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Abstract

Generalized additive models for location, scale and shape (GAMLSS) are an approach

that regresses not only the expected mean value as the conventional generalized additive

models but also other distribution parameters. Fitting the GAMLSS with boosting algo-

rithm allows simultaneous estimation of predictor effects and variable selection. The non-

cyclical componentwise gradient boosting approach reduces the optimizing procedure from

a multi-dimensional to a one-dimensional problem with vastly decreased complexity. Tun-

ing in boosting algorithm relies mainly on the number of iterations of the algorithm. The

other flexible component step length in most cases is set to 0.1. When developing complex

models like GAMLSS, this setting will lead to unbalanced decisions. This thesis studied the

influence of the adaptive step length on this balance and other performance measures.

Based on the simulation study, the adaptive approach usually updates the distribution

parameters in a balanced manner. Within the limited number of boosting iterations, the

adaptive approach will also lead to better estimations than the fixed step length settings,

especially when the coefficients are huge. When fitting the high dimensional data, the adap-

tive approach is more efficient in computing. This thesis also introduced a semi-analytical

adaptive step length (SAASL) algorithm for the Gaussian distribution, which is faster and

more stable in balance than the adaptive step length found by doing a line search. Based

on the mathematical induction, the optimal step length of the scale parameter in Gaussian

distribution converges to 0.5. Applying this step length to the SAASL will result in a much

more faster algorithm (SAASL05) at the cost of slightly unbalanced decisions. Because of

the aggressive step length in each iterations, the adaptive approaches cannot good estimated

the correlated models.

Keywords— GAMLSS, gradient boosting, componentwise gradient boosting, adaptive step

length, semi-analytical adaptive step length
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1. INTRODUCTION

1 Introduction

The generalized additive models for location, scale and shape (GAMLSS) were introduced by

[Rigby and Stasinopoulos, 2005], which regress the univariate response with a set of statistical

models. It is a more generalized model of the conventional generalized additive models (GAM)

[Hasties and Tibshirani, 1990], as the latter regress only the location parameter. Given a set

of covariates, the GAMLSS do not require the conditional distribution of the response variable

to be a member of the exponential family. The optional distributions for GAMLSS can be

found from the work of [Stasinopoulos and Rigby, 2007]. Another feature of GAMLSS is that

every distribution parameter is modelled by its own predictor and an associated link function

[Mayr et al., 2012]. The estimation of the coefficients is usually based on the penalized maximum

likelihood [Rigby and Stasinopoulos, 2005]. Just like the other common used regression models

(e.g. linear model or GAMs), the variable selection is an important procedure, especially for

the high dimensional data. The generalized Akaike information criterion (GAIC) can be used as

a selection method [Rigby and Stasinopoulos, 2005], but this procedure is infeasible when there

are more covariates than observations [Mayr et al., 2012]. Moreover, other shortcomings like the

inclusion of a large number of non-informative variables [Ripley, 2004] are also inherited by the

GAIC. Some authors [Bühlmann and Yu, 2003] showed that the gradient boosting can be applied

to fit the generalized additive models, and they also found that the variable selection procedure

is included in the modified algorithm, i.e. the componentwise gradient boosting algorithm,

which updates only one predictor in each iteration. This approach was also generalized to the

GAMLSS models (denoted as gamboostLSS ) [Mayr et al., 2012], which performs the estimation

and variable selection simultaneously. The original gamboostLSS algorithm is a “cyclical” fitting,

i.e. every distribution parameters of the univariate response variable will be updated in each

iteration. As the gradient boosting an algorithm that tends to select a relatively high number

of false-positive variables, some authors [Thomas et al., 2018] introduced a “non-cyclical” fitting

that combines the gamboostLSS with the stability selection [Meinshausen and Bühlmann, 2010],

which is a generic method that investigates the importance of the covariates in a statistical model

by repeatedly subsampling the data. By this way, not only the variable selection, but also a

selection of the best submodel (location, scale, or shape) that leads to the largest improvement

in model fit is also performed in the “non-cyclical” approach. Moreover, the maximum number

of boosting iterations for each distribution parameter can be replaced with the overall number

of iterations. Thus tuning the complete model reduces from a multi-dimensional to a one-

dimensional optimization problem. The computing time, hence, reduced drastically.

In contrast with the “cyclical” algorithm, the “non-cyclical” fitting, however, destroyed the

internal balance between the distribution parameters. In other words, some parameters will be

updated more frequently than the others. If the cost of large numbers of iteration can be ignored,

this unbalanced decisions will not affect the final estimations, as all distribution parameters

can be fitted sufficiently. But if the maximum of the number of boosting iteration is limited,

those parameters whose potential improvement are intrinsically small will get little chance to be

updated.

1



1. INTRODUCTION

A possible solution to the unbalanced decision is using the adaptive step length to update

the predictor in each iteration, i.e. finding the optimal step length based on the reduction of the

empirical risk, and use it to update the base-learners. By this way, the predictors of distribution

parameters with a vast improvement in each iteration can be updated rapidly. Thus, the balance

of decision is kept, because the remaining improvement of these predictors and the potential

improvement of the other parameters, whose values are intrinsically small, are on the same level.

The idea of using the adaptive step length in gradient boosting was introduced by [Friedman, 2001],

whose value in each iteration is estimated by performing a line search. However, the step length

in most cases is set to 0.1, because some authors [Bühlmann and Hothorn, 2007] argued that

the use of this adaptive step length is unnecessary, as the procedure of doing a line search costs

additional computing time. Nearly all publications accepted this setting and study mainly the

number of iterations of the algorithm or its practical applications. Nothing has been published

that study the influence of the step length on the balance of decisions in GAMLSS models.

This thesis studied the effect of the step length on this balance and compared the perfor-

mance of the estimation between the adaptive step length and the fixed step length (set with 0.1).

Accounting for the additional runtime of the line search, we also introduced a semi-analytical

method (SAASL) to determining the adaptive step length in Gaussian distribution, which com-

putes the adaptive step length analytically instead of an optimizing procedure. As the analytical

solution to the scale parameter in Gaussian distribution does not exits, we replace its optimal

step length in each iteration with a constant asymptotic value (0.05), which is even though not

an adaptive value but a more reasonable and appropriate value. So we get a new algorithm

(SAASL05), which quits the optimizing procedure and result in a more faster algorithm with

almost little costs.

This thesis is organized as follows: In section 2 we describe briefly the generalized additive

models for location, scale and thape (GAMLSS). The theory of generalized additive models for

location, scale and shape (GAMLSS) is introduced in section 3. Section 4 demonstrated the

boosted GAMLSS and listed the “cyclical” and “non-cyclical” componentwise gradient boosting

algorithms for GAMLSS. Section 5 describes the step length in gradient boosting, including

the effectiveness of fixed step length, the line search method used in R program when finding

the adaptive step length, and the induction of the analytical adaptive step length. The results

of simulation experiments will be demonstrated in section 6. The final section 7 summarises

advantages and shortcomings of each step length approach and concludes this thesis.

2



2. GENERALIZED ADDITIVE MODELS FOR LOCATION, SCALE AND SHAPE

2 Generalized Additive Models for Location, Scale and

Shape

Generalized additive models for location, scale and shape (GAMLSSs) were introduced by Ridgby

and Stasinopoulos (2005) as a general class of statistical models for the univariate response vari-

able. The model assumes independent observations of the response variable given the explanatory

variables, the model parameters as well as the random effects. Given a set of explanatory vari-

ables, the conditional distribution of response variable in GAMLSS can be selected from a very

general family of distributions instead of the exponential family that generalized additive models

(GAM) required.

2.1 Model Definition

The p distribution parameters θT = (θ1, θ2, · · · , θp) of a density function f(y|θ) are modelled by

using a set of additive models. The model class assumes that the observations yi for i ∈ 1, · · · , n
are conditionally independent given a set of explanatory variables and random effects.

Let yT = (y1, y2, · · · , yn) be the vector of response variable, and let gk(·), k = 1, · · · , p be a

known monotonic link function that relates the explanatory variables and random effects through

an additive model given by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Zjkγjk, (2.1)

where θk and ηk are vectors of length n, and ηk is also called predictors, βTk = (β1k, β2k, · · · , βJ′kk)

is a parameter vector of length J ′k, Xk is a known design matrix of order n× J ′k, Zjk is a fixed

known n× qjk design matrix and γjk is a qjk-dimensional random variable. This model (2.1) is

called GAMLSS.

The model as given in Eq. (2.1) allows combinations of different types of additive random-

effects terms to be incorporated by specifying Zjk and γjk, For example Jk = 0, the model then

reduces to a fully parametric model:

gk(θk) = ηk = Xkβk, (2.2)

for other types of effect, see [Rigby and Stasinopoulos, 2005].

The GAMLSS in Eq. (2.2) provided a classical linear effect of the explanatory variables Xk

on the response, i.e. flinear(Xk) = Xkβk. However, for a smooth non-linear effect f(Xk) =

fsmooth(Xk) represented by regression splines, as well as spatial effects or random effects, a more

general form of the effect is required. So, in practise and also in this thesis, we use the following

GAMLSS:

gk(θk) = ηk = f(Xkβk). (2.3)

where the intercept β0 is included in βk. Obviously, if the location parameter (θ1 = µ) is the only

distribution parameter to be regressed on the explanatory variables and the response variable is

from the exponential family, a GAMLSS reduces to the conventional GAM.

3



2. GENERALIZED ADDITIVE MODELS FOR LOCATION, SCALE AND SHAPE

The two important distribution parameters, that are usually characterized in GAMLSS, are

the location θ1 = µ and scale θ2 = σ parameter. For other families of distributions, the two

shape parameters, skewness θ3 = ν and kurtosis θ4 = τ , are also simultaneously modelled in

GAMLSS. Thus, GAMLSS usually model these four parameters, but theoretically, any distribu-

tion with any number of parameters can be applied to GAMLSS.

2.2 Model Estimation

The unknown parameters in GAMLSS can be estimated by maximizing the log-likelihood

` =

n∑
i=1

log{f(yi|θi)} =

n∑
i=1

log{f(yi|µi, σi, νi, τi)} (2.4)

The estimates of each components of θi are then obtained from back-transforming the estimates

of the prediction functions, which are denoted by η̂θik , k ∈ {1, · · · , 4}, via the inverse link:

µ̂i = g−11 (η̂θi1)

σ̂i = g−12 (η̂θi2)

ν̂i = g−13 (η̂θi3)

τ̂i = g−14 (η̂θi4)

(2.5)

A penalized likelihood approach based on the modified versions of the back-fitting algorithm

for general GAM estimation [Mayr et al., 2012] is used to estimate the predictor functions ηθk .

Two algorithms were developed based on the principle: in each iteration, back-fitting steps

are successively applied to the distribution parameters, with the sub-model fits of the previous

iteration used as offset values for those parameters that are not involved in the current back-

fitting step [Mayr et al., 2012], for more details, see [Rigby and Stasinopoulos, 2005].

4



3. GRADIENT BOOSTING

3 Gradient Boosting

In machine learning theory, boosting is considered to be one of the most potent ideas. It is mainly

used as a technique for solving regression and classification problems, which fits the prediction

model as an ensemble of weak learners. The weak learners are defined as a prediction rule with

a correct classification rate that is at least slightly better than random guessing, i.e. more than

50% accuracy, as a comparison, strong learners should be able to be trained to have a nearly

perfect classification, e.g. 99% accuracy. It is typically easy to construct a weak learner in

practice, whereas very difficult to get a strong one.

Any weak learner can be iteratively boosted to become a strong learner [Schapire, 1990]. Ad-

aBoost (Adaptive Boosting) [Freund and Schapire, 1996] was the first generated boosting algo-

rithm based on this idea. In AdaBoost, the base-learner is sequentially applied to weighted train-

ing observations. Before the next iteration, the misclassified observations receive a higher weight,

repeat this process until the adequate number of misclassified observations is met [Freund and Schapire, 1997].

A more commonly used boosting method is the gradient boosting [Friedman, 2001]. Unlike

the AdaBoost, which can only solve the binary classification problems, the gradient boosting pro-

vides a more general framework, and the paradigm is developed for additive expansions based on

any fitting criterion. Based on the framework of gradient boosting, many algorithms have been

developed: Gradient boosting of regression trees produces highly robust and interpretable proce-

dures for both regression and classification [Friedman, 2001]. Componentwise gradient boosting

[Bühlmann and Yu, 2003] incorporates the variable selection procedure into the learning pro-

cess. XGBoost [Chen and Guestrin, 2016] provides a scalable tree boosting system and is able to

solve problems using a minimal amount of resources. The LightGBM [Ke et al., 2017] developed

a leaf-wise tree growth strategy and that have great performance in terms of computational speed

and memory consumption.

In this section, we describe only the mechanism of the gradient boosting and the componen-

twise gradient boosting.

3.1 Gradient Boosting

Gradient boosting [Friedman, 2001] is probably the most widely used boosting technique, which

builds a connection between stagewise additive expansions and steepest descent minimization.

3.1.1 Gradient Descent

Let f(x) be an arbitrary, differentiable objective function, which we want to minimize. The

gradient ∇f(x) =
(
df
dx1

, · · · , df
dxk

)
is the direction of the steepest ascent, where k is the dimen-

sions of vector x, correspondingly, the steepest descent is −∇f(x). Given the current point

x[m],m = 1, · · · ,M , the updated x[m+1], which result in a lower value of the objective function

(i.e. f(x[m]) > f(x[m+1])), is calculated by

x[m+1] = x[m] − ν∇f(x[m]), (3.1)

5



3. GRADIENT BOOSTING

where ν controls the step length towards steepest descent.

The process described in Eq. (3.1) is called gradient descent. Gradient descent is a greedy

algorithm, i.e. it moves toward the local minimum in every iteration. If f(x) is a convex function,

this algorithm can find the global minimum, on the other hand, if f(x) is a non-convex function,

it can only find a local minimum, and just might find a global one, which depends on the initial

value.

The step length ν is an essential parameter of the gradient descent algorithm, as it influences

the learning speed and also affects whether the minimum can be found or not. If ν is very small,

the learning process will converge very slowly, however, if it is enormous, the process may not

converge, because x jumps around the “valley”.

The step length ν can either be set manually with a constant value or be estimated in each

iteration with some methods. Here, we call the former fixed step length, and the latter adaptive

step length. Usually, the estimation of the adaptive step length is carried by doing a line search.

In this thesis, we induced an analytical solution for Gaussian distribution, which can also be

used as an adaptive step length. Details will be discussed in Section 5.

3.1.2 Stagewise Additive Expansions

Another part of gradient boosting is the forward stagewise additive expansions, which estimate

the prediction function as an additive model in a forward stagewise way.

Assume a space of base learners H and h ∈ H, the additive model can be displayed as:

η(x) =

M∑
i=1

ν[m]h(x, θ[m]), (3.2)

where ν and θ are the weights/step length and the parameter in the base learner h(·, ·) corre-

spondingly. Given the training data (y(i), x(i)), i = 1, · · · , n, the regression model is fitted by

minimizing the empirical risk R, which is defined as:

R =
1

n

n∑
i=1

ρ
(
y(i), η(x(i))

)
(3.3)

=
1

n

n∑
i=1

ρ

(
y(i),

M∑
m=1

ν[m]h(x(i), θ[m])

)
, (3.4)

where ρ is the loss function. The desired ν[m] and θ[m] are found by minimizing the empirical

risk R:

min
ν[m],θ[m]

n∑
i=1

ρ
(
y(i), η[m](x(i))

)
= min
ν[m],θ[m]

n∑
i=1

ρ

(
y(i),

M∑
i=1

ν[m]h(x(i), θ[m])

)
(3.5)

However, this problem requires computationally intensive numerical optimization techniques

[Hastie et al., 2009], an alternative problem, which minimizes the risk only with respect to the

next component, is often used in practice:

min
ν,θ

n∑
i=1

ρ
(
y(i), η[m−1] + νh(x(i), θ)

)
. (3.6)

6



3. GRADIENT BOOSTING

The loss function measures the discrepancy between the true value of y(i) and the additive

learner η(x(i)). The most widely used loss function is squared-error or L2 loss (y(i)−η(x(i)))2 for

regression problem, and binomial loss −y(i)η(x(i)) + log(1 + exp(η(x(i))) for binary classification

problem, i.e. y(i) ∈ {0, 1}. Usually, depending on the desired model, the loss is derived from the

negative log likelihood of the distribution of Y .

Algorithm 1 described the process of the forward stagewise additive modeling.

Algorithm 1 Forward Stagewise Additive Modeling

1: Initialize f̂ [0] = 0

2: for m = 1→M do

3: Compute (ν̂[m], θ̂[m]) = arg min
ν,θ

n∑
i=1

ρ
(
y(i), f̂ [m−1] + νh(x(i), θ)

)
4: Set f̂ [m] = f̂ [m−1] + ν[m]h(x, θ̂[m])

5: end for

3.1.3 Gradient Boosting

Gradient boosting incorporates the ideas of gradient descent and forward stagewise additive

modeling. The required parameters in the base learner can be estimated by minimizing the

empirical risk. The gradient descent is a numerical optimizations method that helps to estimate

these unknown parameters, and the stagewise additive modeling established a way that combines

all individual base-learners as an ensemble model.

The gradient of the empirical risk R at one observation point x(j), j ∈ {1, · · · , n} is

∂R
∂η(x(j))

=
∂
∑n
i=1 ρ

(
y(i), η(x(i))

)
∂η(x(j))

(3.7)

=
∂ρ
(
y(j), η(x(j))

)
η(x(i))

(3.8)

The gradient descent update at this observation can be calculated by:

η(x(j))← η(x(j))− ν
∂ρ
(
y(j), η(x(j))

)
∂η(x(j))

, (3.9)

and correspondingly, the gradient descent for all observations is then:

η(x)← η(x)− ν ∂ρ (y, η(x))

∂η(x)
(3.10)

Eq.(3.10) described the gradient descent procedure and tells direction, where the function η(x)

should be updated or moved. As in stagewise additive modeling, the real η used for risk mini-

mization is η[m−1], finding the optimal value of the unknown parameter θ[m] results in a regression

problem between

u[m] = −
[
∂ρ (y, η(x))

∂η(x)

]
η=η[m−1]

(3.11)

7



3. GRADIENT BOOSTING

and additive component or base learner h(x, θ[m]) ∈ H. We call u[m] the pseudo residuals, as for

squared loss they match the normal residuals, i.e.

−∂ρ (y, η(x))

∂η(x)
= −∂(y − η(x))2

∂η(x)
= 2 (y − η(x))︸ ︷︷ ︸

normal residuals

. (3.12)

For the regression problem, the unknown parameter θ[m] in base learner h(x, θ[m]) can be simply

estimated by minimizing the sum of squared error:

θ̂[m] = arg min
θ

n∑
i=1

(
u[m](i) − h(x(i), θ)

)2
. (3.13)

Back to Eq. (3.10), the step length ν[m] can be then found by minimizing the empirical risk,

that is,

ν̂[m] = arg min
ν

n∑
i=1

ρ
(
y(i), η[m−1](x(i)) + νh(x(i), θ[m])

)
. (3.14)

We formally present the procedure of gradient boosting in Algorithm 2.

Algorithm 2 Gradient Boosting Algorithm

1: Initialize η̂[0](x) = arg min
θ

n∑
i=1

L(y(i), θ)

2: for m = 1→M do

3: For all i ∈ {1, · · · , n} calculate the pseudo-residuals:

u[m](i) = −

[
∂ρ
(
y(j), η(x(j))

)
∂η(x(j))

]
η=η̂[m−1]

4: Fit a regression base learner h(x(i), θ) to the pseudo-residuals u[m](i) and estimate its

parameters:

θ̂[m] = arg min
θ

n∑
i=1

(
u[m](i) − h(x(i), θ)

)2
5: Find the step length via:

ν̂[m] = arg min
ν

n∑
i=1

ρ
(
y(i), η[m−1](x(i)) + νh(x(i), θ[m])

)
6: Update

η̂[m](x) = η̂[m−1](x(i)) + ν̂[m]h(x(i), θ̂[m])

7: end for

8: Output η̂(x) = η̂[M ](x)

Various base-learners h(x, θ) can be applied to the gradient boosting framework. A regression

tree is such a common used base-learner in machine learning applications.

8



3. GRADIENT BOOSTING

3.2 Componentwise Gradient Boosting

Componentwise gradient boosting is an extended version of gradient boosting, which aims at

optimizing prediction accuracy and at obtaining statistical model estimates [Hofner et al., 2014].

The key property of this method is that it carries out variable selection during the learning

process [Bühlmann, 2006]. Moreover, componentwise gradient boosting result in prediction rules

that have the same interpretation ability as the common statistical models. Account for this

features, componentwise gradient boosting is also often referred as model-based boosting or in

short mboost.

Compared with the usual gradient boosting, which uses only one kind of base-learner, com-

ponentwise gradient boosting select the best learner from a set of base-learners in each iteration.

In other words, in each iteration a set of base learners h
[m]
j (x, θ[m]), j = 1, · · · , J (where j is

indexes the type of base learner) are used to fit the model, but only the arbitrary j-te best

performing base learner h
[m]
j (x, θ[m]) will be finally used in the current iteration. Accordingly,

the corresponding additive models become:

h
[m]
j (x, θ[m]) + h

[m+m′]
j (x, θ[m+m′]) = hj(x, θ

[m] + θ[m+m′]). (3.15)

In practise, only one type of base learners is used for gradient boosting, but these base learners are

not defined on the whole predictive variables, but on only one variable xj , i.e. h
[m]
j (xj , θ

[m]), j =

1, · · · , p.
The critical feature of componentwise gradient boosting lies in that the variable selection

mechanism is done simultaneously, because only the best performing learner is selected in each

iteration, and for those variables which have little influence on the target variable will be ignored

during the modeling. By this way, only the most informative explanatory variables instead of a

learner with all variables will be included in the final model until stopping.

A formal definition of componentwise gradient boosting is given in Algorithm 3.

3.3 Regularization

Due to the aggressive loss minimization, it can easily overfit the data if gradient boosting runs

for a large number of iterations. If a model is underfitted, it will be too simple to explain

the variance in the explanatory variables, in other words, the intrinsic relationship between

explanatory variables and dependent variables cannot be estimated good enough. However, if a

model is overfitted, it tends to fit the noise behaved in the explanatory variables and failed for

the generalization to new data.

There are two main methods for avoiding overfitting, and the one is limit the number of

additive components by stopping the boosting iterations early mstop. The other way is to shorten

the step length ν[m] in each iteration by multiplying a shrinkage parameter λ ∈ (0, 1], so that

the predictors can be in a more conservative manner updated.

9



3. GRADIENT BOOSTING

Algorithm 3 Componentwise Gradient Boosting

1: Initialize η̂[0](x) = arg min
θ

n∑
i=1

ρ(y(i), θ)

2: for m = 1→M do

3: For all i ∈ {1, · · · , n} calculate the pseudo-residuals:

u[m](i) = −

[
∂ρ
(
y(j), η(x(j))

)
∂η(x(j))

]
η=η̂[m−1]

4: for j = 1→ J do

5: Fit regression base learner hj to the pseudo-residuals u[m](i) and estimate its param-

eters:

θ̂
[m]
j = arg min

θj

n∑
i=1

(
u[m](i) − hj(x(i), θj)

)2
6: end for

7: Find the best fitting learner:

j∗ = arg min
j

n∑
i=1

(
u[m](i) − hj(x(i), θj)

)2
8: Update:

η̂[m](x) = η̂[m−1](x(i)) + νhj∗(x
(i), θ̂

[m]
j∗ )

9: end for

10: Output η̂(x) = η̂[M ](x)

3.3.1 Shrinkage parameter

The shrinkage parameter method is as introduced above nothing special but multiplying a small

shrinkage effect λ to the base-learners, i.e. a modified update equation in Algorithm 2:

η̂[m](x) = η̂[m−1](x(i)) + λν̂[m]h(x(i), θ̂[m]). (3.16)

Obviously, λ strongly depends on the number of iterations M . For a sufficient large M , a small

λ can be conservatively selected and vice versa.

Theoretically, the step length should be optimized according to the Algorithm 2, i.e. obtained

by minimizing the empirical risk. By this way, the shrinkage parameter can shorten the step

length in each iteration and affect the final model. However, the step length can also be manually

given, which is also the most widely used method. In this situation, the shrinkage parameter λ

seems to be a redundant setting, as one can take the shrinkage effect into consideration when

setting the step length artificially.

In case of the reading confusion in following sections, we highlight the shrinkage settings

10



3. GRADIENT BOOSTING

here: Firstly, for the adaptive step length, the step length searched or calculated based on the

risk minimization, we set the shrinkage parameter λ = 0.1. Secondly, if the step length is set

artificially, we do not need to set the shrinkage parameter any more, or in other words, set it as

1.

3.3.2 Early stopping

The early stopping is another strategy used for regularization. According to the idea of the

forward stagewise additive modeling, more components will be added into the models if lots of

iterations have been performed. By limiting the number of boosting iterations, less but only

the most essential informative variables can become the final predictors. The early stopping is

mainly carried out by cross-validation and information criteria.

• Cross-Validation (CV)

For cross-validation, the mstop can be determined by the behaviour of prediction errors.

In general, the prediction error will decrease with the increasing number of iterations

before overfitting, as the predictive model can gather useful information from the additive

components in these iterations. As long as the prediction errors start to increase, it can be

regarded as a sign for overfitting and stop further learning.

Let κ : {1, · · · , n} 7→ {1, · · · ,K} be an indexing function that indicates the partition to

which observation i is allocated by the randomization. The k-fold cross-validation estimate

of prediction error is

CV(f̂) =
1

n

N∑
i=1

ρ(yi, f̂
−κ(i)(xi)), (3.17)

where f̂−κ(x) denotes the fitted function, computed with the k-th part of data removed

[Hastie et al., 2009]. The CV with K = n is also known as the leave-one-out cross-

validation.

The choice of K will influence not only the computing time but also the bias-variance

tradeoff. For example, the leave-one-out CV is approximately unbiased for the correct

expected prediction error; however, it can have high variance as the n training sets are

quite similar to one another [Hastie et al., 2009]. At the same time, the required n times of

learning method is also a considerable computational burden. On the other hand, with a

relatively small value of K, the CV has even though lower variance, the possible higher bias

depending on how the performance of the model varies with the size of the observations

must be taken into consideration.

Considering the computational complexity and the compromise between bias and vari-

ance, the folds recommended by some authors are 5 [Breiman and Spector, 1992] and 10

[Kohavi et al., 1995].

• Information Criteria (IC)

11
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Information criteria is another common strategy used for determining the early stopping

value. This strategy is computationally far less intensive than the CV. There are many

variations of the information criteria (for more details, see [Bozdogan, 2000]), here we

introduce only the generalized Akaike information criterion (GAIC).

The GAIC [Akaike, 1983] with a fixed penalty λ is given by

GAIC(λ) = GD + λdf (3.18)

where GD denotes the fitted global deviance, df is the degrees of freedom used in the model.

The common choice for global deviance is −2 logL(θ̂) [Sclove, 1987]. Akaike information

criterion (AIC) [Akaike, 1974] is a special case of GAIC with λ = 2. And similarly, the

Bayesian information criterion (BIC) or Schwarz Bayesian criterion (SBC) [Schwarz, 1978]

with λ = log(n) are also a specific form of the GAIC. As n is in most cases extensive,

the BIC tends to penalize more heavily than AIC, giving preference to simpler models in

evaluation [Hastie et al., 2009].

No matter which form is used, the interpretation for each term in Eq.(3.18) is quite similar.

The first term GD provides a measure of bias or model inaccuracy. The other term serves

a penalty λ for the increased unreliability or compensation for the bias in the first term

when additional free parameters are included in the model [Bozdogan, 2000]. Consequently,

when evaluating the performance of a set of competing models, the values of GAIC can

be computed and compared to select a model with the smallest GAIC. Using GAIC allows

different penalties λ to be tried for different modelling purposes. The sensitivity of the

chosen model to the choice of λ can also be investigated [Rigby and Stasinopoulos, 2005].

Note that for GAMLSS, the degrees of freedom is the total effective freedom that is used in

the model [Rigby and Stasinopoulos, 2005]. In other words, the summation of all degrees of

freedom used to fit the individual distribution parameters [Stasinopoulos et al., 2017], for

example in the Gaussian distribution the df = dfµ + dfσ. Even though this thesis defines

the degrees of freedom in this way, we still need to address that there is no commonly

accepted approach to measure the degrees of freedom of a boosting fit [Hofner et al., 2016].

Due to the algorithmic nature of gradient boosting, which results in the regularized model

fits, the complexity of the model is difficult to evaluate [Hastie, 2007]. As a result, the

problem of deriving valid and easy-to-compute complexity measures for boosting remains

largely unsolved [Bühlmann et al., 2014].

Thus, although we give the early stopping values specified by IC in the section 6, we still

suggest using the CV as the primary regularization strategy.

When a model has fitted with the adaptive step length boosting algorithm, it is easy to fall

into a misunderstanding, that the model is estimated better along with the increasing numbers

of boosting iteration, the step length should converge to zero. A stopping criterion established

on the adaptive step length might be possible. But this is just an intuition. In the section 5, we

can find, that the adaptive step length is not an independent hyperparameter, and might not

12



3. GRADIENT BOOSTING

converge. Even some distribution parameters converge, its limit is also not zero. So we believe

that it is impossible to build stopping criteria based on the adaptive step length.
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4. BOOSTED GAMLSS

4 Boosted GAMLSS

Though GAMLSS can be applied to a very general family of distributions, it still has some short-

coming from the penalized likelihood approach [Thomas et al., 2018]. Firstly, it is impossible to

estimate the models that have more explanatory variables than observations. Secondly, the vari-

able selection procedure is not embedded in the maximum likelihood estimation. Finally, either

linear or non-linear predictors is not trivial to fit; unnecessary complexity increases the danger

of overfitting and computing time.

4.1 Cyclical Boosted GAMLSS

The “cyclical” boosted GAMLSS [Mayr et al., 2012] were then introduced to overcome the

shortcomings, because it does not rely on the generalized Akaike information criterion (GAIC)

[Rigby and Stasinopoulos, 2005] for regularization, but provides a new method to estimate the

GAMLSS prediction functions while simultaneously selecting appropriate sets of explanatory

variables.

Recall the gradient boosting algorithm, the parameters in the base learner are estimated by

minimizing the empirical risk (see Eq.(3.13)). Analogously, each predictor η with respect to each

explanatory variable in cyclical boosted GAMLSS is obtained by minimizing the expectation of

a loss function ρ(·):

η̂ = arg min
η

E[ρ(y, η(X))], (4.1)

where y and X denote the response and explanatory variables respectively. Given a sample of

observations {(yi, xi)}, i ∈ {1, · · · , n}, it minimize the empirical risk

η̂ = arg min
η

n∑
i=1

ρ(yi, η(xi)). (4.2)

For ρ(·) a L2 loss, Eq. (4.2) is identical to Eq. (3.13) and can be used to fit a conventional

regression model. But the more common used loss function in GAMLSS model is the negative

log-likelihood.

The whole algorithm is formally given in Algorithm 4 [Thomas et al., 2018].

According to the procedure of the algorithm, it is apparent that the data-driven mechanism

for variable selection is included, as only the predictive model is updated through the best

performing explanatory variable in each iteration. The less important variables will be ignored

for a small value of mstop. Another feature of the “cyclical” boosted GAMLSS algorithm lies in

that it allows the situation for more explanatory variables than observations, as only one base

learner is included in each iteration. This also avoided the problems of multicollinearity for high

dimensional data [Mayr et al., 2012].

4.2 Non-Cyclical Boosted GAMLSS

As the levels of complexity of each distribution parameter in its prediction function are differ-

ent and a various number of boosting iterations is required, separate stopping values for each
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Algorithm 4 Cyclical componentwise gradient boosting in multiple dimensions

1: Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂

[0]
θ2
, η̂

[0]
θ3
, η̂

[0]
θ4

) with offset values.

2: For each distribution parameter θk, k = 1, · · · , 4, specify a set of base learners, i.e., for

parameter θk define hk1(x(i)), · · · , hkJk(x(i)) where Jk is the cardinality of the set of base

learners specified for θk.

3: for m = 1→ max(mstop,1, · · · ,mstop,4) do

4: for k = 1→ 4 do

5: if m > mstop, k then

6: set η̂
[m]
θk

:= η̂
[m−1]
θk

and skip this iteration.

7: else

8: compute negative partial derivative − ∂
∂ηθk

ρ(y, η) and plug in the current estimates

η̂[m−1](·):

uk =

(
− ∂

∂ηθk
ρ(y, η)

∣∣∣
η=η̂[m−1](x(i)),y=y(i)

)
i=1,··· ,n

9: end if

10: Fit each of the base-learners hkj(·) contained in the set of base-learners specified for

the distribution parameter θk in step (2) to the negative gradient vector uk.

11: Select the component j∗ that best fits the negative partial derivative vector according

to the residual sum of squares, i.e., select the base-learner hkj∗ defined by

j∗ = arg min
j∈1,··· ,Jk

n∑
i=1

(
u
(i)
k − ĥkj(x

(i))
)2
.

12: Update the additive predictor ηθk

η̂
[m]
θk

= η̂
[m−1]
θk

+ ν · ĥkj∗(x),

where ν is the step length, and update the current estimates for step (6):

η̂
[m−1]
θk

= η̂
[m]
θk
.

13: end for

14: end for
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parameter need to be specified. And the values of mstop,k are not independent in the case of

multi-dimensional, the usually applied grid search scales exponentially with the number of distri-

bution parameters and can easily become computationally demanding [Thomas et al., 2018]. A

“non-cyclical” approach [Thomas et al., 2018] was developed to solve the problem by updating

only one distribution parameter in each iteration.

In “cyclical” boosted GAMLSS algorithm, the best fitting base-learners for all distribution

parameters are selected by calculating the residual sum of squares with respect to the negative

gradient vector (inner loss) in each iteration. In “non-cyclical” approach, the best performing

distribution parameter must also be selected before the end of each iteration, and actually by

comparing the empirical risk instead of the residual sum of squares, as the latter cannot be used to

compare the fit of base-learners over different distribution parameters. Thus two approaches thus

were introduced by the authors [Thomas et al., 2018]. The one is inner loss method. With this

method, the best fitting distribution parameter is selected by comparing the empirical risk, but

the best fitting base-learners are chosen by comparing the residual sum of squares. Nevertheless,

they argue that choosing base-learners and parameters concerning two different optimization

criteria may not always result in the best possible update, so they give another solution called

“outer loss” method, which chooses the best performing base-learner also with the empirical risk.

The formal procedure of “non-cyclical” boosted GAMLSS is given in Algorithm 5.

Compared with the “cyclical” algorithm, the “non-cyclical” variants enable the mstop to be

scalar, and the distribution parameters are chosen adaptively. Thus the scalar optimization

can be carried out very efficiently using standard cross-validation methods instead of the multi-

dimensional grid search.

The original intention of developing this “non-cyclical” algorithm is not to improve compu-

tational efficiency, but to use the stability selection [Meinshausen and Bühlmann, 2010] on the

boosted GAMLSS models. The stability selection approach is to run the base-learner selection

algorithm on multiple subsamples of the original data. Highly relevant base-learners should be

involved in (almost) all models learned from the subsamples [Thomas et al., 2018], (for more de-

tails about the combination of stability selection and boosting, see [Hofner et al., 2015]). They

[Thomas et al., 2018] argued that, as all distribution parameters will be updated in each iter-

ation in “cyclical” approach, the base-learners, which might have little importance than the

base-learners for other distribution parameters, are also added to the model, the combination

with stability selection will lead to severe problem.

However, the “non-cyclical” approach destroyed the selection balance among the distribution

parameters. In extreme situations, some distribution parameters might never be selected within

limited iterations. The reason is a mixture effect of the nature of the “non-cyclical” approach

and the fixed step length used in gradient boosting. Take the linear additive models as an

example: if the coefficients of some covariables concerning a distribution parameter are huge,

their great improvements will make this parameter to be the best choice in the corresponding

iterations. Moreover, as the fixed step length is usually small, the update in each iteration thus

cannot gain many improvements. Consequently, the “non-cyclical” procedure will still select

these parameters for updates.
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Algorithm 5 Non-cyclical componentwise gradient boosting in multiple dimensions

1: Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂

[0]
θ2
, η̂

[0]
θ3
, η̂

[0]
θ4

) with offset values.

2: For each distribution parameter θk, k = 1, · · · , 4, specify a set of base-learners, i.e., for

parameter θk define hk1(·), · · · , hkJk(·) where Jk is the cardinality of the set of base-learners

specified for θk.

3: for m = 1 to mstop do

4: for k = 1 to 4 do

5: Compute negative partial derivatives − ∂
∂ηθk

ρ(y, η) and plug in the current estimates

η̂[m−1](·):

uk =

(
− ∂

∂ηθk
ρ(y, η)

∣∣∣
η=η̂[m−1](x(i)),y=y(i)

)
i=1,··· ,n

6: Fit each of the base-learners hkj(·) contained in the set of base-learners specified for

the distribution parameter θk in step (2) to the negative gradient vector uk.

7: Select the best-fitting base-learner hkj∗ either by

• the inner loss, i.e., the residual sum of squares of the base-learner fit w.r.t. uk:

j∗ = arg min
j∈1,··· ,Jk

n∑
i=1

(
u
(i)
k − ĥkj(x

(i))
)2

• the outer loss, i.e., the negative log likelihood of the modeled distribution after the

potential update:

j∗ = arg min
j∈1,··· ,Jk

n∑
i=1

ρ
(
y(i), η̂

[m−1]
θk

(x(i)) + ν · ĥjk(x(i))
)

8: Compute the possible improvement of this update regarding the outer loss

∆ρk =

n∑
i=1

ρ
(
y(i), η̂

[m−1]
θk

(x(i)) + ν · ĥkj∗(x(i))
)

9: end for

10: Update, depending on the value of the loss reduction k∗ = arg mink∈1,··· ,4 only the overall

best-fitting base-learner:

η̂
[m]
θk∗

= η̂
[m−1]
θk∗

+ ν · ĥk∗j∗(x)

11: Set η̂
[m]
θk

:= η̂
[m−1]
θk

for all k 6= k∗.

12: end for
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To overcome the unbalanced decisions in “non-cyclical” algorithm, we try to use the adaptive

step length instead of the fixed one. With the adaptive step length, the updates in each iteration

can gain an adaptive improvement. Thus, the great improvements exist in only some distribution

parameters can decrease rapidly to a level that other parameters have. The selection in the

afterwards iterations should “jump” between every distribution parameters.
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5 Adaptive Step Length

Tuning in gradient boosting relies mainly on the number of iterations, the other flexible compo-

nent step length ν of the algorithm is, in most cases, set to 0.1. Some authors [Friedman, 2001]

has suggested estimating an adaptive step length in each iteration by performing a line search.

Other authors [Bühlmann and Hothorn, 2007] have argued that this line search in general func-

tional gradient descent algorithm can be omitted at the cost of doing more iterations but not

necessarily more computing time based on empirical evidence and some mathematical reasoning,

so they favoured to use a fixed step length.

This section will discuss more details about fixed and adaptive step length in boosted GAMLSS

and induct a semi-analytical adaptive step length based on the Gaussian distribution.

5.1 Fixed Step Length (FSL)

As the name suggests, the fixed step length ν is constant when updating the additive predictor

ηθk in all boosting iterations, a typical value is 0.1 (and 0.01 is also sometimes suggested). With

FSL, one can focus on the other challenges of boosting algorithm, for example, the stopping

values, and do not need to pay more attention to the tuning problems of step length as long as

the step length is a small value.

Apparently, there is a negative relationship between the step length ν and the stopping

iterations mstop, i.e. a small ν yields a large mstop and vice versa. The computing time of a

boosting algorithm, on the one hand, depends on the complexity of base-learner, and the other

hand, on the number of boosting iterations. Hence, the choice of step length is another challenge

to the researchers when using boosting algorithms.

As introduced at the beginning of this section, the step length can be either adaptive or

fixed. For an adaptive step length, its optimal value in each iteration is usually found by doing

a line search. The fixed step length, however, is set artificially. Theoretically, the adaptive

step length is a more reasonable choice, but it is just because of the additional computing

required by line search, that make the adaptive solution not very popular in recent studies.

In contrast, a small fixed step length is the widely used settings, which saves the compute

time of the line search but may be at the cost of calculation on more iterations. But the

research of [Bühlmann and Hothorn, 2007] showed that we do not need to concern more about

the effectiveness of FSL, as for the task of minimizing the empirical risk, the gradient descent

with FSL and a general loss function have the similar performance to L2-Boosting. Hence, the

cost of additional boosting iterations can be covered by saving the line search. By this way, they

argued that FSL does, of course, more iterations, but not necessarily more computing time. For

more detailed mathematical induction, see Appendix A.1.

The mathematical evidence in [Bühlmann and Hothorn, 2007] proofed that the adaptive step

length conducted by line search can be replaced with FSL without more computing cost, but

this argument does not mean that the FSL is always the best choice. The effectiveness of their

suggestion is based on the potential assumption that the FSL is somehow around or a little

smaller than the step length suggested by the line search. Otherwise, a conservative small step
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length (e.g. ν = 0.0001 or even smaller) would always be the best choice, which, on the other

hand, causes the unnecessary computing cost of a large number of boosting iterations. Under the

FSL settings, given a sequence of sufficient small step lengths {ν1, ν2, · · · , νn}, the maximum of

which is the naturally best one, because it is not only small enough to update the predictors,

but also large enough to avoid the unnecessary iterations.

5.2 Adaptive Step Length (ASL)

In the original algorithm of gradient boosting [Friedman, 2001], the step length is adaptive and

found by a line search. Line search is an optimization strategy that approaches to find a local

minimum from a given objective function. It finds firstly a descent direction from which the

objective function will be reduced, and then move alongside the direction with an appropriate

step size. The common methods which determine the descent direction are Newton’s method,

Quasi-Newton method [Nocedal and Wright, 1999] and gradient descent [Ruder, 2016]. No mat-

ter which one of the mentioned methods is used, the calculation of the derivative of the objective

function is a must. But there are some shortcomings when using the derivative: Firstly, it can be

difficult or impossible to compute the derivative of the objective function, or even be difficult to

approximate the derivatives. Secondly, it is difficult to avoid the inflexion points, i.e. the points at

which a curve changes from being concave to convex or vice versa. And finally, the optimization

with derivative is likely no more efficient than the one without derivative [Brent, 2013].

In this thesis, the suggested optimization strategy is a combination of Golden Section Search

and Successive Parabolic Interpolation [Brent, 2013].

Golden section search method is used in a one-dimensional optimization problem with an

iterative numerical approach. The main idea of this method is to narrow down the interval

successively inside which the minimum is known to exist with the help of the golden ratio until

the length of the remaining interval is smaller than a given tolerance. Though the convergence

rate is not so fast (linear), but this method guarantees to converge to the actual minimum

and requires no derivatives. The pseudo-code of the golden section search method is given in

Algorithm 6.

Successive parabolic interpolation is another technique used for finding the minimum of an

objective function by successively fitting parabolas (polynomials of degree 2) at three points

[R Core Team, 2018]. The oldest point is replaced with a new one at which the minimum of

the fitted parabola is located at each iteration. This new point is also the approximation of the

solution at the end of the search. The procedure can be described with a simple example: given

three points (xi, yi), i = 1, 2, 3 and a parabola ax2 + bx + c, the coefficients of the parabola a, b

and c can be definitively found by solving a linear system with the three points (by ignoring the

“overlapping” situation). Afterwards, the “oldest” of the previous three points is replaced with

the new point xnew = − b
2a until the tolerance is met.

Similar to the golden section search method, successive parabolic interpolation does also not

need derivatives but is even faster, namely approximately superlinear. But the convergence of

successive parabolic interpolation does not guarantees to find a minimum when in isolation. A
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Algorithm 6 Golden Section Search

1: Define the Golden Ratio: φ =
√
5−1
2 ≈ 0.618.

2: Initialize a tolerance ε.

3: Select an interval [a, b] containing the minimum.

4: while |b− a| > ε do

5: Evaluate f(x1) at x1 = a+ (1− φ)(b− a).

6: Evaluate f(x2) at x2 = a+ φ(b− a).

7: if f(x1) < f(x2) then

8: b← x2

9: fmin ← x1

10: else

11: a← x1

12: fmin ← x2

13: end if

14: end while

15: Return fmin.

simple example is collinearity among the three points. The resulting parabola is then linear, i.e.

a = 0, and will not provide a new candidate point.

Brent introduced an excellent solution which takes advantages of both methods in 1973,

who uses the combination of a golden section search and successive parabolic interpolation

[Brent, 2013], here we call it Brent’s method. Brent’s method takes the successive parabolic

interpolation as the primary procedure, as it converges faster. As usual, the minimum of the

parabola is considered as the candidate for the new point used to narrow down the interval. But

this point will only be accepted when it lies within the bounds of the current interval. Other-

wise, the search stops and switches to the golden section search. By this way, the convergence

rate is still approximate superlinear if the optimized function has a second derivative, but the

combination is more reliable than solely parabolic interpolation.

5.3 Semi-Analytical Adaptive Step Length (SAASL)

The adaptive step length is obtained by performing a line search on the empirical risk. In contrast

with other line search methods, the computation cost using Brent’s method can be reduced to

some extent. But it seems more natural to use an analytical optimal step length by performing

a mathematical induction instead of line search. Such an optimal step length would have lots of

advantages, for example, the time complexity would reduce to constant, as the step length can

be directly calculated from the analytical expression instead of the iterative searching. Moreover,

the properties of the adaptive step length can be understood from the mathematical expression,

which might help to answer some questions, for example, if it is possible to construct a stopping

criterion via the step length, because, intuitively, the optimal step length would decrease along

with the increasing number of boosting iterations.
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Since there are many advantages of the analytical optimal step length, the remaining question

is whether such an expression exists. This thesis studied the behaviour of the adaptive step length

in GAMLSS with respect to the Gaussian distribution as well as the linear model and found that

only the adaptive step length of the location parameter can be displayed with a mathematical

expression, while that of the scale parameter can not. That means the adaptive step length of

the scale parameter still needs to be optimized by doing a line search. The induction is given as

follows.

Given the data points (yi,xi), i ∈ {1, · · · , n}, where x is a n × p matrix. Assume that the

true generating mechanism is

yi ∼ N(µi, σi) (5.1)

µi = xiβµ (5.2)

σi = exp(xiβσ) (5.3)

where βµ and βσ are the coefficients of the corresponding linear models. Then in GAMLSS, the

distribution parameters can be modelled with two additive predictors ηµ and ησ:

µ = g−1µ (ηµ) = ηµ (5.4)

σ = g−1σ (ησ) = exp(ησ) (5.5)

where g−1(·) is the inverse link function.

In the conventional componentwise gradient boosting algorithm, only one variable can be

chosen to update the predictors. So we set the base-learners as

hµ(xj)

hσ(xj)

where j ∈ {1, 2, · · · , p} represents the indices of the corresponding variables. The additive

predictors can then be displayed as:

η̂[m]
µ = η̂[m−1]µ + ν[m]

µ ĥ[m]
µ (x) (5.6)

η̂[m]
σ = η̂[m−1]σ + ν[m]

µ ĥ[m]
σ (x) (5.7)

where ν
[m]
µ and ν

[m]
σ are the adaptive step length in the m-te iteration.

Take the negative log-likelihood as the loss function, then the loss can be displayed as

ρ(y, {µ, σ}) = − log

[
1√
2πσ

exp

(
− (y − µ)2

2σ2

)]
(5.8)

=
1

2
log(2π) + log σ +

(y − µ)2

2σ2
(5.9)

=
1

2
log(2π) + ησ +

(y − ηµ)2

2 exp(2ησ)
(5.10)

where the distribution parameters are replaced with the additive predictors.
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The negative gradient descent or pseudo-residuals u
[m]
i for each distribution parameter in

iteration m is then

u[m]
µ = −∂ρ(y, µ[m−1], σ[m−1])

∂η
[m−1]
µ

(5.11)

=
1

exp(2η
[m−1]
σ )

(y − η[m−1]µ ) (5.12)

u[m]
σ = −∂ρ(y, µ[m−1], σ[m−1])

∂η
[m−1]
σ

(5.13)

= −1 +
1

exp(2η
[m−1]
σ )

(y − η[m−1]µ )2 (5.14)

Regress the pseudo-residuals with the base-learner ĥ[m] on the best fitting covariable xj∗ , j
∗ ∈

{1, · · · , n}:

u
[m]
µi = ĥ[m]

µ (xij∗) + εµi (5.15)

u
[m]
σi = ĥ[m]

σ (xij∗) + εσi (5.16)

where ε is the error term in regression models.

With all of these assumptions and calculations, the process of the optimization can be divided

into two parts, the one is the adaptive step length for the location parameter µ, and the other is

for the scale parameter σ.

5.3.1 ASL for µ

Firstly, focus on the adaptive step length of µ. The analytical ASL for µ in iteration m can be

obtained through minimizing the empirical risk,

ν[m]
µ = arg min

ν
[m]
µ

n∑
i=1

ρ(yi, {µ[m]
i , σ

[m−1]
i }) (5.17)

= arg min
ν
[m]
µ

n∑
i=1

(
yi − η̂[m−1]µ − ν[m]

µ ĥ
[m]
µ (xij∗)

)2
2σ

2[m−1]
i

(5.18)

Note that the expression σ
2[m−1]
i represent for the square of the previous standard deviation, i.e.

σ
2[m−1]
i = (σ

[m−1]
i )2.

The optimal value of ν
[m]
µ can be accessed by letting the derivative of the equation equal zero,

and we get

ν[m]
µ =

∑n
i=1

(
ĥ
[m]
µ (xij∗)

)2
∑n
i=1

(ĥ
[m]
µ (xij∗ ))2

σ
2[m−1]
i

(5.19)

and this expression (5.19) is the analytical ASL of µ in Gaussian distribution with respect to the

negative log-likelihood loss.
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It is obviously, that the ν
[m]
µ is not an independent parameter in GAMLSS but depend on

the base-learner ĥ
[m]
µ (xij∗) with respect to the best performing variable xj∗ and the variance in

the previous iteration σ
2[m−1]
i . If the GAMLSS is replaced with an usual GLM, i.e. the scale

parameter σ is constant and not longer of interest, i.e. σ
[m−1]
i = σ, ∀i ∈ {1, · · · , n} and ∀m ∈

{1, · · · ,M}, so we get

ν[m]
µ =

∑n
i=1

(
ĥ
[m]
µ (xij∗)

)2
1
σ2

∑n
i=1(ĥ

[m]
µ (xij∗))2

= σ2. (5.20)

This equation provides an attractive property of the ASL, that is the analytical ASL for µ in

Gaussian distribution concerning the GLM is constant and actually the variance.

Back to the GAMLSS situation, now we make the scale parameter no longer a constant value

but varies according to the individuals. For a linear base-learner h(·), the slope of ĥ
[m]
µ (xij∗) will

converge to zero for m → ∞, which means that for all i ∈ {1, · · · , n} the predicted values of

the base-learner ĥ
[m]
µ (xij∗) are almost the same, moreover, these values can be represented by a

constant, i.e. for example h = ĥ
[m]
µ (xij∗), the analytical ASL turns out to be

ν[m]
µ =

∑n
i=1 h

2∑n
i=1

h2

σ
2[m−1]
i

=
nh2

h2
∑n
i=1

1

σ
2[m−1]
i

=
n∑n

i=1
1

σ
2[m−1]
i

, (5.21)

which is actually the harmonic mean of σ
2[m−1]
i , i.e. the harmonic mean of the variance in the

previous iteration. This expression is only valid when the slope of the base-learner converge to

zero or mstop is very large. However, a large mstop often results in overfitting, and in practice,

the boosting usually stops before the slope of the base-learner converges, especially for complex

models. But anyway, the strong positive relationship between the variance σ2 or σ
2[m−1]
i and

the ASL ν
[m]
µ can be observed from either Eq.(5.20) or Eq.(5.21).

Except for the convergence of the base-learner, to what extent the adaptive step length can

be approximated through the harmonic mean also depends on how significant the variance of the

response is. As the denominator is the sum of the fraction of the base-learner and the variance,

a small variance will make the relative effect of the base-learner on the adaptive step length

considerable. Consequently, the gap between the harmonic mean of the variances and the real

adaptive step length will be kept in the long term. On the other hand, if the variance is very big,

even though the base-learner might haven’t converged yet, the final adaptive step length will be

dominated by the variance.

Let’s focus on the Eq.(5.19) again. The analytical ASL depends, not only on the variance of

the response variables but also the base-learner concerning the best fitting j∗-te covariable. The

adaptive step length in an iteration is, in fact, the ASL of the j∗-te covariable in that iteration.

So it is worthy of analysing the effect of the best fitting variable on the ASL.

Given only one standardized predictor variable x1. Assume that the location parameter is

generated by

µ = α1x1, (5.22)
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whereas the scale parameter is generated by either

σ = β1x1 or σ = β2x1, (5.23)

and pick arbitrary β1 < β2. Moreover, assume that the predicted base-learner in m-te iteration

is

ĥ[m]
µ (xi1) = α̂1xi1. (5.24)

The variance in previous iteration can be transformed into the exponential display and be ap-

proximated with the power series to the first order, i.e.

σ2[m−1] = exp(2(β̂kx1)) ≈ 1 + 2β̂kx1, (5.25)

where k ∈ {1, 2}. Thus the denominator in Eq.(5.19) for x1 can be rewritten as

n∑
i=1

(
ĥ
[m]
µ (xi1)

σ
2[m−1]
i

)2

≈
n∑
i=1

(
α̂1xi1

1 + 2β̂kxi1

)2

(5.26)

=

n∑
i=1

 1

1
α̂1xi1

+ 2β̂k
α̂1

2

:= denom(β̂k) (5.27)

Obviously, the coefficients β̂k of the predictor for the scale parameter have a negative effect

on the denominator of the analytical ASL, and of course positive effect on the analytical ASL.

So under the same condition, if β1 < β2, then denom(β̂1) > denom(β̂2), but the step length

νµ(β̂1) < νµ(β̂2). In other words, given a set of variables, that affect both distribution parameters

in Gaussian distribution, if the coefficient of a variable is larger than the others, then its adaptive

step length for location parameter should also larger than the others.

The validity of this statement is established on a potential assumption that β̂k is approx-

imately equal to the actual βk. This assumption in practice means that enough number of

iterations have been performed or the scale parameter is already relatively good fitted.

5.3.2 ASL for σ

The next step is to analyze the existence of the analytical ASL for the scale parameter σ in

GAMLSS with respect to Gaussian distribution and its properties.

Analogously, the optimal step length can be obtained by minimizing the empirical risk. The

difference to Eq.(5.17) is the index of iterations. In the optimization problem of νµ, the distri-

bution parameters used for calculating the empirical risk is {µ[m]
i , σ

[m−1]
i }, because the ASL is

obtained in the current iteration and will be used for updating the location parameter µ. Now it

is the opposite situation, and the ASL will be achieved by updating the scale parameter in the

current iteration, the existing location parameter, however, is that of the previous iteration. So
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we have

ν[m]
σ = arg min

ν
[m]
σ

n∑
i=1

ρ(yi, {µ[m−1]
i , σ

[m]
i }) (5.28)

= arg min
ν
[m]
σ

n∑
i=1

(
η̂[m−1]σ + ν[m]

σ ĥ[m]
σ (xij∗)

)
+

n∑
i=1

(
yi − µ[m−1]

i

)2
2 exp

(
2η̂

[m−1]
σ + 2ν

[m]
σ ĥ

[m]
σ (xij∗)

) (5.29)

After examining the positivity of the second order derivative of the expression in Eq.(5.29), the

optimal value can be accessed by letting the first order derivative equal to zero, and we get

n∑
i=1

ĥ[m]
σ (xij∗)−

n∑
i=1

(
ĥ
[m]
σ (xij∗) + εσi + 1

)
ĥ
[m]
σ (xij∗)

exp
(

2ν
[m]
σ ĥ

[m]
σ (xij∗)

) !
= 0 (5.30)

Unfortunately, the Eq.(5.30) cannot be further simplified, which means that such an analytical

ASL for the scale parameter σ in Gaussian distribution does not exist. Hence, the optimal ASL

must be found by performing the conventional line search, for example, the Brent’s method as

discussed above. For more details about the induction, see Appendix A.3.

Even if we could not find an analytical solution, we can still find an interesting property by

further studying the Eq.(5.30). Just like the induction of Eq.(5.21), the slope of the linear base

learner ĥ
[m]
σ (xij∗) will converge to zero for m → ∞. Analogously, the predicted values of which

thus could be replaced with a constant, i.e. h = ĥ
[m]
σ (xij∗),∀i ∈ {1, · · · , n}, then the Eq.(5.30)

turns out to be

n∑
i=1

ĥ[m]
σ (xij∗)−

n∑
i=1

(
ĥ
[m]
σ (xij∗) + εσi + 1

)
ĥ
[m]
σ (xij∗)

exp
(

2ν
[m]
σ ĥ

[m]
σ (xij∗)

) !
= 0 (5.31)

⇔
n∑
i=1

h−
n∑
i=1

(h+ εσi + 1)h

exp(2ν
[m]
σ h)

= 0 (5.32)

⇔ν[m]
σ =

1

2h
log

[
h+ 1 +

1

n

n∑
i=1

εσi

]
(5.33)

⇔ν[m]
σ =

1

2h
log[h+ 1] (5.34)

where 1
n

∑n
i=1 εσi = 0 in the simple linear regression. The expression in Eq.(5.34) can be further

simplified by approximating the logarithm function with the Taylor series at h = 0, thus

ν[m]
σ ≈ 1

2h

[
h− h2

2
+O(h3)

]
(5.35)

=
1

2
− h

4
(5.36)

Theoretically, for m→∞, it is not only the slope of the linear base-learner that converges to zero,

but also its intercept. Consequently, the previously assumed constant h should also converge to
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zero. As a result, the limit of the ASL for σ is constant and actually 0.5,

lim
m→0

ν[m]
σ = lim

h→0

1

2
− h

4
=

1

2
. (5.37)

This gives a new property about the ASL for σ, i.e. no matter how the data is organized, the

ASL will always converge to 0.5. Of course, considering the situation of overfitting, this value

may not appear, as the boosting algorithm usually stops before convergence, but the trend that

the ASL go towards 0.5 should be clearly.

5.3.3 Semi-Analytical ASL

As discussed above, the analytical ASL in GAMLSS can only apply to the location parameter

µ with respect to Gaussian distribution, while for the scale parameter σ it needs to be found by

doing a line search. For those ASLs for each distribution parameter in GAMLSS, that partial

determined by the analytical solution and partial searched by performing the line search, we can

call it the Semi-Analytical Adaptive Step Length, or Semi-Analytical ASL or just SAASL.

By applying the semi-analytical method to the optimizing problem, the time complexity of

partial distribution parameters can be reduced to constant. Thus, the computation with the

SAASL for the whole learning process will be faster than that with the conventional ASL.

The ASL method together with the line search can solve the problem of unbalanced decision

making on a large scale. But as it requires an interval, in which the minimum is located, the

boundaries of the interval needs to be carefully selected. If the interval is tiny, the local minimum

might not be situated in it. But if it is tremendous, the unnecessary searching region will cause

additional computing time. In general, the ASL at the beginning iterations should be big, and

it will then decrease to a reasonable range because the estimation of its coefficients becomes

better with the increasing boosting iterations. So it is not suggested to set a long interval. But

the relatively small interval will, on the other hand, make the unbalanced decisions, as the step

length is not large enough for the improvements of some variables, and these variables need

to be more frequently selected until the improvements decreased to a level that other variables

have. Moreover, after sufficient iterations have been performed, the adaptive step length for µ

of a variable is also affected by its coefficient on σ (see Eq.(5.27)), if this coefficient is vast, it

results in a sizeable adaptive step length for µ, and might larger than the upper boundary of the

interval. It will also affect decision making.

However, this problem can be partially solved by the SAASL, as the limitations of the interval

don’t restrict the step length for µ calculated by this method. Though there exists not an

analytical solution to the adaptive step length for σ, it is easier to set an interval as we have seen

its convergence point and this point is unrestricted to which variable is used.

Even if the SAASL approach results in better computing efficiency as ASL, the line search

for finding the ASL for σ is still annoying. As we have known the limit of νσ = 0.5, an aggressive

approach will be making this value as the step length for σ, just like the fixed step length.

Accounting for the shrinkage parameter λ = 0.1, the real used step length in each iteration shall

be 0.05. Thus, a new method can be established when updating the predictors in Gaussian
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distribution, i.e. update the location parameter µ with the analytical adaptive step length, and

update the scale parameter σ with the fixed step length (0.05). And we call this approach the

SAASL05.

The advantage of the SAASL05 mainly lies in the computing speed, as it removes the line

search procedure. As the step length for σ is not the adaptive value, the balance of decisions

should not be as well as the SAASL or the ASL, but should much better than the FSL. In contrast

with the FSL, whose step length for σ is set as 0.1 according to the experience, the SAASL05

provide a more reasonable fixed step length 0.05 according to the mathematical induction. Com-

paring these two values, it is apparent, that 0.1 is an aggressive value, and theoretically, it might

induce the overfitting.

Now, we formally present the algorithm of the non-cyclical componentwise gradient boosting

in GAMLSS for Gaussian distribution with four types of step length, i.e. fixed step length (FSL),

adaptive step length (ASL) and two semi-analytical step length (SAASL, SAASL05) approach,

see Algorithm 7.

Algorithm 7 Non-cyclical componentwise gradient boosting in Gaussian distribution with

different step lengths

1: Initialize the additive predictors η̂[0] = (η̂
[0]
µ , η̂

[0]
σ ) with offset values.

2: For each distribution parameter specify a set of base-learners: {hµ1(·), · · · , hµJµ(·)} and

{hσ1(·), · · · , hσJσ (·)}, where Jµ and Jσ are the cardinality of the set of base-learners specified

for µ and σ.

3: for m = 1 to mstop do

4: for θ = µ to σ do

5: Compute negative partial derivatives − ∂
∂ηθ

ρ(y, η) and plug in the current estimates

η̂[m−1](·):

uθ =

(
− ∂

∂ηθ
ρ(y, η)

∣∣∣
η=η̂[m−1](x(i)),y=y(i)

)
i=1,··· ,n

6: Fit each of the base-learners hθj(·) contained in the set of base-learners specified for

the distribution parameter θ in step (2) to the negative gradient vector uk.

7: Select the best-fitting base-learner hθj∗ by the inner loss, i.e., the residual sum of

squares of the base-learner fit w.r.t. uk:

j∗ = arg min
j∈1,··· ,Jk

n∑
i=1

(
u
(i)
k − ĥθj(x

(i))
)2

8: Set or find the step length ν
[m]
θ by one of the followings:

• Fixed step length (FSL), for example ν
[m]
θ = 0.1;

• Adaptive step length (ASL):

ν
[m]
θ = arg min

ν

n∑
i=1

ρ
(
y(i), η̂

[m−1]
θ (x(i)) + ν · ĥθj∗(x(i))

)
;
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5. ADAPTIVE STEP LENGTH

• Semi-analytical adaptive step length (SAASL):

if θ = µ,

ν[m]
µ =

∑n
i=1

(
ĥµj∗(x

(i))
)2

∑n
i=1

(ĥµj∗ (x(i))2

σ
2[m−1]
i

,

if θ = σ, same with ASL.

• Semi-analytical adaptive step length (SAASL05):

if θ = µ, same with SAASL,

if θ = σ, ν
[m]
θ = 0.5.

9: Compute the possible improvement of this update regarding the outer loss

∆ρk =

n∑
i=1

ρ
(
y(i), η̂

[m−1]
θ (x(i)) + ν

[m]
θ · ĥθj∗(x(i))

)
10: end for

11: Update, depending on the value of the loss reduction θ∗ = arg minθ∈{µ,σ}(∆ρθ) only the

overall best-fitting base-learner:

η̂
[m]
θ∗ = η̂

[m−1]
θ∗ + ν

[m]
θ · ĥθj∗(x)

12: Set η̂
[m]
θ := η̂

[m−1]
θ for all θ 6= θ∗.

13: end for

Note that the approaches listed in the Algorithm 7 didn’t take the shrinkage parameter λ

into consideration. As introduced in Section 3.3.1, there is no need to specify the shrinkage

parameter for the FSL, but we need to multiply it to all adaptive step lengths. As the value 0.5

in SAASL05 is an adaptive value, it should also be shrunk to 0.05 if the λ = 0.1.
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6 Simulation Study

After discussing the theories of boosted GAMLSS with various step length settings, we can

evaluate the performance of each setting by performing the simulations. The first part of this

section listed the to be compared algorithms and the model settings. And the second part exam-

ines the performance of each algorithm by various measures, including the prediction accuracy,

the balance of the distribution parameters, the runtime or computational costs. Some unique

properties, like optimal step length in GLM (see Eq.(5.20)), are also shown with graphics.

6.1 Simulation settings

6.1.1 Computational environment

As the simulations are very computing expensive, the tasks of simulations are parallelly computed

with multiple CPUs (Intel Xeon CPU E7-4860 2.27GHz) on the R program (version 3.5.1).

6.1.2 Algorithm settings

The algorithm used for fitting the data is the non-cyclical componentwise gradient boosting in

GAMLSS algorithm (see Algorithm 7) with all four types of step length. As the step length

in adaptive methods is searched or computed automatically, no special settings are required for

these two algorithms. Only the step length in FSL needs to be specified artificially, so we set it

with the recommended value of 0.1 [Bühlmann and Hothorn, 2007].

To get a better understanding of the performance and properties of each type of step length,

we added another algorithm into the comparison, which implemented in the R package gamboostLSS

(i.e. Boosting methods for “GAMLSS” [Hofner et al., 2018]). The method used in this package

is just the Algorithm 5 with the inner loss for selecting the best performing base-learner in each

iteration. As it is also a fix step length situation, we set it with 0.1 as usual. Consequently, the

comparison will be among the five algorithms:

• FSL: Fix step length (ν = 0.1),

• ASL: Adaptive Step Length,

• SAASL: Semi-Analytical Adaptive Step Length,

• SAASL05: Semi-Analytical Adaptive Step Length with fixed νσ = 0.5,

• gamboostLSS: Boosting methods for GAMLSS.

For the adaptive methods, an additional shrinkage parameter λ = 0.1 is multiplied to the optimal

values.

The initial values for mstop is 1000. The graphics below, which are used for illustration,

displayed all 1000 iterations. However, the graphics, that aims at comparisons illustrated the

corresponding metrics learned until the optimal stopping value specified by 10-folds CV.
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6.1.3 Data and model description

The p explanatory variables xij , i ∈ {1, · · · , n}, j ∈ {1, · · · , p} are drawn from the uniformly

distribution, where n is the number of observations,

xij ∼ Uni(−1, 1),

and the response variable yi, i ∈ {1, · · · , n} is drawn from the Gaussian distribution

yi ∼ N(µi, σi),

where µi and σi depends on:

• Scenario 1: only informative variables, and

• Scenario 2: not only informative, but also non-informative variables.

For each scenario, the models under 5 different cases are considered for the comparison:

• Balanced case A: in this case, the informative variables are identical for both distribution

parameters,

µi = 1 + 2xi1 − xi2 − 3xi3

σi = exp(1− 0.5xi1 + xi2 + 2xi3),

• Unbalanced case B: the informative variables are partially identical or not identical for each

distribution parameter,

µi = 1 + 2xi1 − xi2 − 3xi3

σi = exp(1− 0.5xi1 + xi2),

• Correlated case C: the informative variables are correlated,

µi = 1 + 2xi1 − xi2 − 3xi3

σi = exp(1− 0.5xi1 + xi2),

where, all variables here are correlated, and their correlation is ρ = 0.5. For example,

in scenario 1, only three explanatory variables are available, and they are correlated with

each other, while in scenario 2, the correlation is active not only among the informative

variables but also between the informative and non-informative variables. In other words,

each variable is correlated with all the others.

• Extreme µ case D: in this case, the coefficients of some variables for µ are significantly

larger or smaller than that of the others. By this way, the balance of selected distribution

parameters in all iterations can be examined. In other words, exploring if some distribution

parameters are chosen frequently than the others,

µi = 1 + 100xi1 − xi2 − 3xi3

σi = exp(1− 0.5xi1 + xi2)
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• Extreme σ case E: similarly, in this case, the coefficients of xi2 is significantly differing

from that of xi2, even if it is not so different as in extreme µ case. That is because the σ is

exponential to the linear predictor, small changes in the linear predictor can induce a vast

difference in σ,

µi = 1 + 2xi1 − xi2 − 3xi3

σi = exp(1− 0.5xi1 + 5xi2)

By this way, ten different types of data sets in total are generated by associating the scenarios and

cases. For simplicity, we use for example 1B, 2D (and so on) as the indices for each simulation.

The size of observations in each simulation is 1000. For the simulations with non-informative

variables, i.e. in scenario 2, the total number of variables used for modelling is 100. The number

of the informative variables of which varies according to the cases.

6.2 Results

As all algorithms are in fact variations of the non-cyclical componentwise gradient boosting,

the performance of each algorithm is endogenous to the settings of its step length. Different

data models will not influence their properties. So for simplicity, we use the unbalanced model

with non-informative variables, i.e. the type 2B model, as the primary data model for the

comparison and interpretation. For those who use other types of data models, we will describe

them particularly.

6.2.1 Overview

To roughly understand the non-cyclical componentwise boosting algorithm, the graphics in this

part will present an overview of the key outputs.

Firstly, the most important outputs of the modelling are the estimated coefficients of each

distribution parameter. Figure 1 showed the coefficients of µ and σ in all 1000 iterations with

type 1B model (i.e. the data contains only the informative variables) using the ASL algorithm.

482 out of 1000 iterations are applied for updating the location parameter µ, while 518 for

updating the scale parameter σ. At the beginning of boosting, as the coefficients of each variable

are not good enough fitted, the algorithm will wrongly be thought that there was a correlation

between the intercept and the other variables. The coefficient of intercept thus increases to a high

value (e.g. at around 50 iterations for µ) and then decreases to a reasonable amount. Similar

behaviour also exists for σ. After all updates have been performed, the estimated coefficients for

both distribution parameters are acceptable.
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Figure 1: Estimated coefficients of µ and σ in each iterations of the data type 1B using ASL

algorithm. Among 1000 iterations, 482 and 518 iterations are used to update µ and σ respectively.

Another important output is the step length in each iteration. Figure 2 illustrated the step

length in each iteration for both distribution parameters. As a line search requires an interval,

in which the golden section algorithm (see Algorithm 6) or Brent’s method can be performed,

the step lengths for µ at the beginning are always 10, which is also the upper boundary for νµ.

For more details, see the descriptions of Figure 2.

As discussed in Eq.(5.27), there is a positive relationship between the coefficients of the

predictor of σ and the adaptive step length νµ as long as enough number of iterations have been

performed. This relationship can be clearly observed from the Figure 2a. The true coefficient in

the predictor of σ for xi2 is 1 which is larger than 0.5 of xi1. Consequently, the adaptive step

lengths νµ(xi2) is larger in general than νµ(xi1). Similarly, the variable xi3 have no effect on σ,

the adaptive step length νµ(xi3) is thus the smallest.

The property that the adaptive step length for σ tends to converge to 0.5 can be observed from

Figure 2b. It is clear that no matter which variable is observed its adaptive step length converges

to the 0.5. After a long term rounding 0.5, the νσ begins to diverge, similar phenomenon exists

also for νµ. Although no evidence can be provided, we strongly believe that is caused by the

computational accuracy.
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Figure 2: Step length of µ and σ in each iterations of the data type 1B model using ASL

algorithm. The searching intervals for each distribution parameter are νµ ∈ [−1, 10] and νσ ∈
[−1, 1] respectively.

For comparison, Figure 3 illustrated the step length for µ computed by ASL and SAASL.

Theoretically, the ASL and SAASL should result in the same outputs, because both methods

try to find the optimum from a unimodal function. But as discussed above, a searching interval

must be predefined in ASL. If the true optimal step length exceeds the predefined interval, the

outputs of ASL and SAASL then can be different. And the results in Figure 3 are just this kind

of case.

As an analytical expression finds the step length in SAASL instead of a line search procedure

with a searching interval, the optimal step length in each iteration is no longer restricted. It can

be found from the graphic, that the step length νµ(xi2) at the beginning iterations as well as

the at some points over the iterations are larger than 10, which is, as previously described, the

upper boundary of the searching interval.

Recall the positive relationship between the coefficients βσ(xj) and the step length νµ(xj),

for those variable xj , whose βσ(xj) is larger than usual, or the coefficients for µ (i.e. βµ(xj)) is

directly extremely large, the step length νµ(xj) will always be 10 when using the ASL approach

and 10 is set as the upper boundary. Although a continuous sequence of step length reaching the

upper boundary is not problematic, it is not as efficient as the method without a boundary. Under

extreme circumstances, for example, the simulation with type D or even worse, the boosting

algorithm will select the same variable over all iterations if not enough number of iterations

is pre-specified. A solution is to increase the searching boundary. However, this will make the

searching time much longer and is not necessary for those whose coefficients are not extraordinary

large or small. As a result, the boosting iterations used for updating µ is different from each

other. The used iterations in ASL are 482, and the one in SAASL is 476. Though the difference

between these two values is not significantly, fewer iterations are required by SAASL method as

expected. Strong evidence will be provided in the following section with the simulation type D.
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Figure 3: Comparison of the ASL and SAASL with the data type 1B. The upper searching

boundary for ASL is 10. The boosting iterations used for updating µ are 482 and 476 for ASL

and SAASL respectively.

The last outputs that deserve to have a look are the early stopping values. Figure 4 demon-

strated the stopping values specified by 10-folds cross-validation, AIC and BIC using SAASL

method. The data model used for illustration is 2B, i.e. the variables containing also the non-

informative ones. As the number of observation is 1000 and it is a relatively large value, the BIC

penalize more heavily. It tends to stop earlier than the position determined by CV and AIC. By

comparing the coefficients at each stopping values in Figure 5, it can be found that the estimated

coefficients for the informative variables at the stopping value specified by BIC rather underfit-

ted. Meanwhile, it selected fewer false positive variables. On the other hand, stopping with AIC

result in a better estimation of the informative variables at the cost of more non-informative

included in the model. And CV stands at the compromised position between the other two. The

comparison of the performance among the five methods below uses the 10-folds cross-validation

as the stopping criterion, and all results are the values at the early stopping position.
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Figure 4: Demonstration of early stopping. The data model type is 2B, i.e. 100 variables are

simulated, 3 and 2 of which are informative for µ and σ respectively. The data are modelled

with the SAASL algorithm. The cross validation is 10-folds.
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Figure 5: Demonstration of early stopping method on coefficients plot. The data and algorithm

situation are same with Figure 4.

6.2.2 Accuracy

The estimation accuracy of a model can be measured by the mean squared error or directly

comparing the difference between the estimated values and the true ones.

Figure 6 illustrated the estimated coefficients of the predictors for both distribution param-

eters from 100 simulations with data type 2B using five different algorithms. The estimated

coefficients are the values at the early stop position specified by the 10-folds CV. The black

horizontal line indicates the actual values of each variable. The closer a box to the black line,

the more accrue is the corresponding method.

It can be observed from the graphic, that the ASL, SAASL and SAASL05 have similar

accuracy. It is reasonable, as all these three methods use the adaptive step length to fit the
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model. The searching method of νσ in ASL is same with SAASL, and the νµ in SAASL and

SAASL05 is calculated with the same mathematical expression. The FSL method, especially for

µ, performed not as well as the other methods because of underfitting. The can be explained

more clearly by observing the number of false positive variables in Figure 14. Until the stopping

position, the FSL methods selected less non-informative variables, which, on the other hand,

not good enough fitted the coefficients. The gamboostLSS method can reasonably estimate the

coefficients of µ for some variables, e.g. for Intercepts and xi2, but it performed a little worse than

the adaptive methods, for example, the coefficients of xi3. It is a little hard to understand the

difference of the accuracy between FSL and gamboostLSS, as both methods using the noncyclical

boosting algorithm with fixed step length ν = 0.1. A plausible reason is that the stopping values

specified by CV are random. From the Figure 14 we can find that both methods selected little

false positive variables, a small change of the stopping values will add more false positive variables

into the model and further influence the estimations. Another probable reason is the internal

settings of the programs. The program of FSL is a fixed step length version of the adaptive step

lengths methods (include ASL, SAASL and SAASL05), but not a rewrite of gamboostLSS.

Thus, the following points can be summarized in Figure 6:

1. How to get the optimal step length in each iteration between ASL and SAASL have little

effect on the estimated coefficients.

2. Choosing the aggressive constant step length νσ = 0.5 in SAASL05 will not result in

unacceptable estimations.

3. Although FSL underestimated the coefficients in this example, it is hard to say that FSL

tends to underfit, as both FSL and gamboostLSS are fixed step length method and the

latter estimated relatively better.
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Figure 6: Comparison: Estimated coefficients of distribution parameters µ and σ. The data with

type 2B is fitted with 5 noncyclical componentwise boosting methods. The black solid horizon

line indicate the true coefficients of each variable.

Another method used to measure accuracy is the mean squared error (MSE). Figure 7 illus-

trated the MSE of both distribution parameters in all 100 simulations. By looking at the MSE

of µ, gamboostLSS has the lowest values and thus the best estimations of the coefficients. ASL,

SAASL and SAASL05 have no surprises the similar performance at a relatively worse level than

gamboostLSS. However, this situation is reversed by observing the MSE of σ. It means that, in

this example, though the adaptive methods could not estimate the coefficients of the location

parameter µ as well as the fix step length methods, they perform better when fitting the scale

parameter σ. When comparing the three adaptive approaches with the FSL, we will find that

the former win in both cases. However, the cost of the victory is more false positive variables

added into the final model. As discussed above, the FSL selected relatively less false positives

than the adaptive methods (see Fig. 14).
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Figure 7: Comparison: Mean Square Error (MSE). Boxplot of 100 simulations with data type

2B that are fitted with 5 different boosting methods.

An overall measure of the goodness of fitting is the empirical risk, which is the negative log-

likelihood in GAMLSS. The empirical risk will not evaluate the goodness of each distribution

parameters separately, but combines them and measure the loss of the whole model. Figure 8

compares the empirical risk of the five noncyclical componentwise boosting algorithms at the

stopping values specified by CV. According to the graphic, though the three adaptive methods

have slightly higher mean values of the negative log-likelihoods than that in FSL and gamboost-

LSS, the difference is not significant and thus it’s hard to say which method is better than the

others. Recall the comparison of MSE, though the adaptive methods are not as competitive as

gamboostLSS when estimating µ, the advantage when facing σ make them in overall no worse

than the fixedwise methods.
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Figure 8: Comparison: Empirical risk. The empirical risk used in GAMLSS is the negative

log-likelihoods. Boxes are established on 100 simulations.
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6.2.3 Balance of decisions

The balance of decisions is how the selected distribution parameters until the stopping values

distributed. In other words, given finished n boosting iterations, the decision is balanced if the n

iterations are approximated equally distributed to each distribution parameter, or the frequency

of each distribution parameter used for updating the model is approximately same. Otherwise,

if the boosting algorithm updates some distribution parameters more frequently than others, we

say it makes unbalanced decisions. The balance concept exists only in the non-cyclical boosting

algorithms, as the cyclical boosting methods update all distribution parameters in each iteration

and thus the decisions are always balanced.

The balance of decisions is used to test if the computing sources are equally distributed to all

parameters. Consider the boosting algorithms with a small fixed step length, if the coefficient

of a variable in one of the distribution parameters is extremely large or small, the boosting

algorithm will select this parameter and updating its coefficients in most or even in all iterations,

as the empirical risk minimize the most by updating it, and the predictor in each iteration is

updated with a small step. It, however, will be problematic, as, for example, the effect of other

distribution parameters cannot be learned from the modelling at all, or despite learned, but far

away from the expected values.

Such an unbalanced case can be observed in Figure 9. This example used the FSL method

to fit the data type 1D, i.e. the coefficients of xi1 is 100, which is extremely larger than that of

the other variables. Even though only 982 out of 1000 iterations are used for updating σ, the

estimated coefficient of xi1, which is about 3, is far away from the actual values. A solution to

overcome this underfitting is to increase the boosting iterations. In this example, about 35,000

iterations are required until the coefficients are relatively good estimated. However, such a great

number of iterations needs a very long runtime.
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Figure 9: Demonstration of unbalanced decisions. Model settings: µi = 1 + 100xi1 − xi2 − 3xi3

and σi = exp(1− 0.5xi1 + xi2). The FSL with step length 0.1 is applied to fit the data. 982 and

18 out of 1000 iterations are used to updating the distribution parameter µ and σ respectively.

As a comparison, Figure 10 illustrated the same model which is fitted with the SAASL

algorithm. This time, the balance rate of the selected µ and σ in all 1000 iterations is 501:499,

which can be regarded as a very well balanced case. As the step length in each iteration is

adaptive, the variables whose coefficient is extremely large or small can be updated with a

correspondingly step length. Thus the estimation can reach at a reasonable region within limited

iterations. The rest computing sources can then be applied to find more precise values of all

distribution parameters.
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Figure 10: Demonstration of balanced decisions. Model settings: µi = 1 + 100xi1 − xi2 − 3xi3

and σi = exp(1− 0.5xi1 + xi2). The SAASL method is applied to fit the data. 501 and 499 out

of 1000 iterations are used to update the distribution parameter µ and σ respectively.
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Figure 11 compares the balance of the 5 boosting algorithms when fitting the type 2B data.

Obviously, the fixedwise methods (FSL and gamboostLSS) prefer to make unbalanced decisions,

whereas the adaptive methods (ASL and SAASL) prefer to make a balanced decision. As ex-

plained above, the scale of the coefficients has a strong influence on the balance of the decisions

when using the fixedwise methods. But such impact will be minimal when meeting the adaptive

methods, as these methods will update the predictors with a big step. The balance in SAASL05

approach seems to be a compromise between fixedwise and adaptive methods when making deci-

sions. On the one hand, it uses the analytical adaptive step length to update µ, which prefer the

balanced ones. On the other hand, it uses the asymptotic fixed step length 0.5 to update σ, which

prefer, however, the unbalanced ones. Another property of SAASL05 when making decisions is

that it updates more frequently the σ, the reason for this phenomenon is that the artificial set-

tings of the step length νσ cannot update the predictors correctly at the beginning iterations,

whereas the predictors of µ can be updated fast within these iterations. Overall speaking, the

unbalanced rate of SAASL05 is at an acceptable level.
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Figure 11: Comparison: Balance of decisions. The y-axis is the proportion of the decisions for

each distribution parameter. 5 different componentwise boosting algorithms are applied to fit

the data type 2B. The FSL and gamboostLSS make rather unbalanced decisions. The ASL and

SAASL prefer to make balanced decisions. Though the SAASL05 makes a unbalanced decisions,

it is quiet acceptable.

6.2.4 Computational costs

The computational costs is also an important point when evaluating an algorithm. With the

same accuracy, the faster algorithm is a natural choice. Or under some circumstances, a faster

algorithm is also preferred at the cost of inaccuracy as long as it is within the tolerance. The

computational costs can be evaluated either by the stopping values or the computing time.

The early stopping value is actually not a good tool to measure the computational costs. As

even though it shows intuitively how many boosting iterations are required to get a good esti-

mation, and fewer iterations, of course, means a faster computation. However, the computation
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speed inside each iteration should also not be ignored. As discussed above, the fixed step length

method requires usually more iterations than the step length found by doing a line search, but

performing a line search needs more computation time. Figure 12 compares the mstop specified

by 10-folds CV for each boosting algorithm. As expected, the FSL and gamboostLSS need more

iterations than the adaptive methods until a good estimation is met. The early stopping values

among ASL, SAASL and SAASL05 have no significant differences. It is reasonable, as all meth-

ods using the adaptive step length to update the predictors and the estimations can reach at

good values in little iterations. However, if we use the stopping values as the measure to evaluate

the computational costs, we would tell that there are no difference between the three adaptive

methods. That is apparently a wrong judgement, as ASL performs the line search, which indeed

needs more computation, whereas SAASL performs only partial and SAASL05 not at all the

searching algorithm.
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Figure 12: Comparison: mstop. The mstop is specified by the 10-folds CV. Until the mstop, FSL

and gamboostLSS need more boosting iterations, whereas the adaptive methods have the similar

early stopping values.

Therefore, real-time comparison is more reasonable. Figure 13 illustrated the comparison of

computing time (in seconds) among different algorithms. The left graphic showed the computing

time of each simulation in all five algorithms, and the right graphic summarized them up and

provide a clear picture of the difference of each method in computing time. By observing the

left plot firstly, for most simulations, the computing time of ASL is decreased than that of FSL.

When computing with SAASL, the computing time for some simulations increased again, but for

most cases, the computing times stay still or slightly decreasing. As for SAASL05, all simulations

are calculated with the fastest speed. And for gamboostLSS, the computing time increased again

at the level of ASL and SAASL. Similar results can also be concluded from the boxplots. SAASL

have a slightly lower mean value than ASL, and SAASL05 is the fastest algorithms.

A question about the computing time is, as both FSL and gamboostLSS are fixed step length

algorithm, and the step length in both cases is set as 0.1, why the computing time behaves quite

differently. The plausible reason is similar to the difference between the estimated coefficients
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of the two methods. As program code of FSL is not identical to that of gamboostLSS, the

potential speedup methods in gamboostLSS exist not in the FSL, so it is not fair to compare

the computing time of gamboostLSS and all the other algorithms directly. A fair comparison

shall be among FSL, ASL, SAASL and SAASL05 because the structure of the codes among these

methods are identical; the only difference lies in the setting on the step length. As a result, there

is enough reason to believe, if the (analytical) adaptive step length settings are applied to the

gamboostLSS package, similar results as in Figure 13 can be obtained.
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Figure 13: Comparison: Computing time

6.2.5 Overfitting

For different purpose, the accuracy alone is not enough to judge the performance of an algorithm.

The overfitting should also be taken into consideration, because an overfitted model analyses too

precisely to a particular set of data, that means the noise in the data are also fitted into the

estimated model. As a result, it cannot be generalized to new data or predict further observations

reliably.

A confusion matrix is a common tool for evaluating the overfitting in machine learning theory,

especially for the statistical classification problem. In the confusion matrix, each row represents

the predicted class, and each column represents the true one [Fawcett, 2006]. It makes it easy to

see how many observations are right or wrongly classified. Table 1 demonstrated the confusion

matrix. Some metrics often used in machine learning like precison (= TP/(TP + FP )) or

sensitivity (= TP/(TP + FN)) will not be discussed in detail.

Two relatively important indices for our analysis is the false positives and false negatives.

The former is often known as the type I error in statistics, which is checking a condition and

wrongly gives a positive decision, while the latter is a type II error, which is a predicted result

that a condition does not hold, however in fact it does.

Back to our example, as the variable selection is performed parallelly with the model esti-
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True class

Condition positive Condition negative

Predicted

class

Predicted

condition

positive

True positive

(TP)

False positive

(FP)

Predicted

condition

negative

False negative

(FN)

True negative

(TN)

Table 1: Confusion matrix

mation in componentwise gradient boosting algorithm, a large number of iterations often result

in more non-informative variables selected into the final predictors especially for high dimen-

sional data. While the correct information contained in informative variables are extracted from

each iteration, the effect of the remaining useful information is covered by the noise of the

non-informative variables. As a result, more non-informative ones are selected into the final

predictors. So if the number of informative and non-informative variables are treated as the

true condition positive and negative class respectively, the confusion matrix can then be used to

analyse the overfitting and underfitting behaviour of an algorithm.

Figure 14 compares the false positives and false negatives among 100 simulations for both

distribution parameters µ and σ among the five algorithms. Satisfying results are none of the

algorithms ignored selecting the informative variables for both parameters. In other words,

the informative variables are all selected by all methods. As for the false positives, for µ, the

fixedwise methods selected less non-informative noise variables, while the adaptive methods

selected rather more ones. This phenomenon is, however, reversed when seeing σ. The reason

can be partially explained by the balance of decisions, see Figure 11. It can be observed from the

balance comparison, that in fixedwise methods, more iterations are used to update the location

parameter µ, whereas less used for updating σ. Even though the balance rate in SAASL05 is

not as well as the other two approaches, it is significant that more iterations are applied for

updating σ. Recall the step length settings in these algorithms. The real used step length of νσ

in fixedwise methods is 0.1. The SAASL05 set the step length with a constant asymptotic value

0.5, but only 10% of it is used to update the predictors. That is to say, the real used step length

in SAASL05 is 0.05, which is smaller than 0.1. Given all these pieces of information, we can

believe that the fixed step length 0.1 for updating σ is a relatively aggressive value. Therefore,

more non-informative variables in the predictors of σ are selected into the final model because of

the relatively large step length. Similarly, as the adaptive methods update µ with the adaptive

step lengths, though also only 10% of the optimal value is applied in each iteration, these values

are in most cases larger than 0.1. So the false positive rates of the adaptive methods are larger

than that of fixedwise ones.
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Figure 14: Comparison: False positives & False negatives I. As the data type is 2B, so 97

and 3 out of 100 variables are informative and non-informative variables for µ, 98 and 2 for σ.

The fixedwise methods selected less non-informative variables for µ, while the adaptive methods

selected less non-informative variables of σ.

Since there are only three and two informative variables in this model, and the coefficients for

these variables are relatively large enough, it is easy for the algorithms to find their effectiveness.

So it is, in fact, useless to compare the false negatives with the data type 2B in Figure 14, as all

algorithms have the zero values and tell no difference. It is worthy of performing a more complex

experiment and observing how different of the false negatives the algorithms behave.

Given 100 variables xi, i ∈ {1, · · · , 100}, let the first 50 variables to be the informative

variables, and the rest 50 be the non-informative noise variables. Given the coefficients set

{−2,−1, 1, 2, 3} for µ, and the coefficients set for σ are {−0.15,−0.1,−0.05, 0.15, 0.1}. The

coefficients of the first ten informative variables are -2 and -0.15 for µ and σ respectively, and the

coefficients of the next ten ones are -1 and -0.1, and so on. Then each algorithm fits the more
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complex data with maximal 1000 iterations. By this way, quite different results are presented in

Figure 15.
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(a) µ: False positives
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(b) µ: False negatives
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Figure 15: Comparison: False positives & False negatives II. For more details, see the main

context.

There are two points that this data generating mechanism differs from the type B model. The

first point is more informative variables are added into the model and actually 50 variables so

that it will be more difficult for the algorithms to find all of them out. The other point is, as there

are 50 variables in total affect not only the location parameter µ, but also the scale parameter

σ, the typically used coefficient in simulation like 1 or 0.5 together with the 50 variables will

make σ the astronomical figures of for example e50 or e25. So the coefficients of the σ are set

with the small values. But these small coefficients, on the other hand, make it more difficult

for the algorithms to fit, because the impact of the noise variables becomes, in contrast, more

considerable.
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Firstly, observing the outputs of µ. Until the early stopping iterations specified by 10-folds

CV, the FSL and gamboostLSS methods selected relatively less false positives. The adaptive

methods selected in contrast more non-informative variables to the predictors. However, it does

not mean, that the fixedwise methods have better performance because when we observe the

picture of the false negatives, the fixedwise methods also selected no informative variables. In

total, the fixedwise methods didn’t update the predictors of µ at all. The reason can be explained

by the limitation of mstop = 1000. Recall the step length settings in fixedwise methods, the step

length set for both distribution parameters is 0.1. As we’ve seen in the theory sections that after

a sufficient number of iterations have been performed, the optimal step length for σ should be

0.5, and in most cases, the optimal values should also not too far away from 0.5. Take 10% of 0.5

as the real used updating step length, the fixed step length 0.1 is then, in contrast, a relatively

large value (0.1 > 0.05). Consequently, updating σ will usually reduce more empirical risks than

updating µ, because the optimal step length for µ in each iteration is usually larger than 1,

as we have seen in Figure 2, whose coefficients are similar with this experiment. Even though

only 10% of the optimal values are applied, they are still much bigger than the predefined fixed

value 0.1. Additional information, that is not displayed in the graphics, should be mentioned

here is the early stopping values for all algorithms in most cases is 1000, which is a sign of

underfitting. In other words, both fixedwise approaches distributed nearly all the computing

sources to updating σ; this corresponds to their property of making unbalanced decisions. In

contrast, the coefficients of µ in adaptive methods with higher step length in each iteration have

more chances to be updated, as its risk reduction is competitive as that of the σ. Theoretically,

the false positive/negative behaviour of the adaptive methods should be quiet similar, but the

ASL seems to have a lower value in false positives and a higher value in false negatives. It

is also reasonable, as there is an upper boundary (actually 10) of the step length in the ASL

method, and the optimal values, however, can greater than 10. And in these iterations, the risk

reduction of µ should be less than σ. So the ASL method update more frequently the predictor

of σ than µ within the limited 1000 iterations. As long as more iterations are performed, the

ASL method will, of course, select more informative variables, but of course, also more non-

informative variables. So we can still believe, that there are no significant differences among the

three adaptive methods.

Then let’s observe the σ. Accounting for the little unbalanced decisions made by ASL, there

is, in fact, no difference among the adaptive methods. The comparison should be between the

adaptive methods and the fixedwise methods. At first glance, the variation of fixedwise methods

is significant not only in false positive but also in false negatives. After examining the early

stopping values (see Appendix Figure B.3), some simulations with the fixedwise methods have

very small early stopping values. It is probably caused by the small coefficients of σ and the

relatively large updating step length 0.1. As the real coefficients are very small, it is easy to

overfit the coefficient of a variable and failed in generalization. The CV then determines to stop

early in these situations. Fortunately, the median lies in a reasonable region. So we focus on

the median and compare them. The medians of false positives of fixedwise methods are at a

high level, whereas a low level of false negatives. It is also caused by the step length settings.
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As the fixed step length 0.1 is larger than the approximate adaptive step length 0.05, besides,

1000 iterations are not enough for learning a good model, the fixedwise methods can select more

informative variables than the adaptive ones within 1000 iterations. But the cost of this risky

step length is, of course, more non-informative variables are included in the final model.

6.2.6 Special cases

This part will present two simulation outputs related to the properties of the adaptive step length

of νµ proofed in the previous sections.

• Generalized additive models (GAM)

The first one is the application of adaptive step length in GAM. As proved in Eq.(5.20),

the adaptive step length for µ in GLM is the variance of the response. Assume a model

with following structures,

µi = 1 + 2xi

σi = exp(1),

as the σ is constant for all i, the GAMLSS is reduced to GAM or the simple linear model.

Figure 16 illustrated the coefficients and step length νµ when applying the ASL algorithms

to fit the data, i.e. the step length is found by doing a line search instead of an analytical

calculation.
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Figure 16: Coefficients and step length of GAM

As expected, though the adaptive step length is not calculated by the analytical solution,

it is still a constant value 8.63, the half of its logarithm is 1.08, which is approximate

to the actual value 1. The variation after about 130 iterations should be caused by the

computational accuracy. As the model has been already well fitted at about 50 iterations,

further updates help little and require high computing ability.
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• Harmonic mean

Another special case is that after a sufficient number of iterations have been performed,

the adaptive step length in GAMLSS is approximately equal to the harmonic mean of the

variance in the previous iteration, see Eq.(5.21). As discussed before, this relationship will

be more clear if relatively large standard deviations are given, as the side effect of the

base-learn will be covered. The simulation with the model structure is operated,

µi = xi

σi = exp(4xi).

The corresponding output is demonstrated in Figure 17. The model is fitted with the

SAASL algorithm and compared the analytical adaptive step length of µ and the harmonic

mean of σi. From the picture, it can be observed clearly, that both values are roughly

identical after about 100 iterations.
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6.2.7 Summaries of the simulations in the appendix

As there are many outputs exported from the ten models, it will be orderless if they are all listed

in the main context. So we briefly summarize the findings from their results attached in the

appendix.

For model 1a and 1b, i.e. the balanced and unbalanced cases without non-informative vari-

ables, their performances are similar to each other. The coefficients in both models are very well

estimated in all algorithms, and their corresponding mean squared error, as well as the empirical

risk, are almost on the same level. The decisions made by fixedwise methods are unbalanced

and by adaptive methods rather balanced. Unlike the model 2b, the runtime of gamboostLSS in

not only these two cases but also all the without non-informative variables scenario data cases is

longer than the other four methods. The probable reason lies in the complicated internal func-

tion call and the completed test on the input structures, which on the other hand, slows down
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the computing speed when fitting a simple model. For model 1a, the runtime of FSL is a little

shorter than ASL, which might be evidence of the argument of [Bühlmann and Hothorn, 2007].

The speed ranking of the three adaptive methods fulfils the theoretical judgement.

As for the correlated cases 1c and 2c, the adaptive methods are proofed to have worse perfor-

mance than the fixedwise ones (or more precisely gamboostLSS, as the performances of FSL are

also not satisfied). As the predictors are updated with the very bold steps, the early stopping

values specified by CV are very small, and in fact, for most cases less than 10, which means the

algorithms probable stop before the informative variables chosen into the model and before the

coefficients relatively well estimated. Consequently, the performances of the adaptive methods

have a considerable variation.

Just as discussed in 6.2.3, only the adaptive methods can produce a reasonable estimation

of the models with extremely coefficients. The SAASL and SAASL05 have similar performances

in all aspects. Theoretically, the ASL should also deliver a good result. However, within the

predefined 1000 iterations, the upper boundary is still small for solving the given models. The

analysis of the runtime, which is faster than ASL or even quicker than SAASL05 in these cases,

is meaningless, as its coefficients are still far away from the actual values.

6.2.8 Summary

Overall speaking, even though the adaptive method is not always the best choice in all situa-

tions, it provides a fast, balanced and stable solution to the GAMLSS. Table 2 summarized the

comparison of each algorithm according to the simulations.

The main advantages of the adaptive methods lie in computational efficiency and making

balanced decisions. Its drawback is the tendency of overfitting the location parameter, as the

optimal step length in each iteration is usually large. Assume that the observations are drawn

from a multi-dimensional Gaussian distribution, the adaptive step length found by doing a line

search should be replaced with the semi-analytical ones, as firstly they are in essence the same

thing and the results have no significant difference, and secondly, the semi-analytical solution

provides more balanced solutions. If the balance of decisions is not a very important point

during analysis, a much faster alternative SAASL05 is the best choice without worrying about

the compromise in accuracy.

The strength of the fixed step length algorithm is that it tends to select fewer false positives

of the location parameter into the final model; this is because of the carefully small step length

0.1. On the other hand, the same step length for the scale parameter is a relatively careless one;

at least it is large in Gaussian distribution. This problem can be solved by changing the step

length for σ to 0.05 manually. It will also make the decisions more balanced, but still hard to be

as well as the balance rate in adaptive methods. Though [Bühlmann and Hothorn, 2007] argued

that the fixed step length have the similar efficiency as the adaptive ones, which, however, can

not be proofed in this thesis properly, but it should be slower than the SAASL and much slower

than the SAASL05.
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FSL ASL SAASL SAASL05 gamboostLSS

Accuracy (+) + + + (+)

Balance of decisions - (+) + (+) -

Computational efficient - (+) + + (-)

False positives (µ) + - - - +

False positives (σ) - + + + -

False negatives (µ) (-) (+) (+) (+) (-)

False negatives (σ) + - - - +

Table 2: Summary of the comparisons. The “+” sign stands for the positive result, and the “-”

stands for the negative. The brace around each sign represent the opinion of the author, i.e.

there are not enough evidences from the simulations support the conclusion.
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7 Conclusion

This thesis briefly introduced the theory of GAMLSS and gradient boosting. Account for the

shortcomings of the conventional inference methods, we introduced the “non-cyclical” approach

which embedded the variable selection procedure into the learning process. As this approach

might lead to unbalanced decisions with fixed step length, we analyzed the influence of the step

length on the balance and found that the adaptive step length can solve the problem properly.

For Gaussian distribution, according to the analytical solution to the adaptive step length for

the location parameter, we introduced a new semi-analytical approach (SAASL), and its variation

(SAASL05) by replacing the adaptive step length for scale parameter with the asymptotic value

of 0.5. Although the adaptive step length approaches cannot estimate the correlated models

correctly, their effectiveness and balance are impressive. It also suggests a more reasonable fixed

step length (0.05) for the scale parameter in Gaussian distribution when using the fixedwise

approaches.

The creation of the SAASL05 also gives a new idea, that even though the analytical solution

not always exists for every parameter in each distribution, it is worthy of inducing them as far

as possible and trying to find a more reasonable fixed step length according to their properties.

This thesis induced only the optimal step length in Gaussian distribution; more works on other

distributions still need to be done.
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A. MATHEMATICAL INDUCTION

A Mathematical induction

A.1 Efficiency of the fixed step length

Consider the empirical risk at iteration m,
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n∑
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ρ
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y(i), η[m](x(i))

)
(A.1)

≈ 1

n
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=−u(i)

[
η[m](x(i))− η[m−1](x(i))

]
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=νĥ[m](x(i))

(A.2)

=
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ρ
(
y(i), η[m−1](x(i))

)
− ν 1

n

n∑
i=1

u(i)ĥ[m](x(i)) (A.3)

using the first-order Taylor expansion at η[m−1](x(i)) and the definition of pseudo-residuals u(i).

With the componentwise linear squares base procedure and with the standardized predictor

variables,

ĥ[m](x) =

∑n
i=1 x

(i)u(i)∑n
i=1(x(i))2

x = x
1

n

n∑
i=1

u(i)x(i) (A.4)

as for standardized predictor variables, 1
n

∑n
i=1(x(i))2 = 1. The expression in (A.3) becomes

1

n

n∑
i=1

ρ
(
y(i), η[m](x(i))

)
(A.5)

≈ 1

n

n∑
i=1

ρ
(
y(i), η[m−1](x(i))

)
− ν 1

n

n∑
i=1

u(i)

[
x(i)

1

n

n∑
i=1

u(i)x(i)

]
(A.6)

=
1

n

n∑
i=1

ρ
(
y(i), η[m−1](x(i))

)
− ν

(
1

n

n∑
i=1

u(i)x(i)

)2

(A.7)

For adjusted L2 loss, i.e. ρ(y, η) = 1
2 (y − η)2, the empirical risk can be directly derived as
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Given a small value of step length ν, the gradient descent with a general loss function (Eq.(A.7))

behaves very similarly to L2-Boosting (Eq.(A.15)) with respect to minimizing the empirical risk.

Consider the additinoal computing cost of line search, [Bühlmann and Hothorn, 2007] believe

that a small fixed step length is sufficient for boosting algorithms.
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A.2 ASL for µ

The analytical ASL for µ in iteration m can be obtained through minimizing the empirical risk,
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Note that the expression σ
2[m−1]
i represent for the square of the previous standard deviation, i.e.
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[m]
µ (xij∗)u

[m]
µi∑n

i=1
(ĥ
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where
∑n
i=1 ĥ

[m]
µ (xij∗)εµi = 0 in Eq.(A.28), because the residuals are uncorrelated with the fitted

values.

60



A. MATHEMATICAL INDUCTION

A.3 ASL for σ

The analytical ASL for σ in iteration m can be obtained through minimizing the empirical risk,
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The optimal value can be accessed by calculating the derivative of the Eq.(A.34) and letting it

equal zero. And of course, these expression must be proofed to be a convex function. Firstly,

the derivative of Eq.(A.34) is
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σ ĥ[m]
σ (xij∗)

)
. (A.36)

The corresponding second derivative is positive, because
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ĥ[m]
σ (xij∗)

)2
︸ ︷︷ ︸

>0

exp
(
−2η̂[m−1]σ − 2ν[m]

σ ĥ[m]
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So the Eq.(A.34) is a convex function, and its minimum is gained by letting the derivative equal

to zero, i.e.
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σ ĥ[m]
σ (xij∗)

)
(A.41)

=

n∑
i=1
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ĥ
[m]
σ (xij∗) + εσi + 1

)
ĥ
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Figure B.4: Comparison: Estimated coefficients of µ
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Figure B.5: Comparison: Estimated coefficients of µ
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Figure B.6: Comparison: Estimated coefficients of σ
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Figure B.7: Comparison: Estimated coefficients of σ

66



B. FIGURES

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

0.00

0.05

0.10

0.15

FSL ASL SAASL SAASL05 gamboostLSS

M
S

E

Meas Squared Error: µ

(a) Model 1a

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

FSL ASL SAASL SAASL05 gamboostLSS

M
S

E

Meas Squared Error: µ

(b) Model 1b

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

1.0

1.5

FSL ASL SAASL SAASL05 gamboostLSS

M
S

E

Meas Squared Error: µ

(c) Model 1c

●

●
●

●●● ●●●

●

0

1000

2000

3000

FSL ASL SAASL SAASL05 gamboostLSS

M
S

E

Meas Squared Error: µ

(d) Model 1d

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

50

100

FSL ASL SAASL SAASL05 gamboostLSS

M
S

E

Meas Squared Error: µ

(e) Model 1e

Figure B.8: Comparison: Mean Square Error (MSE) of µ
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Figure B.9: Comparison: Mean Square Error (MSE) of µ
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Figure B.10: Comparison: Empirical risk.
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Figure B.11: Comparison: Empirical risk.
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B.3 Balance of decisions
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Figure B.12: Comparison: Balance of decisions.
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Figure B.13: Comparison: Balance of decisions.
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B.4 Computational costs
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Figure B.14: Comparison: mstop. The mstop is specified by the 10-folds CV
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Figure B.15: Comparison: mstop. The mstop is specified by the 10-folds CV
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Figure B.16: Comparison: Computing time
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Figure B.17: Comparison: Computing time
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B.5 Overfitting
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Figure B.18: Comparison: False positives & False negatives of µ
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Figure B.19: Comparison: False positives & False negatives of σ
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Figure B.20: Comparison: False positives & False negatives of µ
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Figure B.21: Comparison: False positives & False negatives of σ

82



C. ELECTRONIC APPENDIX

C Electronic Appendix

• An electronic form of this thesis.

• R folder:

– Methods folder: contains the programs of each step length approaches.

– Simulation folder: contains some simulations required by some programs in the

analysis folder.

– Analysis folder:

∗ utils.R: contains the utility functions used for transforming data and creating

graphics.

∗ simulation study overview.R: creates the graphics required in section overview.

∗ simulation study specialCase.R: creates the graphics required in section spe-

cial cases.

∗ programs begin with bm: are used for doing benchmark experiments. The name of

each program indicate the types of the step lengths and the types of simulations.

Their outputs are saved in Output folder.

∗ programs begin with ana apx: are used for analysing the outputs of benchmark

experiments. All outputs are listed in appendix. The outputs of the program

ana apx mod 2b.R as the main example have been explained in detail in the con-

text of the thesis.

– Output folder:

∗ Benchmark server folder: contains the .RData exported from the bm programs.

∗ Figure folder: contains all graphics used in this thesis.
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