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Abstract
In Scalar-on-Image regression, one often has to deal with situations where the number
of regression coefficients exceeds the number of observations by far. This leads to an
identification problem – the system of equations has no unique solution. To obtain a
reasonable result, additional assumptions must be imposed. In a Bayesian approach,
this can be done by using a Gaussian Markov random field as prior for the regression
coefficients. This implies smoothness over the coefficient image, i.e. adjacent pixels
or voxels are assumed to have similar values. This thesis introduces Gaussian Markov
random fields in general and how they can used as prior in a full Bayesian approach for
Scalar-on-Image regression. Additionally, it will be described how inference can be done
by using iterative methods, also known as Markov Chain Monte Carlo. Furthermore,
several simulation studies shall investigate different aspects of the described methods.
The main focus lies on the influence of hyperparameters and the incorporated neighbours
for a Gaussian Markov random field prior. The simulation studies are carried out for
different types of coefficient images, reflecting various characteristics such as smooth or
sparse structures.
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1 Introduction

1. Introduction
Over time, the progress in many different fields of science increases rapidly which
leads to many highly specialized methods. Due to this fact, classical and widely used
statistical techniques often are not sufficient and many new tailored approaches for
particular research fields appear.
One of these approaches is Scalar-on-Image regression. The goal of Scalar-on-Image
regression is, as the name describes, to regress an input image on a scalar target variable.
This tool can be used in many different fields and applications where one wants to
find structures in these images. Scalar-on-Image regression is widely used in the field
of neuro- or brain imaging. See for instance Goldsmith et al. [2014], where cognitive
outcomes are regressed on measures of white-matter microstructure at every voxel of a
three-dimensional image of the corpus callosum.
A main advantage of Scalar-on-Image regression is the good interpretability of the
estimated regressors: Since the goal to find an appropriate mapping from a higher
dimensional to a one-dimensional space is done (as in common regression tasks) in a
well understandably manner, the result provides a high interpretability in the shape of
a coefficient image. This image gives the opportunity to see which areas (i.e. which
pixels or voxels) of an image are associated with the scalar target variable.
To define Scalar-on-Image regression as a classical regression task, every pixel or voxel
is assumed to have its own regression coefficient β. A distinction to normal linear
regression problems is basically only given by the number of used regression coefficients
and their implicitly given spatial arrangement on a lattice. Since every pixel or voxel is
represented through its own regressor, the number of all regression coefficients grows
exponentially with the resolution of an image. Consider as a simple example a two-
dimensional image with a total amount of L = m×m, m ∈ N pixels. If the side length
m is multiplied by two, the number of pixels and therefore the number ob regressors β
quadruples itself. If this is done for a three-dimensional image (L = m×m×m), the
number of voxels is eight times as high. Hence, this fact can be seen as a manifestation
of the ’Curse of dimensionality’ (see e.g. Bishop [2006]).
Due to the fast growth in technology of generating high resolution images1, the number of
regression coefficients is in the most cases much higher than the number of observations
N . This kind of problem, is also known as large p small n problem (Chakraborty et al.
[2012]), or short p >> n problem (Happ et al. [2018]).
For regression, this means mathematically that the system of equations is non-identifiable.
Therefore one has to make additional assumptions for the coefficients. Many different

1 See e.g. Penny et al. [2011] Chapter 1: ’A short history of SPM’ for an overview of imaging in
neuroscience.

6



1 Introduction

solutions to overcome this problem exist. In the context of p >> n, there are some
popular and useful extensions of the simple linear model which add a regularization
term to the standard regression model. The first which shall be mentioned, is the
well known LASSO (least absolute shrinkage and selection operator). LASSO adds
an L1-penalty for the regression coefficients to the classical OLS problem (Tibshirani
[1996]). This type of penalty has the characteristic to select several coefficients and
shrinks all other to zero (Friedman et al. [2010]).
If an L2-Penalty is chosen, the regression method is called ridge regression (Hoerl and
Kennard [1970]). Here all regression coefficients will get shrunk towards zero, but will
remain in the model. Both methods have there own advantages and disadvantages,
depending on the specific situation or use case.
If one wants to use a combination of both penalties, this can be done by using a linear
combination of them (Zou and Hastie [2005]). This is also known as elastic net.
Both, the LASSO and ridge are specific cases of the more general bridge regression (Frank
and Friedman [1993]), which adds the more universal regularization term J(β, γ) =∑p
j=1 ||βj||γ to the OLS problem. LASSO can be achieved by setting γ = 1 and ridge

regression by setting γ = 2.2

Using a Bayesian perspective, a further penalty term J(·) for the regressors in the OLS
problem can be obtained by expanding the problem with an additional prior assumption
concerning the regression coefficients. The general density of a prior, which is equivalent
to the bridge regression, can be found in Fu [1998]. The density depends, just as the
penalty term J(·) on a parameter γ. For γ = 1, one can deduce the probability density
function of a Laplace distribution. If one is using this distribution as prior for the
regression coefficients, one can derive the LASSO problem. For γ = 2 one can derive
the probability density function of a Normal distribution. Hence, this prior corresponds
to a ridge penalty.3

The use of the described prior distributions has one thing in common: The absolute
values of the estimated β coefficients will be smaller than without the additional prior
assumption. Therefore the used priors make the assumption that the true coefficients
are located around zero; they get ’pushed’ towards zero. In some cases, this can be
a reasonable decision. In general, one must impose additional prior assumptions to
handle the identifiability issue. In some other cases, one can choose more reasonable
priors. With regard to the main topic of this thesis, it is possible to choose a prior
called Gaussian Markov random field (GMRF), which is a Gaussian distribution with

2The general form of the bridge regression existed before LASSO, but γ remained there as a tuning
parameter (Fu [1998]). Tibshirani [1996] introduced LASSO later as a special case of bridge regression.

3The elastic net can also be formulated in a Bayesian manner. The prior the is then given by
π(β) ∝ exp(−λ1||β||1 − λ2||β||22 (Li and Lin [2010]).
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1 Introduction

a specific structure of its inverse covariance matrix. This type of prior distribution
gives the possibility to take the spacial structure of images into account. For this one
requires, that the image is smooth (up to a certain point). In this case, smoothness
means that pixels at the same location tend to have similar values. To do inference in a
regression task with a GMRF prior using a Bayesian framework, iterative methods have
to be applied, which are also known as Markov Chain Monte Carlo (MCMC). These
methods represent a popular technique among statisticians, in case the normalizing
constant of a density is not available and numerical integration is not feasible due to an
extremely high number of involved parameters (Brooks et al. [2011]).

A general and highly flexible approach for many different types of regression tasks are
Structured additive regression (STAR) models (Fahrmeir et al. [2004]). STAR models
provide an unified framework for a lot of different regression problems including nonlinear
and spatial effects, linear and nonlinear interactions between covariates, individual-
specific random intercepts and slopes (Fahrmeir et al. [2007]). Since Scalar-on-Image
regression with GMRF priors is a strategy which makes use of the spatial structure of
an image, a formulation as a STAR model is unproblematic. Thus, Scalar-on-Image
regression tasks can be carried out by using software which is developed for STAR
models.
Despite these models provide a practicable approach to Scalar-on-Image regression, one
often faces situations where a large number of coefficients has to be estimated. This
leads to a high computational burden. If only limited hardware resources are available,
it is necessary to use strategies, to deal with this limitation, e.g. by using approximation
techniques (Schmidt et al. [2017]).

The general idea of this thesis consists in the application of Scalar-on-Image regression
using a full Bayesian approach by examining various aspects through different simulation
studies.
The thesis is structured as follows: Section 2 describes the Scalar-on-Image regression
problem, introduces Gaussian Markov random fields and connects them to each other in
a Bayesian manner. In section 3, it will be described how inference in this context can
be done. Afterwards, section 4 presents different simulation studies examining various
aspects of the presented method. Section 5 gives a short description of alternative
approaches to Scalar-on-Image regression followed by a summary with discussion in
section 6.
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2 Scalar-on-Image Regression

2. Scalar-on-Image Regression

2.1. Representation of Images
In this thesis, an image is considered as a regular lattice, defined by a tuple of integers
n = (n1, . . . nd), where each element specifies the number of pixels in a direction. Hence,
the length of the tuple yields the dimension of the image. The focus will be on two- and
three-dimensional images on a grey scale, i.e. d ∈ {2, 3}.4 Each pixel xl ∈ R will be
subscripted to define its location in the image. In total, an image has n1× · · · × nd = L

pixels. For a single subscript, xl represents a pixel in a vectorized image (when no
other information is given). If a double subscript is used, i.e. xi,l it defines the l-th
pixel of the i-th observation. If the subscript is not separated with a comma, i.e. xkl it
represents the set of random variables located at i and j in the vectorized image of an
arbitrary observation.5

2.2. Regression with Images as Covariates
The general form of Scalar-on-Image regression in this thesis is considered to have the
following form (as defined in Happ et al. [2018]):

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,lβl + εi, i = 1, . . . , N (2.1)

where yi is a scalar response for each of N images. yi is considered to be a linear
combination of scalar covariates wi ∈ Rp, where each element gets multiplied with a
weight αj, the j-th element of a vector α ∈ Rp 6 and the vectorized images multiplied
by the vectorized coefficient image (which must have the same dimension unvectorized
and therefore the same length L in vectorized form). Alternatively (2.1) can be written
in matrix notation:

y = Wα +Xβ + ε (2.2)

with the vector of responses y = (y1, · · · , yN ), W ∈ RN×p as matrix of scalar covariates
and X ∈ RN×L, the row-wise vectorized images with the vectorized coefficient image
β = (β1, . . . βL). The error term ε is assumed to be normal distributed, i.e. εi iid∼ N(0, σ2

ε)
(in (2.1)) or ε ∼ N(0, σ2

εIN) (in (2.2)). Note that the first element wi,1 or the first

4Images can also exist in higher dimensions. One example would be a fMRI time series where each
voxel of a three-dimensional image is observed at several time points. An analysis of this kind of
images can be found for example be found in Penny et al. [2005]

5Note that a double subscripted matrix, e.g. Qij defines the element in row i and column j.
6The first part is therefore writable as wTi α.
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2.3 Gaussian Markov Random Fields 2 Scalar-on-Image Regression

column in W takes by convention a value of 1 to model an intercept.
Also note that in this thesis, there will be no other covariates than the images itself
and an intercept. Therefore (2.1) reduces to

yi = α +
L∑
l=1

xi,lβl + εi, i = 1, . . . , N. (2.3)

As in the first section mentioned, this is a classical regression problem. The only
difference lies in the total amount of parameters which shall be estimated. Since the
system of equations is not identifiable, one has to impose additional assumptions to
obtain a unique solution. Using a Bayesian framework, this can be done by assuming a
prior distribution for the β-coefficients.
A popular and reasonable class of priors is a Gaussian Markov random field (GMRF).
This assumes smoothness in the image, i.e. neighboring pixels (or voxels) tend to have
similar values. With a smoothness assumption, the accuracy of relevant predictors
might get improved since the spatial arrangement in images can be exploited, e.g. in
brain images (Reiss et al. [2015]). Next, GMRFs will be introduced and get connect to
Scalar-on-Image regression.

2.3. Gaussian Markov Random Fields
In this section, GMRFs (firstly proper, then intrinsic) will be introduced. Furthermore,
it will be described why they are meaningful as prior for Scalar-on-Image regression.

2.3.1. Proper GMRFs

A GMRF is basically nothing else than a multivariate Normal distribution with some
properties concerning the covariance matrix Σ (Rue and Held [2005]). Given an
arbitrary random vector x = (x1, . . . , xn)T ∈ Rn with respect to an (undirected) graph7

G = (V , E), the density of x is given by

π(x) = (2π)−n/2|Q|1/2exp
(
−1

2(x− µ)TQ(x− µ)
)

where Q = Σ−1 is the precision matrix of x. For the entries of Q it holds:

Qij 6= 0 ⇐⇒ {i, j} ∈ E ∀i 6= j.

7An undirected graph G is a tuple G = (V, E) where V is the set of nodes on G and E is the set of
edges {i, j} with i, j ∈ V and i 6= j (Rue and Held [2005]).
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2.3 Gaussian Markov Random Fields 2 Scalar-on-Image Regression

This means that a GMRF is a Normal distribution where an undirected graph defines
the structure of the covariance matrix Σ, or more precisely, the precision matrix Q.
Furthermore, it holds for GMRFs:

xi ⊥ xj|x−ij ⇐⇒ Qij = 0

⊥ means that xi and xj are stochastically independent given x−ij. The negative sign
in the index of x−ij denotes x without the elements in the subscript, i.e. x−ij is the
random vector (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . xn). The precision matrix Q is in
many cases, in Scalar-on-Image regression in particular, very sparse. Therefore the
most entries of Q are zero and an efficient representation in memory is possible by only
saving non-zero values. The property of sparsity does not transcribes to its inverse Σ
(which is in general a dense matrix). From this point of view, it could be advantageous
to represent GMRFs with a precision matrix.
If x is a GMRF with respect to a graph G with mean µ and precision matrix Q > 0,
then the conditional expectation, precision and correlation for an element xi is given by

E(xi|x−i) = µi −
1
Qii

∑
j:j∼i

Qij(xj − µj) (2.4)

Prec(xi|x−i) = Qii (2.5)

Corr(xi, xj)|x−ij) = − Qij√
QiiQjj

i 6= j. (2.6)

Here, j ∼ i indicates that element j and i are neighbours. Therefore j : j ∼ i can be
expressed as the set {j ∈ V : {i, j} ∈ E}. Thus the set includes all elements which
have an edge originating from element i (and therefore all neighbours of xi). The
proof can be found in Rue and Held [2005], pp. 23-24. Since the diagonal elements
of Q represent the conditional precision and the off-diagonal elements the conditional
correlation (with proper scaling through the denominator), all elements from Q have a
useful interpretation which is different from Σ.8

It is possible to generalize the results from above (2.4) - (2.6) to more elements than
one xi. For this, the graph G is divided in two subgraphs GA and GB. Then V can be
split in two subsets: A ⊂ V and B = V \A where A,B 6= ∅. This makes it also possible
to calculate the conditional mean µA|B and precision matrix QA|B (which are basically
the same as above but multivariate, see Rue and Held [2005]).
Another way to define GMRFs is given by using full conditionals {π(xi|x−i)} as done

8Σ provides information about the marginal distributions.
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2.3 Gaussian Markov Random Fields 2 Scalar-on-Image Regression

by Besag [1974, 1975]. For this one has to specify

E(xi|x−i) = µi −
∑
j:j∼i

ωij(xj − µj) (2.7)

Prec(xi|x−i) = κi > 0 (2.8)

for i = 1, . . . , n, for some {ωij, i 6= j} and vectors µ and κ. Since the neighbourhood
between two locations is symmetric, it must hold that if ωij 6= 0, then also ωji 6= 0. By
comparing (2.7) and (2.8) with (2.4) and (2.5), it is obvious to choose for the precision
matrix Q

Qii = κi and

Qij = κiωij

with the restriction that κiωij = κjωji, i 6= j,Q > 0 (hence Q has to be symmetric).
A full proof for this can also be found in Rue and Held [2005] or partially, but with
some useful and intuitive implications, in Fahrmeir and Kneib [2011]. For the proof it
is required that the positivity condition holds9 (which is in general fulfilled in reality).
Under positivity, it is possible to use Brook’s lemma which allows a factorization –
known as Brook’s expansion – of a joint density by using an arbitrary fixed x′ which has
the same support as x. Then the full conditionals from (2.7) and (2.8) define a GMRF.

2.3.2. Intrinsic GMRFs

An intrinsic GMRF (IGMRF) of order k is a normal GMRF where the precision matrix
Q has no full rank, i.e. rk(Q) = n− k. The density is given by

π(x) = (2π)−(n−k)/2(|Q|∗)1/2exp
(
−1

2(x− µ)TQ(x− µ)
)
. (2.9)

Since Q has no full rank, it does not have a normal determinant. Therefore, | · |∗

defines a generalized determinant which is the product of all nonzero eigenvalues of
Q. (2.9) is an improper density 10, but for Bayesian inference it is possible to use it in
a reasonable manner. Furthermore, for an IGMRF (of first order) it must hold that
Q1 = 0 where 1 is a vector of ones; the rowsums have to be 0, i.e. ∑j Qij = 0, ∀i.
The idea of intrinsic GMRFs can be motivated by a univariate random walk (firstly of

9The positivity condition states that if p(xi) > 0, i = 1, . . . , n, then also p(x) > 0. Therefore the
support of the joint distribution of x has to be the cartesian product of the support of all individual
marginals of x.

10Rue and Held [2005] give an interpretation of such an improper distribution in section 3.2 (pp.
89-93).
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order one). For this consider a random vector x = (x1, . . . , xn) where the increments
are normally distributed:

∆xi iid∼ N(0, κ−1), i = 1, . . . n− 1

where the (forward) difference operator of first order ∆ is defined as ∆xi = xi+1 − xi.
Higher orders are defined recursively as ∆kxi = ∆∆k−1xi. The k-th differences can be
interpreted as an approximation of the k-th derivative (see Rue and Held [2005], p. 87
for an intuitive explanation). The density of x is then given by

π(x|κ) ∝ κ(n−1)/2exp
(
−κ2

n−1∑
i=1

(∆xi)2
)

= κ(n−1)/2exp
(
−κ2

n−1∑
i=1

(xi+1 − xi)2
)

= κ(n−1)/2exp
(
−κ2x

TRx
)

= κ(n−1)/2exp
(
−1

2x
TQx

)

with Q = κR and the structure matrix R which is defined as

R =



1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1


(2.10)

The form of R can be easily derived using the definition of the quadratic form of a
matrix and the difference operator for a whole vector denoted with D:

n−1∑
i=1

(∆xi)2 = (Dx)T (Dx) = xTDTDx = xTRx

where D is mostly zero with dimension (n− 1)× n:

D =


−1 1

−1 1
. . . . . .
−1 1


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The rank of Q is n− 1 and the rows sum up to zero. Therefore an univariate random
walk is an IGMRF of order one.
As in Fahrmeir and Kneib [2011] stated, the distinction between a proper GMRF and
an IGMRF can be made from this random walk. The first-order random walk can be
expressed as

xt = xt−1 + εt, ε ∼ N(0, κ−1).

To obtain a proper GMRF it must be modified by multiplying xt−1 with a constrained
factor ρ which ’pushes’ xt−1 towards zero:

xt = ρxt−1 + εt, ε ∼ N(0, κ−1), −1 < ρ < 1.

IGMRFs of higher orders can be constructed using higher increments. For example, a
second-order IGMRF can be constructed by using ∆2. The density is then given by

π(x|κ) ∝ κ(n−1)/2exp
(
−κ2

n−2∑
i=1

(∆2xi)2
)

= κ(n−1)/2exp
(
−κ2

n−1∑
i=1

(xi − 2xi+1 + xi+2)2
)

= κ(n−1)/2exp
(
−1

2x
TQx

)

where again Q = κR. The structure matrix is now given by

R =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1


(2.11)

R can be constructed as it is done in (2.10). The rank of Q is now n− 2.

2.4. GMRFs in Scalar-on-Image Regression
The examples of random walks in the previous section are IGMRFs on a regular lattice
with dimension one. In this section, they will be generalized to higher dimensions.
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2.4.1. IGMRFs on regular Lattices in higher Dimensions

A first possibility to model structure matrices for higher dimensions is given by using
the first neighbours on a regular lattice (Clayton [1995], Rue and Held [2005]). For this,
one can use (2.4) and (2.5). Let µ = 0, then the conditional expectation is

E(xi|x−i) = − 1
Qii

∑
j:j∼i

Qij(xj − µj).

If one requires equal weights for all neighbours, the result is a precision matrix Q = κR

with entries

Rij =− 1{i ∼ j}

Rii =
∑
i 6=j

1{i ∼ j} (2.12)

where 1{i ∼ j} is one, if locations i and j are adjacent and zero otherwise. Therefore,
the main diagonal elements Rii simply counts the number of all neighbours and the
off-diagonal elements Qij indicates their neighbourhood to a location with the value
−1. Comparing (2.12) with the structure matrix of a one-dimensional random walk as
(2.10), it turns out that they are completely equivalent. Therefore (2.12) gives a rule to
construct IGMRFs of first order for higher dimensions.
Moreover, it is possible to use one-dimensional random walks (also of higher order)
to construct structure matrices for IGMRFs of any dimension. The one-dimensional
random walk can easily be associated with a stochastic process observed over time (with
equal distant discrete time points). A two- or three-dimensional lattice corresponds to a
set of discrete points located on a plane or in a space. Therefore it would be reasonable
to use the concept of the one-dimensional random walk also for higher dimensions.
This can be done using interactions (Rue and Held [2005], Clayton [1995]). One can
regard a regular lattice of dimension d ∈ {2, 3} as an interaction of two one-dimensional
grids, a vertical and an horizontal one. Following this idea, the resulting differences of
differences model has the increments

∆(1,0)∆(0,1)xij
iid∼ N(0, κ−1),

i = 1, . . . , n1 − 1

j = 1, . . . , n2 − 1

where n1 corresponds to the number of locations in the horizontal and n2 in the vertical
direction. The subscript of ∆ indicates the direction of the grid where the difference
operator is acting on, i.e. ∆(1,0) denotes the horizontal direction and ∆(0,1) the vertical.
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Fig. 2.1 All first neighbours for two-dimensional lattice marked in red. Note that the
shown neighbourhood differs at the margins.

Hence ∆(1,0)∆(0,1)xij can also represented as xi+1,j+1− xi+1,j − xi,j+1 + xi,j . The density
of this IGMRF is then given by

π(x|κ) ∝ κ
(n1−1)(ntwo−1)

2 exp
−κ2

n1−1∑
i=1

n2−1∑
j=1

(∆(1,0)∆(0,1)xij)2


= κ

(n1−1)(n2−1)
2 exp

(
−κ2x

TRx
)
.

(2.13)

The conditional mean depends on the eight nearest neighbours and is, by using (2.4)
and setting µ = 0, given by 11

E(xi|x−i) = − 1
4κ{ − 2(xi−1,j + xi+1,j + xi,j−1 + xi,j+1)+

(xi−1,j−1 + xi+1,j−1 + xi−1,j+1 + xi+1,j+1)}.
(2.14)

The conditional precision is according to (2.5) given by

Prec(xi|x−i) = 4κ.

Figure 2.1 illustrates the included neighbourhood. Note that these results do not hold
at the margins since there are not eight adjacent neighbours. To get a better intuition
why the form of the conditional expectation and precision is quite intuitive, it can be
helpful to look at the structure matrix of (2.13).
The structure matrix R can be constructed from two one-dimensional random walks by

11Note that the comma separation in the subscript is done due to clarity and is therefore different
from the definition in section 2.1: The first index defines the location in the vertical direction, the
second in the horizontal.
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using the Kronecker product (Rue and Held [2005]):

R = R1 ⊗R2 (2.15)

where R1 and R2 are defined as in (2.10). The subscript is needed to distinguish
between the length of the one-dimensional random walks. Since the ranks of the structure
matrices are rk(R1) = n1−1 and rk(R2) = n2−1, it follows that rk(R) = (n1−1)(n2−1)
which is a basic property of the Kronecker product (Steeb and Shi [1997]). Comparing
to other interaction structures, which will be described in the following section, this
leads to a high loss in rank concerning Q.
Modeling interactions by using Kronecker products is not limited to spacial effects. It
is also possible to model interactions between the time and spacial domain as it is done
e.g. in Gössl et al. [2001].

Since in Scalar-on-Image regression one has to deal with two- or three-dimensional
images, the construction of IGMRFs of higher order from one-dimensional IGMRFs by
using Kronecker products seems to be a well-suited approach. Referring to (2.15), the
Kronecker product is used to model a full interaction in each direction. This means,
that all combinations in each dimension will be considered.12. This also leads, as stated
above, to a high rank deficit in the structure matrix. Therefore one could consider
modeling only the direct dependencies. This can be done by using a Kronecker sum:

R = R1 ⊕R2 = R1 ⊗ In2 + In1 ⊗R2 (2.16)

where Ink is the identity matrix with the dimensions nk, k ∈ 1, 2 defining the length
of the image in the k-th dimension. The eigenvalues of (2.16) are given according to
Steeb and Shi [1997] by λ(1)

i + λ
(2)
j , i = 1, . . . , n1, j = 1, . . . n2 where λ(k)

l is the l-th
eigenvalue of Rk. Since R1 and R2 are the structure matrices from one-dimensional
random walks, the rank for the Kronecker sum is given by

rk(R1 ⊕R2) = n1n2 − 1.

Hence, there is no additional loss in rank by using only direct interaction from one-
dimensional IGMRFs. The direct interaction takes only four neighbours into account
(±1 in each dimension). The conditional mean is

E(xi|x−i) = − 1
4κ(xi−1,j + xi+1,j + xi,j−1 + xi,j+1)

12This leads to 3d − 1 neighbours since the dependencies are present for all combinations (direct and
indirect).
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Fig. 2.2 First direct neighbours for two-dimensional lattice marked in red. Note that the
shown neighbourhood differs at the margins.
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Fig. 2.3 Second direct neighbours for two-dimensional lattice marked in red. Note that the
shown neighbourhood differs at the margins.

and the precision
Prec(xi|x−i) = 4κ.

Figure 2.2 illustrates the included neighbourhood. It can be seen easily, that now the
indirect (diagonal) neighbours are no longer taken into account. The last interaction
which will be presented in this thesis, is the same as (2.16), but using structure matrices
from one-dimensional IGMRFs of second order as previously shown in (2.11). Figure 2.3
illustrates the considered neighbourhood. Also in this case, only the direct neighbours
will be used (no indirect interactions) which preserves a higher rank.

The shown interactions are used for two-dimensional images. Since images also exist in
higher dimensions, the shown interactions can also be adapted to this circumstance. By
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only considering direct interaction, the three-dimensional analogue of (2.16) is

R = R1 ⊗ In2 ⊗ In3+

In1 ⊗R2 ⊗ In3+

In1 ⊗ In2 ⊗R3

where one loses again only the number of ranks from the one-dimensional IGMRFs (i.e.
one for first order and two for second order).
If one wants to take all interactions into account, the structure matrix can be calculated
by

R = R1 ⊗R2 ⊗R3.

Using this neighbourhood structure, one has to bear in mind that the loss of rank is
also higher than in two dimensions:

rk(R) = (n1 − 1)(n2 − 1)(n3 − 1).

2.4.2. IGMRFs as Prior in Scalar-on-Image Regression

Since Scalar-on-Image regression is basically a normal regression problem where one
has to deal with an identification issue, additional prior assumptions are crucial to
obtain useful estimates for the regression coefficients β. As already described in the
first section, one can assume smoothness in the image. Therefore it will be required
that adjacent pixels (or voxels) tend to have similar values. There are existing different
methods to obtain smoothness. Using a Bayesian framework, this can be done by
incorporating additional prior information in the regression model. Smoothness can be
obtained by using IGMRFs to model the dependency between the β coefficients.
In a full Bayesian approach one has to specify priors over all variables in (2.1) or (2.2).
For this, it is assumed that α, β and σ2

ε are independent. The distributions for y, α
and σ2

ε can be chosen as follows. y is Normal, since the ε is Normal. α is assumed to
be constant and therefore uninformative. σ2

ε is assumed to follow an Inverse-gamma
distribution. More precisely:

y|α, β, σ2
ε ∼ N(Wα +Xβ, σ2

εIN)

π(α) ∝ const

σ2
ε ∼ IG(aε, bε)
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where the shape aε and rate bε are hyperparameters for the Inverse-gamma distribution
(IG(aε, bε)). The density of σ2

ε is given by

π(σ2
ε) = baεε

Γ(aε)
(σ2

ε)−aε−1exp
(
− bε
σ2
ε

)
.

To obtain smoothness, an IGMRF is chosen as prior for the coefficient image β:

β|κ ∼ IGMRF(κR). (2.17)

Therefore β is Normal distributed with zero mean and the implicitly defined covariance
matrix via the structure matrix R:

Σ = Q−1 = (κR)−1

In a full Bayesian approach one has to specify an additional distribution for the precision
parameter κ, i.e. κ follows a Gamma distribution with shape aκ and rate bκ:

κ ∼ Ga(aκ, bκ).

Therefore the density is given by

π(κ) = baκκ
Γ(aκ)

κaκ−1exp(−bκκ).

It is also possible to formulate the prior distribution in terms of the variance σ2
β = κ−1

using an Inverse-gamma distribution as it is done for the variance parameter of the
error term σ2

ε . Moreover, it is of course possible to use a Gamma distribution as prior
for the error term (σ2

ε)−1. See e.g. Happ et al. [2018] where both, the error term and
the inverse precision is defined with an Inverse-gamma distribution.
For (2.17), it is also required to impose a neighbourhood structure for Q = κR. Three
potential candidates were described in section 2.4. How the different candidates influence
the estimation will be later examined in section 4.3.3 in a simulation study.
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3 Inference

3. Inference
In a full Bayesian approach, one is interested in the joint posterior distribution of all
variables given the data (scalar covariates and the images). The posterior distribu-
tion is proportional to the likelihood of the data times the prior distributions of the
parameters.13

3.1. Gaussian Response
Since εi iid∼ N(0, σ2

ε), the likelihood has the form of a multivariate Gaussian distribution.
The joint posterior distribution is therefore given by

π(α, β, κ, σ2
ε |y) ∝ L(y|α, β, κ, σ2

ε)× π(β|κ)× π(κ)× π(σ2
ε)

= (σ2
ε)−N/2exp

(
− 1

2σ2
ε

(y −Wα−Xβ)T (y −Wα−Xβ)
)

× κrk(R)/2exp
(
−1

2β
TQβ

)
× κaκ−1exp(−bκκ)

× (σ2
ε)−aε−1exp

(
− bε
σ2
ε

)
.

(3.1)

The posterior has a rather complex form. Therefore it is due to the absence of a
normalizing constant necessary, to use iterative methods to draw samples from the
posterior distribution. For a Gaussian response, the full conditionals for all variables
can be derived in a closed form. The prior of α is assumed to be constant (hence α is a
fixed effect). The full conditional of α is also Gaussian, i.e.

α|· ∼ N(µ̃α, Σ̃α)

with
µ̃α = (W TW )−1W T (y −Xβ) Σ̃α = σ2

ε(W TW )−1.

The full conditional for β is given by

β|· ∼ N(µ̃β, Q̃−1)

with

µ̃β =
(

1
σ2
ε

XTX +Q

)−1 1
σ2
ε

XT (y −Wα) Q̃ =
(

1
σ2
ε

XTX +Q

)
.

13Since the prior of α is assumed to be constant, there is no need for a specification of its density
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Despite the fact that Q has no full rank, now Q̃ has full rank since it is the sum of Q
and (XTX)/σ2

ε . In practice, there could still be a problem concerning the numerical
stability due to the imprecision of computing machines (if the data does not provide
enough information).
The full conditional for κ is:

κ|· ∼ Ga(ãκ, b̃κ)

with
ãκ = rk(R)/2 + aκ b̃κ = −1

2β
TRβ + bκ

and for σ2
ε :

σ2
ε |· ∼ IG(ãε, b̃ε)

with
ãε = N/2 + aε b̃ε = (y −Wα−Xβ)T (y −Wα−Xβ)/2 + bε.

The derivation of all full conditionals can be found in the appendix A.
All full conditionals are available in a closed form and are well-known distributions.
Therefore a Gibbs sampler can be used to draw samples from the posterior distribution
(Brooks et al. [2011]). The Gibbs sampler was originally formulated in Geman and
Geman [1984], where they described the connection between Markov random fields
(which was introduced for the Gaussian case in this thesis in 2.3) and the Gibbs
distribution which is used in mechanical systems. The Gibbs sampler is an easy
algorithm where random numbers are drawn from the constituent full conditionals in
an iterative procedure (Robert and Casella [2010]).
Given an arbitrary set of random variables ϑ = (ϑ1, . . . , ϑK), where all full conditionals
π(ϑ1|·), . . . , π(ϑK |·) are known, i.e. it is possible to generate random numbers from
them, a pseudo algorithm for the Gibbs sampler is stated in Algorithm 1.
The result of the iteratively drawn random numbers is a Markov chain that converges
to a stationary distribution.14 After discarding a sufficient high number M of iterations
(Burn-In), the generated ϑ’s can be seen as realizations of the posterior distribution.

14A Markov chain converges to a stationary distribution under certain circumstances which are not
discussed here. A good source concerning this topic is Meyn and Tweedie [2012]. However, for the
here presented methods the convergence is ensured by construction, see Chib and Greenberg [1995]
for an explanation of the more general MH-Algorithm, which will be used in the next section.
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Initialize all variables ϑ(0)

for t = 1: #iterations do
for k = 1:K do

Generate ϑ(t+1)
k ∼ π(ϑk|ϑ(t+1)

1 , . . . ϑ
(t+1)
k−1 , ϑ

(t)
k+1, . . . , ϑ

(t)
K ))

end
end
Discard the first M Iterations as Burn-In.

Algorithm 1: Gibbs sampler

3.2. Non-Gaussian Response
In the previous section, and also the regression problem (2.1) stated in section 2.2,
assume a Gaussian response and therefore y ∈ R. In this section, the Scalar-on-Image
regression problem will be adapted to a general response, for exponential families in
particular. For this, it is assumed that yi follows a distribution of the exponential family
(Nelder and Wedderburn [1972], Fahrmeir et al. [2007]) with density

π(yi|θi) = exp
(
yθ − b(θ)

φ
ω + c(y, φ, ω)

)

where ω is a weight factor which is assumed to be one and can therefore be ignored. φ is
the dispersion parameter which equals in the case of a Binomial and Poisson distribution
one and in the case of a Gaussian distribution σ2. The primary focus lies on θ. The
goal is to model µi using a linear predictor ηi = ∑p

j=1 wi,jαj +∑L
l=1 xi,lβl as in (2.1) via

a response function µi = h(ηi). The full likelihood for all observations is given by

L(yi|θi) =
N∏
i=1

π(yi|θi).

The likelihood in the formulation of the posterior (3.1) now has no Gaussian form
anymore (except one assumes a Normal distributed response). Hence, the posterior
distribution in (3.1) is again rather complex.
But as in the Gaussian case, it is possible to use iterative methods to draw random
numbers from the posterior distribution. The updates for the precision of the IGMRF κ

in Algortihm 1 stay the same. For the regression coefficients, they get a quiet complex
form since their shape depends strongly on the likelihood. Therefore now for both, α
and β, GMRFs as priors are assumed. Since the prior for α has to be non-informative
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the corresponding GMRF has precision Qα = καIp where κα → 0. This is equivalent to
assume a constant prior. The set of edges E of the corresponding graph associated with
Qα is empty. In the remaining section, α as well as β will be represented through the
random variable γ. This allows an easier notation.
The update for the regressors in Algortihm 1 must be done now by a Metropolis-Hastings
(MH) step. The Metropolis algorithm was originally proposed by Metropolis et al. [1953]
and later generalized by Hastings [1970]. It was first heavily used by chemists and
physicists and not widely known among statisticians until 1990 (Brooks et al. [2011]).
To compute updates one needs to specify a proposal distribution ϕ(ϑ̃(t+1);ϑ(t)|·) to
generate a candidate ϑ̃(t+1) given the old state ϑ(t) (conditioned on all other variables)
for a new point of the Markov chain. The general MH-Algorithm is given in Algorithm
2:

Specify proposal distribution ϕ(·; ·)

Initialize all variables ϑ(0)

for t = 1: #iterations do
Generate a candidate ϑ̃(t+1) ∼ ϕ(ϑ̃(t+1);ϑ(t)|·)
Calculate acceptance rate ψ(ϑ̃(t+1), ϑ(t)):

ψ(ϑ̃(t+1), ϑ(t)) = min
[
1, π(ϑ̃(t+1))ϕ(ϑ̃(t+1);ϑ(t))

π(ϑ(t))ϕ(ϑ(t); ϑ̃(t+1))

]

Accept ϑ̃(t+1) as new state ϑ(t+1) with probability ψ
end
Discard the first M Iterations as Burn-In.

Algorithm 2: Metropolis-Hastings-Algorithm

π(ϑ) is the kernel of the desired distribution. Since the normalization constant of this
distribution cancels out in the denominator and numerator, it is not needed to be
known. The acceptance rate ψ ensures that the Markov chain converges to a stationary
distribution where the states can be seen as realizations of π(ϑ) after discarding the
first M iterations as Burn-In.
Looking at the general posterior as stated in the first line of (3.1) one can see that for a
general regressor γ (which is either α or β) the full conditional is given by

π(γ|·) ∝ L(y|γ, φ)× π(γ|κγ) (3.2)

where π(γ|κγ) is a GMRF as described above.
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The likelihood and the GMRF can only in a Gaussian case be combined to a Normal
distribution (see section 3.1). But following Rue [2001] and Rue and Held [2005], one
can approximate the likelihood with a ’Gaussian-like’ function. This makes it possible
to bring the likelihood and the GMRF together and get an appropriate proposal for a
MH-update.
The approximation can be done by a quadratic Taylor expansion of the log-likelihood
l(γ) = ∑N

i=1 ln{π(yi|γ, φ)} around the current state γ(t). The full conditional of the
likelihood and the GMRF can be written as

π(γ|·) ∝ exp
(
l(γ)− 1

2γ
TQγ

)
. (3.3)

Now the approximation of the likelihood around the current state γ(t) is

l(γ) ≈ a(t) + (b(t))Tγ − 1
2γ

TC(t)γ (3.4)

where

a(t) = l(γ(t))− (γ(t))T ∂l(γ(t))
∂γ

+ 1
2(γ(t))T ∂2l(γ(t))

∂γTγ
γ(t)

b(t) = ∂l(γ(t))
∂γ

+ C(t)γ(t)

C(t) = −∂
2l(γ(t))
∂γTγ

.

Since the first part of (3.4) (a(t)) does not depend on γ (only on the current state γ(t)),
it can be neglected. Inserting (3.4) in (3.3), the approximated full conditional is

π(γ|·) ≈ exp
(
a(t) + (b(t))Tγ − 1

2γ
TC(t)γ − 1

2γ
TQγ

)
∝ exp

(
−1

2γ
T (Q+ C(t))γ + (b(t))Tγ

)
.

This is a GMRF in its canonical representation as defined in Rue and Held [2005], p.27,
i.e. the proposal γ̃ is again a Gaussian:

γ̃|· ∼ N(µ̃(t), (Q̃(t))−1) (3.5)

where the mean µ̃(t) is given by solving the linear system

Q̃(t)µ̃(t) = b(t)
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and the precision matrix Q̃(t) = Q+ C(t). Using (3.5) as proposal distribution ϕ(γ(t); ·),
a new point γ̃(t+1) of the Markov chain can be drawn. This proposed point will be
accepted as new state γ(t+1) with probability

ψ(γ(t), γ̃(t+1)) = min
[
1, π(γ̃(t+1)|·)ϕ(γ̃(t+1), γ(t))

π(γ(t)|·)ϕ(γ(t), γ̃(t+1))

]

where π(γ(t)|·) is the unnormalized full conditional of γ given in (3.2).
Note that if the likelihood originates from an exponential family, (3.5) is equivalent to
an iterated weighted least squares (IWLS) proposal as described in Gamerman [1997]
which is extensively used in this framework (Schmidt et al. [2017], Fahrmeir and Tutz
[2013]).
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4. Simulation Studies
The previously presented concepts were used in different simulation studies to investigate,
how different types of parameters affect the results. The main focus in lies on two-
dimensional images with a Normal response. Though, there will be a short investigation
for a binary response and for three-dimensional images with a Gaussian response.

4.1. Software
The Scalar-on-Image regression problem can be seen as a specific case of STAR models
(Fahrmeir et al. [2004]), as shortly described in the first section). Since one formulates
spatial dependencies between regression coefficients using GMRFs, they coincide very
well with them.
The R package Sarim (Kuester [2018]) provides functions and utilities for fitting STAR
models. Therefore the analyses were carried out with the statistical software R (R
Core Team [2018]). Since quiet high computational effort is needed to draw from the
posterior distributions, the critical parts (i.e. the simulation of the Markov chains) use
the C++ extensions Rcpp with RcppEigen (Eddelbuettel [2013], Bates and Eddelbuettel
[2013], Eddelbuettel and François [2011]).
To provide a unified model frame for Scalar-on-Image regression, the R package SOIR
was written, which can be seen as an extension of the Sarim package to Scalar-on-Image
regression. The SOIR package is provided via GitHub 15 and can be installed and loaded
within a R session with

# install SOIR from github using the devtools package

devtools ::install_github("RaphaelRe/SOIR")
library(SOIR)

The package contains the function SOIR which can be incorporated within the syntax
of a call of the sarim function and is basically a wrapper of the function sx from the
Sarim package. The call can be done like this:

sarim(y ~ SOIR(x))

where x are N vectorized images given in the description of the full function. The full
function with all arguments:
15Full link to repository: www.github.com/RaphaelRe/SOIR
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SOIR(images,
dimension = rep(sqrt(ncol(images)),2),
neighbours = c("2dfirst", "2dsecond", "2dallfirst",

"3dfirst", "3dsecond", "3dallfirst"),
solver = c("rue", "lanczos"),
demean = FALSE,
add_diag = NULL,
...)

The constituent arguments are described as follows:

images
A N × L matrix, N images with L pixels or voxels in each row (in vectorized form).
Therefore each column represents the l-th pixel or voxel over all images.

dimension:
One has to submit the exact dimensions of the (unvectorized) images (as a vector of
the side length of the original image), since this information is needed to construct the
structure matrix of the GMRF. Due to convenience, a default argument is implemented
which assumes two-dimensional quadratic images (as the coefficient images which are
later used in the simulation studies).

neighbours:
This argument defines the incorporated neighbours for the construction of the IGMRF.
Currently, there are three different neighbourhoods implemented for two- and three-
dimensional images. "2dfirst" uses the first four direct neighbours (see figure 2.2),
"2dsecond" the eight direct first and second neighbours (see figure 2.3). "2dallfirst"
incorporates all eight first direct and indirect neighbours (see figure 2.15). The function
provides the same options for three-dimensional images, as it was described in section
2.4 (same commands where ’2’ get replaced by ’3’).

solver:
The solver which shall be used for sampling from the normal distribution (proposal
density). The standard solver is "rue", which uses a Cholesky decomposition of the
precision matrix. See Rue and Held [2005], p. 34 for the algorithm to sample from a
Gaussian distribution with a given covariance or precision matrix and p. 35 for sampling
from a Gaussian distribution in canonical representation.
The other possible solver is "lanczos" which is a Krylov subspace method. These
methods approximate the solution A−1b of a large linear system Ax = b (Saad [2003]).
This is done by projecting the problem to a lower dimensional space in a sequential
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manner. See Simpson et al. [2013] or Schmidt et al. [2017] for a more accurate discussion.
It can be reasonable to use this solver if the number of pixels or voxels is extremely
high and only limited hardware resources are available.

demean:
An option to demean the images before fitting the model. This can be reasonable to
set all images on the same colour level.

add_diag:
An option for adding a given number to the main diagonal of the structure matrix of
the (latent) IGMRF which will be constructed by SOIR(). This can be done to obtain
numerical stability within the sampling procedure when the data do not contain enough
information. Moreover, this could lead to better results (see section 4.3.2). By adding
a value to the main diagonal, the constructed IGMRF will get a normal GMRF where
the precision matrix has full rank. This will shrink the coefficient image towards zero
depending on the value of add_diag. The default is NULL, which means that no number
will be added. For add_diag→∞, the coefficients will be shrunk to zero. Therefore it
can be seen as a penalty term as described in section 1.

...(further arguments):
Further arguments which will be passed to the underlying sx() function from the Sarim
package. In the context of Scalar-on-Image regression, this are mainly three further
arguments: ka_start, ka_a and ka_b. The first argument is the starting value of the
Markov chain, which shall be generated for the precision parameter κ. The latter two
are the hyperparameters of the Gamma distribution, which is assumed as prior for κ,
i.e. the shape aκ and rate bκ. The hyperparameters are rather important since the
result depends heavily on them (see section 4.3.2).

The SOIR package also provides a view utilities which makes work a little easier. An
example would be the get_beta() function which can easily be used to extract the
coefficient image from the fitted model, discarding a Burn-In and reduce the chains of all
coefficients (e.g. by its mean). This allows an easy workflow within the ’Forward-Pipe’
from the magrittr package (Bache and Wickham [2014]). A simple example would be
to fit a model and directly look at the estimated coefficient image (e.g. by using the
function plot_coefficient_image()). For this, a Burn-In of 100 will be discarded,
then the generated chains get reduced by its mean and then reshaped to the original
dimension of the coefficient image (here 32× 32) by using the function set_dim().
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sarim(y ~ SOIR(x), intercept = "TRUE") %>%
get_beta(intercept = TRUE, burnin = 100, reduce = TRUE,

reduce_with = mean) %>%
set_dim(c(32,32) %>%
plot_coefficient_image()

4.2. Data

4.2.1. Coefficient Images

For the simulation, four different coefficient images, depicted in figure 4.1, were consid-
ered. The first three are taken from Happ et al. [2018].16 Each image reflects different
structures in the coefficients.

• Smooth: A smooth image which is constructed from three two-dimensional Gaus-
sian densities. This image reflects the smoothness assumption in the coefficients
the most. Hence, it can be expected that GMRFs as priors should work well.

• Sparse: This image was originally proposed by Goldsmith et al. [2014]. The
majority of the pixels are zero. There are only two small and smooth spikes. This
reflects the assumption for sparse GMRFs which are not covered in detail in this
thesis (see section 5 for a short description).

• Bumpy: This image was proposed by Reiss et al. [2015]. It is a two-dimensional
version of the bump function (Donoho and Johnstone [1994]), which is a common
benchmark for wavelet-based methods.17

• Circle: A simple circle with a clear edge at its margins. Therefore it can be used
to examine the influence of different model settings in a clean manner. Pixels are
either 0 or 0.1.

4.2.2. Covariates

The used covariates are N = 300 observations of 32 × 32 subimages from 300 three-
dimensional images. The first of the full images can be found in Appendix B.

16The four images are also integrated into the SOIR package. The code of the first three is originally
provided as supplemental material of Happ et al. [2018].

17Note that the original function was created for 64 × 64 = 4096 pixels. To obtain an image with
32× 32 = 1024 pixels, the resolution was scaled down.
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Bumpy Circle
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Fig. 4.1 The four coefficient images used in the simulations as β coefficients. (Note that
each image has its own scale)

The image covariates stem from FDG-PET scans, which measure the glucose uptake in
the brain. The original scans were co-registered to simultaneously measured MRI scans
in order to reduce registration effects (Caballero et al. [2015]).
To obtain two-dimensional images, the center of the 20th slice of the three-dimensional
images was extracted since it contains the most non-NA values. Three of the used
images are depicted in figure 4.2. The NA values (located at the corners) were set to the
lowest global value overall used images (which was roughly −0.6013). All images were
demeaned before using them in the simulation (as in Happ et al. [2018]).

4.2.3. Construction of Response

As already mentioned, there were no further fixed effects α except an intercept and of
course the covariate images. The relation is described in (2.3) with intercept α = −1.
For a Gaussian response, the added error terms εi were constructed with 5% noise on
the original response, i.e.

εi
iid∼ N(0, ŝd(Xβ)× 0.05)
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Fig. 4.2 Three of 300 used subimages with dimension 32× 32. Note the different scale in
each image. NA values (at the corners) were set to the lowest global value of -0.6013 (round to

four decimal digits).

For a binomial response, (2.3) was used to to construct ηi (without εi). An individual
probability pi was afterwards calculated via

pi = exp(ηi)
1 + exp(ηi)

.

yi was then constructed with threshold 0.5, therefore

yi =

1 pi > 0.5

0 pi ≤ 0.5

4.3. Studies

4.3.1. General Settings

All Markov chains run with 5000 iterations (except for the three-dimensional images).
A point estimation was done by calculating the mean over the generated Markov chain.
The first 500 iterations were always discarded as Burn-In. For a Normal response, the
hyperparameters (shape and rate of the Inverse-gamma distribution) for the variance
σ2, were chosen to aε = bε = 10−4 with a starting value of (σ2)(0) = 0.1. Each study
was carried out with 28 replications.

4.3.2. Influence of Hyperparameters

In a first simulation study, it was examined how important a proper choice of the
hyperparameters aκ and bκ are. For this, two different parameter settings were tested:

• aκ = bκ = 1, which is considered as rather uninformative (Happ et al. [2018])

• aκ = 10, bκ = 10−3, highly informative
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For both settings, two different values of add_diag were used:

• add_diag = 10−4, which has no real influence and is used to obtain numerical
stability.

• add_diag = 10−1, pushes the the coefficient towards zero which leads to a lower
variance in the posterior (see results).

Hence there are four models for four coefficient images. This leads to 16 models in
total.18

To evaluate the quality of the estimated coefficient images, the mean squared error
(MSE) between the true and the estimated image was calculated.

Adaption to coefficient images with many zero values:
Since all coefficient images except Smooth, contain a relatively high proportion of
(nearly) zero values, the MSE was not calculated over all pixels, but by using a set L̃.
Therefore the used MSE formula is

MSE = 1
|L̃|

L∑
l=1

1{l ∈ L̃}(β̂l − βl)2.

|L̃| is the cardinality of the set L̃. β̂l is the point estimation (mean over all iterations
without Burn-In) of the simulated Markov chain for the l-th coefficient. βl is the true
coefficient and 1{l ∈ L̃} an indicator function which is one, if l is in the set L̃ and zero
otherwise.
L̃ was constructed as the union of all non-zero coefficients of the true coefficient image
and all coefficients, were the 95%-credible interval of the simulated posterior distribution
contains the zero. The union of both, the estimated and the true non-zeros is necessary
since the model fails to identify all non-zero values. For an illustration see figure 4.3,
where the estimated coefficient image (left) and the true (right) are depicted for only one
replication. The non-zero values, which were identified by the model are coloured in red
and superimposed over the estimated and true coefficient image. It can be seen in the
true image, that not all non-zero pixels get identified. Another important observation
is, that the estimated image fails to estimate the values to a substantial extent (note
the high difference in the scale of the 2 images). See the following full results of the
study for further details. For the depicted estimation, the four first direct neighbours
were used. The hyperparameters were set to aκ = 10 and bκ = 10−3. Furthermore, a
18Note that many other parameter settings were tested using the R package mlrMBO (Bischl et al.
[2017]), which provides a modular framework for model-based optimization of expensive black-box
functions. It was used to examine how reasonable the stated hyperparameters are. As surrogate
model, a Gaussian process was used with a Matérn covariance function. The results gave no more
insight and will not be discussed any further in this thesis.
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Fig. 4.3 The estimated (with four neighbours, aκ = 10, bκ = 10−3, add_diag = 0.1) and
true Sparse coefficient image (right). Depicted in red are the non zero values (95%-credible

interval)

value of 0.1 was added to the main diagonal of the structure matrix of the underlying
GMRF.

Results:
The estimated coefficient images are given in Appendix C. All model settings provide no
useful coefficients for the images Sparse and Bumpy. Even though the models are able
to find a sort of right structures of the true coefficient images, they completely fail to
estimate their magnitude (note the scale of the estimated images in comparison with the
original). Since smoothness over the coefficients is imposed, only smooth patterns can
be estimated accurately. High steep peaks are getting smoothed out. The assumption
also leads to a blurring of sharp edges as it can be observed in the estimated images for
Circle.
For a comparison of the parameter settings, one can look at the resulting MSEs. The
mean over all resulting MSEs of the four models, for the four coefficient images, are
given in table 4.1. Each row shows the results for a specific parameter combination over
all considered coefficient images. It can be seen, that the highest MSEs are given for
aκ = bκ = 1 and add_diag = 10−4. Therefore, it seems meaningful to choose a highly
informative prior. By comparing the MSEs of the different values of add_diag by equal
aκ and bκ, it can be seen that adding an additional value to the diagonal seems to lead
to better results. For a better understanding concerning the variance, the MSEs over
all 28 replications are given as boxplots in figure 4.4.19

19For a better visualization, the upper limit of the y-axis was set to 0.5. For the first parameter
configuration (aκ = bκ = 1, add_diag = 10−4), the highest outliers had a value around 1.5.
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Parameters Coefficient image
aκ bκ add_diag Smooth Sparse Bumpy Circle
1 1 10−4 0.2586 0.2172 0.1689 0.2644
1 1 10−1 0.0089 0.0287 0.0080 0.0092
10 10−3 10−4 0.0106 0.0260 0.0059 0.0125
10 10−3 10−1 0.0017 0.0101 0.0012 0.0025

Tab. 4.1 Mean of 28 replications of the calculated MSEs over all models with Normal
response (round to four decimal digits). The minimal value of each column is printed in bold.
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Fig. 4.4 MSEs for different parameter configurations as given in table 4.1. Note that the
y-scale was limited to obtain a better comparison between the different hyperparameter

configurations.

Adding an additional value to the main diagonal leads to a much lower variance (or
higher precision) of the GMRF (see the moments of a GMRF, (2.5) in section 2). This
also affects the calculated credible intervals. For low values of add_diag, the intervals
are much greater than for higher values. A major consequence of this is, that the
calculated intervals contain much more often the zero. For an illustration see figure 4.5.
Depicted are two single (only one replication) generated Markov chains for βl, l = 328
20 of the coefficient image Sparse for both values of add_diag (10−4 and 10−1) with
aκ = 10, bκ = 10−3. The red lines are the 2.5% and 97.5% quantiles and therefore gives
the 95%-credible interval. The blue line indicates the zero. It can be seen that for
add_diag = 10−4, the variance of the chain is much higher and the credible interval
20l = 328 was chosen, since it has the highest mean of all generated chains.
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includes the zero. For the second case, the variance is much smaller and the zero is not
included in the credible interval.21
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Fig. 4.5 Generated Markov chains of βl, l = 328 for aκ = 10, bκ = 10−3 and the two
different values of add_diag(10−4 and 10−1). The red lines indicate the 2.5% and 97.5%

quantiles and the blue line the zero.

By looking at all credible intervals for all coefficient images and all parameter config-
urations, it was observable that the first three models were not able to identify any
non-zero values (see table 4.2, which shows the sum of all credible intervals that excludes
the zero). Only the model with aκ = 10, bκ = 10−3 and add_diag = 10−4 was able to
identify non-zero values.

4.3.3. Influence of incorporated Neighbours

In this study, the influence of the incorporated neighbours of the GMRF was examined.
For this only the images Smooth and Circle were used. Smooth was chosen since it
suits the smoothness assumption very well. Circle was chosen to examine how the
incorporated neighbourhood influences sharp edges in images. For both coefficient

21Note that depicted chain for add_diag = 10−1 corresponds to the 328-th pixel of figure 4.3.
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Parameters Number of non-zero coefficients
aκ bκ add_diag Smooth Sparse Bumpy Circle
1 1 10−4 0 0 0 0
1 1 10−1 0 0 0 0
10 10−3 10−4 0 0 0 0
10 10−3 10−1 160 21 110 126

Tab. 4.2 Number of non-zero values using a 95%−credible interval. Note that the counts
stem from only one replication.

images the hyperparameters were set to aκ = 10, bκ = 10−3 and add_diag = 10−1. The
evaluation was again done by using the MSE. The results in form of the mean over 28
replications are given in table 4.3.

Neighbours MSEs
Smooth Circle

"2dfirst" 0.0017 0.0025
"2dsecond" 0.0015 0.0019

"2dallfirst" 0.0035 0.0042

Tab. 4.3 Mean of 28 replications of the calculated MSEs over all models with Normal
response for incorporated neighbours (round to four decimal digits). The minimal value for

each coefficient image is printed in bold.

For a better understanding, the MSEs of the 28 replications are depicted again as
boxplots in figure 4.6.
It turns out, that for the here examined coefficient images, incorporating eight neighbours
(first direct and indirect) leads to much higher MSEs. In Addition, it seems like the MSEs
tend to be smaller if not only the first, but the first and second direct neighbours are
taken into account. To get more insight, how the neighbourhood affects the coefficient
images, see figure 4.7, which shows their estimations for all neighbourhoods. Each pixel
was calculated as the mean over all point estimates of all 28 replications.
The image shows, that there is only a very slight visual difference between the two
direct neighbourhoods. It can also be seen, that the third option leads to a rather
bad result which coincides very well with the results of the calculated MSEs. The bad
results are plausible since the structure matrix has a much lower rank as in the other
considered neighbourhoods.

4.3.4. Lanczos Solver

This simulation was carried out to test, if the second possible solver "lanczos" delivers
equal results. This was only done for the coefficient image smooth and circle. The
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Fig. 4.6 MSEs for the three different types of incorporated neighbours for 28 replications.

convergence threshold for the solver was set to 10−4. The experiment was set up like for
the influence of the hyperparameters, but only with aκ = 10, bκ = 10−3 and add_diag
= 0.1. The simulation was again repeated 28 times. The resulting MSEs are given in
table 4.4 (round on 4 decimal digits). For both coefficient images (Smooth and Circle),
the mean MSE over 28 replications was nearly the same. Round on four decimal digits,
the results are actually equal.
For a visual comparison between the two solvers see figure 4.8. Depicted are the
estimated coefficient images Smooth (left) and Circle (right). The first row shows the
results for "lanczos", the second for "rue". It can be seen that there is only a very
small difference between the two solvers.

solver MSEs
Smooth Circle

"rue" 0.0017 0.0027.
"lanczos" 0.0017 0.0027

Tab. 4.4 Different MSEs for Smooth and Circle estimated with solvers "rue" and
"lanczos" for comparison. "lanczos" was calculated with a convergence threshold of 10−4.
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Fig. 4.7 Influence on the estimated Coefficient images for Smooth (left) and Circle (right)
using three different incorporated neighbourhoods as described in section 4.1

4.3.5. Binary Target Variable

An additional short simulation study for a binary y was conducted to examine, whether
and how well iterative methods are working (again for 28 replications).
The construction of the response is described in section 4.2.3. The simulation was
only done for the coefficient image Smooth with the parameter configuration aκ =
10, bκ = 10−3 and two different values of add_diag. The estimated coefficient images
are presented in figure 4.9, left for add_diag = 10−4 and right for add_diag = 10−1.

39



4.3 Studies 4 Simulation Studies

Lanczos Smooth

Rue Smooth

Lanczos Circle

Rue Circle

−0.099

−0.058

−0.018

0.023

0.064

  β

−0.097

−0.055

−0.013

0.030

0.072

  β

−0.038

−0.003

0.031

0.066

0.100

  β

−0.042

−0.006

0.031

0.067

0.104

  β

Fig. 4.8 Comparison lanczos (first row) and rue (second row) for the coefficient image
Smooth (left) and Circle (right), calculated over 28 replications.

Each pixel is again calculated as the mean over the point estimates of 28 replications.
The results for both are rather bad: By looking at the scale, it can be seen that the
estimated coefficients take rather extreme values (in the positive direction as well as
in the negative). Nevertheless, it can also be seen that some structures in the images
were found, especially for a lower value of add_diag. Despite the found structure,
the mean MSEs over 28 replications were 1.3469 for add_diag = 10−4 and 0.2623 for
add_diag = 10−4 (which are both much higher than for a Gaussian response). Since
the estimated coefficient image for add_diag = 10−4 is more smooth, the regions with
extreme values are greater. See e.g. the bottom right in both images. This leads to a
much higher MSE for the lower value of add_diag.
An inspection of the realized Markov chains had shown, that a lower value of add_diag
leads again to a much lower variance. Therefore the difference in the MSEs should not
be overrated. Moreover, the mean acceptance rates for the MH-updates were only 50.5
% for the add_diag = 10−4 and 45.2% for add_diag = 10−1.
Therefore it can be concluded, that the estimation for a binary target variable delivers
no satisfactory results in this simulation. A deeper analysis for a binary y is needed
but will be not covered in this thesis.
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Fig. 4.9 Estimated coefficient image (over 28 replications) for a binary target variable. The
left image shows the estimation with add_diag = 10−4, right with add_diag = 10−1.

4.3.6. Three-dimensional Images

The last simulation study was done for a three-dimensional coefficient image. As in
the first section described, the number of coefficients grows in three dimensions much
faster. This also leads to a higher number of coefficients even though the side lengths
nk, k = 1, 2, 3 of the used images were sharply reduced. The image was constructed from
the coefficient image Circle and forms a cylinder: The total dimension is 16× 16× 10.
The slices three to eight are two-dimensional Circles with dimension 16× 16. Figure
4.10 shows the original coefficient image.22 The used covariates are three-dimensional
subimages from the center of the same original covariates as used before.
Since the number of coefficients is more than double as high as for the used two-
dimensional image, the calculated chains run only over 3000 iterations. The simulation
was again repeated 28 times. The hyperparameters for the prior Gamma distribution
were set informatively to aκ = 10, bκ = 10−3 and an additional value for add_diag was
again set, to 10−1 to get a lower variance in the estimation.
Figure 4.11 shows the estimated coefficient image.
The estimated image shows relatively similar results as for its two-dimensional analogue.
The circles in the center of the image get recognized and estimated correctly. But the
smoothness assumption leads to a blurring of the edges.
The mean over 28 MSEs was 0.0036 (round to 4 decimal digits).

22Note that the range of the colour scale was aligned to the scale of the estimated coefficient image to
make both images comparable.
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Fig. 4.10 Original three-dimensional coefficient image with dimension 16× 16× 10
depicted in 10 slices.

Fig. 4.11 Estimated three-dimensional coefficient image with dimension 16× 16× 10
depicted in 10 slices.
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5. Other Models
This thesis described and used different settings of GMRFs within a full Bayesian
approach for Scalar-on-Image regression. Besides this, other approaches exist, which
can be considered.

The smoothness assumption formulated through a GMRF is maybe not always present
in the true coefficient image (or only to a rather small magnitude, see e.g. the coefficient
image Sparse). To overcome this problem within a Bayesian framework, one can use
an additional type of prior which imposes sparsity (as it is present in the coefficient
Sparse). Goldsmith et al. [2014] add this type of prior to get a variable selection aspect
to the GMRF. This is supposed to combine the smoothness and sparsity assumption.
The idea of this is, that major parts of the true coefficient image are not associated with
the target variable y and are therefore assumed to be zero. Therefore they use a latent
binary indicator image that designates coefficients as either predictive or nonpredictive.
This is done by a latent Ising prior in a hierarchical Bayesian formulation.
A coefficient βl is then either zero or follows a GMRF. If an Ising prior is used within
the hierarchical Bayes, one has to deal with two additional parameters coming from
the Ising model. These two parameters control the overall sparsity of the coefficient
image. Therefore the results depend heavily on them. The estimation for these two
parameters can be done with a cross-validation approach, which consequently leads to
a much higher computational burden in comparison to a standard GMRF (see Happ
et al. [2018]).

Functional approaches
Apart from iterative methods, other approaches for Scalar-on-Image regression exist.
According to Happ et al. [2018], these methods can be concluded as basis function
approaches. The idea behind these methods is, that the coefficient image is generated
by a function β(·) : T → R with T ⊂ Rd. β(·) is evaluated at the points tl of a finite
lattice. Therefore βl = β(tl) represents the values of the unknown coefficient image. It
is assumed that β lies in the span of K known basis functions B1, . . . BK , which is a
K-dimensional space. The original regression problem (2.1) can therefore represented
in terms of these basis functions (the fixed effects remain unchanged):

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,l
K∑
k=1

bkBk(tl) + εi. (5.1)

Now, the number of coefficients, denoted with bk, k = 1, . . . K, which shall be estimated
is K. Usual K is much smaller than L. As long as p+K < N , the system of equations
is identifiable. If N is too high, it is possible, to impose additional assumptions for the
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coefficients bk as described before.
If one uses orthonormal basis functions, it can be useful to interpret the observed
images also as functions and to expand them in the same basis functions as β(·) with
coefficients ξi,m. Then the regression problem (2.1) can be represented as:

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,lβl + εi

≈
p∑
j=1

wi,jαj +
K∑
m=1

K∑
k=1

ξi,mbk
L∑
l=1

Bm(tl)Bk(tl) + εi

≈
p∑
j=1

wi,jαj +
K∑
m=1

K∑
k=1

ξi,mbk

∫
T
Bm(t)Bk(t)dt+ εi

= wTi α + ξT b+ εi

where ξ = (ξi,1, . . . , ξi,K) and b = (b1, . . . bK). Note that for a non-equidistant lattice,
integration wights would be needed to be valid.
In general, there are different types of basis functions which can be used for the regression
problem. An overview of some examples (taken from Happ et al. [2018]):

• (Penalized) B-Splines (see Marx and Eilers [2005])

• Wavelets (see e.g. Reiss et al. [2015])

• Principal component regression (see e.g. Allen [2013])

• Combination of the above variants. (See e.g. Reiss and Ogden [2010] for principal
component regression based on splines or Reiss et al. [2015] for principal component
regression and partial least squares in wavelet space.)

Each of these basis function approaches has its own assumptions concerning the unknown
coefficient image which leads to different results. For a comparison of all methods
mentioned above, see Happ et al. [2018] where a simulation study for the different
methods is conducted.
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6. Summary and Discussion
This thesis introduced Scalar-on-Image regression by using iterative methods, i.e.
Markov Chain Monte Carlo and examined different aspects in various simulation stud-
ies.

Firstly, Scalar-on-Image regression and Gaussian Markov random fields (GMRFs) were
introduced. A GMRF is a Normal distribution, which can be used to model depen-
dencies between adjacent locations. Therefore it seems like a reasonable prior for
Scalar-on-Image regression to overcome the p >> n problem. Furthermore, it exploits
the spacial structure in images, which could lead to better results – as long as the
smoothness assumption for the underlying coefficient image holds.
Afterwards, it was described how inference in this context can be done. In a full
Bayesian approach, one has to use iterative methods which are also known as Markov
Chain Monte Carlo. For a Gaussian response, all full conditionals are known and a
Gibbs sampler can be used to draw from the posterior distribution. For a non-Gaussian
response, one has to use a Metropolis-Hastings update within the generated Markov
chain for the regression coefficients.

Following the presented concepts, different simulation studies were carried out. The first
study examined the influence of chosen hyperparmeters. All parameter configurations
were able to find underlying structures in the images. But due to the smoothness
assumption, the models fail to estimate accurate values for high peaks and blur sharp
edges. An informative prior led to better estimations for all underlying coefficient
images. This seems plausible: Since the number of coefficients was much higher than
the number of observations, one has to subjoin a lot of prior information, to obtain
satisfactory results. Furthermore, it was tested if it is useful to add an additional
value to the main diagonal of the structure matrix. This leads to a lower variance in
the generated Markov chains and the calculated MSEs. This has implications for the
realized study: For a lower value, a higher number of replications that 28 could be
appropriate. Adding an additional value also shrinks the coefficients towards zero. One
has to be aware of these circumstances and must choose all parameters with caution.
In a second study, the influence of the incorporated neighbourhood was examined (for
the coefficient images Smooth and Circle). The results revealed, that incorporating
the first direct and indirect neighbours led to the worst results. The reason for this
is probably the high loss in rank of the precision matrix. Incorporating the first and
second direct neighbours yielded slightly better results than only using the first four.
This could be plausible: By using eight direct neighbours, one can utilize the spacial
structure a little more than by using only four, without suffering from a much higher
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loss in rank.
For the same coefficient images, it was shown that a Lanczos approximation works very
well and leads to nearly equal results. Therefore one can use this option if the number
of coefficients is quite high and only limited hardware resources are available. However,
the question whether this result is applicable to a general coefficient image remains.
An additional study for the coefficient image Smooth with a binary target variable
was conducted. The resulting MSEs were rather bad. Nevertheless, the models were
able to find structures in the images, where a lower value of add_diag led to more
smoothness in the estimated image, but also to a higher MSE. Though, this also leads
again to a higher variance in the generated chains and therefore in the reliability of the
results. It would also be interesting how different settings affect the acceptance rate
of the MH-update. Therefore much deeper investigations are needed to get a better
understanding of this kind of problem.
A last study for three-dimensional images with a Gaussian response was done. As in the
first section described, the number of coefficients grows very fast with the dimension.
Therefore the study was only done for a smaller image (regarding the side length). The
results are roughly similar to a two-dimensional image. The difference lies in the needed
computing resources.
The simulation studies had shown, that in general an informative prior with the first
and second direct neighbours seems to be meaningful. It can also be useful to add
an additional value to the structure matrix to obtain more reliable results. Though a
deeper analysis of non-Gaussian responses is needed.

The last section presented other methods for Scalar-on-Image regression. To overcome
the enforced smoothness over the full coefficient image, one can extend the GMRF prior
for the β coefficients with a further Ising prior, to additionally include a sparseness
assumption. This leads to additional tuning parameters and therefore to a much higher
computational effort.
Furthermore, other approaches exist. Here, one assumes that the coefficient image
is generated by a latent function which maps from a higher dimensional space to a
one-dimensional. The function is evaluated for each pixel or voxel at its location.
Furthermore, it is assumed that this latent function can be represented by a set of basis
functions. Using this basis functions, one can reduce the number of regressors until
the problem gets a feasible solution. The outcome of the estimation strongly depends
on the used basis functions. Each basis function imposes its own assumption for the
underlying coefficient image.

This has, according to Happ et al. [2018], some important implications: If one imposes
assumptions for a model, the found results are not only containing information from
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the data, but also from the assumptions made in the model. Therefore if one assumes
smoothness, as it is done in this thesis by using GMRFs, the result will be a smooth
image. Therefore the found results will always reflect the imposed structures. Or as
stated by Coombs [1964]: "We buy information with assumptions".
This means for p >> n problems, for Scalar-on-Image regression in particular, that
one needs a deep understanding of the application field and the used methods. It is
important to evaluate if a specific assumption is justifiable and inferred results are valid.
It is also important to understand the impact of model settings as hyperparameters
and choose them appropriately.
With respect to the presented simulation studies, this means that additional investi-
gations would give more insight. All studies were carried out with a constant number
of observations. It is questionable, how many observations are required and how this
number interacts with the strength of the chosen prior information. Furthermore, it
could be interesting if and how the used neighbourhood interacts with the resolution of
images. Potential anisotropy in images is an additional point which, however, was not
covered by this thesis.

47



6 Bibliography

Bibliography
Allen, Genevera I. (2013). “Multi-way functional principal components analysis”. In:
2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP). IEEE, pp. 220–223.

Bache, Stefan Milton and Hadley Wickham (2014). magrittr: A Forward-Pipe
Operator for R. R package version 1.5. url: https : / / CRAN . R - project . org /
package=magrittr.

Bates, Douglas, Dirk Eddelbuettel, et al. (2013). Fast and elegant numerical
linear algebra using the RcppEigen package. In: Journal of Statistical Software 52.5,
pp. 1–24.

Besag, Julian (1974). Spatial interaction and the statistical analysis of lattice systems.
In: Journal of the Royal Statistical Society. Series B (Methodological), pp. 192–236.

Besag, Julian (1975). Statistical analysis of non-lattice data. In: The statistician,
pp. 179–195.

Bischl, Bernd, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas,
and Michel Lang (2017). mlrMBO: A Modular Framework for Model-Based Op-
timization of Expensive Black-Box Functions. In: arXiv. url: http://arxiv.org/
abs/1703.03373.

Bishop, Christopher M. (2006). Pattern recognition and machine learning. springer.

Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng (2011).
Handbook of Markov Chain Monte Carlo. CRC press.

Caballero, Miguel Ángel Araque, Matthias Brendel, Andreas Delker, Jinyi
Ren, Axel Rominger, Peter Bartenstein, Martin Dichgans, Michael W.
Weiner, Michael Ewers, et al. (2015). Mapping 3-year changes in gray matter
and metabolism in Aβ-positive nondemented subjects. In: Neurobiology of aging 36.11,
pp. 2913–2924.

Chakraborty, Sounak, Malay Ghosh, and Bani K. Mallick (2012). Bayesian
nonlinear regression for large p small n problems. In: Journal of Multivariate Analysis
108, pp. 28–40.

Chib, Siddhartha and Edward Greenberg (1995). Understanding the metropolis-
hastings algorithm. In: The american statistician 49.4, pp. 327–335.

48

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
http://arxiv.org/abs/1703.03373
http://arxiv.org/abs/1703.03373


6 Bibliography

Clayton, D. G. (1995). Generalized linear mixed models. In: Markov chain Monte
Carlo in practice. Ed. by Walter R. Gilks, Sylvia Richardson, and David Spiegelhalter.
London: Chapman and Hall/CRC, pp. 275–301.

Coombs, Clyde H. (1964). A theory of data. New York: Wiley.

Donoho, David L. and Jain M. Johnstone (1994). Ideal spatial adaptation by
wavelet shrinkage. In: biometrika 81.3, pp. 425–455.

Eddelbuettel, Dirk (2013). Seamless R and C++ Integration with Rcpp. ISBN
978-1-4614-6867-7. New York: Springer. doi: 10.1007/978-1-4614-6868-4.

Eddelbuettel, Dirk and Romain François (2011). Rcpp: Seamless R and C++
Integration. In: Journal of Statistical Software 40.8, pp. 1–18. doi: 10.18637/jss.
v040.i08. url: http://www.jstatsoft.org/v40/i08/.

Fahrmeir, Ludwig, Thomas Kneib, et al. (2011). Bayesian smoothing and regres-
sion for longitudinal, spatial and event history data. In: OUP Catalogue.

Fahrmeir, Ludwig and Gerhard Tutz (2013). Multivariate statistical modelling
based on generalized linear models. Springer Science & Business Media.

Fahrmeir, Ludwig, Thomas Kneib, and Stefan Lang (2004). Penalized struc-
tured additive regression for space-time data: a Bayesian perspective. In: Statistica
Sinica, pp. 731–761.

Fahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian Marx (2007).
Regression. Springer.

Frank, LLdiko E. and Jerome H Friedman (1993). A statistical view of some
chemometrics regression tools. In: Technometrics 35.2, pp. 109–135.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani (2010). Regularization
paths for generalized linear models via coordinate descent. In: Journal of statistical
software 33.1, p. 1.

Fu, Wenjiang J. (1998). Penalized regressions: the bridge versus the lasso. In: Journal
of computational and graphical statistics 7.3, pp. 397–416.

Gamerman, Dani (1997). Sampling from the posterior distribution in generalized
linear mixed models. In: Statistics and Computing 7.1, pp. 57–68.

Geman, Stuart and Donald Geman (1984). Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. In: IEEE Transactions on pattern
analysis and machine intelligence 6, pp. 721–741.

49

https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/


6 Bibliography

Goldsmith, Jeff, Lei Huang, and Ciprian M. Crainiceanu (2014). Smooth
scalar-on-image regression via spatial Bayesian variable selection. In: Journal of
Computational and Graphical Statistics 23.1, pp. 46–64.

Gössl, Christoff, Dorothee P. Auer, and Ludwig Fahrmeir (2001). Bayesian
spatiotemporal inference in functional magnetic resonance imaging. In: Biometrics
57.2, pp. 554–562.

Happ, Clara, Sonja Greven, and Volker J. Schmid (2018). The impact of model
assumptions in scalar-on-image regression. In: Statistics in medicine 37.28, pp. 4298–
4317.

Hastings, W. Keith (1970). Monte Carlo sampling methods using Markov chains
and their applications. In: Biometrika 57.1, pp. 97–109.

Hoerl, Arthur E. and Robert W. Kennard (1970). Ridge regression: Biased
estimation for nonorthogonal problems. In: Technometrics 12.1, pp. 55–67.

Kuester, Christopher (2018). Sarim: Structured additive regression model using
interative methods. https://github.com/bioimaginggroup/Sarim.

Li, Qing and Nan Lin (2010). The Bayesian elastic net. In: Bayesian Analaysis 5.1,
pp. 151–170.

Marx, Brian D. and Paul H.C. Eilers (2005). Multidimensional penalized signal
regression. In: Technometrics 47.1, pp. 13–22.

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller (1953). Equation of state calculations by
fast computing machines. In: The journal of chemical physics 21.6, pp. 1087–1092.

Meyn, Sean P. and Richard L. Tweedie (2012). Markov chains and stochastic
stability. Springer Science & Business Media.

Nelder, John Ashworth and Robert W.M. Wedderburn (1972). Generalized
linear models. In: Journal of the Royal Statistical Society: Series A (General) 135.3,
pp. 370–384.

Penny, William D., Nelson J. Trujillo-Barreto, and Karl J. Friston (2005).
Bayesian fMRI time series analysis with spatial priors. In: NeuroImage 24.2, pp. 350–
362.

50

https://github.com/bioimaginggroup/Sarim


6 Bibliography

Penny, William D., Karl J. Friston, John T. Ashburner, Stefan J. Kiebel,
and Thomas E. Nichols (2011). Statistical parametric mapping: the analysis of
functional brain images. Elsevier.

R Core Team (2018). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-
project.org/.

Reiss, Philip T. and R. Todd Ogden (2010). Functional generalized linear models
with images as predictors. In: Biometrics 66.1, pp. 61–69.

Reiss, Philip T., Lan Huo, Yihong Zhao, Clare Kelly, and R. Todd Ogden
(2015). Wavelet-domain regression and predictive inference in psychiatric neuroimag-
ing. In: The annals of applied statistics 9.2, p. 1076.

Robert, C. and G. Casella (2010). Introducing Monte Carlo Methods with R. Use
R! Springer. url: https://books.google.co.il/books?id=WIjMyiEiHCsC.

Rue, Håvard (2001). Fast sampling of Gaussian Markov random fields. In: Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63.2, pp. 325–338.

Rue, Havard and Leonhard Held (2005). Gaussian Markov random fields: theory
and applications. CRC press.

Saad, Yousef (2003). Iterative methods for sparse linear systems. Vol. 82. siam.

Schmidt, Paul, Mark Muehlau, and Volker Schmid (2017). Fitting large-scale
structured additive regression models using Krylov subspace methods. In: Computational
Statistics & Data Analysis 105, pp. 59–75.

Simpson, Daniel P., Ian W. Turner, Christopher M. Strickland, and An-
thony N. Pettitt (2013). Scalable iterative methods for sampling from massive
Gaussian random vectors. In: arXiv preprint arXiv:1312.1476.

Steeb, Willi-Hans and Tan Kiat Shi (1997).Matrix calculus and Kronecker product
with applications and C++ programs. World Scientific.

Tibshirani, Robert (1996). Regression shrinkage and selection via the lasso. In:
Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288.

Zou, Hui and Trevor Hastie (2005). Regularization and variable selection via the
elastic net. In: Journal of the royal statistical society: series B (statistical methodology)
67.2, pp. 301–320.

51

https://www.R-project.org/
https://www.R-project.org/
https://books.google.co.il/books?id=WIjMyiEiHCsC
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Appendices

A. Derivation of the Full Conditionals for
Gaussian Response

All full conditionals can be derived from the joint posterior (3.1).

Full conditional for α

Let ỹ = y −Xβ:
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)

∝ exp
(
− 1

2σ2
ε

(αTW TWα− 2αTW T ỹ
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This is the kernel of a Gaussian distribution with mean and variance
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Full conditional for β

Now let ỹ = y −Wα:

β|· ∝ exp
(
− 1

2σ2
ε

(y −Wα−Xβ)T (y −Wα−Xβ)
)
× exp

(
−1

2β
TQβ

)

= exp
(
− 1

2σ2
ε

(
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Full conditional for κ

Remind that Q = κR. Then
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This is the kernel of a Gamma distribution with shape and rate

ãκ = rk(R)/2 + aκ , b̃κ = 1
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Full conditional for σ2
ε

The full conditional can also derived from the joint posterior:
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which corresponds to the kernel of an Inverse-gamma distribution with parameters

ãε = N/2 + aε , b̃ε = (y −Wα−Xβ)T (y −Wα−Xβ)/2 + bε
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B. Image of a three-dimensional Covariate
Figure B.1 shows the first of 300 three-dimensional images used for the simulations in
36 slices.

Fig. B.1 The first of 300 three-dimensional image used for simulations

54



C Estimated Coefficient Images

C. Estimated Coefficient Images
The following graphics show the estimated coefficient images with different parameter
settings.
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