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1 Introduction

Yield curves display the term structure of yields of a certain class of assets. The term struc-

ture of a yield curve describes the relationship between the yields of bonds and their respective

term to maturity. In this thesis yield curves refer to zero-coupon governent bonds. These yield

curves are highly relevant for the valuation of fixed income products and their evolution delivers

important information about the economic situation. Yield curves have both a cross-sectional

dimension across different maturities as well as a temporal dimension evolving dynamically over

time. (Diebold and Rudebusch, 2013).

Modeling yield curves is very valuable for providing information about market conditions. For-

merly proposed approaches could be categorized as either no-arbitrage models or equilibrium

models. Diebold and Li (2006) upended those traditions and introduced a factor model focusing

on forecasting yield curves. Due to its forecasting performance, it developed to be a benchmark

to test new methods against or to develop extensions to account for observed constraints.

The data of yield curves can also be viewed as functional data opening up to further methods

of modeling and forecasting. In this thesis, next to the model by Diebold and Li for forecasting

yield curves, two approaches applicable generally to functional time series are analyzed. These

approaches are based on functional principal component analysis and Gaussian processes, re-

spectively. The different approaches are compared with regards to their forecasting performance

applying a measurement of prediction accuracy.

The thesis is structured as follows: in chapter 2 the construct of yield curves is introduced.

Chapter 3 presents the three methods and models and provides details on their forecasting

framework. The data that was used for comparing forecasting performances is presented in

chapter 4. Chapter 5 describes the chosen study design and evaluates the forecast accuracy of

the different models. In Chapter 6 the results of this thesis are discussed.
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2 Economic background and stylized facts

about yield curves

For the analyis of fixed income instruments, obtaining interest rate point forecasts is crucial

as it is an essential input for financial modeling and risk modeling. Analysts and traders base

their conclusions and decisions on the modeling of yield curves. For economists, the yield

curve provides information about the risk taking of investors and the expectations of market

participants.

There are three key theoretical bond market constructs that are related to yield curve analysis,

which are the discount curve, the forward rate curve and the yield curve.

P (τ) denotes the current price of a bond if one is to receive 1 Euro in τ periods, i.e. the maturity

of the bond is τ . y(τ) denotes the continuously compounded yield to maturity. The relationship

between price and yield is defined by:

P (τ) = exp(−τ y(τ)) , (2.1)

representing the discount curve. Discount curve and yield curve y(τ) are directly linked and

provide complete information about the other. From the discount curve one can derive the

forward rate curve which is defined as:

f(τ) =
−P ′(τ)

P (τ)
. (2.2)

The presented equations can be condensed to show the relationship between the yield curve and

the forward rate curve:

y(τ) =
1

τ

∫ τ

0
f(u)du . (2.3)

Theoretically, these three bond market constructs are interconvertible, because having informa-

tion about one of them enables one to derive both the other curves. This thesis focuses solely

on the yield curve, since most of the relevant literature for forecasting works with yield curves.

In practice, yields cannot be directly observed, but the prices of traded bonds featuring different

time periods to maturity are observable. (Diebold and Rudebusch, 2013). Yield construction,

the practice of estimating yields from actually observed bond prices, is not discussed in this

thesis.

There are several basic facts known about yield curves.

1. The average yield curve increases with maturity and is concave,

2. volatilities of yields decrease with maturities,
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3. yields have a strong persistency which can be shown by autocorrelation, exemplary from

one to 12 months,

4. yield spreads, the cross-sectional difference between yields of different maturities, show

less volatility and persistency than the actual yields.

Yield curves can evolve to all kinds of shapes like upward sloping, downward sloping, humped

and inverted humped. (Diebold and Rudebusch, 2013, p. 5-7; Diebold and Li, 2006, p. 343).

Chapter 4 Description of data used further revisits these facts. This thesis analyzes zero-coupon

government bond yield curves of Germany and the United States of America.
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3 Methods and Models

This thesis presents and compares the performance of three different methods for modeling and

forecasting yield curves. The first model presented was introduced by Diebold and Li (2006).

They developed a new approach as they did not use the hitherto popular no-arbitrage models or

the equilibrium models. The DL model is a three factor model for modeling and forecasting yield

curves and has been widely used since its publication. It is therefore often used as a benchmark

for the performance of other forecasting models (see for example Bowsher and Meeks (2008),

Koopman et al. (2010), Klüppelberg and Sen (2010), Hays et al. (2012), Chen and Niu (2014)).

The second method uses FPCA, a highly used technique for Functional Data Analysis (FDA).

While FPCA is a general method for the analysis and modeling of functional data, this thesis

refers to its application for functional time series forecasting following Hyndman and Shang

(2009). The last model presented in this thesis applies Gaussian Processes and a dynamic

modeling approach proposed by Sambasivan and Das (2017) for forecasting yield curves.

3.1 Nelson-Siegel framework and factor model by Diebold and Li

Diebold and Li built on the Nelson-Siegel yield curve as developed by Nelson and Siegel in

1987 and extended in 1988. They adjusted the commonly used framework with the focus on

forecasting performance.

3.1.1 Exponential components framework by Diebold and Li

The Nelson-Siegel forward rate curve is described by:

ft(τ) = β1t + β2t exp(−λtτ) + β3tλt exp(−λtτ). (3.1)

It approximates a forward rate curve by a constant plus a polynomial multiplied by an expo-

nential decay term1. The ensuing yield curve of the Nelson-Siegel model is as follows:

yt(τ) = β1t + β2t

(
1− exp(−λtτ)

λtτ

)
+ β3t

(
1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
. (3.2)

Exponential decay of the curve is regulated by the parameter λt, while small values generate slow

decay, large values lead to fast decay. Additionally, the parameter controls where the loading

on β3t reaches its maximum.

DL introduced here a different factorization than the original formulation by Nelson and Siegel,

1Laguerre function.
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which was as follows:

yt(τ) = b1t + b2t

(
1− exp(−λtτ)

λtτ

)
− b3t exp(−λtτ). (3.3)

Both factorizations are equivalent and transferable by setting b1t = β1t, b2t = β2t + β3t and

b3t = β3t. However, DL recognized the advantage gained by the new factorization which

was better interpretability of the individual factors of the model. Due to the similar shape

of (1− exp(−λtτ)/λtτ) and exp(−λtτ) in 3.3 the interpretation of the different factors and their

estimation with the ensuing multicolinearity would render problematic.

One merit of the work of DL is consequentially the interpretation of the factors β1t, β2t and

β3t. Regularly, the three factors had been called long-term, medium-term and short-term fac-

tors respectively. DL, interpreting them as latent dynamic factors, built on this notion; The

loading on β1t is constantly 1, representing the long-term factor. The factor β2t has the loading(
1−exp(−λtτ)

λtτ

)
. This function starts at 1 and decreases fast and monotonically to 0 - it is called

the short-term factor. At last, the loading on β3t,
(
1−exp(−λtτ)

λtτ
− exp(−λtτ)

)
, starts out at 0,

reaches its maximum and decreases again to 0. Starting at 0, it is not short-term, and decaying

to 0, it is not long-term, so it represents the medium-term factor. Figure 3.1 shows the different

loadings dependent on maturity τ .
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Figure 3.1: Factor loadings, exemplary with fixed λt = 0.34

DL offer another interpretation of the three factors relating them to level, slope and curvature,

respectively. The first factor β1t determines the level of the yield curve. Varying the loading

would change all the yields in the same way, the loading of β1t being the same for all maturities.

Thus the change in β1t would change the level of the entire yield curve. Also, lim
τ→∞

yt(τ) = β1t.

The factor β2t is connected to the slope of the yield curve. DL define the slope as the yield of

the highest maturity in their data subtracted by the yield of the lowest maturity yield. Based

on their data and with maturities of yields yt(τ) stated in months, exemplary they show that
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yt(120)−yt(3) = −0.78β2t+0.06β3t. This indicates the great impact of β2t on the slope. Another

perspective is that short rates load more powerfully on β2t. Varying this factor has a stronger

influence on the yields at short maturities compared to long maturities, by this means making

an impact on the yield curve slope.

At last, DL connect the factor β3t to the curvature of the yield curve. They define the curvature

as twice the yield of 2 years subtracted by the 10-year and 3-month yields. Based on their data

it follows, that 2yt(24) − yt(120) − yt(3) = 0.00053β2t + 0.37β3t, showing the impact of β3t on

the curvature. (Diebold and Li, 2006, p. 340-343).

DL also demonstrate that the proposed model is able to reproduce different shapes of yield

curves being upward or downward sloping or featuring a hump complying with the stylized

facts. (Diebold and Li, 2006, p. 347).

3.1.2 Fitting the model and forecasting

In order to fit the model 3.2 the parameters need to be estimated at every step in t. For estimat-

ing {β1t, β2t, β3t, λt}, nonlinear least squares method would be required, since 3.2 is not linear

in λt. However, DL set λt at a fixed value λt = λ, thereby enabling the estimation to be done

through ordinary least squares (OLS). In particular, the factor loadings, respectively regressors,

of β2t and β3t can be computed and the β-vector is estimated by OLS. This approach improves

computation by substituting a large number of optimization calculations with linear regressions

and leads overall to a more simple and convenient handling. Concerning the choice of a fixed

λ DL rely on the characteristic of λt to control the maturity where the loading on factor β3t

reaches its maximum. According to DL, usually two- and three-year maturities are selected to

this end, so they chose the mean yielding the 30 month maturity. To maximize the loading on

β3t at a 30-month maturity λt must be λt = 0.0609, as stated by DL.2

Then the regression model is:

yt(τj) = β1t+β2t

(
1− exp(−λtτj)

λtτj

)
+β3t

(
1− exp(−λtτj)

λtτj
− exp(−λtτj)

)
+εjt. j = 1, . . . ,m.

(3.4)

The disturbances ε1t, . . . , εmt are assumed tobe independent with mean zero and constant vari-

ance σ2 for time t. (Koopman et al., 2010)

The estimates of the β-vector are understood as time series by DL and can hence be forecasted.

The DL model uses autoregressive models on the factors of the model. Applying the AR(1)

model and setting λt = λ, the forecasting equation is as follows:

ŷt+h(τ) = β̂1,t+h + β̂2,t+h

(
1− exp(−λτ)

λτ

)
+ β̂3t+h

(
1− exp(−λτ)

λτ
− exp(−λτ)

)
, (3.5)

with

β̂i,t+h = ĉi + γ̂iβ̂it, i = 1, 2, 3, (3.6)

2Molenaars et al. (2015) correctly point out that this is not correct; Own calculations yield that λt must be
0.0598 to maximize at 30 months.
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where ĉi and γ̂i result from regressing β̂it on an intercept and on β̂i,t−h.

In this modeling setup the estimated yield curve only depends on {β̂1, β̂2, β̂3}, so forecasting the

curves is performed by forecasting the parameters {β̂1, β̂2, β̂3} recursively.

3.1.3 Excursus: AR-processes

Considering the auto regressive (AR) model used by DL, as background univariate time series

models are described in the following. A time series can be described as ”a sequence of observa-

tions in chronological order” (Ruppert and Matteson, 2015, p. 307) and comprises observations

of a certain variable made at different points in time. Modeling times series enables forecasting

of variables that are subject to temporal interrelations.

A time series process describes the notion of a time series variable realising different values.

Therefore, it can be described as the sample space of a time series and an observed time series

is sampled from this process. The examined variables are assumed to be random, hence, the

process is referred to as a stochastic process. An important concept when analysing times series

is the property of stationarity. Stationarity describes the behaviour of the time series across time

and supposes that it behaves stochastically independently of the selected point in time. This

form of strict stationarity is a very restrictive assumption, but the concept of weak stationarity

is more commonly used. The following conditions for a stochastic process yt apply:

E(yt) = µ, V ar(yt) = σ2, for all t, (3.7)

Cov(yt, ys) = γ(|t− s|), for all t and s and a function γ(h). (3.8)

If these conditions are fulfilled, the first and second moments of the stochastic process yt are

independent of the point in time at which they are observed, hence are time invariant. Mean and

variance are then constant and the autocovariance of two observations depends on their lag, that

is the time span between them. The autocovariance function (ACVF) is denoted by γ, h being

the lag: γ(h) = γ(t+h, t). The autocorrelation function (ACF) ρ is defined as ρ(h) = γ(h)/γ(0).

A univariate autoregressive process models the variable Yt as a weighted sum of observations

adding a disturbance term. An AR(1) is represented by:

yt = φ yt−1 + εt, (3.9)

εt is an i.i.d. random variable with mean µ and variance σ2 and φ is a constant. εt is a white

noise (WN) process, which is a stationary process often assumed to be normally distributed with

mean 0 and variance σ2. In order to analyse deviations from a central value the AR(1) process

can be centralised by subtracting the mean of the process, which yields:

yt − µ = φ (yt−1 − µ) + εt, (3.10)

where yt − µ has mean zero.

The term yt−1 in 3.9, respectively yt−1−µ in 3.10, can be described as the memory of the process,
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where a past value of the process feeds into the present value. This interrelation specifies the AR

process an a correlated process. The parameter φ controls the strength of the relation between

the past and the present value.

In extension to the AR(1) process, an AR process with p lags is presented. In an AR(p) process,

p past values feed into the present value of the process. Considering the centralised AR(1)

process in 3.10, the AR(p) process is defined by:

yt − µ = φ1 (yt−1 − µ) + φ2 (yt−2 − µ) + ... + φp (yt−p − µ) + εt, (3.11)

where εt ∼ WN(0, σ2). The linear structure of the model replicates a linear regression model.

Replacing the term (µ− φ1 µ− φ2 µ− ... − φp µ) with β0 leads to the following:

yt = β0 + φ1 yt−1 + φ2 yt−2 + ... + φp yt−p + εt. (3.12)

β0, as β0 = ({1− φ1− φ2− ... − φp }µ), can be interpreted as an intercept. Therefore, equation

3.12 is a multiple regression model with the past values of the time series as independent variables

and can be estimated as such. (Ruppert and Matteson, 2015, chap. 12).

In order to select the optimal model to apply on an available data set an information criterion is

required. One example, which is used frequently, is the Akaike information criterion (AIC). The

AIC allows for selecting the order p of an autoregressiv model.(Ruppert and Matteson, 2015,

chap. 5.12).

3.2 Functional Data Analysis

The concept for the second model that is presented in this thesis is a technique of FDA. FDA

provides the framework to access a data set with the notion of functional interrelation between

observations instead of perceiving observations only as individual data pairs. Characteristic

of functional data is first the replication, measuring the same entity repeatedly, and a certain

smoothness. The observed curves are thought of as items in themselves beyond the sequentially

recorded observations. Although data is recorded at discrete points (yj , xj), yj is understood to

represent an instance of the assumed function at point xj , capturing the intrinsic relation of the

yms. (Ramsay and Silverman, 2005, pp. 1, 38).

In the context of yield curve modeling successive yield curves can then be understood as func-

tional time series, where the yields recorded at different maturities are a discrete sampling of

a true yield curve function. (Hays et al., 2012). In order to work with FDA methods the

data has to fulfil certain characteristics and assumptions. As mentioned above, requisite for

applying FDA approaches is the assumption of observed discrete data as being observations of

a continuous process and that they generally are not subject to errors in measurement. (Hall

et al., 2006). If one assumes the data to be recorded without error, no further smoothing is

required, but interpolation in order to obtain a function from the observed values. (Ramsay and

Silverman, 2005).
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3.2.1 Functional principal component analysis

One of the main analytical tools of FDA is FPCA. With FPCA, functional processes can be

characterized by their mean function and the eigenfunctions of the autocovariance operator.

Hyndman and Shang (2009) use FPCA to forecast functional time series and propose extensions

to this framework like weighted functional principal component regression. In the following the

basic theory of FPCA and the application of weights as proposed by Hyndman and Shang is

presented.

Originally, for FDA it is assumed that the examined functions are independent and identically

distributed. This does not hold generally for financial data as for yield curve data examined in

this thesis, but it is assumed there exists a relation between the sampled curves across time.

An example of independent functions to apply FPCA on are temperature charts of hospital-

ized patients, where every observed curve or function represents an individual patient. Clearly,

these functions are indendent when assuming that the patients’ course of disease is independent.

However, subsequent yield curves are not independent across time. This implied process struc-

ture has to be accounted for when applying FPCA. Klüppelberg and Sen (2010) and Hyndman

and Shang (2009) approached this issue by applying autoregressive processes within the FPCA

framework.

There are functions f1,. . . fn, sampled from a process f where f is assumed to be element of

the Hilbert space H := L2(T ), provided the inner product 〈f, g〉H =
∫
T f(τ)g(τ)dτ and the

norm ‖f‖ =
√
〈f, f〉H. It is assumed that observations are made on sufficient grid points τij on

domain T . Observations are measured with additive error Wij presumed to be independent of

the function generating process. For i = 1, . . . , n and j = 1, . . . ,m measurements are:

f̃i(τij) = fi(τij) +Wij , E(Wij) = 0, V ar(Wij) = σ2. (3.13)

The mean function of f(τ) and the continuous covariance function are defined by:

µf = E(f(τ)), φf (υ, τ) = Cov(f(υ), f(τ)), υ, τ ∈ T. (3.14)

Key for the application of FPCA is to interpret φf as the kernel of a linear mapping on the

Hilbert space L2(T ), as φf : H 7→ R. With α this operator is defined as follows:

(φfα)(υ) =

∫
T
φf (υ, τ) α(τ) dτ, α ∈ L2(T ), (3.15)

yielding a function in υ, with notation for operator and kernel being the same. Covariance

function is defined by:

φf (υ, τ) = E [(f(υ)− µf (υ)) (f(τ)− µf (τ))]. (3.16)

(Benko et al., 2009).
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θk are the eigenvalues of the covariance operator φf , ordered by θ1 ≥ θ2 ≥ . . . ≥ 0. ψks are the

respective eigenfunctions of the operator. The eigenfunctions of the operator form a complete

orthonormal sequence on L2(T ). Applying the Karhunen-Loève decomposition (also expansion)

yields a representation of individual curves of function f :

f(τ) = µf (τ) +
∞∑
k=1

ξkψk(τ), (3.17)

with

ξk =

∫
T

(f(τ)− µf (τ))ψk(τ)dτ (3.18)

is the k-th so-called functional principal component score with E(ξk) = 0 and Var(ξk) = λk.

Klüppelberg and Sen (2010), Hall et al. (2006).

Considering model equation 3.13, it yields that

E(f̃i(τij)) = µf (τ), Cov(f̃i(υ), f̃i(τ)) = φf (υ, τ) + σ2I(υ = τ). (3.19)

The mean function µf and the covariance operator φ are estimated from observed data. Curves

fi can be approximated by replacing estimates and applying only a certain number K of eigen-

functions in 3.17. The number of eigenfunctions can be chosen by the portion of variance

explained. (Klüppelberg and Sen, 2010, p. 3f.).

3.2.2 Estimation of functional principal components

To obtain eigenfuctions and FPCA scores, first the mean function and covariance function need

to be estimated. This is conducted by comprising the available sample of curves and smoothing

the generated scatterplot. For each i, data pairs {(τj , f̃ij), i = 1, . . . , n, j = 1, . . . ,m} are

observed. A local linear model is estimated for the non parametric regression of f̃ on τ . This

implies finding β̂0(s) and β̂1(s), with s ∈ T ,

n∑
i=1

m∑
j=1

{f̃ij − β0(s)− β1(s) (τj − s)}2K1

(
τj − s
bf

)
. (3.20)

bf is the selected smoothing bandwidth (can be selected by generalized cross-validation). K1 is

a compactly supported symmetric univariate kernel function, that needs to be square integrable

and endowed with a finite variance and absolutely integrable Fourier transform.

The estimated mean function is then set µ̂f (s) = β̂0(s).

For estimating the covariance functions of the functional process f one estimates the covariance

surface φf . All pairwise empirical covariances of 3.16 φi(τj1, τj2) = (f̃ij1 − µ̂f (τj1)) (f̃ij2 −
µ̂f (τj2)) are comprised into a scatterplot with {[(τj1, τj2), φi(τj1, τj2)], i = 1, . . . , n, j1, j2 =

1, . . . ,m}. For smoothing, a nonparametric regression of φi(τj1, τj2) on (τj1, τj2) is fitted finding
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the minimizers β̂0(s1, s2), β̂1(s1, s2), β̂2(s1, s2):

n∑
i=1

∑
1≤ji 6=j2≤m

{φi(τj1, τj2)− [β0(s1, s2) + β1(s1, s2)(s1 − τj1) + β2(s1, s2)(s2 − τj2)]}2

×K2

(
τj1 − s
hf

,
τj2 − s
hf

)
. (3.21)

smoothing bandwidth hf can be selected like bf . K2 now is a square integrable and compactly

supported radially symmetric bivariate kernel function endowed with a finite variance and ab-

solutely integrable Fourier transform.

The estimated covariance surface is φ̂f (s1, s2) = β̂0(s1, s2). The estimates for eigenvalues λk

and eigenfunctions ψk, {λ̂k, ψ̂k}, are obtained by solving the eigenequations∫
φ̂f (υ, τ)ψ̂k(υ)dυ = λ̂kψ̂k(τ). (3.22)

Orthonormality constraints on ψ̂k and constraints to positive definiteness on the covariance

surface apply. To estimate the first K scores of FPCA 3.18 by a discrete integral approximation

ξ̂k =

m∑
j=2

(f̃ij − µ̂f (sij)) (sij − si,j−1)ψ̂k(sij), i = 1, . . . , n, k = 1, . . . ,K. (3.23)

Individual functions are represented by the empirical version of 3.17 for selected number of

eigenfunctions K:

f̂i(τ) = µ̂f (τ) +

K∑
k=1

ξ̂ikψ̂k(τ). (3.24)

(Klüppelberg and Sen (2010), Müller et al. (2006)).

3.2.3 Functional principal component model for forecasting

Hyndman and Shang present the following model for their implementation of the FPCA:

yi(τj) = fi(τj) + σi(τj)εij , (3.25)

where i = 1, . . . , n and j = 1, . . . ,m. εij are white noise with unit variance and σi(τ) is time-

dependent and can thereby reflect heteroskedasticity. They apply nonparametric smoothing

separately on every observed curve to generate estimates of fi(τ) to be estimated by a FPCA

model:

fi(τ) = µ(τ) +

K∑
k=1

ξikψk(τ) + ei(τ), (3.26)

with eigenfunction ψk(τ) as the kth principal component function and {ξ1k, . . . , ξnk} are the kth

principal component scores. ei(τ) are independent and identically distributed (i.i.d.) random

functions with zero mean.

Eigenfunctions ψk and ψl are orthogonal for k 6= l which implies that the principal component

scores ξik are uncorrelated. They can then be forecasted applying univariate time series models.
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The respective scores ξik, k = 1, . . . ,K are interpreted as univariate time series and can then be

forecasted separately. The forecasted principal component scores that are obtained this way are

then multiplied with the principal component functions producing predictions of curves. Fur-

ther, Hyndman and Shang propose geometrically decreasing weights in the principal component

decomposition in order to increase the influence of the more recent data on the forecasts. While

they did not apply their method on financial but on demographic data, this approach is evenly

relevant in the context of financial forecasting, because on markets more recent developments

have a greater influence than occurences longer ago.

The weights are accounted for in the mean function µ(τ) by computing a weighted average of

the estimated smoothed functions fi(τ):

µ̂τ =
n∑
i=1

wi f̂i(τ), (3.27)

with f̂i(τ) being the smoothed curve estimated from f̃i(τ). The weights wi = κ(1− κ)n−i with

0 < κ < 1 are geometrically decreasing from the most recent data curve to the data curves

in the past. Naturally, if weights are not supposed to be used, wi is a vector of ones. When

using weights, κ can be derived empirically by minimizing the mean integrated forecast error

(MISFE):

MISFE(h) =

∫ τm

τ1

(fn+h(τ)− f̂n+h|n(τ))2 dx. (3.28)

To forecast functions, drawing on 3.25 and 3.26 and replacing estimates, it follows:

fi(τj) = µ̂(τj) +

K∑
k=1

ξikψk(τj) + êi(τj) + σ̂i(τj)ε̂ij . (3.29)

The principal component scores ξik are forecasted by a univariate time series model and condi-

tioning on observed data I = {yt(τj) : i = 1, . . . , n, j = 1, . . . ,m} and principal components

Ψ = {ψ1(τ), . . . , ψk(τ)} h-step ahead forecasts are represented by:

ŷi+h|i(τ) = E[yi+h(τ)|I,Ψ] = µ̂(τ) +
K∑
k=1

ξ̂i+h|i,k ψk(τ) (3.30)

(Hyndman and Shang, 2009).

3.3 Gaussian Processes

The last approach to model yield curves that is presented is based on GP. While GP have been

known for a long period of time, possibly appearing as early as late 19th century, in the 1990s

they became known by a broader audience in the machine learning context. They can be applied

to supervised learning problems (Rasmussen and Williams, 2006). The Gaussian process model

is introduced in the following.

A Gaussian process is a random process that is defined by its mean and covariance matrix Σ.

f(x1), . . . , f(xn) are understood as random variables, given the input data {x1, . . . ,x}. These
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variables follow a joint multivariate normal, respectively Gaussian, distribution. For simplicity

reasons in this introduction a process with zero-mean is assumed:

f(x1), . . . , f(xn) ∼N(0,Σ) (3.31)

Exemplary, the covariance Σpq between f(xp) and f(xq) is a function of xp and xq. This

covariance function K is chosen to generate a positive definite covariance matrix. For f(xp)

and f(xq) the covariance is defined as Σpq = K(xp,xq). The choice of a covariance function

is a modeling decision. A widely used covariance function for the multi-dimensional case is the

squared exponential function:

Cov [f(xp), f(xq)] = K(xp,xq) = ν exp

[
−1

2

D∑
d=1

wd

(
xdp,x

d
q

)]2
+ ν0, (3.32)

with xdp denoting the dth component of an D-dimensional vector xp. Parameter ν controls the

vertical scale of variation and the wds control the horizontal lengthscale. (Ažman and Kocijan,

2005).

Gaussian processes can be embedded in the Bayesian modeling framework. Contrary to the

frequentist approach to parameter learning like for example the OLS estimation for the β-

vector in the DL model, which assumes constant parameters to be estimated, Bayesian statistics

assumes that an unknown parameter is a random variables with a probability distribution.

Knowledge about this distribution is termed prior. Based on the likelihood of a sample of

the data and the prior a posterior distribution can be derived which is used for estimation.

(Sambasivan and Das, 2017).

Now, the following model is assumed:

y = f(x) + ε, (3.33)

ε is white noise with ε ∼ N(0, ν0). A GP prior with covariance function 3.32 and unknown

parameters is induced on f(.).

y1, . . . , yN , yN+1 ∼N(0,KN+1), where K(xp,xq) = Σpq+ν0δpq. If p = q then δpq = 1, otherwise

δpq = 0. Now, y1, . . . , yN , yN+1 is divided into two parts, y = [y1, . . . , yN ] and y∗ = yN+1. It

follows that

y, y∗ ∼N(0,KN+1) (3.34)

and

K =

[
[K] [k(x∗)][
k(x∗)

T
]

[k(x∗)]

]
, (3.35)

with K as an N ×N matrix that gives covariances between yp and yq of xp and xq respectively

for p, q = 1, . . . , N . k(x∗) gives the covariances between y∗ and yp, i.e. k(x∗) = K(x∗,xp) in a

N × 1 for p = 1, . . . , N . Lastly, k(x∗) = K(x∗,x∗) is the covariance between the function of the

new input and itself.
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From this joint probability of y, y∗ a marginal and a conditional distribution can be derived.

Provided a training sample of N data pairs {xp, yp}, p = 1, . . . , N , the marginal distribution

yields the likelihood of the observations y|X ∼ N(0,K), with y being training target values

and X the associated training in put values.

By maximizing the likelihood, respectively technically easier the log-likelihood, of y|X the un-

known parameters of the covariance function and the parameter for the noise variance ν0 can be

estimated. The conditional distribution yields the prior distribution of y∗ given the new input

values x∗, when conditioning the joint distribution on the training sample and the new input

values x∗: p(y∗|y,X,x∗) = p(y, y∗)/p(y|X). This distribution is Gaussian with the following

mean and variance:

µ(x∗) = k(x∗)
TK−1y (3.36)

σ2(x∗) = k(x∗)−k(x∗)
TK−1k(x∗) + ν0. (3.37)

Ažman and Kocijan (2005), Williams (1997).

3.3.1 Gaussian process regression model

Building on the ideas presented in the preceding section, the approach by Sambasivan and Das

(2017) is presented in the following. They show in their paper that GP can be applied to the

forecasting of yield curves using Gaussian Process Regression. To that end, Sambasivan and

Das formulate the following model:

f(τ) = µ(τ) +W (τ), (3.38)

y = µ(τ) +W (τ) + ε. (3.39)

The function µ(τ) is a parametric function and the process W (τ) ∼N(0,K). K is the Covari-

ance function of f .

With m as the number of observed data points ,

f ∼Nm(µ(τ),K), (3.40)

ε ∼Nm(0, σ2ε Im), (3.41)

y ∼Nm(f(τ),K + σ2ε ). (3.42)

Derived from the likelihood function L(f |y,φ, σ2) the negative log-likelihood function l(f) and

the corresponding negative log-posterior function p(f) are as follows:

l(f) ∝ 1

2σ2ε
(y − f)T [K + σ2ε I]−1(y − f), (3.43)

p(f) ∝ 1

2σ2ε

(
(y − f)T [K + σ2ε I]−1(y − f) + fTK−1f

)
. (3.44)

In order to make estimations the posteriori of the function is computed via Bayes theorem. To

estimate y for a new given input-vector τ∗, one samples the functions from the posterior and
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computes the mean value at τ∗.

f̂(τ∗) = E(f |τ∗,y) (3.45)

= µ(τ∗) + K(τ∗, τ)[K(τ, τ) + σ2ε .I]−1(y − µ(τ)). (3.46)

Also, the variance of the estimate at τ∗ can be given by:

V ar(f∗) = K(τ∗, τ∗)−K(τ∗, τ)[K(τ, τ) + σ2ε I]−1K(τ, τ∗). (3.47)

The following section elaborates on further on the forecasting method.

3.3.2 Dynamic Gaussian Process prior model for forecasting

Sambasivan and Das formulate a dynamic GP prior model on which they base their forecasting

procedure:

yi = µi(τ) + εi, (3.48)

with yi =


yi(τ1)

yi(τ2)
...

yi(τm)

 and εi =


ε1

ε2
...

εm

, containing the terms to all maturities m.

µi(τ) depicts the mean function and its system equation is defined as follows:

µi(τ) = µi−1(τ) +Wi. (3.49)

Wi is a process described by Wi(τ) ∼Nm(0,Ki−1) with:

Ki−1 = K(τ, τ ′|ρi−1), (3.50)

where ρi−1 is the parameter estimated at time point i− 1 controlling K.

Now, when data Yi = (yi,yi−1,yi−2, . . . ,y1) is known, inference about µi and forecasts of yi+1

is possible by applying Bayes theorem. This idea is critical to the understanding of the proposed

procedure. Bayes theorem in this context can be stated as follows:

P(µi(τ)| Yi) ∝ P(yi| µi,Yi−1)× P(µi(τ)| Yi−1), (3.51)

showing the posterior process of µ(τ) as being proportional to the likelihood times the prior

process of µ(τ).

At time i− 1 the posterior process of µ(τ) is distributed with posterior mean function µ̂i−1(τ)

and the posterior covariance function K̂i−1 of the process at time i− 1:

µi−1| Yi−1 ∼ Nm

(
µ̂i−1(τ), K̂i−1

)
. (3.52)
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Then at time point i the prior predictive process is:

µi| Yi−1 ∼ Nm

(
µ̂i−1(τ), K̂i−1

)
, (3.53)

the likelihood function and marginal likelihood function respectively are as follows:

yi| µi(τ),Yi−1 ∼Nm

(
µi(τ), σ2i−1Im

)
, (3.54)

yi| Yi−1 ∼Nm

(
µ̂i−1(τ), K̂i−1 + σ2i−1Im

)
. (3.55)

Sambasivan and Das introduce hyperparameters {ρi−1, σi−1} of the covariance function, which

are estimated by maximizing the marginal likelihood 3.55. Parameter ρ controls the covariance

function K, σ2 is an error variance associated with σ2ε in 3.41.

Following the original paper, the term hyperparameter refers to a parameter known from a prior

distribution in terms of Bayesian optimization contrary to the use of the term in a machine

learning context where hyperparameters have to be set before model training. Rasmussen and

Williams (2006) indicate, that they are parameters of a nonparametric model, therefore termed

hyperparameters.

The observation at time point i can be forecasted by using the expected value of yi| Yi−1 from

3.55:

µ̂i(τ∗) = E (yi(τ∗)|Yi−1)

= K(τ∗, τ |ρ̂i−1)[K(τ, τ |ρ̂i−1) + σ̂2i−1I]−1yi−1(τ). (3.56)

Posterior covariance function and posterior mean function are then updated at every forecasting

step after observing yi, yielding respectively:

K̂i.updated = K(τ∗, τ∗|ρ̂i)−K(τ∗, τ |ρ̂i) [K(τ, τ |ρ̂i) + σ̂2i−1I]−1K(τ, τ∗|ρ̂i) (3.57)

and

µ̂i.updated = E (µ̂i(τ∗)|Yi)

= µ̂i + K(τ∗, τ |ρ̂i) [K(τ, τ |ρ̂i) + σ̂2i I]−1 (yi(τ)− µ̂i), (3.58)

of the updated posterior process over yi:

yi(τ)| Yi ∼ Nm

(
µ̂i.updated, K̂i.updated

)
. (3.59)

3.4 Discussion of proposed methods

The parametric model by DL was developed with the sole purpose of estimating and forecasting

yield curves. Since its publication it has grown to be widely accepted and has been used as a

benchmark model for further research. It comprises a statistical three-factor model assuming the

yield curve to be a continuous function of maturity τ . Modeling parameter are {β1t, β2t, β3t, λt}.
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DL propose to set λt = λ to enable OLS estimation of the β-vector. Then, yield functions can

be modeled with estimates of only the β-vector. DL understand the estimated coefficients, the

βj-vector for j = 1, 2, 3, as a univariate time series which can be forecasted by autoregressive

time series models.

Modeling functional time series using FPCA is a common approach. With this approach, yield

curves are understood as functional time series. The observed yields at different maturities are

a discrete sampling from a true underlying function generating yield curves. Individual curves

can be estimated by an approximation based on the decomposition of the covariance function.

Modeling parameters are hence derived from the structure of the estimated covariance functions

of the observed functions. Hyndman and Shang additionally suppose that the more recently

observed curves have a greater impact on the forecasts going forward than curves that have

been observed earlier.

The nonparametric approach based on GP assumes a joint multivariate normal distribution on

the target values, while the covariance between the target values depends on the inputs of the

examined functions. The covariance determines the estimated mean function and covariance

function used for defining the GP, from which the estimated curves are assumed to be sampled.

The approach by Sambasivan and Das to use a dynamic gaussian process prior model on yield

curves is a new proposition and has not been reviewed in the literature yet.
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4 Description of data used

In order to test proposed methods two different data sets were used in this thesis containing

yield curves for zero-coupon government bonds. One data set comprises data derived from

market-listed Bundeswertpapiere of the Federal Republic of Germany. The data is published by

the German Central Bank Bundesbank and can be downloaded from https://www.bundesbank.de.

The other set comprises data derived from market quotations of Treasury securities by the United

States. It is published by the US Department of the Treasury and data can be downloaded from

https://www.treasury.gov.

If one wanted to observe the values of the yield curve on the market, the listing of a risk-free zero-

coupon bond at every maturity would be required. Since there are very few such listings yield

curve data has to be estimated from available bond data. One of the most prevalent methods

for yield curve construction is the approach developed by Nelson and Siegel and extended by

Svensson, which is also used by the German Bundesbank. (Deutsche Bundesbank, 1997) Both

data sets were prepared in the same way hence the following description applies to the German

and United States (of America) (US) data alike. The time span selected is 2009-04 till 2018-09 in

order to obtain data post financial crisis. From the available daily data weekly observations from

the beginning of each week were extracted. Observations with NAs for holidays and non-trading

days were removed. Also, in the case of US yields a term of maturity that was not available for

the entire selected time span was removed.

Additional smoothing is not required because avalaible data is not noisy data but data pairs of

smoothed functions. Characteristic of yield curve data as functional data is, that the domain

does not change within the original data set. Values τij are the same for every observed curve i

and functional observations yij are provided. The data is non-periodic (Ramsay and Silverman,

2005).

Both data sets comprise 496 periods and hence 496 yield curves. For Bundesbank data 31 terms

of maturities are available: {6 months, 1 year, 2 years, 3 years, . . . , 30 years}. For US Treasury

data 11 terms of maturities are available: {1 month, 3 months, 6 months, 1 year, 2 years, 3

years, 5 years, 7 years, 10 years, 20 years, 30 years}. An overview of the data sets are given in

figure 4.1.

The US yield curves display changing shapes, particularly a flattening of the curves in 2017, with

rising yields in the short term maturity regions (see also figure 4.1b). All the yield curves and

the mean curve are displayed in figures 4.2 and 4.3. Mean curves of only part of the available

data illustrate this change of shapes in comparison with figure 4.4. For the US yield curves

considerably less terms of maturities are available and they are more unevenly spaced than
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(a) Weekly yield curves of German Bundesbank from 2009 till 2018 (Index) at 31
maturities.

(b) Weekly yield curves of US Treasury from 2009 till 2018 (Index) at 11 maturities.

Figure 4.1: Overview of used data sets.
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Figure 4.2: Overview of yield curves and mean by German Central Bank.

Bundesbank (BB) data. This supposedly impacts the forecasting performance negatively.

It shows that the yield curve comply with the basic facts about yield curves as for example the

mean curves increase with maturity and are concave.
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Figure 4.3: Overview of yield curves and mean by US Treasury.
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Figure 4.4: Mean curves of part of the data sets.
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5 Modeling and forecasting

This chapter is dedicated to the empirical evaluation of the different modeling methods for yield

curves discussed in chapter 3. To this end a general study design was set up that was applied

to every modeling method described in the subsequent section. Forecasting performance was

evaluated and compared by a particular measurement of prediction accuracy further detailed in

section 5.2.

First, every modeling method is recapitulated and the forecasting approach to be applied to the

data is described. In the results sections the used variables are discussed and the results of the

respective modeling set-ups are presented. At the end of this chapter forecasting performance

of all methods are compared.

All empirical analyses are conducted using R version 3.5.1 (R Core Team, 2018) and Python

3.6. The used code and data sets can be found in the electronic appendix.

5.1 Description of study design

The focus of this thesis was to analyze the forecasting performance of different models. In order

to obtain robust results that are based on single experiments a particular study design was

applied. This approach is two-fold based on two methods, the out-of-sample testing and cross-

validation. Out-of-sample testing means that the available data is partitioned into a training

and a testing or holdout sample. Model fitting is only carried out on the training sample and

forecasting and evaluating forecasting performance is executed on the testing sample. This way,

the forecasting procedure is tested on data that was not used for fitting the model. (Bergmeir

et al., 2018, also basis for illustration). The following figure illustrates the procedure with blocks

representing yield curve data, showing the training data with filled blocks (blue), testing data as

striped (orange) and data that is not used in white. Exemplary forecasting horizon is 4 periods.

Figure 5.1: Illustration of out-of-sample forecasting.

The second method uses K-fold cross-validation to apply the forecasting procedure to K differ-

ent training samples. By this means a more valid conclusion about the forecasting performance

of a certain model can be drawn than basing conclusions only on a single modeling set-up. The

observed data, however, cannot be randomly split in training and testing samples, due to the

temporal relation in the data. (Bergmeir et al., 2018, also basis for illustration). Therefore, a

rolling window of the training data with specified window length l was used producing multi-

ple forecasting models. Based on the current window of data predictions for the subsequent h
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periods are made and the mean forecasting error over the entire curves is recorded. Stepwise

moving through the entire data set repeating this prediction process yields a measure for predic-

tion accuracy for this method based on the set size respectively number of weeks of the chosen

rolling window. The figure 5.2 illustrates this approach with the stepwise shifting of the window.

Figure 5.2: Illustration of forecasting procedure with rolling window.

For every presented method a standard set-up of the model is defined. For the DL and the

FPCA model also variations of this standard set-up are evaluated. For DL this concerns the lag

of the AR(p) process used to forecast the modeling factors, for the FPCA model weights are

introduced as an extension to the standard model. The GP is evaluated by the standard model.

Another aspect this thesis is examining is the question how many observed periods are required

to gain valuable information for forecasting yield curves. To this end models are evaluated with

different numbers of training periods to examine the influence on the forecasting performance.

How this examination relates to the described forecasting procedure, is illustrated in figure 5.3.

Figure 5.3: Illustration of varying size of training sample within out-of-sample and cross-
validation testing framework.

As figure 5.3 exemplifies with three partitions, the forecasting study goes through the data as

described in 5.2 shifting a training sample window of the same size. To examine the influence of

the training window the size of this window is varied, decreasing by steps of two in this example.

The step size by which the rolling window is shortened is selected in consideration of the forecast

horizon h. The smaller the rolling window is, the more models can be estimated shifting through

the data. Out-of-sample testing with smaller window size leads to a mean forecast error to be

calculated over more estimated models. Overall, the forecasted periods respectively weeks the

models were tested with are h = 4 und h = 26 to reflect a 1-month and 6-month forecasting

horizon.
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5.2 Measurement of prediction accuracy

In order to evaluate the forecasting performance the root mean squared error (RMSE) was used

as measurement of prediction accuracy. RMSE is the square root of the mean squared error and

the RMSE of a forecasted curve fi is defined by:

RMSEi =

√∑m
τ=1(ŷ[τ, i]− y[τ, i])2

m
, (5.1)

with ŷ[τ, i] being the forecasted yield for period i and maturity τ , y[τ, i] being the actual yield

at the respective period i and maturity τ . The RMSE of a forecast is then the mean of RMSE

all forecasted yield curves.

RMSE is considered a ”standard measure in the financial literature for measuring and comparing

the accuracy of interest rates prediction models” (Arbia and Di Marcantonio, 2015) as it is also

used by Diebold and Li (2006), Hays et al. (2012), Chen and Niu (2014) and Sambasivan and

Das (2017).

To calculate RMSE the forecast error measurement function of the "ftsa" R package by Hynd-

man and Shang (2018), Shang (2013) was used on the methods implemented in R for this thesis.

The disadvantage of the RMSE, however, is that it is sensitive to the number and the spacing

of available support points, as it only captures differences between the values at those support

points. In contrast, error measurements based on integration better reflect the shape of the

estimated function and do not depend on the observed points. Since yield curves are relatively

smoothly shaped, in this thesis the RMSE is applied.

5.3 Factor model by Diebold and Li

Diebold and Li use the Nelson-Siegel factor model in the following form (see 3.2):

yt(τ) = β1t + β2t

(
1− exp(−λtτ)

λtτ

)
+ β3t

(
1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
.

Estimating the loadings on factors β1t, β2t, β3t, λt forms the basis of forecasting yield curves

following DL. For this thesis this is conducted with the "YieldCurve" R package by Guirreri

(2015). Contrary to the approach described in the paper by DL, in this package the parameter λt

is not fixed but is estimated at every step in t. Particularly, at every forecasting step iteratingly

for every maturity a λ is estimated maximising the loading on β3t. Then by OLS the betas

for this λ are estimated. The parameter set with those betas minimizing the residuals of the

estimation model across all maturities is then selected.

Figures 5.4 and 5.5 depict the sample autocorrelation of the three factors as estimated by the

DL model. They show how all series display significant autocorrelation in the first lags which

supports the proposition to forecast the factors by an autoregressive process.
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Figure 5.4: Sample autocorrelations of the estimated β-vector of Bundesbank data with lags in
weeks, plotted with a 95%-confidence interval.
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Figure 5.5: Sample autocorrelations of the estimated β-vector of US Treasury data with lags in
weeks, plotted with a 95%-confidence interval.

30



5.3.1 Forecasting

For forecasting yield curves with the Nelson-Siegel the factors β1t, β2t, β3t are forecasted apply-

ing a univariate AR model. DL apply an AR(1) model, which they call ”the simplest great

workhorse [of] autoregressive models”. In this thesis the lag of the AR process forecasting

the univariate time series of the β-vector is identified as one variable to be further examined.

Whether improvements in forecasting are achieved extending the AR model to a higher number

of lags is discussed in the subsequent section of this chapter.

For comparison DL also apply a multivariate AR model to the factors by using a VAR(1) model.

However, they caution against the use of VARs with regard to potential for overfitting and the

questionable additional value due to little interaction across the factors and low correlation be-

tween them. Owing to a forecasting performance worse than that of the AR model the VAR

is not considered in DL’s concluding forecast accuracy comparison. Accordingly, in this thesis

the VAR model is not considered. DL do not consider ARMA processes respectively moving

average (MA) components for prediction.

To set a fixed λt for forecasting as postulated by DL the mean of all estimated λts is calculated.

This approach is also proposed by Arbia and Di Marcantonio (2015). Molenaars et al. (2015)

found that the forecasting performance is relatively insensitive to the choice of λt. The forecasts

are made recursively from 1-step to h-steps ahead from the end of the training sample of the

observed time series. With this modeling setup predictions for different forecast horizons can be

conducted.

5.3.2 Results

The standard model representative for the DL model to be examined in this thesis is forecasting

the β-vector with an AR(1) process. The forecasting performance of the DL model was further

evaluated in terms of the lag of the AR process used for forecasting the factors of the model.

Forecasting was performed with forecast horizons of h = 4 and h = 26 weeks using both data

sets presented in chapter 4.

Another question this thesis considers is how the choice of the size of the training data window

influences the forecasting performance of the models. For this purpose the following figures in

5.6 display the variation of the RMSE dependent on length l of the rolling window of training

data to generate a certain forecast. The figures show the mean RMSE resulting from forecasting

successively models with the respective fixed window length l.

The window length of the training data has a relatively small impact on the RMSE with the

modeling set-up of 250 to 350 periods in the training sample for h = 4 and 250 to 400 periods

for h = 26. This holds true especially for the data set of the German BB. The US data shows

more sensitivity to the number of training periods which reflects the changing shapes in the later

part of the US data set, which is forecasted by a larger window containing regular and flatter

shapes of curves.

To illustrate the forecasting performance of the different models boxplots depict the mean RMSE

of forecasts with rolling windows. For the short forecast horizon of h = 4 RMSE displays a per-

formance difference between the forecasts of BB and US data while the yield curves from BB
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(a) Forecast horizon 4.
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Figure 5.6: Influence of window size on RMSE using the DL model for multiple step ahead
forecasts of Bundesbank (BB) and US Treasury (US) data.
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Figure 5.7: Boxplots of RMSE using the DL model for multiple step ahead forecast. Forecasts
were conducted with 250 to 350 training periods for h = 4 and 250 to 400 for h = 26.
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Figure 5.8: Boxplots of RMSE using the DL model for multiple step ahead forecasts of Bundes-
bank data. β−vector is forecasted with AR(1) respectively AR(p) processes.

are predicted better and with less variation. For the long forecast horizon h = 26 the difference

between the data sets is smaller, while BB data still showing less variation.

As a variation of the original DL model this thesis also evaluates if applying an AR(p) process

with a higher lag for forecasting yields better results. To this end the models presented in figure

5.7 are evaluated optimizing the AR(p) process up to a lag of 4, selecting the optimal model by

AIC. While this extension improves the forecasts with BB data, the impact is not as clear with

the US data.

The greater variance in forecast RMSE with US data compared to BB data is a consequence

from the evolving shapes of the US data while the shape of the BB data changes relatively less

across time.

5.4 Functional principal component model

We recall from equation 3.17 that each function fi − µ can be represented with its generalized

Fourier expansion in the eigenfunctions φks, which yields

fi(τ) = µ(τ) +

∞∑
k=1

ξikφk(τ).

Hyndman and Shang proposed geometrically decreasing weights to emphasize the influence of

the more recent data on the forecasts. The weights are accounted for in the mean function µ(τ)

by computing a weighted average as seen in equation 3.27:

µ̂τ =

n∑
i=1

wi f̂i(τ).
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Figure 5.9: Boxplots of RMSE using the DL model for multiple step ahead forecasts of US
Treasury data. β−vector is forecasted with AR(1) respectively AR(p) processes.

To obtain the principal component functions and scores, Hyndman and Shang apply the following

approach: the smoothed functions f̂∗i are discretized on a grid with q densely and equally spaced

points {τ∗1 , . . . , τ∗q } on the interval of [τ1, τm]. This yields an n × q matrix G∗ and it is defined

that G = WG∗ with W = diag(w1, . . . , wn). Through singular value decomposition to G it

follows G = ΦΛV ′. Now, φk(τ
∗
r ) is the (r, k)th element of Φ with r = 1, . . . , q. Assuming

B = GΦ, ξik is the (i, k)th element of B. Further required values of φk(τ) can be obtained via

linear interpolation. (Hyndman and Shang, 2009).

5.4.1 Forecasting

For forecasting yield curves via FPCA the "ftsa" R package by Hyndman and Shang was used

(Hyndman and Shang, 2018, Shang, 2013). It provides fitting of a principal component model

to a functional time series object and forecasting of the FPCA scores applying univariate time

series forecasting methods.

Influencing the principal component method is the selection of the number K of principal compo-

nents to fit. For yield curves, however, only few eigenvalues are required making this assumption

less essential. The results part of this chapter further elaborates on this matter.

With this modeling setup predictions for different forecasts horizons can be carried out.

5.4.2 Results

The standard model for the FPCA model does not apply weights and estimates the functions

with a selected number K of eigenfunctions. In order to select the number of eigenfunctions

required for forecasting yield curves different models were compared by mean RMSE. Exemplary,

models with BB data, forecast horizon h = 4 and training sample sizes between 250 and 350

periods are evaluated. Across all examined models the smallest variation explained by the first

principal components is not less than 97%. Further exemplary studies for FPCA models with
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the short forecast horizon of h = 4 show that up to using k = 3 principal components the mean

RMSE of the models still decreases. Since forecasts are not sensitive to the choice of the number

of eigenfunctions K, if K is sufficiently large, however a small K might lead to poor forecasting

performance, for the following analyses of the model K was set to 3. (See also Hyndman and

Shang, 2009, p. 5). For US data on average the first principal component does not explain such

a high portion of variance, but half of total variation, which is offset, however, by the second

principal component, together explaining more than 90%.

Figure 5.10 and 5.11 show the (first) three functional principal components and the respective

0 5 10 20 30

0.
0

0.
5

1.
0

1.
5

2.
0

Main effects

Maturities

M
ea

n

0 5 10 20 30

0.
08

0.
12

0.
16

0.
20

Maturities

P
rin

ci
pa

l c
om

po
ne

nt
 1

Principal components

Periods

S
co

re
 1

0 100 300 500

−
10

−
5

0
5

10

0 5 10 20 30

−
0.

1
0.

0
0.

1
0.

2
0.

3

Maturities

P
rin

ci
pa

l c
om

po
ne

nt
 2

Periods

S
co

re
 2

0 100 300 500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

0 5 10 20 30

−
0.

2
0.

0
0.

2
0.

4
0.

6

Maturities

P
rin

ci
pa

l c
om

po
ne

nt
 3

Periods

S
co

re
 3

0 100 300 500

−
0.

4
0.

0
0.

2
0.

4
0.

6

Figure 5.10: The first three weighted functional principal components and respective scores for
Bundesbank data.

scores of the two data sets. Interpretation of functional principal components is straightforward,

as the principal components represent ”the major modes of variation” of the yield curves over the

maturities (Benko et al., 2009). The shapes of the principal components comprises information

about the shapes to be found in the data set, particularly if the number of principal components

is small, as it is here (Hall et al., 2006). For the BB data the first principal component is similarly

shaped to the mean but with a turning point at about 15 years (maturity) which illustrates the

general shape of the yield curves becoming flatter at this point. A similar shape is displayed by

the second principal component of the US data, while its first component resembles the second

of BB data. The axis scaling of the scores reflect the decreasing impact on the estimation of

fi(τ) of the associated principal components.

In the reference paper for the FPCA model Hyndman and Shang introduce a weight vector in
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Figure 5.11: The first three weighted functional principal components and respective scores for
US data.

the mean function showing this improves forecasting performance. Forecasting models without

and with weights are compared in this section.

First, the influence of the length of the rolling window training sample is illustrated in figure 5.12.

With FPCA modeling the mean RMSE is relatively insensitive to window length, particularly

in the case of forecasting h = 4 steps.

The evaluation of the FPCA standard model as illustrated in figure 5.13 shows comparable re-

sults for BB and US data.

As an extension to the standard model weights are now applied to the mean function as proposed

by Hyndman and Shang, which increase the influence of more recently observed curves on the

current forecast. In figures 5.14 and 5.15 a comparison of mean RMSE between standard models

without weight and the alternative models with weight is depicted. It shows that the weighting

of the observations improves forecasting performance for US data while the result for BB data

is not as clear. For the forecast horizon h = 4 only a very small improvement is generated, for

the long horizon there is no improvement.

36



0.0

0.1

0.2

0.3

0.4

0.5

250 275 300 325 350

Number of training data

R
M

S
E

Legend

BB

US

Forecasting with FPCA: influence of window size

(a) Forecast horizon 4.
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Figure 5.12: Influence of window size on RMSE using the FPCA model for multiple step ahead
forecasts of Bundesbank (BB) and US Treasury (US) data.
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Figure 5.13: Boxplots of RMSE using the FPCA model for multiple step ahead forecast. Fore-
casts were conducted with 250 to 350 training periods for h = 4 and h = 26.
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Figure 5.14: Boxplots of RMSE using the FPCA model for multiple step ahead forecasts of
Bundesbank data. Forecasting is conducted without weights (Standard) respectively
with weights (Weights).
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Figure 5.15: Boxplots of RMSE using the FPCA model for multiple step ahead forecasts of US
Treasury data. Forecasting is conducted without weights (Standard) respectively
with weights (Weights).
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5.5 Gaussian Process prior model

Sambasivan and Das suggest that Gaussian process regression performs better to forecast yield

curve in the medium and long term regions regarding maturities compared to other models.

However, while their paper focuses on analyzing and comparing the forecasting performance

at certain maturities across models, this thesis takes a different perspective in analyzing the

forecasting performance of entire yield curves and comparing these.

5.5.1 Forecasting

For forecasting yield curves the implementation of the Dynamic Gaussian Process published

by the Chennai Mathematical Institute on GitHub was used (Chennai Mathematical Institute,

2017). It is implemented in Python (Rossum, 1995) and based on the Gaussian processes

framework GPy in Python (GPy, 2012). For the purpose of using the implementation within

the applied study design of this thesis the code had to be adjusted (included in the electronic

appendix.

Forecasting follows the two phases of the Dynamic Gaussian Process Algorithm using the GP

model for regression. In the first phase at time step t = 0 the hyperparameters of the covariance

function of the Gaussian Process y0 are estimated. This is carried out by maximizing the

marginal log-likelihood of the model. Then the yield values for time step t = 1 are estimated

based on Bayes theorem. The posterior covariance function and the posterior mean function

are updated using the estimated hyperparameters and the estimated yield values. In the second

phase for time steps t ≥ 1 hyperparameters are estimated based on the updated process. The

model is optimized by maximizing the marginal log-likelhood and estimates the yield values for

time step t+1. Again covariance function and posterior mean function are updated forming the

basis for the estimation of hyperparameters at the following step. With this iterating approach,

starting with the second curve, every yield curve is forecasted.

For modeling the covariance function a squared exponential kernel is used by the function

GPy.kern.RBF, which is parameterized by parameters for length-scale and variance. In order

to avoid during optimization these parameters becoming negative, all parameters for the GP

model are constrained to be positive, which also includes the noise parameter.

Sambasivan and Das made 1-step ahead predictions applying the Dynamic Gaussian Process. In

order to extend the model to h-step ahead predictions, at every iterating step of the algorithm a

loop is integrated, predicting yield values for h periods ahead based on the in-sample data and

the generated predictions within this loop.

5.5.2 Results

First, the influence of the length of the training sample is examined. For the dynamic GP model

using rolling windows of different length leads to variation in the mean RMSE, more for the

short forecast horizon of h = 4 than the long horizon.

Evaluating the forecasting performance of the BB and US data it shows that the approach

performs better for the BB than the US data, also displaying less variation.
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Figure 5.16: Influence of window size on RMSE using the GP model for multiple step ahead
forecasts of Bundesbank (BB) and US Treasury (US) data.
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Figure 5.17: Boxplots of RMSE using the GP model for multiple step ahead forecast. Forecasts
were conducted with 250 to 350 training periods for h = 4 and h = 26.
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Figure 5.18: Boxplots of RMSE comparing different models for multiple step ahead forecasting
of Bundesbank data.
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Figure 5.19: Boxplots of RMSE comparing different models for multiple step ahead forecasting
of US Treasury data.

5.6 Comparison of results

When using rolling windows with a varying length l in a mid range of the available data the

forecast performance is relatively constant. Using half of the available data produces good

forecasting results.

Applying the DL model on different data sets as with BB and US data produces differing results,

while the performance of FPCA does not vary much when applied to different data sets. From

this follows that the FPCA model is better suited for a variety of data sets, varying in shape

and also number of support points, than the DL model. The FPCA model profits from the

smoothing of the curve before estimating the principal components.

For comparison in figures 5.18 and 5.19 the DL model with optimized AR(p), the standard

FPCA and the dynamic GP model are displayed. The dynamic GP model performs best for

the data set of the BB, remarkably better in the h = 26 forecasts. In case of forecasting US

yield curves, this does not hold while the FPCA model performs comparably well respectively

better. The FPCA model analyzes the more complicated US data very well to derive the scores

subjected to forecasting.

Notably, the forecasted yield curves that are generated by the dynamic GP forecasting model

show hardly any variation. The model, drawing on the last estimated mean function of the
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training sample does not generate dynamic forecasts but relatively constant yield curves across

the forecast horizon. As an example, figure 5.20 illustrates a h = 26 forecast by the FPCA

model in comparison with the respective forecast of the dynamic GP model. While the dynamic

GP models makes a smaller error in the short term regions of maturities, the FPCA performs

better in the long term regions. However, analzing forecasting performance across the terms of

maturities was not in the scope of this thesis.
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Figure 5.20: Variation in forecasts illustrated with training sample of 300 of Bundesbank data,
last two observed yield curves in black.
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6 Discussion and conclusion

This thesis examined three different models for forecasting yield curves and compared their fore-

casting performance by using two different data sets. The focus were methods that had an at

least basic implementations in R and Python.

The DL model is a parametric model developed for the singular application on yield curves.

As such, it has been widely accepted. However, efforts have been undertaken to improve the

proposed framework as did Koopman et al. (2010). In this thesis the standard approach of

forecasting the factors with an AR(1) model was extended to the application of an AR(p) model

which generated notably better results, particularly for the Bundesbank data.

The approach of estimating functional principal components and forecasting the functional prin-

cipal component scores as exercised by the FPCA model proposed in this thesis is applicable

to a variety of functional data set and is not restricted to the case of yield curves. For the

used data the model derived with the principal components the main modes of variation of yield

curves as shown similarly for both data sets. In this study the model deliver constantly good

results across different data sets and forecast horizon. A valuable contribution to forecasting

performance using weights for more recent data could not be found in the framework of this

study. It is also worth noting, that with the "ftsa" R package by Hyndman and Shang a well

documented implementation for FPCA models for functional time series data exists.

The use of the dynamic GP model is regarded as rather experimental, because the referenced

paper by Sambasivan and Das has not been regularly published but is published as a preprint.

Particularly, it is developed for 1-step ahead estimation. Adapting the model to multi step

ahead forecasting leads to notably good results, although the adapted model does not produce

considerable variation within the forecasted curves. However, this persistent approach in the

majority generates less errors when forecasting yield curves than the other models.

Out of the scope of this thesis was how the methods perform with respect to the different re-

gions of terms of maturity. Additionally to the examined performance considering the entire

yield curve, this would be another interesting subject of analysis. Also, the question of the

required minimum window length of a training sample to obtain reliable forecasts could be

explored.
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Ažman, K. and Kocijan, J. (2005). Comprising prior knowledge in dynamic gaussian process

models. Proceedings of the International Conference on Computer Systems and Technologies

(CompSysTech), Pages IIIB.2–1—IIIB.2–6.
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Klüppelberg and Sen (2010). Time series of functional data.

Koopman, S. J., Mallee, M. I. P., and van der Wel, M. (2010). Analyzing the term structure of

interest rates using the dynamic nelson–siegel model with time-varying parameters. Journal

of Business & Economic Statistics, 28(3):329–343.

Molenaars, T. K., Reinerink, N. H., and Hemminga, M. A. (2015). Forecasting the yield curve:

art or science? Magazine De Actuaris (The Actuary), 22(4):38–40.

Müller, H.-G., Stadtmüller, U., and Yao, F. (2006). Functional variance processes. Journal of

the American Statistical Association, 101(475):1007–1018.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer Series in

Statistics. Springer Science+Business Media Inc, New York, NY, second edition edition.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning.

Adaptive computation and machine learning. The MIT Press, Cambridge, Massachusetts and

London, England.

Rossum, G. (1995). Python reference manual. Technical report, Amsterdam, The Netherlands.

Ruppert, D. and Matteson, D. S. (2015). Statistics and Data Analysis for Financial Engineering

- with R examples. Springer, Berlin, Heidelberg.

Sambasivan, R. and Das, S. (2017). A statistical machine learning approach to yield curve

forecasting. arXiv preprint arXiv:1703.01536.

Shang, H. L. (2013). ftsa: An R package for analyzing functional time series. The R Journal,

5(1):64–72.

Williams, C. K. I. (1997). Prediction with gaussian processes: From linear regression to linear

prediction and beyond. In Learning and Inference in Graphical Models, pages 599–621. Kluwer.

45

https://CRAN.R-project.org/package=ftsa
http://www.R-project.org/


Appendix
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(a) Forecast horizon 4.
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Figure 6.1: Influence of smaller window size on RMSE using the DL model for multiple step
ahead forecasts of Bundesbank (BB) and US Treasury (US) data.
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Figure 6.2: Influence of smaller window size on RMSE using the FPCA model for multiple step
ahead forecasts of Bundesbank (BB) and US Treasury (US) data.
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Figure 6.3: Influence of smaller window size on RMSE using the GP model for multiple step
ahead forecasts of Bundesbank (BB) and US Treasury (US) data.
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Electronic appendix

The electronic appendix comprises all the code and data sets to reproduce the results referenced

in this thesis.

Code and data are stored in the folders R MA Reinicke and Py MA Reinicke comprising files

for R code and for Python code, respectively.

R MA Reinicke

In 03 function compare the working directory has to be set. Running the file also loads

01 packages and 02 input data. The file includes the functions to generate the forecast

models DL and FPCA and functions associated with the rolling window study design. With

04 empirical analyses different modeling set-ups can be computed. (For variation of FPCA

model ”weight = TRUE” has to be set in file 03 function compare). 05 plots includes de-

scriptive plots and informative plots for the DL and FPCA model. In 06 plots analyses the

plots for forecast results are found. ”results plots” contains the results used.

07 function forecasting variation shows plots of the variation within forecasts; Associated

with this file are the csv-files ”BB GPpred estimates 4 (300)”, and ”BB GPpred estimates 26

(300)”. 08 footnotes appendix contains various calculations and plots. ”results plots appendix”

contains the results used.

02 input data loads data sets ”BB 2009 2018” and ”US 2009 2018” and makes necessary adap-

tions. It also exports the data to files for the Python code; this is unabled, because the data is

provided in the respectiv folder.

Py MA Reinicke

With 01 GP input data the data is loaded. 02 GP function rolling includes the function

roll pred required for the rolling study with the dynamic GP model. 03 BB Data GP predh

works independently and comprises function h pred BB for h-step ahead forecasts for BB data.

In 04 GP analyses different modeling set-ups can be computed with varying length of training

sample windows. The data files in csv format are generated by the R file 02 input data. For

loading, the correct working directory has to be set.
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