also maintain the popular UCR Time Series Dataset
(Dau et al. 2018), give a broad overview on classical machine learning TSC techniques. The
most prominent representatives of this model class are Dynamic Time Warping (DTW) (Rak-
thanmanon et al. 2013), Shapelet Transform (Hills et al. 2014) and Collection of Transformation
Ensembles (COTE) by Bagnall et al. (2015). DTW is a location- and scale-invariant distance
measure for sequence data and often used in combination with a Nearest Neighbor classifier
as a standard instance-based benchmark classifier in TSC (Fulcher and Jones 2014). Shapelet
Transform is a distance-based feature extraction algorithm that leverages sub-sequences of time
series as features for classification tasks. COTE creates an ensemble of 37 different classifiers
over different features extracted automatically from the time series. Despite the strong per-
formance of these algorithms, they share a huge computational burden which makes them
unpractical in a setting with multivariate time series of great length (Fawaz et al. 2018a), as is
the case in this thesis. Furthermore, there are also feature-based traditional machine-learning
approaches in TSC where features such as variance, mean and skewness are extracted from
(multivariate) time series (Casale, Pujol, and Radeva 2011; Christ, Kempa-Liehr, and Feindt
2016; Nanopoulos, Alcock, and Manolopoulos 2001; Wang, Wirth, and Wang 2007) and then
passed to any classifier. More advanced features such as self-similarity and trend are also em-
ployed (Wang, Smith, and Hyndman 2006). Fulcher and Jones (2014) offer a comprehensive

3

review of feature-based TSC methods. For the sake of comparability, a machine learning model
trained on a set of handcrafted features is used as a baseline model within this thesis.

While distance-based methods are resource-consuming during model inference, feature-based
methods require a domain expert to manually engineer meaningful features. This leads to
labour intensive, problem tailored models that are hard to adapt to different tasks. In contrast
to that, deep learning methods promise to mitigate these problems by their inherent feature
extraction property and they therefore become more and more adopted in the TSC community.
Fawaz et al. (2018a) provide a comprehensive overview on deep learning techniques for TSC
comparing nine deep learning architectures on the UCR time series dataset (Dau et al. 2018)
and on a multivariate data set by Baydogan (2017). Amongst them is the Fully Convolutional
Net (FCN) by Wang, Yan, and Oates (2017), a one-dimensional CNN which contains Global
Average Pooling (GAP) instead of regular max-pooling. Furthermore, they reference a variant
of the FCN variant that employs skip connections inspired by the ResNet for image classifi-
cation (He et al. 2015). Also, the encoder model by Serrà, Pascual, and Karatzoglou (2018),
another extension of the FCN which replaces the GAP layer with an Attention layer, is part of
the study. Karim et al. (2018b) and Karim et al. (2018a) propose the combination of a FCN
with a Long-Short-Term-Memory (LSTM) which shows discussion-worthy results due to un-
orthodox application of the LSTM layer. Furthermore, Wang et al. (2018) introduce a stacked
architecture based on the use of subsequent wavelet-decompositions. This follows the rationale
that the different parts of the net can focus on signal representations with varying resolution.
Yang et al. (2015) propose a deep architecture for multivariate time series that fuses the dif-
ferent channels at a later stage. Yet, they do not compare their work with alternative deep
learning architectures. Bai, Kolter, and Koltun (2018) introduce the temporal convolutional
net which consists of stacked CNN layers that use different levels of dilations to increase the
receptive field of the net allowing it to take into account more global information. Their work
is a simplification of the WaveNet by Oord et al. (2016) which was initially used for sequence-
to-sequence prediction. The most promising of these models are employed in this thesis and
will thus be further explained in Section 4.

The remainder of this thesis is organized as follows: we introduce the data that was used in
this study in the upcoming section 2. In section 3, we discuss the different optional frames for
the present problem and the models that were experimented with are introduced in section 4.
The results of the different modelling approaches are discussed in section 5 and in section 6 we
show an extensional approach for the quantification of prediction uncertainty within this task.
Finally, we summarize the thesis in section 7 and give an outlook on future research in this
domain.

4

2 Data

As introduced in chapter 1, we gathered data from various PxPD to model the relation between
raw movement sensor data and the severity of Parkinson’s disease. This way, we collected
three Parkinson’s related data sets that were used throughout this thesis. We describe the
measurement devices, the preprocessing steps, the labeling process and the three data sets in
the following.

2.1 Measurement Device

Inertial measurement units (IMUs) contain different sensors that allow for the continuous
recording of movement patterns and are standard components of wearable devices such as
smart watches, smartphones or fitness trackers. The two main sensors of such IMUs are an
accelerometer and a gyroscope which respectively track the acceleration and the rotation of the
body in three spatial dimensions. Within this study, two wrist-worn wearable IMU devices were
employed: the Mircosoft band 2 (MSB2) (Microsoft 2018), a regular fitness tracker, and the
Shimmer device (Shimmer 2018) which is explicitly designed for use in medical studies. While
the Shimmer device stores data locally on an SD-card, the Microsoft band 2 sends recorded
data packages to a bluetooth-connected receiving device, making it more prone to data issues
due to problems with the wireless connection. Both devices measure acceleration and rotation
on the X, Y and Z axis with a standard frequency of 62.5Hz. Whilst some literature suggests
the ankle, the leg or the torso as location for the sensors (e.g.: Hssayeni et al. (2018); Keijsers,
Horstink, and Gielen (2006); Tsipouras et al. (2011)), the wrist was chosen as the only sensor
location in this thesis as it is the most comfortable location for a wearable to be used in the
patients’ daily life. This is supported by the work of Lonini et al. (2018), who show that the
usage of a single wrist-worn sensor is sufficient for the detection of Parkinson-related symptoms.

2.2 Preprocessing

Due to problems with the bluetooth connection, the measurement points of the MSB2 were
partially not equi-distant as some data packages were sent to the receiver device with time de-
lay. As a solution, we resampled the data via linear spline interpolation. We chose a resampled,
final frequency of 20Hz in alignment to the work of Hammerla et al. (2015) who suggest that
Parkinson’s related patterns do not exceed this frequency. A standard procedure in human
activity recognition is the segmentation of continuous sensor data streams into smaller subsam-
ples, also termed windows. As the data in this study was annotated by a medical doctor on a
minute-level, we also segmented the data in windows of one minute length. With a frequency
of 20Hz, this results in 1200 measuring points per variable per window. The availability of lots
of training data is crucial for the use of deep learning algorithms. Thus, we segmented the
windows with an overlap of 80% between neighbouring windows for training data set augmen-
tation. This augmentation led to an increase in training data by almost the factor of 5 and this

5

technique is widely used in sensor data based prediction problems (Eskofier et al. 2016; Zeng
et al. 2014) and (Hammerla, Halloran, and Ploetz 2016). It is important to note that data set
augmentation was done for the training data only. In Human Activity Recognition (HAR), one
tries to detect which activity a subject is performing. In contrast to that, we want to detect how
a subject is performing activities as we are interested in the patients’ underlying motor states.
In the optimal case, the developed models should be able to detect the motor states irrespective
of the patients’ specific activities. Both sensors record the movement of the patients in all three
spatial dimensions X, Y and Z. The direction of the movement might be important for HAR
related tasks. In contrast, this is not the case for detecting the way in which those tasks are
executed where this information might even be confusing for the models. Thus, we decided
to use the L2-norms of the accelerometer and gyroscope as model input only. Furthermore,
we normalized the data to a [0, 1] range using the quantile transformation as implemented in
the scikit learn package (Pedregosa et al. 2011). We chose this normalization method as it is
less sensitive to outliers, compared to standard procedures such as the min-max normalization,
and maps all values to a range of [0, 1], which is a standard procedure in working with deep
neural networks. In addition to that, our first empirical experiments showed the tendency that
quantile normalized data allows more stable model training compared to alternative methods
such as robust scaling, min-max scaling or z-normalization.

2.3 Labels for Disease Severity

The disease severity is measured on a scale that is a combined version of the UPDRS (Goetz
et al. 2008) and the mAIMS scale (Lane et al. 1985). The UPDRS scale is based on a diagnostic
questionnaire for physicians to rate the severity of the bradykinesia of PxPD on a scale from
{0, ..., 4} with 0 representing the healthy and 4 the heavily bradykinetic state. The mAIMS
scale is similar to the UPDRS but in contrast used for the diagnosis of dyskinetic patients on a
scale from {0, ..., 4}. It as well increases from the healthy state towards heavy dyskinesia. In this
thesis, both scales were combined and the UPDRS scale was flipped to cover the whole disease
spectrum. The resulting label scale takes values in {−4, ..., 4} where y = −4 means a patient
is in a heavily bradykinetic state, y = 0 is assigned to a patient in a healthy state and y = 4
resembles a heavy dyskinetic motor state. The sensor data was labeled by a medical doctor
who shadowed the PxPD during one day in a free living setting. Thus, the rater monitored
each patient while the patient lived through their regular day doing regular activities and the
rater diagnosed and recorded the patients’ motor state in each minute. Meanwhile, the patients
wore the IMU on their right wrist, constantly measuring their movement behavior.

2.4 Data Sets

Throughout this thesis, the following three data sets are used:

1. data set I: the main dataset containing movement patterns and labels for the minute-wise
disease-severity for 28 patients.

6

2. data set II: the exogeneous test data set which contains movement patterns and severity
labels for 10 patients.

3. data set III: the data set used for the transfer learning approach. It contains movement
data from 50 patients with Parkinson’s disease and 50 healthy controls.

In the following, we describe the key properties of the three data sets,

2.4.1 Data Set I

Data was collected from 28 PxPD in April 2016 using a MSB2 IMU. In total, 9356 samples with
a window length of one minute and two variables, the norm of the accelerometer and gyroscope
respectively, were extracted from the data of those 28 patients. Figure 1 shows examples of the
input data for three different classes. The median value of collected windows per patients is
368, the minimum value is 47 and at most 700 minutes were collected from one patient. The
label distribution of this data set I suffers from high label class imbalance as shown in figure
2. Similar to Um et al. (2018), the patients within this data set I were on average 67 (std.
dev.: 10) years old and suffered from the disease since 11 years (std. dev.: 5) at the time of
measurement. It is important to note, that there exist two versions of this data set: the data
set I that was augmented using the strategy from chapter 2.2 that is only used for training and
the original, non-augmented data set that was used for testing only. We will refer to the latter
as LOSO data set I in the following. The augmented training data sets contains 45944 windows.

Figure 1: Input sensor data from data set I of examples for the three extreme classes -4 (bradykinesia), 0
(ON) and 4 (dyskinesia). Accelerometer data streams are shown in the first and gyroscope measurements are
shown in the second row. Each window consists of 1200 measurement points, depicted on the x-axis of each of
the six plots. Acceleration is measured in the unit g where 1g = 9.81m/s2 and rotation is measured as angular
velocity in degrees per second ◦/sec.

2.4.2 Data Set II

The second data set was collected from 10 patients in spring 2018 following a protocol similar
to that of data set I. One main difference, next to the measurement with a Shimmer instead

7

of a MSB2 device, is the smaller duration of the monitoring. The median value of collected
windows per patients is 24, the minimum value is 8 and at most 85 minutes were collected from
one patient of data set II. Furthermore, the label distributions for both data sets differ quite
heavily, which limits the comparability of the model performance between the two data sets I
and II. This is illustrated further in figure 2. Still, we report results for the models trained on
data set I on data set II as this offers the external validation of the models.

2.4.3 Data Set III

Next to the supervised prediction approach, we evaluate the use of transfer learning methods
on the problem at hand. Therefore, we use this data set III which also consists of sensor-data
measured for 40 patients with an MSB2 device. Among those patients, the half is healthy and
the other half suffers from Parkinson’s disease and the patients wore the measurement device
also whilst performing regular activities. The difference with respect to data sets I and II lies
in the labels which are binary, stating if a window belongs to a healthy or an unhealthy patient.
The labeling effort for this data set is obviously a lot smaller than for the data sets covering
the granular disease severity. In total, this data sets contains 70175 windows, of which 52.20 %
belong to healthy patients. This data set was solely used for the pretraining of the models as
described in more detail in chapter 4.3.

Figure 2: Label distribution of both disease severity data sets I and II. In data set I, the label distribution is
highly centered around the middle class 0, the healthy state for PxPD. In contrast, the data collected within
data set II show not a single class 0 sample.

8

3 Problem Frame

In this chapter, we discuss two peculiarities of the present problem: 1) the perception of the
task as a classification, an ordered regression or a metric regression problem and 2) the high
class imbalance in the data.

3.1 Framing of the Task

The goal of this thesis is the mapping of raw movement sensor-data to the severity of the
disease, which is measured on a discretized scale with values y ∈ J = {−4, ..., 4} where J is
referred to as target space in the following. This gives rise to the discussion on whether this
problem should be taken as a classification, an ordered regression or a regression task. Hence,
one purpose of this thesis is to compare the appropriateness of these different frames for this
problem.

The majority of previous research in this domain (see table 9) treats the problem as binary clas-
sification due to the difficulty of the actual problem. This simplifies it significantly by aiming
to just detect whether the PxPD symptoms occur, regardless of their severitiy. The granular
label scheme utilized in this thesis follows an inherent, ordinal structure. For instance, a patient
with y = −4 suffers from heavier bradykinesia than one with y = −3. In contrast, simple clas-
sification treats all class labels as if they were independent, thus fully neglecting the structural
information in the data. The straight-forward way of including this ordinal information is the
interpretation of the labels as a metric scale which can then be used in a regression setting.
However, this implies the strong assumption of a linear relationship between the levels of the
labels which does not always hold. For example, the change in the motor state from y = −4
to y = −3, formulated as δ−4,−3, could have a totally different meaning than δ−2,−1 though
they would be equi-distant on a metric scale. Another technique for such problem settings
is ordered regression, also referred to as ordinal classification. Ordered regression takes the
ordinal structure of the data into account but does not make the strong linearity assumption.
Thus, this model class is methodologically located at the intersection of classification and metric
regression. Niu et al. (2016) give a comprehensive overview on statistical concepts in this do-
main such as the proportional odds model or generalized additive models with ordinal response.

Domingos (2012) offers a useful methodological framework to break down any machine learning
model in three sub-modules: 1) the formal representation of the model, i.e. a neural net, 2)
the evaluation function which is optimized to train the model and 3) the method to optimize
the model. Within this framework, modules can be changed independently. This allows us to
train the same model representation with the same optimizer in a classification, an ordered
regression and a regression setting by interchanging the second module and adapting the la-
bels y accordingly. Here it is noteworthy that the formal model representation, more specific
the final layer of the CNN, has to be adjusted slightly for the different problem frames. For

9

classification, the final layer outputs a vector of softmax probabilities pj, j ∈ J , for each class.
In the ordered regression, the final layer is replaced by a more complex, multi-task-head which
is explained in more detail in chapter 3.1.2.1 and for regression, the CNN simply outputs one
metric regression score without the use of any activation function. This concept allows the
comparison of those three setups to answer the question of which frame suits the problem the
best. The loss functions and the associated empirical risk for the three possible frames as well
as the corresponding label transformations are explained in the following.

We express the above mentioned evaluation function as the empirical risk Remp which is mini-
mized throughout model training. Deep learning models are generally trained in a batch-wise
manner, where the optimizer makes subsequent gradient descent steps based on the empirical
risk of the batches. The batch-wise empirical risk is defined as the sum of the losses of the
individual samples L(yi, Xi), i ∈ {1, ..., Nb}, in one batch with a batch size of Nb. Thus, this
batch-wise empirical risk can be formulated as:

Remp =
Nb∑
i=1

L(yi, Xi) (1)

and the definition of the loss L(yi, Xi) depends on the framing of the problem. In the following,
we describe the losses and label transformations for each of the three possible problem frames.

3.1.1 Classification

As we deal with a multi-class problem in this thesis, we use the multi-class cross entropy loss
LmXE
i for classification which can be formulated as:

LmXE(yi, Xi) = −
∑
j∈J

1[yi = j] · log(pj(Xi, θ)) (2)

where pj(Xi, θ) ∈ [0, 1] is the probability output for class j ∈ J from the final output layer of
the model which is activated with a softmax function to map the model scores to probabilities.
They depend on the sample input Xi and the model parameters θ.

3.1.2 Ordered Regression

We experimented with two versions of ordered regression models in the thesis: 1) a Multioutput
CNN architecture and 2) the introduction of a distance penalization on the loss function. In
the following, both approaches are explained in detail.

3.1.2.1 Multi-output CNN

10

There exist a broad variety of techniques for ordered regression: model-based approaches such
as Herbrich, Graepel, and Obermayer (1999) and also approaches where the ordinal regression
problem is transformed into multiple binary classification problems as proposed in Frank and
Hall (2001), Li and Lin (2006), Chen et al. (2017) and Niu et al. (2016). As we want to use
neural networks for ordered regression, we choose to implement an architecture where a sin-
gle CNN architecture is trained jointly on a variety of binary ranking-based sub-tasks (2016).
This approach shows strong performance compared to a regular regression approach on an age
estimation task on portraits of Asian people, which motivates its usage in this thesis.

The above mentioned transformation allows the model to exploit the ordinal structure in the
data. Imagine an ordered classification problem with K = 3 ordinal classes such that y ∈
{low,medium, high} as illustrated in table 1 where a fictive person who earns a medium salary
implicitly earns a low salary but does not receive an high salary. In this approach, labels
are transformed into K − 1 rank-based labels. This is based on the idea that a sample with
y = medium has a rank of 1 which implies that this sample is also y = low. This label-
transformation follows the formula in equation 3:

yi,k

= 1, if (yi > rk)

= 0, otherwise
(3)

where rk is the rank for the k-th sub-problem for k ∈ {1, ..., K − 1}.

Table 1: Illustration of the transformation of categorical labels into rank-based labels for the three class
example. The third sample is assigned class medium and thus it has the binary value 1 for y1 meaning that it
is higher than low but smaller than high.

Original Rank-based
i yi yi,1 yi,2

1 1=̂ low 0 0
2 3=̂ high 1 1
3 2=̂ medium 1 0
...

Following this label transformation, the authors propose a Multioutput CNN architecture,
where each of the K − 1 outputs refers to one binary ranking-based sub-task. These are
optimized jointly to train one single CNN corpus. Thus, the sub-task k is optimized on a
binary classification problem minimizing the binary cross entropy loss:

LXEk (yi, Xi) = −[yi,k · log(pk(Xi, θ)) + (1− yi,k)log(1− pk(Xi, θ))] (4)

where pk(Xi, θ) ∈ [0, 1] is the probability output for the k-th sub-task, also termed the k-th
head of the CNN, given input sample Xi. Thus, in total we yield K − 1 such probability
outputs for each input sample. In order to train the CNN jointly on those K − 1 sub-tasks,
those individual losses are combined to one cumulative loss, termed Lranks:

11

Lranks(yi, Xi) =
K−1∑
k=1

LXEi,k (yi, Xi) (5)

The back-propagation procedure for this Multioutput CNN architecture is shown in more detail
in the appendix of their work. For inference, the K − 1 outputs are summed up:

ŷi =
K−1∑
k=1

p(Xi, θ)− 4 (6)

where the scalar 4 is subtracted from the sum over all probability outputs to map the predictions
back to the initial label scale y ∈ J , yielding a continuous output. In the ideal case, for an
unseen sample Xu with the true label yu = −4 the model should output a probability score
of 0 for all sub-task resulting in ŷu = ∑K−1

k=1 0 − 4 = −4. The authors finally mention that
a consistency constraint should be applied over the sub-tasks but leave this open to further
research.

3.1.2.2 Distance-based Penalization

A more subtle and intuitive approach to bridge classification and metric regression is the in-
troduction of a cost matrix to weight misclassifications according to the distances between
predicted and true labels. This way, we force the model to learn the inherent ordinal structure
of the data as it is penalized higher for predictions that are very distant to the true labels.

This is achieved by the introduction of another distance-based weighting factor in the multi-
class cross-entropy loss. Thus, the resulting distance-sensitive cross entropy classification loss,
referred to as Lordinal XE, can be formulated as:

Lordinal XE(yi, Xi) = −(|yi − ŷi|)d
∑
j∈J

1[yi = j] · log(pj(Xi, θ))

= (|yi − ŷi|)dLmXE(yi, Xi)
(7)

where ŷi = arg max
j∈J

pj(Xi) denotes the class label prediction for sample i and (|yi − ŷi|)d the
norm of degree d of the distance between the predicted and the true class. There is no label
transformation needed w.r.t. the basic classification frame and this modification can also be
understood as a weighting scheme for the regular, multi-class cross entropy loss LXE(yi, Xi).
We refer to this model as ordinal classification CNN and use the L1-norm for the distance-
based penalization by setting d = 1. Due to the limited scope of this thesis, we leave the
experimentation with norms of differing degrees open to future research.

12

3.1.3 Regression

The discrete class labels are mapped to a metric scale y ∈ [−4, 4] for regression. Furthermore,
each of the deep learning models now contains one single output neuron that is activated with
the identity function yielding continuous, unbound prediction scores. As loss function, the
quadratic loss LQL(yi, Xi) is used:

LQL(yi, Xi) = (yi − f̂(Xi, θ))2 (8)

where f̂(Xi, θ) is the model prediction given input data from sample Xi and the model param-
eters θ.

3.2 Class Imbalances

As discussed in chapter 2 and figure 2, the patient data suffers from high label imbalance to-
wards the center of the scale y ∈ J . Thus, any machine learning model will be biased towards
predicting the middle classes and hardly ever predict the more extreme classes. Therefore, we
aim to develop methods that are able to deal with imbalanced data in this work. Learning
from imbalanced data is a well-known topic in research and He and Garcia (2009) provide a
comprehensive overview on this issue.

A straightforward way of dealing with this problem is to reweight the loss contribution of
different train data samples. This way, the algorithm incurs heavier loss for errors on samples
from minority classes than for those of majority classes, which incentivizes more focus on the
minority classes while training. In this thesis, we use the weighting scheme proposed by King
and Zeng (2001), which is also implemented in the scikit framework (Pedregosa et al. 2011). The
weights for the J classes j ∈ J are calculated as follows in order to upweight the contribution
of minority classes to the global performance measure:

cj = N

Nj

cj,normalized = J · cj∑
j∈J cj

(9)

where J describes the amount of possible classes (9 in this work), N is the total amount of
samples, Nj the total amount of samples for class j and thus cj is the inverse relative frequency
of class j in the data. In a second step, the weights cj, j ∈ J are normalized such that the sum
of the weights is equal to the amount of classes. This normalization follows the rationale that
in the non-reweighted case, each class would be assigned an imaginary weighting factor of 1,
yielding a sum of 9 in total. In the following, we will refer to the individual weight of one sample
as ωi which is the weight cj,normalized associated with the label yi of this sample i such that yi = j.

Deep learning models are generally trained in a batch-wise manner, where the optimizer makes

13

subsequent gradient descent steps based on the empirical risk of the batches, formalized as
Remp. The empirical risk is defined as the sum of the losses of the individual samples in the
batch. In contrast to the standard case where individual losses are summed equally weighted,
we now employ the above defined weights ωi of the individual samples (Xi, yi), i ∈ {1, ..., N}
to calculate the weighted sum of losses, referred to as the weighted empirical risk Rwemp. The
weighted empirical risk for one batch is defined as:

Rwemp =
Nb∑
i=1

ωiL(yi, Xi) (10)

for an arbitrary loss function Li(yi, Xi) where Nb is the amount of samples in this batch and ωi
refers to the individual weights as described above. In a setting with no reweighting scheme,
all weights would be set to ωi = 1, i ∈ {1, ..., Nb} which would results in the regular empirical
risk. This scheme allows for the reweighting of the empirical risks associated with any of the
above defined losses. For instance, the weighted empirical risk for the multi-class cross entropy
can simply be formulated as:

RmXE
wemp =

Nb∑
i=1

ωiL
mXE(yi, Xi) = −

Nb∑
i=1

ωi
∑
j∈J

1[yi = j] · log(pj(Xi, θ)) (11)

This reweighting scheme was found to be crucial for the performance of any model experimented
with in this thesis and in figure 3 we demonstrate its effect on the model predictions. As the class
imbalance also affects the calculation of the performance measures, we include this reweighting
scheme for the model training as well as for the model comparison in chapter 5.

(a) Class-weighted (b) Regular

Figure 3: Illustration of the effect of the class weighting scheme. Confusion matrices of two versions of the
Multioutput CNN validated on the LOSO data set I are shown. The model is heavily biased towards the center
of the labels in its predictions when trained with a regular empirical risk (right) and reweighting can tackle this
problem effectively (left).

14

4 Models

Within this chapter we present the models that were used throughout this thesis. We start with
the explanation of the baseline models and then discuss the different deep learning approaches
that we deployed. Finally, we discuss a transfer learning approach.

4.1 Baseline Models

In order to put the performance of the deep learning based modeling approaches in perspective,
we compare them with two baseline models. The most simple one, referred as majority vote, is
a model that always predicts the majority class ŷ = 0. The second model is a Random Forest
(Breiman 2001) which is trained on features that were manually extracted from the raw sensor
data, similar to the work of Eskofier et al. (2016); Hammerla et al. (2015); Hssayeni, Burack,
and Ghoraani (2016) and Sama et al. (2012) that applied this method as well in the context
of Parkinson’s disease. From each sample window of both accelerometer and gyroscope sensor
signal norms, we extracted a total of 34 features which describe 17 different statistical measures
as shown in table 11 in appendix C. This is a standard procedure in TSC and the presented
features are inspired by existing software solutions (Christ et al. 2018) as well as literature
(Casale, Pujol, and Radeva 2011; Christ, Kempa-Liehr, and Feindt 2016). We specifically
chose a random forest over comparable feature-based machine learning models due to its low
dependency on hyperparameter settings. The Random Forest was not specifically tuned as we
only use it as a baseline model. Furthermore, the implementation in the scikit-learn package
(Pedregosa et al. 2011) was used. The chosen model is parameterized as follows: it grows 500
trees, employs the Gini-coefficient as split-criterion, requires a minimum of 2 samples for a
split, subsampling is done via bootstrapping, there is no maximum for the nodes of a leaf and
no restriction in depth of the trees and each tree chooses from a maximum of

√
features

randomly selected features at each split. In addition, a class-weighting scheme similar to that
described in 3.1 is applied to account for class imbalances.

4.2 Deep Learning Approaches

In chapter 1, we gave a broad overview on recent developments in time series classification (TSC)
with deep learning. Most popular approaches include Convolutional Neural Networks (CNNs)
with one-dimensional layers. For an in-depth explanation of CNNs and neural networks in
general we refer the reader to Goodfellow, Bengio, and Courville (2016) and for a comprehensive
benchmark study on TSC, we refer to the recent work of Fawaz et al. (2018a). The most
fundamental architecture in this domain is based on the Fully Convolutional Net (FCN) which
was introduced as a strong baseline model by Wang, Yan, and Oates (2017) and was proven to
work well on a variety of TSC problems (Fawaz et al. 2018a; Nweke et al. 2018; Um et al. 2018).
In the light of these results, we decided to focus on one-dimensional CNN architectures in this
thesis. Within the following chapter, we introduce the FCN in more detail and explain the

15

extensions that we applied to the architecture.

4.2.1 Fully Convolutional Net

The FCN, depicted in table 2 and figure 4, is a baseline deep learning architecture for the
handling of one-dimensional data and was introduced as a strong baseline for TSC by Wang,
Yan, and Oates (2017). The FCN basically consists of three stacked convolutional layers with
decreasing kernel sizes that are followed by a batch normalization layer whose output is then
activated with a ReLU function. Batch normalization decreases the variability in the batches
to improve the generalization performance, resulting in faster training and model convergence
(Ioffe and Szegedy 2015). This property of the batch normalization was crucial for this project
due to the high computational cost of the many model runs required by the LOSO-validation
scheme. A stride = 1 is used and the feature maps are padded accordingly such that they do
not decrease in dimensionality. Instead of local pooling after the convolutional blocks, a global
average pooling operator is used at the end of the convolution part to squash the resulting
feature maps to a vector of their averages. This reduces the amount of weights in the final
linear output layer drastically and helps mitigating the problem of overfitting (Lin, Chen, and
Yan 2013).

Table 2: Illustration of the FCN architecture. Each of the three convolutional blocks is followed by a ReLU
activation function. The final output depends on the problem frame (nine softmax outputs for the classification,
eight for the ordinal regression and one, non-activated output for the regression problem).

Name Type Kernel Channels Output

Input input 2 1200x2
CNN block 1 convolution 7x1 128 1200x128

batch normalization 128 1200x128
CNN block 2 convolution 5x1 256 1200x256

batch normalization 256 1200x256
CNN block 3 convolution 3x1 128 1200x128

batch normalization 128 1200x128
GAP global average pooling 1x1200 1x128
Output linear output 9/ 8/ 1

4.2.2 FCN Inception

Inception modules, introduced by Szegedy et al. (2015), are mainly used in computer vision and
led to substantial performance increases on image classification tasks. With the expectation
of a similar positive effect in the current problem, we apply them as an extension to the basic
FCN architecture.

16

Figure 4: Visualization of the FCN architecture as outlined in table 2. One-minute sample windows with
two sensor streams are given as an input to the net. As the data was resampled to 20Hz, each window has
a length of 1200. The data is then subsequently fed to three convolutional blocks of depth 128, 256 and 256.
The resulting feature maps and ReLU-activated and batch-normalized after each convolutional block. The final
feature maps are averaged within the global average pooling layer and a linear layer connects the GAP output
with the final output neurons of the net.

Inception modules, illustrated in figure 5, are motivated by the observation that the kernel
size of the convolutional layers are often chosen rather arbitrarily by the deep learning practi-
tioner. The rationale is to give the model the opportunity to choose from different kernel sizes
for each convolutional block and distribute the amount of propagated information amongst
the different kernels. This relieves the researcher from the burden to determine reasonable
kernel sizes. Also, it provides the net with the ability to detect similar features on different
scales: e.g. objects can occur in a huge and a small format in the original data. Whilst a
layer with a fixed, huge kernel size will only be able to detect the objects at a bigger scale,
an inception module can capture the same object in different scales due to multiple-size kernels.

In one inception module, the same input is fed through several branches of convolutional and
max-pooling operations in parallel. In the last step, the outputs from the several branches
are concatenated depth-wise in the channel dimension and fed to the next architectural block.
One requirement for this concatenation is that the outputs of the single branches share the
same dimensions. Similarly to the FCN in chapter 4.2.1, this is achieved by a same padding
strategy. As shown in figure 5, branches 2-4 of the module convolve the input with kernels of
different sizes. Branch 5 applies max-pooling to the input followed by a convolution with a
kernel of size 1 to ensure the depth of the block matches those of the others. Before the actual
convolution in branches 2-4, the input is convolved with a kernel of size 1 to reduce the depth
of the feature block for computational efficiency as shown in 2015. In branch 1, only one kernel
of size 1 is applied following the rationale of the residual connections as further explained in
chapter 4.2.3. All convolutional layers are followed by a batch normalization layer for faster
model convergence and activated with the ReLU function. Finally, the feature maps resulting
from the various branches are concatenated depth-wise and fed into the next architectural block.

The final FCN Inception architecture essentially follows that of the FCN from chapter 4.2.1
with simple convolutional layers being replaced by above mentioned inception modules. The
final architecture is illustrated in table 3.

17

Figure 5: Illustration of one inception module. The flow from the input to the output of the module goes from
top to bottom. Data with a length of 1200 and a channel-depth depending on the position of the module in the
architecture is fed as an input to the module. This data is then convolved in parallel by the 5 branches of the
module. The first branch serves as a projection layer and has a similar function as in the ResNet. Branches
2-4 extract features with different convolutional kernels and the 5th branch applies max-pooling to the input,
similar to 2015. For the sake of faster computation, the depth of the blocks in branches 2-4 is reduced using a
convolutional layer with a kernel size of 1 to reduce the depth of the block. In a last step, the outputs from the
feature maps are concatenated depth-wise and fed to the next part of the architecture.

Table 3: Illustration of the FCN Inception architecture. Each convolutional layer in the architecture is batch
normalized and followed by a ReLU activation. The final output depends again on the problem frame (9 softmax
outputs for the classification, 8 for the ordinal regression and 1 non-activated output for the regression problem).
The first module gets an input of depth 2 as two sensor streams are fed into the model.

Name Type Kernel(s) Channels Output

Input input 2 1200x2
Inception 1 inception module 1 1, 5, 7, 13 320 1200x320
Inception 2 inception module 2 1, 5, 7, 13 320 1200x320
Inception 3 inception module 3 1, 5, 7, 13 320 1200x320
GAP global average pooling 1200 1x320
Output linear output 9/ 8/ 1

4.2.3 FCN ResNet

Similar to the inception modules, the introduction of residual learning by He et al. (2015) has
met with great enthusiasm in the deep learning community. The main advantage of such Resid-
ual Networks (ResNet) over regular CNNs is the usage of shortcut- or skip-connections between
subsequent layers. Those skip-connections allow the gradient to flow around the initial CNN
layers and skip certain layers in case they do not contribute to the model performance. This
helps tackling the vanishing gradient problem and thus allows for the training of much deeper
network architectures.

Unlike the inception modules, this model class was already deployed for TSC by Wang, Yan,

18

and Oates (2017) and proven to be a strong competitor for the classic FCN in a benchmark
study by Fawaz et al. (2018a). Especially on multivariate TSC problems, ResNet was shown to
outperform the standard FCN according to their results. In contrast, Wang, Yan, and Oates
(2017) argue that the ResNet is prone to overfitting and thus found it to perform worse than
the FCN in generalization. This motivated us to also employ this model architecture for com-
parison with the standard FCN.

The functioning of the residual modules is illustrated in figure 6. Within the architecture, the
input data can flow through two branches. First, it can propagate through the subsequently
stacked convolutional layers in the central block of the architecture. Second, the data can make
use of the skip-connection and bypass the feature extraction block of this current module. The
central block is constructed similar to the FCN and convolved feature maps are both, activated
with the ReLU and batch-normalized. As the outputs of stream 1 and 2 are required to share
the same dimensions, Szegedy et al. (2016) introduced a linear projection layer to map the
output of the skip connection to that of the main stream. A regular convolutional layer with a
kernel size 1, an input depth C and the output depth Z is used for this linear projection.

Figure 6: Illustration of one residual module. The flow from the input to the output of the module goes from
left to right. Data with a length of 1200 and a channel-depth depending on the position of the module in the
architecture is fed as an input to the net. The architecture then consists of two streams: 1) the skip connection
at the top of the graphic and 2) the convolutional block in the middle of the architecture. The net could make
use of the skip-connection to let the data flow almost untouched around the convolutional blocks of this module.
Finally, the outputs from both streams are added element-wise and fed to the next architectural block. The
depth of the blocks in stream 2) can be controlled by the researcher.

Theoretically, one could stack an infinite number of residual modules, as the model could make
use of the residual connections to bypass unnecessary convolutional blocks. In the current setup,
we decided to stack three of such modules in order to gain a general impression if this extension
is reasonable for our problem. Therein, each of the modules is similar to the standard FCN
in order to provide some comparability among architectures. The depth Z of the individual
residual modules were chosen as proposed in Wang, Yan, and Oates (2017). The complete
architecture is illustrated in table 4.

19

Table 4: Illustration of the FCN ResNet architecture. Three residual modules with different depth are con-
catenated and followed by a GAP layer. The model output is again depending on the problem framing.

Name Type Kernel(s) Channels Output

Input input 2 1200x2
Residual 1 residual module 7, 5, 3 64 1200x64
Residual 2 residual module 7, 5, 3 128 1200x128
Residual 3 residual module 7, 5, 3 128 1200x128
GAP global average pooling 1200 1x128
Output linear output 9/ 8/ 1

4.2.4 Residual Connected Flow (RCF)

Wang et al. (2018) just recently proposed an alternative extension of the standard FCN module
for TSC using multi-level wavelet transformations. Their basic idea is to decompose the original
signal to different levels of resolution. Each of those decompositions serves as the input to one
CNN. Finally, the outputs from the several CNNs are combined to one global prediction which
allows the joint training of the whole model. Next to the introduction of their architecture,
the authors conducted a benchmark study on the UCR time series archive (Dau et al. 2018)
showing promising results compared to the standard FCN. Previous research on PxPD (Ham-
merla et al. 2015) employs a band-pass filter to isolate the frequency range related to their
problem and extract features from this filtered signal. As specifying the frequencies is highly
domain-specific, resource-intensive and to some extent subjective, we propose this more gen-
eralizable methodology that is able to learn to focus on the correct frequency ranges. Similar
to (Wang et al. 2018), we combine the multi-level discrete wavelet decomposition (DWT) with
the FCN. The key rationale of their work is the training of deep models on different frequency
space representations of the original signal. However, whilst the authors allow the parameters
of the wavelet kernel to be dynamic, we apply the Haar-kernel in a static manner for the DWT
as recommended in Jothimani, Shankar, and Yadav (2016).

The discrete wavelet transform is used to map a signal into frequency space whilst preserving its
temporal relation as opposed to the Fourier transform (Jensen and Cour-Harbo 2001). There-
fore, it recursively decomposes the signal into high and low-frequency components, referred to
as detail and approximation coefficients. Due to the time-preservation property, the original
signal can be reconstructed from these decompositions in a loss-less manner. In one step, the
original signal is filtered with a low-pass and a high-pass filter. For each level, this results
into two representations of the input signal: one to capture the details of the signal and one
to capture its general, denoised information as shown in figure 8 and referred to as l and h,
respectively. Similar to Wang et al. (2018), the denoised, general representation h filter from
level j is further decomposed in the next level j + 1. Thus, the classifier on level j + 1 learns
from a lower-granular representation than that on level j, allowing it to focus on more global

20

features of the signal.

Figure 7: Multi-level wavelet decomposition of the accelerometer norm of one examplary sample window. The
signal is decomposed with a high-pass filter and a low-pass filter at each level, with the output referred to as
hj and lj for each respective step. The high-pass-filtered representation hj is then fed into the following DWT
decomposition step. Thus, the signal is getting smoother and less noisy from step to step.

The final model basically consists of three modules of the same architecture which are trained
on different versions of the data. Those architectures follow that of the FCN explained in chap-
ter 4.2.1 but can be replaced by any customized architecture. The first module is trained on
more detailed data than the final module due to the subsequent discrete wavelet filtering which
is explained above. Hypothetically, this allows the overall net to focus on different properties of
the data. To some extent, this could be interpreted as a joint ensemble learning approach. For
instance, one would expect the final module to extract more global features than the first mod-
ule. Predictions are made from all three modules, depicted as ŷj, j ∈ {1, 2, 3} and combined for
the final prediction. In order to allow the model to weight the several predictions adaptively, we
connect them using simple linear layers fj, j ∈ {2, 3}, taking ŷj, ŷj−1 as an input and outputting
ŷJ , J ∈ {II, III}. In addition to using their proposed architecture in a regression setting, this
learnable weighting scheme also differentiates our approach from the work of 2018. The choice
of different level sizes for this architecture is left open for further research. Throughout this
work, we use two sensor streams as model input which results in a channel depth of 2 for the
first convolutional kernels. Consequently, a channel depth of 4 is required as each sensor stream
is further decomposed into two streams and the resulting signals are concatenated depth-wise.

21

Figure 8: Architecture of the Residual Connected Flow (RCF) network which relies on multi-level wavelet-
decomposed versions of the original signal. In total, three modules are trained on versions of the data in three
resolutions. The outputs from the single modules are subsequently concatenated via simple, linear layers f2, f3
with yIII being the final model prediction. Note that the entire architecture is directly optimizable based on
the loss defined over yIII which allows for joint training of the three different modules.

4.2.5 FCN Broad

Pathologically, the disease severity changes rather slowly over time. In other words, it does not
make sense that the severity of the disease changes rapidly over neighbouring time windows.
Thus, we hypothesized that additional input information and a broader view on the data con-
text could have a positive impact on the model performance. We refer to this model class as
FCN broad, as we allow the model to process information form a more broad context.

Therefore, we include the following extension in our models: the raw input data from the pre-
vious sample window Xt−1 and the following sample window Xt + 1 were padded to the initial
sample windowXt for which a prediction should be made. In the regular CNN-based approaches
and as described in chapter 2, we use a channel depth of 2 for the input to the convolutional
blocks as each input sample t comprises of 2 time series Xaccnorm,t, Xgyronorm,t that each contain
1200 data points. Thus, one sample tuple t can be formulated as (yt, (Xaccnorm,t, Xgyronorm,t)), t ∈
{1, N}. In the FCN broad, we apply a channel depth of 6 as the raw data from the previous and
the future sample are added in the depth dimension. This results in one sample tuple to be rep-
resented as (yt, (Xaccnorm,t, Xgyronorm,t, Xaccnorm,t−1, Xgyronorm,t−1, Xaccnorm,t+1, Xgyronorm,t+1)), t ∈
{1, N}. This is illustrated in figure 9.

4.3 Transfer Learning

One of the most important requirements for the successful training of deep neural networks
with strong generalization performance is the availability of enough train data. Next to heavy
regularization or data set augmentation, one prominent method to fight overfitting and improve
the model’s generalization performance is transfer learning. In computer vision, it has been
observed that early layers of CNNs tend to learn similar features, even when trained on totally
different tasks (Yosinski et al. 2014). This motivated the idea to reuse CNN architectures that

22

Figure 9: Visualization of the procedure for the FCN broad: the past and future window are concatenated
depth-wise to the current window, whose label is used for model training. This allows the model to include more
global information in its prediction and results in an overall channel depth of 6. Depicted are the normalized
streams of the accelerometer norm (blue) and the gyroscope norm (orange).

were trained on source task A and transfer their inherent learned knowledge, manifested in the
model weights θA, to the target task B. The model is then fine-tuned on the specific data for
task B which leads to faster model convergence and, dependent on the similarity of tasks A
and B, to an improvement in model performance. The rationale behind this is that the model
trained on target task B can benefit from features that were already learned on source task A.
Especially in image-based applications, transfer learning is applied with great success (Csurka
2017; Hoo-Chang et al. 2016). This is facilitated by the availability of large, multi-class image
data bases such as ImageNet (Deng et al. 2009) and the open sourcing of pre-trained model
architectures in common deep learning libraries. As shown in Oliver et al. (2018), transfer
learning is one of the most promising semi-supervised learning strategies and recommended in
the presence of suitable source data sets.

As TSC is still a niché in the deep learning community, there has not yet been much research
on the adoption of transfer learning to this problem set. To fill this gap in literature, Fawaz
et al. (2018b) just recently published a study on transfer learning in the time series domain.
Within their study, they applied transfer learning to all pairwise combinations of the UCR
data sets using the FCN architecture. Their results show that transfer learning can improve
but also deteriorate the performance of the model on the target task. The latter effect can
occur when source and target task are very dissimilar. In the majority of their experiments,
transfer learning did not affect the model performance in any way. In addition, they introduce
a distance measure for the selection of optimal source tasks for a given target task. At the time
of this writing, there is only one possible data set in our project group that could be used for

23

transfer learning. Thus, we do not make use of this measure based selection of source tasks.
Still, this could be an interesting topic for future research.

As a source task for the motor state detection, we use the data set III that is explained in more
detail in chapter 2. This data set contains 72.918 one-minute sample windows of sensor data
from patients that suffer from Parkinson’s disease as well as from healthy controls. This data
set was constructed by collecting sensor data during daily activities of the two patient groups
similar to the collection protocol for our target task. Thus, we hypothesized that this source
task is similar enough to the target task for transfer learning to have a positive effect. The data
set is equally balanced. We used the data of those patients to train a binary classifier based
on the respective target architecture that detects if a sample window is attributed to a patient
that suffers from Parkinson’s disease or to an healthy one.

Those source models are trained with the same hyperparameters and architectural settings as
the target models. The results on this transfer learning approach are described in chapter 5.4.2.

24

5 Results

In this chapter we provide answers to the three following research questions:

1. Which problem frame suits the problem best?

2. Which model architecture is most suitable?

3. Can transfer learning methods improve model performance on this task?

In the following, we explain the non-trivial validation scheme, discuss the final performance
measure, show the postprocessing procedure and discuss the results from the model comparison
as well as the transfer learning extension.

5.1 Validation Scheme

To validate the performance of the previously described models, we want to use a method to
estimate the generalization performance on new unseen data. This is the typical strategy to
obtain an estimate for the model performance in practice (Hastie, Tibshirani, and Friedman
(2009)). The application of this work will be a final model which predicts motor states based
on movement data from one test patient without having seen any of the movement data from
this particular patient before. As stated in Varoquaux et al. (2017), “cross-validation relies on
independence between the train and test sets”. If we would use regular cross validation (CV)
strategies and randomly split the one-minute samples in train, validation and test sets, data
gathered from one patient could occur in different sets. This would contradict the assumption of
independence and a complex model could exploit this subject-specific information and produce
a too optimistic estimate of the generalization performance. Thus, we use the LOSO validation
strategy which is often applied in settings were many data are gathered from few subjects (Bao
and Intille 2004; Eskofier et al. 2016; Fisher et al. 2016; Varoquaux et al. 2017). Thereby, we
train a model on all subjects except one subject which is left out. The resulting models are
then tested on the left out subjects, yielding an unbiased performance estimate for each sub-
ject. Saeb et al. (2017) discuss the benefits of the LOSO validation compared to regular cross
validation in the context of disease monitoring with wearable devices. They show empirically
as well as with a simulation study that general CV tends to overestimate the generalization
performance of prediction models. In line with their argumentation, we use the LOSO strategy
in our problem.

One peculiarity in the application of deep learning models is their heavy dependence on hy-
perparameters. The amount of iterations for which the model is trained is one of the most
important ones. One epoch means one pass of all training samples through the neural net.
Early stopping (Goodfellow, Bengio, and Courville 2016) is one of the standard methods to
determine this optimal amount of epochs e∗. Thereby, the model’s performance is continually
measured on a validation data set during the training process. Model training is stopped,

25

when the validation performance did not improve for an amount of subsequent epochs which
is referred to as patience. This requires the introduction of a tuning step to determine e∗ in
each of the LOSO folds, which in turn requires another split of the data set. We will refer to
this as inner fold and to the actual LOSO fold as outer fold in the following. In a setting with
unlimited computational resources, one would run a proper LOSO validation in the inner folds,
determine the optimal e∗, train the model on the whole data except the left out subject and
evaluate the trained model on that subject. With a total amount of 28 patients, this would
result in the training of 28 · 27 = 756 models for the validation of one specific architecture. As
this exceeds the computational resources of this thesis, we propose a cheaper solution.

We split the data in the inner fold by a 80/20 ratio depending on the timely structure of the
data for each of the fold’s training patients. The first 80% one minute windows per patient
are used for training and the last 20% one minute windows are used for validation. Algorithm
1 illustrates the validation scheme. Those inner folds are used to determine the optimal train
epochs e∗j for each patient. Opposed to the outer folds, the model can therein exploit the
individual patient effects as data from all patients occurs in the inner train as well as in the
inner test data. Thus, the inner problem is more easy than the outer, proper LOSO problem.
Still, we use this inner loop only for the determination of e∗ and not for an estimate of the
generalization performance. Therefore, we assume that the model converges in the outer and
inner loop behave similarly. We argue this to be a valid assumption which is necessary due
to a limited access to computational power. Comparable work in this context such as Um
et al. (2018), Eskofier et al. (2016) and Hssayeni, Burack, and Ghoraani (2016) even skip this
step and set the parameter e∗ arbitrarily.

Algorithm 1 LOSO validation scheme
Input: Data set I split in LOSO data sets Dj,∀j ∈ {1, ..., 28} which are again split in inner

train and inner valid data sets Dj, inner train, Dj, inner valid, where Dj, inner train contains the
first 80% and Dj, inner valid contains last 20% of the data samples of patient j
Data set II for testing
Maximum amount of train budgets emax
Model architecture f(X, θ)

Output: J = 28 LOSO models
Final model f ∗(D, θ) trained on all LOSO data for e∗∗ which can be deployed
Performance measures for each LOSO fold
Performance measures for the performance of f ∗(X, θ) on data set II

for LOSO patient j in patient list from data set I do
Train inner model fj,inner(Dj, inner train) for max emax epochs and get the optimal e∗j for this
fold via early stopping with validation data (Dj, inner valid)
Train outer model fj,outer(D−j) for e∗j and get predictions and performance measures for
this LOSO patient

end
Calculate e∗∗ as the median of all e∗j ,∀j ∈ {1, ..., 28}
Train the final, deployable model f ∗(D, θ) on data set I for e∗∗ epochs
Test the model with data set II and get predictions and performance measures

26

5.2 Performance Measure

In this chapter, we describe the performance measure and the class weighting scheme.

5.2.1 Expert-based Performance Measure

As this work results in a model that predicts a severity index, the end-user, which is the
medical doctor, will base his diagnosis on the model’s prediction. Thus, it is crucial to design
an adequate performance measure in strong conjunction with the practicioners, which reflects
the practical requirements on the model. We introduce this customized performance measure,
referd to as Custom-loss in the following. Due to the limited scope of this thesis, the Custom-
loss is used as an outer loss for model evaluation only and not deployed as a directly optimized
inner loss. In appendix F, we show how this Custom-loss could be optmized directly as an
inner loss.

5.2.1.1 Motivation

From discussions with the involved medical doctors, we found that misclassifying a sample in
a class that is two levels distant to the true label is a lot worse than missing the true label
by one level. This suggests a non-linear loss function. Another important finding is that
misclassifying in the wrong direction of the scale (e.g. ŷi = −1, yi = 1) has a higher negative
impact than misclassifying in the correct direction (e.g. ŷi = 3, yi = 1) though the distance
in both scenarios has the same magnitude. The rationale behind this is that an exaggerated
diagnosis which follows the true pathological scenario does not harm the patient as strong as
an opposing diagnosis. Plain speaking: considering a dyscinetic patient too dyscinetic is less
problematic than diagnosing bradykinesia, the opposing disease pattern. This is due to the
fact that in the latter case a medication would be prescribed that would lead to an effect that
is totally diametral to the desired one. This finding suggests an asymmetric loss function.
Furthermore, we found that the cost of misclassifying a patient in the wrong pathological
direction increases with the severity of the disease: diagnostic errors weigh heavier on patients
with strong symptoms compared to patients that are only mildly affected by the disease. Thus,
L(ŷi = −3, yi = −4) !

> L(ŷi = −2, yi = −3). In summary, three main requirements on the loss
function were identified:

1. Non-linearity

2. Asymmetry

3. Dependence of the strength of the asymmetry on the true label values

5.2.1.2 Asymmetric Losses
Asymmetric loss functions are also applied in economic forecasting as an under- or overestima-
tion of economic variables has differing consequences. In this context, Elliott, Timmermann,
and Komunjer (2005) introduced the following, parametrized loss function:

27

Lasym(α, p, yi, ŷi) = [α + (1− 2α) · 1(yi − ŷi < 0)] · (|yi − ŷi|)p (12)

where α ∈ [0, 1] controls the asymmetry of the loss function, such that

α


∈]0.5, 1[, penalization of underestimation

= 0.5, symmetric loss

∈ [0, 0.5[, penalization of overestimation

(13)

and p controls the norm of the loss, with p = 1 yielding an absolute and p = 2 yielding
a quadratic loss measure. The loss resulting from p = 2 is also referred to as Quad-Quad-
loss and p = 1 is known as Lin-Lin-loss (Christoffersen and Diebold 1996). Following the
first requirement, we set p = 2 in the following. Elliott, Timmermann, and Komunjer (2005)
and Ahn and Tsuchiya (2017) employ this loss to overcome underestimation in econometric
forecasting and Toth (2015) applies it in a deep learning setting on an engineering problem.
The third requirement is the inclusion of an asymmetry, that is dependent on the values of
the true label and increases towards the extreme values of the label scale y ∈ {−4, ..., 4}. To
facilitate the inclusion of this requirement, we propose a new asymmetric loss function that
shares the main properties of the Quad-Quad-loss, but differs in some details. We refer to it as
Custom-loss in the following. The proposed loss function has the form:

Lcustom(αcustom, yi, ŷi) = [αcustom + sign(ŷi − yi)]2 · (ŷi − yi)2 (14)

where αcustom ∈ [−1, 1] controls the asymmetry such that:

αcustom


∈ [0, 1[, penalization of overestimation

= 0, symmetric loss

∈]− 1, 0], penalization of underestimation

(15)

5.2.1.3 Comparison of Custom- and Quad-Quad-loss

One similarity of both losses is that they multiply the quadratic loss with a factor that de-
pends on the variable α, which governs the strength of the asymmetry, and on the fact that
the algorithm overestimates (ŷ > y) or underestimates (ŷ < y) the true label. For bet-
ter comparison, both penalization factors are shown in equation 16, where αcustom ∈ [−1, 1]
and αquad-quad ∈ [0, 1]. Overestimation (ŷ > y) is heavily penalized for αcustom = −1 and
αquad-quad = 1 whilst underestimation (ŷ < y) is heavily penalized for αcustom = 1 and
αquad-quad = 0. From both equations, we see that the Custom-loss maps back to the quadratic
loss for αcustom = 0 and the Quad-Quad-loss resembles the quadratic loss up to a scaling factor
of 0.5 for αquad-quad = 0.5.

28

Penalization factor Custom: 1 + α2
custom + 2αcustomsign(ŷ − y) = [αcustom + sign(ŷ − y)]2

Penalization factor Quad-Quad: αquad−quad + (1− 2αquad−quad) · 1(y − ŷ < 0)
(16)

In the numerical example in table 5 we show that the Custom-loss collapses exactly to the
quadratic loss in the symmetric setting whilst the Quad-Quad-loss is proportional to it up to a
constant. One can see that the Custom-loss penalizes over- and underestimation more heavily
than its Quad-Quad-counterpart and both losses share the same properties of being non-linear
and asymmetric.

Table 5: Illustrative example of the similar behavior of the Quad-Quad-loss and the Custom-loss in different
scenarios. Presented are edge-case scenarios with the most heavy penalizations and a symmetric loss.

Penalization Prediction Loss factor Custom Loss factor Quad-Quad

Overestimation
αcustom = 1 αquad−quad = 0

ŷ > y [1 + sign(ŷ − y)]2 = 4 [0 + 1(ŷ > y)] = 1
ŷ < y [1 + sign(ŷ − y)]2 = 0 [0 + 1(ŷ > y)] = 0

Underestimation
αcustom = −1 αquad−quad = 1

ŷ > y [−1 + sign(ŷ − y)]2 = 0 [1− 1(ŷ > y)] = 0
ŷ < y [−1 + sign(ŷ − y)]2 = 4 [1− 1(ŷ > y)] = 1

Symmetric
αcustom = 0 αquad−quad = 0.5

ŷ > y [0 + sign(ŷ − y)]2 = 1 [0.5 + 0] = 0.5
ŷ < y [0 + sign(ŷ − y)]2 = 1 [0.5 + 0] = 0.5

The final step is the conditioning of the asymmetry on the true label values, as motivated in the
third requirement. The factor that controls the strength of the asymmetry is αcustom. Thus, we
need to connect y with αcustom. One straightforward way towards this goal is the introduction
of α∗custom:

αcustom = y

4 · α
∗
custom

where y ∈ {−4, ..., 4}, α∗custom ∈ [0, 1] and thus αcustom ∈ [−1, 1]
(17)

where the constant denominator 4 is introduced to ensure that αcustom ∈ [−1, 1] and α∗custom is
restricted to [0, 1] as the sign that governs the direction of the asymmetric penalization is con-
trolled by the true labels. Thus, the model will be heavily penalized for the overestimation of
negative labels and for the underestimation of positive labels. We now see that the asymmetry
of the function is reciprocally connected to the magnitude of the label y in both, the negative
as well as the positive direction: e.g. the loss for y = 1 is more symmetric than the loss for
y = 4. Furthermore, the loss collapses to a regular quadratic loss for y = 0, the median value of
the label scale y ∈ {−4, ..., 4}. The behavior of the Custom-loss is further illustrated in figure 10.

29

Figure 10: Illustration of the behavior of the Custom-loss on the y-axis for different y and the corresponding
predictions ŷ on the x-axis. The loss collapses to a symmetric quadratic loss for true labels of y = 0 and is
becoming increasingly asymmetric towards the extremes of the label-scale. This illustrates the direct dependency
of the asymmetry of the loss on the true label values.

In order to get a common understanding of the properties of the desired loss function, we
evaluated different cost matrices in close discussion with the medical doctors involved in the
project. These cost matrices also served as a basis of discussion to determine the optimal
value α∗custom for the present problem. Based on their domain expertise, the involved medical
doctors decided to choose α∗custom = 0.25. Figure 11 shows the costs associated with different
predictions for all possible label values.

Figure 11: Cost matrix associated with α∗
custom = 0.25. It is observable that the degree of asymmetry increases

with more extreme labels. E.g. Lcustom(ŷi = −4, yi = −3, α∗
custom = 0.25) = 0.66 whilst Lcustom(ŷi = 2, yi =

−1, α∗
custom = 0.25) = 0.879. Furthermore, one can observe the symmetry of the loss in the center of the scale.

30

5.2.2 Class Weighting

As described in chapter 2, the problem at hand inhibits a highly imbalanced label distribution.
This might lead to biases in the interpretation of the performance measures such as the accu-
racy paradox (Thomas and Balakrishnan 2008) that can lead to overestimation of a model’s
performance. In chapter 3.2 we discuss and justify our reweighting scheme for the handling of
class imbalances in detail and explain its inclusion in the performance measure calculation in
this chapter. We include this reweighting scheme as well in the calculation of the performance
measures such that the weighted metric metricw, based on an arbitrary loss L(yi, f(Xi, θ)), can
be formulated as:

metricw = 1
N

N∑
i=1

ωiL(yi, f(Xi, θ)) (18)

where the loss contribution of each sample is getting multiplied with the ωi factor, which
controls for class imbalances. The regular, unweighted version is formulated as:

metric = 1
N

N∑
i=1

L(yi, f(Xi, θ)) (19)

5.3 Postprocessing

Labels for the motor state of the PxPD were collected on a highly granular minute-level, re-
sulting in models that predict the motor state for unseen sensor data on a minute-level as
well. From a clinical perspective, it is unreasonable that the motor state of a patient changes
rapidly from one minute to another. The transitions are more smooth in practice. Still, the
models treat the individual one-minute-windows of sensor data independently. This leads to
the effect that neighbouring windows can be predicted to have very dissimilar motor states
due to an abrupt change in the movement pattern but not due to a change in the symptom.
To balance this effect, we smooth the predicted motor state day-curves similar to Hammerla
et al. (2015). It is reasonable to smooth with future predictions as the deployed model will not
be used for real-time monitoring. While smoothing, we want to assign a higher weight to the
current window than to windows that lie farther in the past or in the future. Therefore, we
draw weights from a symmetric Gaussian that is controlled by two parameters: M , the amount
of the neighbouring points, and the standard deviation std of the Gaussian, following the scipy
implementation by Jones, Oliphant, Peterson, et al. (2001). These weights are then normalized
to a sum of 1 and used as a filter function to convolve the raw prediction curves. The effect of
smoothing is further illustrated in figure 12.

As the parameters of the Gaussian are hyperparameters, we tune them specifically for each of
the LOSO patients. Thus, for the predictions of one patient we use the Nelder-Mead optimizer
by Nelder and Mead (1965) to detect the optimal (M∗

i , std
∗
i) for this patients which minimizes

the weighted Custom-loss over all other LOSO patients. We use the Nelder-Mead optimizer

31

as it allows for multivariate, gradient-free optimization. One could experiment with related
optimization methods such as Bayesian Optimization in future research. For the test patients
from data set II, we optimize M and std over the predictions of all patients from the LOSO
data set I.

Figure 12: Illustration of the effect of smoothing on model predictions for an exemplary patient from data set
I with arbitrary but reasonable M and std values. Predictions are shown in orange, true label values in blue
color.

5.4 Results

In this section, we report and discuss the performance of the different models as well as the
transfer learning approach. As performance measure for the model comparison, we use the
weighted Custom-loss as explained in chapter 5.2. A summary with additional standard eval-
uation metrics is presented in table 10 in appendix B. The performance is calculated on the
model predictions that were smoothed in the postprocessing step following the method from
chapter 5.3.

Due to the cost-intensive LOSO validation, which results in the training of 28 ·2+1 = 57 single
models per run, a complete run of one architecture on an NVIDIA Tesla P100 GPU takes
60-70 hours, depending on the convergence rate of the single models. Due to limited access to
computational resources, we were not able to tune the hyperparameters of the various model
architectures explicitly. The hyperparameter setting that we finally chose for all model runs is
influenced by findings from early experiments as well as recommendations in related literature.
This hyperparameter setting is summarized in table 6. The only hyperparameter that we
explicitly tune is the amount of training time using early stopping as described in chapter 5.1.
The specific tuning of hyperparameters can have major effects on the model performance in
machine learning. Thus, it is highly recommended to invest further time and budget in the
fine-tuning of the proposed models.

32

Table 6: Hyperparameters that were used for the training of all deep learning models. Adam (2014) was
chosen as an optimizer. The learning rate in conjunction with the batch size was set due to observations in
early experiments. The remaining parameters of the optimizer were set to the default settings. As described in
chapter 5.1, the task in the inner folds is more easy than that in the outer folds, requiring less train budget to
converge. Therefore, we chose a rather small patience = 6 for early stopping.

Hyperparameter Value

Batch size 256
Patience 6

Adam optimizer

Learning rate 5e-5
Weight decay 1e-6
Beta 1 0.9
Beta 2 0.999

5.4.1 Model Comparison

In table 7, we show the model performance of the different architectures in the different problem
frames evaluated on the non-augmented version of data set I as well as the data set II, referred
to as LOSO and Test respectively. We include the baseline model, referred to as Majority Vote,
the Random Forest trained on the extracted features from chapter 4.1 and the various deep
learning approaches. Note that the lower the weighted Custom-loss of a model, the better its
performance.

Table 7: Results for the different models in different problem frames, measured with the class-weighted version
of the Custom-loss. The models are validated on data set I in a LOSO setting as well as on data set II, referred to
as LOSO and Test respectively. Smaller values in the performance measures suggest better model performance.
The FCN architecture in the regression setting performs best on the LOSO data.

Frame Model weighted Custom-loss
LOSO Test

Baseline Majority vote 2.900 0.530

Classification FCN 0.800 0.329
Random Forest 1.542 0.348

Ordinal FCN 0.752 0.160
Multioutput FCN 0.922 0.150

Regression FCN 0.635 0.141
FCN Inception 0.726 0.121
FCN ResNet 0.841 0.238
RCF 0.776 0.188
FCN Broad 0.673 0.127
Random Forest 1.310 0.255

33

The FCN architecture was deployed in all three problem frames. From table 7, we yield the
following order in terms of the FCN model performance validated on the LOSO data: classifi-
cation (weighted Custom-loss = 0.800) < ordered regression (weighted Custom-loss = 0.752) <
regression (weighted Custom-loss = 0.635). This order also holds for the model’s generalization
performance on the Test data set II: classification (weighted Custom-loss = 0.329) < ordered
regression (weighted Custom-loss = 0.160) < regression (weighted Custom-loss = 0.141). Next
to the FCN, which we applied in all three problem frames, we run the Random Forest model
only in the classification and the regression setting. This yields a similar performance order-
ing: classification (weighted Custom-loss LOSO = 1.542, Test = 0.348) < regression (weighted
Custom-loss LOSO = 1.310, Test = 0.255). Thus, we conclude that the regression frame suits
this task the best and therefore run the different deep learning models in this frame only.

The comparison of the deep learning models with the classic machine learning model, that is
the Random Forest, offers another interesting finding. Both model classes were applied in the
classification and in the regression frame. In both frames, we observe that the deep learning
models outperform the classic machine learning models on both validation data sets. Even the
worst performing deep learning architecture, the FCN ResNet (weighted Custom-loss LOSO
= 0.841, Test = 0.238), performs better than the Random Forest (weighted Custom-loss LOSO
= 1.310, Test = 0.255) in the regression frame and the FCN (weighted Custom-loss LOSO
= 0.800, Test = 0.329) outperforms the Random Forest (weighted Custom-loss LOSO = 1.542,
Test = 0.348) in the classification frame as well. This finding justifies our focus on deep learning
approaches for the problem at hand.

In their research, Niu et al. (2016) claim the Multioutput CNN architecture to outperform
regular regression models in an ordinal regression task. Based on our work, we can not support
this claim as the Multioutput FCN shows weaker performance than each of the deep learning
architectures which were deployed in the regression frame. With this statement, one has to
bare in mind, that the authors used this Multioutput CNN architecture for age estimation on
Asian portraits, a task that differs from ours.

Looking at the results from the regression frame which were validated on the LOSO data,
we obtain the following performance ordering: Random Forest (weighted Custom-loss LOSO
= 1.310) < FCN ResNet (weighted Custom-loss LOSO = 0.841) < RCF (weighted Custom-
loss LOSO = 0.776) < FCN Inception (weighted Custom-loss LOSO = 0.726) < FCN Broad
(weighted Custom-loss LOSO = 0.673) < FCN (weighted Custom-loss LOSO = 0.635). This
suggests that the most simple model architecture, the FCN, performs best on this task. Sur-
prisingly, the more advanced architectures, such as the FCN Inception, the FCN ResNet or
the RCF, which are partly inspired by the great success of their 2D counterparts in Computer
Vision, do not manage to outperform this rather simple model architecture. At this point,
one could argue that the problem at hand is not complex enough to require such sophisticated

34

models. The increased capability of these more advanced models comes at the price of an heavy
increase in model weights. For instance, the FCN consists of 283145 weights, whilst the FCN
Inception contains 514809, the FCN ResNet 512385 and the RCF contains 811807 model pa-
rameters. Though those models employ strategies such as the residual connections to prevent
overfitting, they could still be prone to this problem. Furthermore, such intricate models call
for more data availability in order to achieve successful training.

While the regression FCN model performs best on the LOSO data set I, the FCN Inception
outperforms it on the Test data set II. When interpreting this result, one should keep in mind
that the Test data set II has major differences with the LOSO data set I on which the model
was trained: it contains a lot less samples (398 vs. 9356 windows), the data was collected with
a different device (Shimmer vs. MSB2) and the class distribution differs heavily from that of
the LOSO data set I (see figure 2). Thus, we base our decision in the model comparison mainly
on the results from the LOSO validation and conclude that the FCN in the regression frame
performs best amongst the frames and model classes that we applied to the problem.

5.4.2 Transfer Learning

For transfer learning, we pretrained a FCN model on the source task of distinguishing move-
ment windows from PxPD and healthy patients. Therefore, we trained the FCN model on the
balanced data set III, where 80% of the data are randomly selected as training data and the
remaining 20% are used for validation. As this source model is only used for the initialization
of the weights for the target task, we trained the model using the hyperparameters from table
6 on this binary classification task with a total budget of 60 epochs, storing the model weights
after each epoch. We found the model to converge after 30 epochs and the weights of the
best performing epoch with a test accuracy of 89.516% were picked for the initialization of the
weights for the target task.

This pretraining was only done for the FCN architectures. Thus, we report the performance
of those four pretrained models along with their non pretrained versions in table 8. Within all
four experiments, pretraining on the source task increased the model performance in the LOSO
setting across the different problem frames. Further, this strategy helped to even improve the
performance of the FCN in the regression setting, which was found to be the best performing
model in the previous chapter 5.4.1, from a weighted Custom-loss of 0.635 to 0.600 on the
LOSO data set I. Thus, the pretrained FCN model in the regression setting is the final, best
performing model amongst all models that we applied across the different frames. In figure 13,
we show the predicted and the actual day curves for four selected LOSO patients. A visual
comparison of the predictions from the pretrained and the regular regression FCN is shown in
figure 19 in Appendix E. The prediction curves for all patients are depicted in appendix D. In
figure 15, we show the associated confusion matrix for the validation of the model on the LOSO

35

data set I and on the Test data set II respectively.

Table 8: Performance of the transfer learning approaches compared to their non-pretrained counterparts.
Models were evaluated in the same way as in the previous chapter 5.4.1. Pretraining increases the performance
of all models on the LOSO data. Furthermore, it seems to be disadvantageous for the Test data, which was
collected with a different IMU device.

Frame Model weighted Custom-loss
LOSO Test

Classification FCN 0.800 0.329
FCN Transfer 0.771 0.163

Ordinal FCN 0.752 0.160
FCN Transfer 0.616 0.249
Multioutput FCN 0.922 0.150
Multioutput FCN Transfer 0.657 0.220

Regression FCN 0.635 0.141
FCN Transfer 0.600 0.174

Transfer learning has the biggest effect on the performance of the Multioutput FCN in the
ordered regression frame. This might be due to the fact that this model architecture basi-
cally consists of eight jointly trained binary classifiers. As the source task is also a binary
classification problem, we hypothesize that this similarity in source and target task allows the
Multioutput FCN to exploit the pre-extracted features the best. Validating this hypothesis
further would be an exciting topic for future research.

Despite the performance increase within the LOSO validation, this transfer learning strategy
lead to worse model performance on the Test data set II. Both, the data set III, that was used
for the source task and the LOSO data set I were collected with an MSB2 IMU. In contrast, the
Test data set II was collected with a Shimmer IMU. Hypothetically, the pretraining helps the
model to better adapt to the specific data which is beneficial for its performance on data from
the same device, but harmful on data from another device. This would stress the importance
of standardization amongst devices. Due to the limited scope of this thesis, we leave this topic
as well open for further research.

36

Figure 13: Illustration of the actual day curves (blue) of four selected patients from the LOSO data and the
associated motor state predictions (orange) from the pretrained regression FCN, the best performing model.
As explained in chapter 5.3, the data was smoothed in a postprocessing step. The model is able to capture
the motor state transitions for patients 7 and 47 and also detects the OFF phase of patient 91 correctly. In
contrast, the model fails to detect the clear OFF phase of patient 27 and osciliates too heavy in the ON phases
at the beginning and the end of the patient’s day.

(a) LOSO data set I (b) Test data set II

Figure 14: Confusion matrices for predictions from the pretrained FCN in the regression frame on the LOSO
data set I (left) and on the Test data set II (right). The predicted values were smoothed and then rounded for
the backmapping to class labels. The confusion matrices were color-coded according to the relative values that
were normalized for each actual label, the rows in the matrix. The model is hesistant to predict the extreme
class labels {−4, 4} but produces reasonable results for the other class labels. The heavy class imbalance could
be a reason for this behavior.

37

6 Uncertainty Modeling

In deployment, the predictions from the proposed model will be used to control the medication
of real humans suffering from PD. This requires a high level of trust in the model’s predictions
from both, the patients as well as the doctors. One approach to foster this trust is the extension
of the model to output its certainty about the predictions next to the point estimates itself.
Amongst the different approaches to uncertainty estimation in deep learning, we propose a
first straight forward model extension based on the work of Gal and Ghahramani (2016) and
compare it with deep Quantile regression. The following provides the basis for extensions of
the main part of our work from sections 3, 4 and 5.

A decent part of the growing literature on uncertainty estimation in deep learning is inspired
by Bayesian Statistics, as Bayesian models are designed to model posterior probability distri-
butions instead of point estimates. For instance, Blundell et al. (2015) assume each of the
weights of the neural networks to follow a Gaussian and propose a unique optimization method
for the training of such models. While this delivers reasonable results, Gal and Ghahramani
(2016) point to the “prohibitive computational cost” of such approaches and introduce a more
straight-forward and economic strategy using the well-known Dropout regularization technique
(Srivastava et al. 2014). Besides model training with Dropout, they propose to use it as well in
model inference in order to receive empirical distributions of the predictions on test samples.
Basically, T stochastic forward-passes are made for one test sample where the Dropout ensures
that within each forward pass, different model weights are randomly set to 0. Due to this
stochastic sampling, the method is also referred to as Monte-Carlo Dropout (MC Dropout).
The empirical mean and variance are calculated from this predictive distribution and used as
the point and uncertainty estimates, respectively. Within their work, Gal and Ghahramani
(2016) justify this approach by proposing the dropout network to be the approximation of a
Gaussian process. In an extensive proof, they show that minimizing the “dropout objective ...
minimises the Kullback–Leibler divergence between an approximate distribution and the pos-
terior of a deep Gaussian process”. This strategy has the major benefit that, instead of other
Bayesian approaches, it does not require architectural changes other than including Dropout
in the model architecture. Thus, we employ this technique in our work. We insert a linear
Dropout layer with a Dropout probability of 0.5 between the GAP and the final layer in the
FCN architecture and sample T = 100 predictions for each unseen window. The obtained point
estimates along with the prediction intervals for a selected LOSO patient are illustrated in
figure 15b. Plots for all LOSO and Test patients are depicted in appendix G. Kendall and Gal
(2017) discuss the term uncertainty itself and distinguish it into two different types: epistemic
uncertainty, which measures what the model does not know and can be reduced by collecting
more data, and aleatoric uncertainty, a measure for the uncertainty that is inherent in the
problem. The MC Dropout uncertainty estimation quantifies epistemic uncertainty (Gal and
Ghahramani 2016), highlighting predictions on input data that is very dissimilar to the ones

38

(a) Uncertainty matrix (b) Point estimates with uncertainty bands

Figure 15: Results from the uncertainty modelling approach via MC Dropout on the LOSO data set I. The left
graphic shows the uncertainty matrix, where the average prediction variance for each combination of rounded
predicted and actual labels is shown, similar to a confusion matrix. An example plot including predicted
point estimates along with the uncertainty bands is depicted on the right. Predictions are postprocessed and
ucnertainty bands are depicted as the area between the 95th and the 5th quantile as well as the 75th and the
25th quantile. Both graphics show that the uncertainty for predicted values towards the extremes of the label
scale is higher than in the center. This supports the argument, that MC Dropout quantifies the epistemic model
risk as there is only little data support for these extreme classes.

the model was trained on. Thus, we expect the estimated uncertainty to be especially high for
input data for heavily bradkyinetic and dyskinetic samples due to the high class imbalance in
the train data set I. This is supported by the resulting uncertainty matrix in figure 15a, where
extreme predictions show a higher average variance than predictions in the center of the scale.

An alternative way to obtain more information from statistical models than pure point esti-
mates is the calculation of prediction intervals. According to Meinshausen (2006), who leveraged
Quantile regression to calculate prediction intervals from a Random Forest model, “Quantile
regression offers [...] a principled way of judging the reliability of predictions”. Quantile regres-
sion is based on the idea to predict different conditional quantiles of the data instead of the
conditional mean (Koenker and Hallock 2001). As opposed to the quadratic loss, it therefore
employs the pinball loss, also referred to as tilted loss, to estimate different quantiles. The
resulting prediction intervals offer a clear interpretation: for instance, the predicted value of
a new data sample lies with 90% probability within its associated prediction interval which is
calculated from the predicted 95th and 5th quantile values. Rodrigues and Pereira (2018) trans-
fer this idea successfully to deep learning and propose a multi-head CNN model that predicts
a conditional mean via MSE minimization as well as a variety of quantiles for the calculation
of prediction intervals. In addition, they show that this joint multi-task training has a positive
regularizing effect increasing the model’s generalization performance in their application.

Both approaches have advantages and disadvantages. One main benefit of MC Dropout is that

39

it is applicable to almost any deep learning architecture with minor to no required change in the
architecture. Also, it can be applied to both, classification and regression. On the negative side,
the width of the sampled predictive distribution is depending on hyperparameters, such as the
dropout ratio or the activation functions, which are difficult to calibrate. Next to that, there has
been recent critique by Osband (2016), arguing that MC Dropout uncertainty does not decrease
with an increase of data. Thus, at the current state of research, uncertainty estimated based
on MC Dropout should be interpreted with caution. Quantile regression in contrast is shown
to be applicable in deep learning, but only in regression settings and including architectural
adjustments. Beneficial about Quantile regression is that the interpretation of the resulting
uncertainty bands has backing in statistical theory. Furthermore Rodrigues and Pereira (2018)
suggest the joint training of different quantile estimates to have a regularizing effect increasing
the model’s generalization performance.

40

7 Conclusion

Within this thesis we employed a variety of different statistical learning approaches for mo-
tor state detection of patients with Parkinson’s disease based on sensor data collected with a
wearable device. Whilst the vast majority of related literature handles the problem as a clas-
sification problem, the high resolution of the data at hand allows us to assess the performance
of several suitable approaches. We could show that treating this task as a regression problem
works better than framing it as a classification or an ordered regression task. Other than most
of the related research, we invested in an appropriate Leave-one-subject-out (LOSO) strategy
for enhanced model validation. In its wake, we propose a LOSO validation scheme that is
explicitly well suited for iterative learning algorithms such as neural networks. Furthermore,
we compared the performance of different deep learning architectures with a classical machine
learning model, namely a Random Forest based on manually engineered statistical features.
We can draw two main findings from those examinations. First, deep learning approaches
outperformed the classic machine learning approach in the present task. Secondly, the most
straightforward one among the neural network architectures offered the most promising results.
Although this is initially surprising, it gives reason to suspect that the task at hand is simply
not complex enough such that it would require more sophisticated architectures. Such intri-
cate models call for more data availability in order to achieve successful training. In order to
assess and compare the model performance, we propose the use of a customized performance
measure. This measure is a scale-variant extension of the asymmetric Quad-Quad-loss and was
developed in close conjunction with the involved medical staff. Since high quality labeled data
is scarce and costly in the medical domain, we also showed that transfer learning approaches
can be successfully employed in the present time series classification task. As an additional
extension of the final model, we provided an outlook on uncertainty modeling. Therefore we
briefly introduced the Monte-Carlo Dropout method and compared it with recent advances in
deep Quantile regression.

Besides the convincing results of our modelling approaches, there exist also some issues in this
thesis which could be tackled in future work. The intense computational cost of the LOSO
validation hindered us from properly tuning the hyperparameters of the proposed models.
Thus, we suggest at least to tune the parameter setting for the best performing model with
more computational budget. For the determination of the optimal amount of training time, we
made the strong assumption that models trained with a standard train test split show the same
convergence behavior as those trained in a valid LOSO setting. This is one weakness of this
work and there is a need for the development of additional advanced cross validation strategies
for such problem settings where many data are collected from few individuals. Despite the
deployment of a class weighting scheme, the model performed especially bad in predicting the
extreme values of the label scale. However, collecting more training data from such extreme
classes could mitigate this problem. The data used in this thesis was labeled by one single

41

rater, which makes the labels prone to a possible subjectivity bias. One method to overcome
this problem would be the collection of the patients’ movement patterns on videos, which could
be labeled by a group of experts in a second step. What is more, the transfer learning approach
has lead to a substantial increase in model performance. Thus, pretraining the model on
additional wearable-based tasks would be an interesting extension of the current work. In the
final section of the thesis, we introduced methods for the estimation of prediction uncertainty.
Those could be further leveraged for the application of semi-supervised learning methods in
future research to overcome the limited availability of high quality labeled data.

42

Appendices

A Structured Literature Overview

T
ab

le
9:

O
ve
rv
ie
w

on
re
su
lts

fr
om

th
e
lit
er
at
ur
e
on

M
ot
or

St
at
e
de

te
ct
io
n
fo
r
Px

PD
.T

hi
s
ta
bl
e
su
pp

or
ts

th
e
m
ai
n
po

in
ts

fr
om

th
e
lit
er
at
ur
e

re
vi
ew

in
ch
ap

te
r
1.

T
he

lit
er
at
ur
e
is

st
ru
ct
ur
ed

ac
co
rd
in
g
to

di
ffe

re
nt

cr
ite

ria
su
ch

as
th
e
(m

od
el
in
g)

m
et
ho

d,
th
e
va
lid

at
io
n
sc
he

m
e
an

d
th
e
co
lle

ct
io
n
of

th
e
da

ta
in

a
fr
ee
-li
vi
ng

or
a
la
b
se
tt
in
g.

In
th
e
m
od

el
in
g
m
et
ho

d,
th
e
ab

br
ev
ia
tio

n
M
LP

re
fe
rs

to
a
M
ul
ti-
la
ye
r
Pe

rc
ep

tr
on

ne
ur
al

ne
tw

or
k
an

d
th
e
ab

br
ev
ia
tio

n
FE

to
m
an

ua
l
fe
at
ur
e
ex
tr
ac
tio

n.
Fu

rt
he

r,
SV

M
re
fe
rs

to
a
Su

pp
or
t
Ve

ct
or

M
ac
hi
ne

an
d

LS
T
M

to
Lo

ng
-s
ho

rt
-t
er
m
-m

em
or
y
ne

ur
al

ne
tw

or
ks
.
In

th
e
la
be

ls
ec
tio

n,
th
e
na

m
es

of
th
e
cl
as
sl
ab

el
sa

re
de

pi
ct
ed

.
Fr
om

th
is
co
lu
m
n,

on
e
ca
n
in
fe
rt

ha
t

on
ly

tw
o
au

th
or
s
us
ed

co
nt
in
ou

s
la
be

ls
an

d
th
us

re
gr
es
sio

n
m
od

el
s
fo
r
th
ei
r
ta
sk
.
G
en
er
al
ly
,a

co
m
pa

ris
on

of
th
e
di
ffe

re
nt

pr
op

os
ed

ap
pr
oa
ch
es

is
di
ffi
cu

lt
du

e
to

hi
gh

va
ria

tio
n
in

th
e
va
rio

us
us
ed

da
ta

se
ts

an
d
m
et
ho

ds
.

A
ut
ho

r
M
et
ho

d
Va

lid
at
io
n

Su
bj
ec
ts

Se
ns
or
s

Po
sit

io
n

Se
tt
in
g

La
be

ls
La

be
lin

g
W

in
do

w
R
es
ul
ts

H
ss
ay
en

ie
t
al
.(

20
18

)
Fe

at
ur
e

ex
tr
ac
-

tio
n
(F

E)
,S

V
M

LO
SO

19
6

w
ris

t,
an

-
kl
e

la
b

O
N
/
O
FF

ra
te
r

1
m
in

A
cc
ur
ac
y:

90
.5
%

U
m

et
al
.(
20

18
)

C
N
N

LO
SO

30
1

w
ris

t
fre

e
O
FF

/
O
N
/

D
Y
S

ra
te
r

1
m
in

A
cc
ur
ac
y:

63
.1
%

Sa
m
a
et

al
.(
20

12
)

FE
,S

V
M

10
ho

ld
ou

t
pa

tie
nt
s

20
1

be
lt

la
b

O
N
/
O
FF

ra
te
r

va
ria

bl
e

A
cc
ur
ac
y:

94
%

H
ss
ay
en

i,
Bu

ra
ck
,a

nd
G
ho

ra
an

i(
20

16
)

LS
T
M

LO
SO

12
1

an
kl
e

fre
e

O
N
/
O
FF

ra
te
r

5
se
c

A
cc
ur
ac
y:

73
.9

%
FE

,S
V
M

LO
SO

12
1

an
kl
e

fre
e

O
N
/
O
FF

ra
te
r

5
se
c

A
cc
ur
ac
y:

65
.7

%
Es

ko
fie

r
et

al
.(

20
16

)
C
N
N

LO
SO

10
2

w
ris

t
la
b

O
N
/
O
FF

ra
te
r

5
se
c

A
cc
ur
ac
y:

90
.9
%

H
am

m
er
la
,H

al
lo
ra
n,

an
d
Pl
oe
tz

(2
01

6)
FE

,M
LP

Le
av
e-
on

e-
da

y-
ou

t
34

2
w
ris

t
fre

e
O
FF

/
O
N
/
D
Y
S/

Sl
ee
p

di
ar
y

1
m
in

F1
:
55

%

H
am

m
er
la

et
al
.(
20

15
)

FE
,M

LP
7-
fo
ld

C
V

34
2

w
ris

t
la
b

O
FF

/
O
N
/
D
Y
S/

Sl
ee
p

ra
te
r

1
m
in

F1
:
76

%

K
ei
jse

rs
,H

or
st
in
k,

an
d
G
ie
le
n
(2
00

6)
FE

,M
LP

Tr
ai
n
se
t

23
6

tr
un

k,
w
ris

t,
le
g

la
b

O
N
/
O
FF

ra
te
r

1
m
in

F1
:
97

%

Ts
ip
ou

ra
s
et

al
.(

20
11
)

FE
,M

LP
LO

SO
29

6
w
ris

t,
le
g,

ch
es
t,

wa
ist

la
b

D
Y
S
Y
/N

ra
te
r

2
se
c

A
cc
ur
ac
y:

84
.3
%

K
ei
jse

rs
,H

or
st
in
k,

an
d
G
ie
le
n
(2
00

3)
FE

,M
LP

80
/2

0
Sp

lit
13

6
tr
un

k,
w
ris

t,
le
g

fre
e

A
IM

S,
co
nt
in
ou

s
2
ra
te
rs

1m
in

A
cc
ur
ac
y:

77
%

Lo
ni
ni

et
al
.(
20

18
)

FE
,R

F
LO

SO
20

1
w
ris

t
la
b

O
FF

Y
/N

ra
te
r

5
se
c

A
U
C
:7

3%
FE

,R
F

LO
SO

20
1

w
ris

t
la
b

Tr
em

or
Y
/N

ra
te
r

5
se
c

A
U
C
:7

9%

O
ur

ap
pr
oa

ch
C
N
N

LO
SO

28
1

w
ris

t
fre

e
co
nt
in
uo

us
U
PD

R
S

+
m
A
IM

S

ra
te
r

1
m
in

re
l.

A
cc
ur
ac
y

(9
-c
la
ss
):

86
.9
5%

,
M
A
E:

0.
65

43

B Model Results with Additional Measures

T
ab

le
10

:
R
es
ul
ts

fo
r
th
e
di
ffe

re
nt

m
od

el
s
m
ea
su
re
d
w
ith

a
va
rie

ty
of

st
an

da
rd

pe
rf
or
m
an

ce
m
ea
su
re
s.

A
s
ex
pl
ai
ne

d
in

ch
ap

te
r
5.
2.
2,

w
e

re
po

rt
th
e
cl
as
s-
w
ei
gh

te
d
ne

xt
to

th
e
st
an

da
rd

m
et
ric

fo
r
M
A
E,

M
SE

an
d
th
e
C
us
to
m
-lo

ss
.
T
he

m
od

el
s
ar
e
va
lid

at
ed

on
LO

SO
da

ta
se
t
I
as

w
el
la

s
on

Te
st

da
ta

se
t
II
,r
ef
er
re
d
to

as
LO

SO
an

d
Te

st
re
sp
ec
tiv

el
y.

T
he

re
la
xe
d
ac
cu

ra
cy

is
an

ac
cu

ra
cy

m
ea
su
re
,w

ith
in

w
hi
ch

pr
ed

ic
tio

ns
th
at

di
ffe

r
by
±

1
fr
om

th
e
tr
ue

cl
as
s
la
be

la
re

al
so

co
un

te
d
as

co
rr
ec
tly

cl
as
sifi

ed
.
T
hi
s
m
ea
su
re

is
m
ot
iv
at
ed

by
th
e
hi
gh

la
be

ln
oi
se

in
th
e
da

ta
du

e
to

th
e
fa
ct

th
at

th
e
da

ta
w
as

la
be

le
d
by

on
e
su
bj
ec
tiv

e
ra
te
r
on

ly
.
T
he

tw
o
ac
cu

ra
cy

m
ea
su
re
s
sh
ou

ld
be

in
te
rp
re
te
d
w
ith

ca
ut
io
n
du

e
to

th
e
hi
gh

cl
as
s
im

ba
la
nc

es
.

M
od

el
M
ea
su
re

Fr
am

e
M
od

el
C
us
to
m

C
us
to
m

we
ig
ht
ed

R
el
ax

ed
ac
cu
ra
cy

A
cc
ur
ac
y

F1
M
A
E

M
A
E

we
ig
ht
ed

M
SE

M
SE

we
ig
ht
ed

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

LO
SO

Te
st

Ba
se
lin

e
M
aj
or
ity

vo
te

2.
83
7

5.
38
1

2.
90
0

0.
52
9

0.
70
2

0.
46
0

0.
46
3

0.
0

0.
29
3

0.
0

0.
96
0

1.
81
9

0.
66
1

0.
16
8

2.
10
1

4.
01
5

1.
98
2

0.
39
2

C
la
ss
ifi
ca
tio

n
FC

N
1.
48
3

3.
29
7

0.
80
0

0.
32
9

0.
80
9

0.
51
0

0.
34
0

0.
19
8

0.
36
6

0.
25
4

0.
89
0

1.
38
8

0.
31
2

0.
11
2

1.
33
7

2.
74
7

0.
59
2

0.
27
1

FC
N

Tr
an

sfe
r

1.
53
4

2.
11
3

0.
77
1

0.
16
4

0.
81
3

0.
65
8

0.
36
1

0.
17
8

0.
37
5

0.
23
1

0.
89
7

1.
16
9

0.
31
8

0.
08
7

1.
36
3

1.
76
0

0.
57
1

0.
13
6

R
an

do
m

Fo
re
st

1.
69
6

5.
24
7

1.
54
2

0.
34
8

0.
80
2

0.
47
0

0.
45
9

0.
10
3

0.
39
4

0.
15
3

0.
80
2

1.
71
6

0.
46
5

0.
12
1

1.
29
5

3.
89
7

1.
07
1

0.
26
3

O
rd
in
al

FC
N

1.
69
6

1.
99
9

0.
75
2

0.
16
0

0.
76
7

0.
79
4

0.
30
2

0.
17
1

0.
32
1

0.
21
8

0.
98
5

1.
10
7

0.
31
1

0.
08
5

1.
55
8

1.
70
0

0.
56
2

0.
13
5

FC
N

Tr
an

sfe
r

1.
50
1

2.
64
2

0.
61
6

0.
24
9

0.
80
2

0.
63
3

0.
32
6

0.
22
4

0.
35
0

0.
29
8

0.
92
1

1.
25
5

0.
29
5

0.
10
0

1.
38
0

2.
27
7

0.
47
0

0.
20
9

M
ul
tio

ut
pu

t
FC

N
1.
43
3

2.
04
3

0.
92
2

0.
15
0

0.
82
0

0.
72
1

0.
35
2

0.
22
9

0.
36
1

0.
28
8

0.
87
3

1.
08
9

0.
34
4

0.
08
0

1.
23
5

1.
63
6

0.
65
3

0.
12
0

M
ul
tio

ut
pu

t
FC

N
Tr

an
sfe

r
1.
35
5

2.
51
7

0.
65
7

0.
22
0

0.
82
9

0.
62
1

0.
36
0

0.
24
6

0.
36
7

0.
31
4

0.
85
7

1.
20
8

0.
30
1

0.
09
5

1.
19
4

2.
10
5

0.
48
1

0.
18
2

R
eg
re
ss
io
n

FC
N

1.
23
4

1.
67
5

0.
63
5

0.
14
1

0.
84
3

0.
80
2

0.
33
8

0.
25
9

0.
34
6

0.
33
0

0.
83
6

1.
01
0

0.
29
3

0.
07
9

1.
09
1

1.
38
6

0.
46
1

0.
08
0

FC
N

Tr
an

sfe
r

1.
09
3

2.
09
4

0.
59
6

0.
17
4

0.
87
0

0.
65
8

0.
38
8

0.
17
1

0.
40
7

0.
23
7

0.
77
2

1.
16
7

0.
27
3

0.
08
9

0.
96
8

1.
79
3

0.
43
2

0.
14
7

FC
N

In
ce
pt

1.
32
8

1.
65
1

0.
72
6

0.
12
1

0.
84
1

0.
83
9

0.
37
0

0.
23
9

0.
38
0

0.
29
9

0.
84
2

0.
95
3

0.
30
4

0.
06
8

1.
15
5

1.
34
8

0.
52
5

0.
09
9

FC
N

R
es
id
ua

l
1.
52
9

2.
61
3

0.
84
1

0.
23
8

0.
80
9

0.
60
5

0.
30
9

0.
21
1

0.
33
4

0.
27
0

0.
92
4

1.
26
7

0.
33
6

0.
10
1

1.
38
2

2.
20
4

0.
62
6

0.
20
4

FC
N

RC
F

1.
40
7

2.
53
8

0.
77
6

0.
18
8

0.
83
7

0.
62
6

0.
34
5

0.
24
1

0.
35
4

0.
31
1

0.
86
3

1.
24
5

0.
31
6

0.
09
1

1.
22
7

2.
11
8

0.
56
0

0.
15
7

FC
N

Br
oa
d

1.
29
8

1.
78
0

0.
67
3

0.
12
7

0.
83
5

0.
76
4

0.
33
9

0.
22
9

0.
34
7

0.
29
2

0.
85
2

1.
07
1

0.
29
4

0.
07
7

1.
14
0

1.
50
5

0.
49
1

0.
10
8

R
an

do
m

Fo
re
st

1.
36
1

3.
64
1

1.
31
0

0.
25
5

0.
84
8

0.
49
2

0.
43
6

0.
17
3

0.
41
1

0.
19
1

0.
76
0

1.
44
4

0.
42
3

0.
10
4

1.
04
7

2.
74
1

0.
90
2

0.
19
5

44

C Manually Extracted Features

Table 11: Features extracted from the raw accelerometer and gyroscope norm data. These features are used
to train the random forest baseline model. The features are extracted for each signal per one-minute window
sample.

Feature Description

average peak distance average distance between peaks
average peak frequency amount of peaks / window length
rms root of the mean of the squared sample

points
standard deviation standard deviation of the sample points
range range of max and min sample points
mean mean of the sample points
min minimum sample point
max maximum sample point
entropy entropy of the probability distribution

of the histogram of the sample points
variance variance of the sample points
kurtosis kurtosis of the sample distribution
skewness skewness of the sample distribution
quantile 25 25% quantile value of the sample dis-

tribution
quantile 50 50% quantile value of the sample dis-

tribution
quantile 75 75% quantile value of the sample dis-

tribution
energy sum of the squared sample points
amount of peaks amount of detected peaks

45

D Prediction Curves for All Patients

In the following figures 17, 18 and 16 we show the predicted day curves form the best performing
model, the pretrained regression FCN, for all patients from the Test data set II and the LOSO
data set I.

Figure 16: Illustration of the actual (blue) and the predicted day curves (orange) for the 10 Test patients from
data set II. Predictions were made from the pretrained regression FCN model which was trained on all patients
from the LOSO data set I.

46

Figure 17: Illustration of the actual (blue) and the predicted day curves (orange) of the 14 first LOSO patients.

47

Figure 18: Illustration of the actual (blue) and the predicted day curves (orange) of the 14 last LOSO patients.

48

E Comparison of Transfer and Regular Model Training

A comparison of the predictions from the pretrained and the regular regression FCN for selected
patients from the LOSO data set I is shown in figure 19. Therein, one can observe that the
pretrained model approximates the true day curves of the patients even more accurate than
the regular, non-pretrained version.

Figure 19: Comparison of the predictions from the pretrained and the regular regression FCN. Ground truth
day curves are depicted in blue, predictions from the transfer learning model in orange and those from the
regular regression FCN in purple. It is observable, that the predictions from the pretrained model approximate
the ground truth motor states better than the regular model. This is most clear on patients 7 and 47.

49

F Direct Optimization of the Custom-loss

In the current setup and due to the limited scope of this thesis, the Custom-loss described in
chpater 5.2.1 is used as an outer loss for model evaluation only and not deployed as a directly
optimized inner loss. Still, this would be a possible extension, as the gradient of the Custom-loss
can be formulated analytically. Thus, it can be deployed for gradient-based back-propagation in
deep learning models and implemented within common frameworks such as tensorflow (Martın
Abadi et al. 2015) and pytorch (Paszke et al. 2017). The gradient of the Custom-Loss with
respect to the parameters θ of the model f(Xi, θ) can be formulated as follows:

∂Lcustom(yi, f(Xi, θ), αcustom)
∂θ

= ∂[αcustom + sign(f(Xi, θ)− y)]2(f(Xi, θ)− yi)2

∂θ

= (f(Xi, θ)− yi)2 · ∂[αcustom + sign(f(Xi, θ)− yi)]2
∂θ

+ [αcustom + sign(f(Xi, θ)− yi)]2 · 2(f(Xi, θ)− yi)
∂f(Xi, θ)

∂θ

= (f(Xi, θ)− yi)2 · 2[acustom + sign(f(Xi, θ)− yi)]

· ∂sign(f(Xi, θ)− yi)
∂θ

+ [αcustom + sign(f(Xi, θ)− yi)]2 · 2(f(Xi, θ)− yi)
∂f(Xi, θ)

∂θ
∂sign(x)

∂x
=2δ(x)

= [αcustom + sign(f(Xi, θ)− yi)]2

· 2(f(Xi, θ)− yi)
∂f(Xi, θ)

∂θ
(20)

where the derivative ∂sign(x)
∂x

= 2δ(x) is the Dirac delta function. The sign function sign(x)
is differentiable for x ∈] −∞, 0[and x ∈]0,∞[, as x = 0 marks the discontinuity point of the
function. As sign(x) yields constant values for x ∈]−∞, 0[and x ∈]0,∞[, its gradient in these
intervals is well defined and equal to 0. If one would approximate the sign(x) with a tangens
hyperbolicus tanh(x) to ensure differentiability in all x, the gradient would converge to infinity
for x values infinitesimal close to 0. This approximation of the sign(x) function would be a
possible extension of the Custom-loss, but we leave this topic open to further research. In
practical implementations such as tensorflow (Martın Abadi et al. 2015) and pytorch (Paszke
et al. 2017), our deep learning framework of choice, ∂sign(x)

∂x

!= 0,∀x ∈] −∞,∞[for the whole
interval, including the discontinuity point. This simplifcation is also used in the final step of
equation (20). Furthermore, ∂f(Xi,θ)

∂θ
represents the gradient of the neural network f(Xi, θ) w.r.t.

the model weights θ. This gradient can be calculated automatically using pytorch’s Autograd
functionality.

50

G MC Dropout Uncertainty Plots

In the following figures 21 and 22 and 20 we show the predicted day curves including the
uncertainty bands from the MC Dropout FCN in the regression frame for all patients from the
LOSO data set I and the Test data set II respectively.

Figure 20: Illustration of the actual (blue) and the predicted day curves (orange) for the 10 Test patients
from data set II. The uncertainty bands are depicted as the area between the 95th and the 5th quantile as well
as the 75th and the 25th quantile.

51

Figure 21: Illustration of the actual (blue) and the predicted day curves (orange) of the 14 first LOSO
patients from the MC Dropout FCN. The uncertainty bands are depicted as the area between the 95th and the
5th quantile as well as the 75th and the 25th quantile.

52

Figure 22: Illustration of the actual (blue) and the predicted day curves (orange) of the 14 last LOSO patients
from the MC Dropout FCN. The uncertainty bands are depicted as the area between the 95th and the 5th

quantile as well as the 75th and the 25th quantile.

53

List of Figures

1 Exemplary input sensor data for different labels 7
2 Class distributions . 8
3 Effect of the class weighting scheme . 14
4 Visualization of the FCN architecture . 17
5 Illustration of one inception module . 18
6 Residual module . 19
7 Multi-level wavelet decomposition . 21
8 Illustration of the RCF architecture . 22
9 Illustration of the FCN Broad . 23
10 Behavior of the Custom-loss for different labels 30
11 Cost matrix for the Custom-loss . 30
12 Illustration of the effect of smoothing . 32
13 Day curves predicted by the best model . 37
14 Confusion matrices for the pretrained regression FCN 37
15 MC Dropout results for uncertainty modeling 39
16 Day curves predicted by the best model for the Test patients 46
17 Day curves predicted by the best model for the first 14 LOSO patients 47
18 Day curves predicted by the best model for the last 14 LOSO patients 48
19 Day curves predicted by the transfer and the regular FCN on selected LOSO

patients . 49
20 Day curves and uncertainty bands predicted for Test patients from the MC

Dropout FCN . 51
21 Day curves and uncertainty bands predicted for the first 14 LOSO patients from

the MC Dropout FCN . 52
22 Day curves and uncertainty bands predicted for the last 14 LOSO patients from

the MC Dropout FCN . 53

54

List of Tables

1 Illustration of the rank-based encoding . 11
2 Illustration of the FCN architecture . 16
3 Illustration of the FCN Inception architecture 18
4 Illustration of the FCN ResNet architecture . 20
5 Behavior of Custom-loss and Quad-quad-loss . 29
6 Hyperparameter settings for all models. 33
7 Results for model comparison . 33
8 Performance of the transfer learning approaches 36
9 Overview on results from related literature . 43
10 Model results for additional measures . 44
11 Manually extracted statistical features . 45

55

References

Ahlrichs, C., and M. Lawo. 2013. “Parkinson’s Disease Motor Symptoms in Machine Learning:
A Review”. Health Informatics 2.

Ahn, Y. B., and Y. Tsuchiya. 2017. “Asymmetric Loss and the Rationality of Inflation Forecasts:
Evidence from South Korea”. Pacific Economic Review.

Bagnall, A., et al. 2017. “The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances”. Data Mining and Knowledge Discovery 31 (3):
606–660.

Bagnall, A., et al. 2015. “Time-series classification with COTE: the collective of transformation-
based ensembles”. IEEE Transactions on Knowledge and Data Engineering 27 (9): 2522–
2535.

Bai, S., J. Z. Kolter, and V. Koltun. 2018. “An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling”. CoRR abs/1803.01271.

Bao, L., and S. S. Intille. 2004. “Activity recognition from user-annotated acceleration data”.
International Conference on Pervasive Computing: 1–17.

Baydogan, M. G. 2017. Multivariate Time Series Classification Datasets.

Berardelli, A., et al. 2001. “Pathophysiology of bradykinesia in Parkinson’s disease”. Brain 124
(11): 2131–2146.

Blundell, C., et al. 2015. “Weight Uncertainty in Neural Network”. Ed. by F. Bach and D.
Blei. Proceedings of the 32nd International Conference on Machine Learning (Lille, France),
Proceedings of Machine Learning Research, 37 (): 1613–1622.

Braak, H., et al. 2003. “Staging of brain pathology related to sporadic Parkinson’s disease”.
Neurobiology of aging 24 (2): 197–211.

Breiman, L. 2001. “Random forests”. Machine learning 45 (1): 5–32.

Caiado, J., N. Crato, and D. Peña. 2006. “A periodogram-based metric for time series classifi-
cation”. Computational Statistics & Data Analysis 50:2668–2684.

Casale, P., O. Pujol, and P. Radeva. 2011. “Human activity recognition from accelerometer data
using a wearable device”. Iberian Conference on Pattern Recognition and Image Analysis:
289–296.

Chen, S., et al. 2017. “Using ranking-cnn for age estimation”. The IEEE Conference on Com-
puter Vision and Pattern Recognition.

Christ, M., A. W. Kempa-Liehr, and M. Feindt. 2016. “Distributed and parallel time series
feature extraction for industrial big data applications”. CoRR abs/1610.07717. arXiv: 1610.
07717.

Christ, M., et al. 2018. “Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests
(tsfresh–A Python package)”. Neurocomputing.

56

http://arxiv.org/abs/1610.07717
http://arxiv.org/abs/1610.07717

Christoffersen, P. F., and F. X. Diebold. 1996. “Further results on forecasting and model selec-
tion under asymmetric loss”. Journal of applied econometrics 11 (5): 561–571.

Csurka, G. 2017. “Domain adaptation for visual applications: A comprehensive survey”. arXiv
preprint arXiv:1702.05374.

Dau, H. A., et al. 2018. The UCR Time Series Classification Archive. https://www.cs.ucr.
edu/~eamonn/time_series_data_2018/.

Deng, J., et al. 2009. “ImageNet: A Large-Scale Hierarchical Image Database”.

Domingos, P. 2012. “A few useful things to know about machine learning”. Communications of
the ACM 55 (10): 78–87.

Elliott, G., A. Timmermann, and I. Komunjer. 2005. “Estimation and testing of forecast ratio-
nality under flexible loss”. The Review of Economic Studies 72 (4): 1107–1125.

Eskofier, B. M., et al. 2016. “Recent machine learning advancements in sensor-based mobility
analysis: deep learning for Parkinson’s disease assessment”. Engineering in Medicine and
Biology Society: 655–658.

Fawaz, H. I., et al. 2018a. “Deep learning for time series classification: a review”. arXiv preprint
arXiv:1809.04356.

— . 2018b. “Transfer learning for time series classification”. arXiv preprint arXiv:1811.01533.

Fisher, J. M., et al. 2016. “Unsupervised home monitoring of Parkinson’s disease motor symp-
toms using body-worn accelerometers”. Parkinsonism & related disorders 33:44–50.

Frank, E., and M. Hall. 2001. “A simple approach to ordinal classification”. European Confer-
ence on Machine Learning: 145–156.

Fulcher, B. D., and N. S. Jones. 2014. “Highly comparative feature-based time-series classifica-
tion”. IEEE Transactions on Knowledge and Data Engineering 26 (12): 3026–3037.

Gal, Y., and Z. Ghahramani. 2016. “Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning”. International Conference on Machine Learning: 1050–1059.

Ghika, J., et al. 1993. “Portable system for quantifying motor abnormalities in Parkinson’s
disease”. IEEE Transactions on Biomedical Engineering 40 (3): 276–283.

Goetz, C. G., et al. 2008. “Movement Disorder Society-sponsored revision of the Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing re-
sults”.Movement disorders: official journal of the Movement Disorder Society 23 (15): 2129–
2170.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. “Deep Learning”. Book in preparation for
MIT Press.

Hammerla, N. Y., S. Halloran, and T. Ploetz. 2016. “Deep, convolutional, and recurrent models
for human activity recognition using wearables”. arXiv preprint arXiv:1604.08880.

57

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Hammerla, N. Y., et al. 2015. “PD Disease State Assessment in Naturalistic Environments
Using Deep Learning.”: 1742–1748.

Hastie, T., R. Tibshirani, and J. H. Friedman. 2009. The elements of statistical learning. Ed. by
R. Tibshirani and J. H. Friedman. Springer series in statistics. New York: Springer.

He, H., and E. A. Garcia. 2009. “Learning from imbalanced data”. IEEE Transactions on
Knowledge & Data Engineering, no. 9: 1263–1284.

He, K., et al. 2015. “Deep Residual Learning for Image Recognition”. CoRR abs/1512.03385.
arXiv: 1512.03385.

Herbrich, R., T. Graepel, and K. Obermayer. 1999. “Support vector learning for ordinal regres-
sion”. International Conference on Artificial Neural Networks.

Hills, J., et al. 2014. “Classification of time series by shapelet transformation”. Data Mining
and Knowledge Discovery 28 (4): 851–881.

Hoehn, M. M., and M. D. Yahr. 1998. “Parkinsonism: onset, progression, and mortality”. Neu-
rology 50 (2): 318–318.

Hoo-Chang, S., et al. 2016. “Deep convolutional neural networks for computer-aided detection:
CNN architectures, dataset characteristics and transfer learning”. IEEE transactions on
medical imaging 35 (5): 1285.

Hssayeni, M. D., M. A. Burack, and B. Ghoraani. 2016. “Automatic assessment of medication
states of patients with Parkinson’s disease using wearable sensors”: 6082–6085.

Hssayeni, M. D., et al. 2018. “Wearable-based Mediation State Detection in Individuals with
Parkinson’s Disease”. arXiv preprint arXiv:1809.06973.

Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. CoRR abs/1502.03167. arXiv: 1502.03167.

Jankovic, J. 2008. “Parkinson’s disease: clinical features and diagnosis”. Journal of neurology,
neurosurgery & psychiatry 79 (4): 368–376.

Jellinger, K. A. 2009. “Recent advances in our understanding of neurodegeneration”. Journal
of neural transmission 116 (9): 1111–1162.

Jensen, A., and A. la Cour-Harbo. 2001. “Ripples in mathematics: the discrete wavelet trans-
form”. Springer Science & Business Media.

Jones, E., T. Oliphant, P. Peterson, et al. 2001. SciPy: Open source scientific tools for Python.

Jothimani, D., R. Shankar, and S. S. Yadav. 2016. “Discrete wavelet transform-based pre-
diction of stock index: a study on National Stock Exchange Fifty index”. arXiv preprint
arXiv:1605.07278.

Karim, F., et al. 2018a. “LSTM fully convolutional networks for time series classification”.
IEEE Access 6:1662–1669.

58

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167

Karim, F., et al. 2018b. “Multivariate LSTM-FCNs for Time Series Classification”. arXiv
preprint arXiv:1801.04503.

Keijsers, N. L., M. W. Horstink, and S. C. Gielen. 2006. “Ambulatory motor assessment in
Parkinson’s disease”.Movement disorders: official journal of the Movement Disorder Society
21:34–44.

— . 2003. “Automatic assessment of levodopa-induced dyskinesias in daily life by neural net-
works”. Movement disorders: official journal of the Movement Disorder Society 18:70–80.

Kendall, A., and Y. Gal. 2017. “What uncertainties do we need in bayesian deep learning for
computer vision?” Advances in neural information processing systems: 5574–5584.

King, G., and L. Zeng. 2001. “Logistic regression in rare events data”. Political analysis 9:137–
163.

Kingma, D. P., and J. Ba. 2014. “Adam: A Method for Stochastic Optimization”. CoRR
abs/1412.6980. arXiv: 1412.6980.

Koenker, R. W., and K. F. Hallock. 2001. “Quantile Regression”. Journal of Economic Per-
spectives 15 (4): 143–156.

Lane, R. D., et al. 1985. “Assessment of tardive dyskinesia using the Abnormal Involuntary
Movement Scale.” Journal of Nervous and Mental Disease.

Li, L., and H.-T. Lin. 2006. “Ordinal Regression by Extended Binary Classification”. Proceedings
of the 19th International Conference on Neural Information Processing Systems (Canada),
NIPS’06: 865–872.

Lin, M., Q. Chen, and S. Yan. 2013. “Network in network”. arXiv preprint arXiv:1312.4400.

Lonini, L., et al. 2018. “Wearable sensors for Parkinson’s disease: which data are worth collecting
for training symptom detection models”. NPJ DIGITAL MEDICINE 1.

Martın Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org.

Meinshausen, N. 2006. “Quantile regression forests”. Journal of Machine Learning Research
7:983–999.

Nanopoulos, A., R. Alcock, and Y. Manolopoulos. 2001. “Feature-based classification of time-
series data”. International Journal of Computer Research 10 (3): 49–61.

Nelder, J. A., and R. Mead. 1965. “A simplex method for function minimization”. The computer
journal 7 (4): 308–313.

Niu, Z., et al. 2016. “Ordinal regression with multiple output cnn for age estimation”. Proceed-
ings of the IEEE conference on computer vision and pattern recognition: 4920–4928.

Nweke, H. F., et al. 2018. “Deep learning algorithms for human activity recognition using mobile
and wearable sensor networks: State of the art and research challenges”. Expert Systems with
Applications.

59

http://arxiv.org/abs/1412.6980

Oliver, A., et al. 2018. “Realistic Evaluation of Deep Semi-Supervised Learning Algorithms”.
CoRR abs/1804.09170. arXiv: 1804.09170.

Oord, A. van den, et al. 2016. “WaveNet: A Generative Model for Raw Audio”. CoRR abs/1609.03499.
arXiv: 1609.03499.

Osband, I. 2016. “Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers
of dropout”.

Paszke, A., et al. 2017. “Automatic differentiation in PyTorch”.

Pedregosa, F., et al. 2011. “Scikit-learn: Machine Learning in Python”. Journal of Machine
Learning Research 12:2825–2830.

Pringsheim, T., et al. 2014. “The prevalence of Parkinson’s disease: A systematic review and
meta-analysis”. Movement disorders 29 (13): 1583–1590.

Rajkomar, A., et al. 2018. “Scalable and accurate deep learning with electronic health records”.
npj Digital Medicine 1 (1): 18.

Rakthanmanon, T., et al. 2013. “Addressing big data time series: Mining trillions of time series
subsequences under dynamic time warping”. ACM Transactions on Knowledge Discovery
from Data (TKDD) 7 (3): 10.

Rodrigues, F., and F. C. Pereira. 2018. “Beyond expectation: Deep joint mean and quantile
regression for spatio-temporal problems”. arXiv preprint arXiv:1808.08798.

Ronao, C. A., and S.-B. Cho. 2016. “Human activity recognition with smartphone sensors using
deep learning neural networks”. Expert Systems with Applications 59:235–244.

Saeb, S., et al. 2017. “The need to approximate the use-case in clinical machine learning”.
Gigascience 6 (5): 1–9.

Sama, A., et al. 2012. “Dyskinesia and motor state detection in Parkinson’s disease patients
with a single movement sensor”. Annual International Conference of the IEEE Engineering
in Medicine and Biology Society: 1194–1197.

Serrà, J., S. Pascual, and A. Karatzoglou. 2018. “Towards a universal neural network encoder
for time series”. Frontiers in Artificial Intelligence and Applications 308:120–129.

Srivastava, N., et al. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. Journal of Machine Learning Research 15:1929–1958.

Szegedy, C., et al. 2015. “Going deeper with convolutions”. Conference on Computer Vision
and Pattern Recognition: 1–9.

Szegedy, C., et al. 2016. “Rethinking the Inception Architecture for Computer Vision”. IEEE
Conference on Computer Vision and Pattern Recognition: 2818–2826.

Thomas, C., and N. Balakrishnan. 2008. “Improvement in minority attack detection with skew-
ness in network traffic”. Data Mining, Intrusion Detection, Information Assurance and Data
Networks Security.

60

http://arxiv.org/abs/1804.09170
http://arxiv.org/abs/1609.03499

Toth, E. 2015. “Asymmetric error functions for reducing the underestimation of local scour
around bridge piers: application to neural networks models”. Journal of Hydraulic Engi-
neering 141 (7): 04015011.

Tsipouras, M. G., et al. 2011. “On automated assessment of Levodopa-induced dyskinesia in
Parkinson’s disease”. Engineering in Medicine and Biology Society: 2679–2682.

Um, T. T., et al. 2018. “Parkinson’s Disease Assessment from a Wrist-Worn Wearable Sen-
sor in Free-Living Conditions: Deep Ensemble Learning and Visualization”. arXiv preprint
arXiv:1808.02870.

Varoquaux, G., et al. 2017. “Assessing and tuning brain decoders: cross-validation, caveats, and
guidelines”. NeuroImage 145:166–179.

Wang, J., et al. 2018. “Multilevel Wavelet Decomposition Network for Interpretable Time Series
Analysis”. Proceedings of the 24th International Conference on Knowledge Discovery & Data
Mining: 2437–2446.

Wang, X., K. Smith, and R. Hyndman. 2006. “Characteristic-based clustering for time series
data”. Data mining and knowledge Discovery 13 (3): 335–364.

Wang, X., A. Wirth, and L. Wang. 2007. “Structure-based statistical features and multivariate
time series clustering”, International Conference on Data Mining: 351–360.

Wang, Z., W. Yan, and T. Oates. 2017. “Time series classification from scratch with deep
neural networks: A strong baseline”. International Joint Conference on Neural Networks:
1578–1585.

Yang, J., et al. 2015. “Deep Convolutional Neural Networks on Multichannel Time Series for
Human Activity Recognition.”, International Joint Conferences on Artificial Intelligence
15:3995–4001.

Yang, Q., and X. Wu. 2006. “10 challenging problems in data mining research”. International
Journal of Information Technology & Decision Making 5 (04): 597–604.

Yosinski, J., et al. 2014. “How transferable are features in deep neural networks?” Advances in
neural information processing systems: 3320–3328.

Zeng, M., et al. 2014. “Convolutional neural networks for human activity recognition using
mobile sensors”. Mobile Computing, Applications and Services (MobiCASE), 2014 6th In-
ternational Conference on: 197–205.

61

Statutory Declaration

I hereby confirm that I composed the present thesis with the topic

Wearable-based Severity Detection in the Context of Parkinson’s Disease
Using Deep Learning Techniques

independently and that I have used no other sources other than those cited in the text. The
text passages which are taken from other works in wording or meaning I have identified in each
individual case by stating the source. This applies also to all graphics, drawings, maps and
images included in the thesis. Neither this, nor a similar work, has been published or presented
to an examination committee.

Date, Signature

62

