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Abstract

The main objective of a clinical trial is to estimate the effect of a new treatment
compared to standard therapy or placebo. In personalised medicine, the differences
of treatment effects in distinct population subgroups or even individual patients
are quantified. However, in some cases only observational data is available. Thus,
confounders can lead to biased estimates. One way to consider confounding
is adjusting standard methods by the propensity score, i.e. the probability of
receiving a treatment given the covariates. In order to estimate personalised
treatment effects, multiple tree-based and regression spline-based methods can
be applied.

The aim of this thesis is to assess and compare the performance of such methods.
For this, a simulation study is conducted. Eight different datasets are gener-
ated with three different numbers of observations, respectively. The results are
evaluated by considering bias and root mean squared error (RMSE).

According to the simulation study, an adjustment for confounding reduces bias
in almost all methods if strong confounding is present. The bayesian additive
regression trees (BART) method shows good performance even without adjust-
ment. Especially for stepwise treatment effect functions, it is superior to other
methods. PTO forest, causal forest and GLM trees with inverse probability
of treatment weighting (IPTW) are well performing and computationally less
demanding alternatives. Causal MARS performs well for linear treatment effect
functions, even for a small number of observations. However, it has a long running

time. For a large sample size, BART is a competitive method.
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Introduction

1 Introduction

Demonstrating superiority of a new treatment over placebo or standard of care is the
aim of several clinical studies. For this, the effect of a treatment on the outcome has to

be estimated.

Many statistical procedures assume a constant treatment effect. This corresponds to
identical effects for all patients. In heterogeneous populations, this assumption might
be incorrect. Thus, patient’s characteristics influence the efficacy of treatments. In
this case, estimating an average treatment effect for the whole population without
distinguishing between patient subgroups is inappropriate. To circumvent this problem,
methods estimating personalised treatment effects and taking heterogeneity into account
are required. An old-fashioned way is to specify the subgroups in advance. Nevertheless,

this makes the detection of unexpected treatment heterogeneity infeasible.

Furthermore, in most cases the treatment is considered to be randomly assigned. That
means patients in the population are randomly allocated to the treatment or control
group. However, in some situations this might not be realistic or ethical and the

treatment assignment cannot be randomised.

In the easiest case, random allocation to treatment groups and an equal treatment
effect can be assumed for all patients. For this, estimation of an average treatment
effect without considering confounders is sufficient. But if these two conditions are not
fulfilled, this can lead to biased results. Hence, there is a growing interest in using
methods that can handle both situations, i.e. heterogeneous treatment effects as well as
non-randomised datasets. In this thesis, several of these methods are presented and

evaluated.

This thesis is organised as follows: In Chapter 3, the theory and challenges of estimating
causal effects are explained. Afterwards, the role of the propensity score in observational
data is presented in Chapter 4. Then, the methods which are going to be compared
are described in Chapter 5. In Chapter 6, a simulation study to evaluate these
methods is presented. Additionally, this chapter provides some further analyses on one
specific method, the IPTW weighted GLM tree. Finally, the results are discussed and
suggestions for further research are given in Chapter 7. As an introduction, related work
on estimating personalised treatment effects from observational data is summarised in

the following chapter.
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2 Related Work

Early work of heterogeneous treatment effect estimation simply compared predefined
subpopulations. In previous years, many methods have been developed to estimate

heterogeneous treatment effects without defining subgroups in advance.

New techniques for heterogeneous treatment effect estimation adapt standard machine
learning methods. They can flexibly estimate and handle a potentially large number
of covariates. One of those methods are classification and regression trees (CART),
e.g. interaction trees by Su et al. (2009). Furthermore, causal trees by Athey & Imbens
(2015) and GLM trees by Zeileis et al. (2008) are based on the idea of CART and used in
the present thesis. Based on regression trees also random forest methods can be applied.
In this work, the causal forests by Wager & Athey (2018) and the generalised random
forests by Athey et al. (2018) are discussed. Foster et al. (2011) use regression forests to
estimate the effect on the outcome in treatment and control group separately. In order
to receive the treatment effect, they consider the corresponding difference. “Virtual
twins” and “counterfactual random forests” base on the random forest algorithm as well.
Virtual twins are based on the idea of estimating counterfactual outcomes. For this, a
virtual twin for each observation i is created. A virtual twin complies with a datapoint
which is similar to the original datapoint with respect to all covariates. However, the
treatment 7; is replaced with the counterfactual outcome 1 — T;. The counterfactual
outcome is obtained by running the datapoint down a forest, which was created based
on the whole dataset. Additionally, it is possible to improve the virtual twin approach
by manually including treatment interactions in the design matrix. This method is
called virtual twins interaction. Counterfactual random forests are an extension of
virtual twins interaction. In this method, separate forests are fitted for each treatment
group rather than one single forest. In the next step each observation is run down
its natural forest as well as its counterfactual forest. This leads to the counterfactual
treatment effect estimate. The counterfactual forests can be extended by replacing the
Breiman forests by synthetic forests, developed by Ishwaran & Malley (2014). In this
method, forests which use the original features and synthetic features are combined.
Multiple Breiman forests (“baselearners”) (Breiman 2001) are grown with different
values of the tuning parameters mtry and nodesize. The parameter mtry indicates the
number of variables randomly sampled as candidates at each split, nodesize specifies

the minimum size of terminal nodes. Each forest generates a predicted value which
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complies with the synthetic feature. The synthetic forest results by including the new
input synthetic features as well as all original features. Xie et al. (2012) model the
treatment effect as a function of the propensity score, using one parametric and two

non-parametric methods.

Other machine learning methods to estimate heterogeneous treatment effects are the
least absolute shrinkage and selection operator (LASSO) (Qian & Murphy 2011, Tian et
al. (2014)), support vector machines (SVM) (Imai & Ratkovic 2013, Zhao et al. (2012)),
boosting (Powers et al. 2018) and neural nets (Schwab et al. 2018). Knaus et al. (2017)
combine non-experimental causal empirical models with lasso-type estimators. There
are also bayesian machine learning methods. One of them is called “bayesian additive
regression trees” (BART) (Hill 2011) and is further applied in this thesis.

Zhang et al. (2012a) and Zhang et al. (2012b) provide algorithms that can handle
randomised as well as observational datasets. Haoda Fu (2016) develops a method
which can deal with even more than two treatment groups for randomised and for
observational studies. Nevertheless, this algorithm is limited to a small number of

covariates.

Most methods are based on randomised controlled trials (RCTs). Nowadays, there is a
growing need for personalised medicine solutions that handle non-randomised datasets.
Working with non-randomised datasets is complicated due to confounding. Methods
that are robust to confounding incorporate for example propensity scores, G-formula or
targeted-maximum-likelihood estimation (TMLE). The TLME was developed by Luque-
Fernandez et al. (2018) and has the advantage that it is a double robust method. That
means either the outcome or the exposure model has to be correctly specified. Other
double robust methods are the augmented inverse probability of treatment weighting
(AIPTW) and the collaborative TMLE (CTMLE) (Lendle et al. 2013). Some methods
can be either used as a G-computation approach, such as BART (Hill 2011), or they
can be adjusted by the propensity score. The propensity score adjustment is further

analysed in this thesis for a selection of methods.
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3 Causal Effects

3.1 Potential Outcomes Framework and Average Treatment
Effects

Imagine a study where the researcher is interested in estimating the effect of a treatment

T on an outcome Y. In this study the treatment is assumed to be binary:

7 {1 ifatreatment was given (treatment)
— | 0 if aplacebo was given (control)

In general, there might be more than two treatment groups.

The outcome could be either categorical or numeric (e.g. the time of survival). On
this occasion the outcome is considered to be binary. A positive outcome (e.g. patient

survived) corresponds to Y = 1 and a negative outcome (e.g. patient died) to Y = 0.

The treatment effect can be illustrated by a directed acyclic graph (DAG) where the

arrow symbols the direction of the causal effect:
Treatment T — Outcome Y.

Potential or counterfactual outcomes of a person i are the outcomes we would see under

each possible treatment:

Y=!: Outcome that would have been observed under treatment value ¢t = 1

Y=Y Outcome that would have been observed under treatment value ¢ = 0.

This means, each person has two potential outcomes. However, only one outcome is
observed, the other is counterfactual. The observed outcome of individual i is defined
by

Yi=T- Y +(1-T) Y.

This leads to

)

v _ Y for T, =1
T YY for Ty = 0.

Besides the treatment assignment T; and the observed outcome Y;, a vector X; is

observed for each person. It contains the baseline covariates.

The effect of the treatment is generally defined as the difference between the two
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potential outcomes Y! — Y°. In nonheterogeneous treatment settings a common causal

estimand of interest is the population average treatment effect (ATE). It is defined by

T =E[Y - Y] = E[E[Y] |X;] - E[Y}’|X,]] = E(7(X))). (1)

Consequently, it compares the outcome if people were treated with 7" = 1 to the outcome
if the same people were treated with 7' = 0 (Hernan & Robins 2018).

However, it is not always correct to assume that all individuals in a population have
the same treatment effect. The treatment effect could be heterogeneous and might
differ between subpopulations. Thus, some medications might only be effective for a
specific group of patients. Hence, it is important to figure out the relevant covariates.
According to Abrahams (2008) (p. 11): “The right drug for the right patient at the
right time is the mantra of personalized medicine”. It is a new step to bring health
care to a higher level of effectiveness and safety. Consequently, the main interest is
not in estimating the average treatment effect of the whole population, but rather in
estimating the individual (or heterogeneous) treatment effects for all values of x. For
this, the Conditional Average Treatment Effect (CATE)

7(z) = E[Y;' = Y| X; = ]
is considered.

Wendling et al. (2018) (p. 3) describe the CATE as a “useful estimand to assess
the heterogeneity in treatment effect and personalise causal inference”. The marginal

average treatment effect ATE is simply the expectation over CATE (see Equation 1).

In reality either Y;' or ¥ but not both can be observed. Consequently, the causal or
treatment effect is not observed for any individual. This is called the “fundamental
problem of causal inference” (Holland 1986). It is not possible to train machine
learning methods on this difference and 7(z) cannot be directly estimated without
further restrictions. The conditions for estimating treatment effects are not the same
in randomised controlled trials (RCTs) and observational datasets. This difference is

further explained in the next sections.
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3.2 Randomised Controlled Trials (RCT)

In a randomised controlled trial (RCT), the respective treatment 7" is randomly assigned.
This means, allocation is not influenced by any covariate and the distribution of X is
assumend to be the same in both treatment groups. Thus, the treated subjects will not
differ systematically from the untreated subjects in measured and unmeasured baseline

characteristics. This leads to an unbiased estimate of the treatment effect

():MHT—IX]
=E[L Y+ (1-T) YT, = 1, X]]
=E[T-Y} \T—1X]+]E[(1— T;) - YT, =1, X (2)
= E[Y}'|T} = 1, X]
= E[V}'|Xi].

Correspondingly, the expectation of Y among people with 7' = 1 (E(Y|T = 1)) is
similar to the mean of Y if the whole population was treated with T'=1 (E(Y'!)).

The last equation (E[Y;'|T; = 1, X;] = E[Y;!| X;]) applies because the treatment assign-
ment is independent of potential outcomes. Hence, the assumption of unconfoundedness

(sometimes also called ezchangeability or ignorability)

{Y. Y} L TiX; (3)

holds (Austin & Stuart 2015).

In the randomised case, it is not necessary to condition on X. Due to its random
allocation, the assigned treatment group is independent of any covariates. Thus, in

Equation 3 X can be omitted.

With the assumption of unconfoundedness, the treatment effect can be directly estimated

by comparing the outcomes of both treatment groups:

E[Y;' - YO|X,] = EVi|T; = 1, Xi] — E[Yi[T; = 0, X; (4)

(Imbens & Wooldridge 2009).

To identify causal effects, additional assumptions are required.
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a) SUTVA

The first assumption is the “Stable Unit Treatment Value Assumption” (SUTVA). It
ensures that there is no interaction between units (no interference). That means that the
treatment applied to one unit does not effect the outcome for another unit. Furthermore,
there is only one version of each treatment level. This implies that potential outcomes

must be well-defined.

Sometimes this assumption is also called “no-multiple-versions-of-treatment assumption”.
It guarantees that the potential outcomes for each individual under each possible

treatment are well-defined and take on a single value (Rubin 1980).
b) Consistency
The consistency assumption
Y=Y'itT=t WVt

indicates that the potential outcome under treatment 7' = ¢ is equal to the observed

outcome if the treatment actually received is T = t.
c) Positivity

Pursuant to this assumption, the treatment assignment is not deterministic for each set

of values for X. This means everybody in the population should have the probability
P(T=t|X=2)>0 Vtx

to get treated (Hernan & Robins 2018).

3.3 Observational Studies

In some situations randomisation can be unethical or not realistic. For instance, it
might be unethical to prevent potential students from going to college in order to study
the effect of college attendence on future career success (Athey & Imbens 2017). In
such a situation some covariates C, called confounder, influence the treatment as well
as the outcome. This is illustrated in Figure 3.1. Therefore, the treatment assignment

is no longer randomised.
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T —Y

NS
C

Figure 3.1: Confounding

With the presence of confounding, the arrow between T and Y is not the only connection
between treatment and outcome. In addition, another path exists (' <— C' — Y). Thus,

the confounder opens a “backdoor path” from the treatment 7" to the outcome Y.

In the randomised case, without the presence of confounding, the connection between T
and Y is called “causation” as well as “association”. The entire association of T" and Y
is due to the causal effect of 7" on Y. In the presence of confounders, there is more than

one source of association. Thus, the general rule “association isn’t causation” holds
(Hernan & Robins 2018).

In observational datasets, Equation 2 does not apply any longer because
E[Y}|T; = 1] # E[Y}'].

Consequently, the treatment effect cannot be estimated like in a RCT anymore. Since
the potential outcomes are typically not independent of treatment assignment, simply
comparing outcomes between treatment groups as in Equation 4 is no longer feasible,

i.e.
ElY;' = Y| X)] # EYi|Ti = 1, Xi] — E[Y;|T; = 0, Xj.

This could lead to a biased estimate of the treatment effect (“selection bias”). There
exists a subject to treatment selection bias where treated subjects differ systematically

from control subjects. For example older people could be more likely to get T' = 1.

Thus, confounding variables can result in biased estimates and have to be taken into

account in statistical modelling.

To still be able to estimate treatment effects in observational data, the assumption of
strong ignorability is needed. It consists of the assumption that 0 < P[T' = 1|X =z]| < 1

and the unconfoundedness assumption.

In accordance with the unconfoundedness assumption, no unmeasured confounders exist.
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This means treatment 7' can be thought as being randomly assigned among people
with the same values of X. Furthermore, the people in the treatment and control group
are expected to be exchangeable. As defined in Equation 3, the unconfoundedness

assumption can be written as
(Y2, Y} L TX;
and is already fulfilled in a RCT (Austin & Stuart 2015).
Under strong ignorability, the following equations hold:
u(L,x) = EIY X, = ] = EY)T, = 1, X; = a] (5)
(0, 2) = E[Y?|X; = 2] = E[Y;|T; = 0, X; = a]. (6)

According to Hahn et al. (2017) the treatment effect can be estimated like in a

randomised controlled trial by

7(x) = p(l, x) = p(0, ). (7)
In the binary case, the expectation of Y is simply the probability of observing ¥ = 1.
Since
p(l,z) =ElY;|T=1,X;,=2|=P[Y; =11, =1, X, = z] € [0,1]
and
p(0,2) =E[Y;|T=0,X; =2]=P[Y; =1|T; =0, X; = 2] € [0,1]

the treatment effect only takes on values between -1 and 1.
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4 The Propensity Score

To reduce the bias in the treatment effect estimation from observational data, the
backdoor path from the treatment to the outcome needs to be eliminated. This
corresponds to erasing the arrow between the confounder C' and the treatment 7" in
Figure 3.1. For this purpose, the propensity score is an appropriate method. This score
is defined as the conditional probability of receiving the treatment given the observed

baseline covariates or confounders.
e(x) =P(T =1]|X).

Rosenbaum & Rubin (1983) demonstrate that conditional on the propensity score,
treatment status is independent of measured baseline covariates. Thus, subjects in
the treatment and control group with the same propensity score will have similar
distributions of observed baseline covariates. This means the variables X are balanced
between the two treatment groups. Therefore, the propensity score is called “balancing
score”. Hence, with the propensity score it is possible to create a “pseudo-randomised”

sample.

Alternatively, all confounders could be accounted for by including them as covariates.

Nevertheless, this might lead to the problem of over-parameterising.

Rosenbaum & Rubin (1983) present distinct methods on how to use the propensity

score for observational data:
o Covariate Adjustment: Include the propensity score as a covariate in the model.

o Stratification or Subclassification: Group patients by similar propensity scores
and compute the treatment effect for each group. The overall ATE is the average

of these treatment effects, weighted by the overall frequency of each group.

o Matching: Choose pairs of patients with similar propensity scores. Discard the

unmatched patients. This method is discussed in more detail in Section 4.2.

o Inverse Probability of Treatment Weighting (IPTW): Assign a weight to each
patient. If the patient is treated, the weight is equal to the inverse of the propensity
score. If the patient is not treated, it is equal to the inverse of one minus the
propensity score. Thus, underrepresented patients receive higher weights and vice

versa. A propensity score close to 0 or 1 leads to large variances in the results.

10
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This method is further explained in Section 4.1.

If the assumption of strong ignorability (see Section 3.3) holds, all these propensity

score methods can produce unbiased estimates (Wendling et al. 2018).

Under the assumption of strong ignorability, Rosenbaum & Rubin (1983) show that
given the propensity score, the treatment assignment is independent of the potential

outcomes:
(YO UL TIX =T 1 {Y° Y'Y e(x).

In the following, the inverse probability of treatment weighting as well as matching are

further explained.

4.1 Inverse Probability of Treatment Weighting (IPTW)

Weighting people by the inverse probability of receiving treatment creates a synthetic
sample. In this sample, the treatment assignment is independent of measured baseline

covariates. Thus, weighting is like creating a pseudo-randomised sample.

The weights in IPTW are achieved by

T+1—T
e(X) T T—e(X)

According to this, each patient’s weight is equal to the inverse probability of receiving

the respective treatment.

Based on these weights, the weighted estimators for the conditional mean functions are

derived by

ij{/) ‘X - x} =EY|T =1,X =z] and

qg;ﬂmxzﬁzEwwzaxzﬂ

These equations are the basis for the weighted propensity score estimators. This leads

to the treatment effect
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[TV a-Dy
m(z) =E e(X) (1—€(X))‘X }

Moreover, this equation is the immediate consequence of unconfoundedness.

Due to the weighting approach, observations can be treated as in a randomised experi-

ment.

In many applications, machine learning algorithms like boosting, neural networks or
random forests are used to estimate the propensity score, which is then applied to
transform the result to 7(z) (Wager & Athey 2018).

A problem of the propensity score weighting occurs if the propensity score is close to 0
or 1. This causes large weights and increases the variability of the estimated effects
(Austin & Stuart 2015).

4.2 Matching

Another way of balancing data by the propensity score is matching. Here, data is
preprocessed to create a pseudo-randomised sample by selectively omitting observations
from the data. Afterwards, personalised treatment effects can be estimated using the
preprocessed data. As before, the idea is to erase the relationship between the treatment
T and the confounder covariates X. This is achieved by producing a dataset with the

same distribution of the propensity score in the treatment and control group.

Ho et al. (2007) suggest different types of matching. These matching procedures are
implemented in the R package MatchIt, which is further described in Section 6.4.

The ezxact matching technique matches each treated unit with all possible control units
that have the exact same covariate values. Subclasses are formed with all units in the
same subclass having the same covariate values. In a dataset with many covariates or
covariates with a large number of values, an exact matching is difficult or even impossible.
Then, the subclassification approach can be used instead. Here, a predefined number
of subgroups is created. In each subgroup, the distribution of covariates in treated
and control groups should be as similar as possible. In the R package, the default
number of subclasses is 6. The propensity score is automatically estimated via logistic

regression but can also be changed. In the optimal matching method, the respective
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matched sample with the smallest average absolute distance across all the matched
pairs is chosen. The full matching method is a type of subclassification matching which
creates the subclasses in an optimal way. “Optimal” means that a weighted average of
the estimated distance between each treated subject and each control subject within
each subclass is minimised. The result consists of multiple matched sets, where each

matched set contains one treated unit and one or more control units or vice versa.

The matching method used in this thesis is nearest neighbour matching. This technique
selects the best control subjects matched for each individual in the treatment group.
For this purpose, a distance option has to be chosen. For propensity score matching in
R, that means that the propensity score is the distance measure, this option has to be
logit. This means that the propensity score is estimated from a logistic regression.
The order of the treated subjects can be defined by the user: from the largest to
the smallest value, vice versa or randomly, as it is done in this thesis. This results
in new treatment and control groups with greater overlap in their propensity scores.
However, it is possible that treated and control units are matched with propensity
scores relatively far apart. This is the case if, at that stage of the matching, a distant
control has the shortest distance to the respective treated observation. As a result,
there is no guarantee that only similar treated and control subjects are matched. To
prevent this, the caliper feature can be used. The matched treated and control units
will always be within the caliper’s distance of each other. The caliper is defined as the
number of standard deviations of the distance measure within which to draw control
units. For this thesis, it is set to 0.2. It is also possible to combine this method with a

‘mahalanobis’- metric matching with respect to a specific variable within each caliper
(Ho et al. 2011).

4.3 Advantages and Disadvantages

Elze et al. (2017) compare different propensity score methods with a traditional covariate
adjustment. The traditional covariate adjustment can give also good performance, but
it is not suitable for small datasets with many covariates. Their results are summarised
in Table 4.1.
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Method H Advantages Disadvantages
- Retains whole dataset
, - Propensity score values near
- Easy to implement
o 0 or 1 and thus extreme
Weighting :
_ weights can lead to
- Can create a pseudo-randomised
. ) unstable results
population with a perfect
covariate balance
- Reliable
- Provides good covariate balance .
. ) - Some unmatched patients are
In most circumstances
) excluded from the analyses
Matching
- Simple to analyse and interpret )
- Less precise
- Possibility to simply present
preprocessed data
- Retains whole dataset
- Performs less well in datasets
- Possibility to detect with few outcomes and a
) ) interactions between treatment large number of strata
Stratification )
and outcome risk
- Bad performance for strong
- Provides effect estimates for confounding
every stratum
Propensit
P Y - Similar to traditional
Score as - Good performance ) .
: covariate adjustment
Covariate

Table 4.1: Advantages and disadvantages of different propensity score methods
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5 Methods

Throughout the last chapters, the importance of personalised medicine, the theory
and challenges of estimating causal effects, and the role of the propensity score were
introduced. In this chapter, methods for estimating personalised treatment effects are
described. All methods require the assumption of unconfoundedness. Details about the

implementation in R and the corresponding packages are depicted in Section 6.4.

Most methods estimate treatment effects by taking the difference between the treatment
groups, like defined in Equation 7. One way is to estimate the expected outcomes Y
given the covariates X for the treatment groups separately. Afterwards the difference of
the resulting values is evaluated. Another possibility is to estimate the treatment effect
directly. To detect heterogeneity in the data, the algorithm searches for the biggest
differences in the effects. In the present thesis, different methods for both approaches

are applied.

Another way of calculating treatment effects is considering the odds ratio instead of
the difference, such as in GLM trees.

To account for potential confounders, the methods are adjusted, most of them by using
the propensity score. Nevertheless, the causal forest takes another approach to consider

observational data.

5.1 Model-Based Recursive Partitioning (GLM Trees)

One method to estimate personalised treatment effects is model-based (MOB) recursive

partitioning. In this procedure patient subgroups are identified automatically.

The approach builds on the idea of incorporating parametric models into trees: Rather
than fitting one global model, local models on subsets of the data are fitted by recursive
partitioning. This results in a tree in which every leaf is associated with a fitted model,
e.g. a model based on maximum likelihood estimation or a linear regression model. In

the case of a generalised linear model, the model is called GLM tree.
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5.1.1 Tree Building

As a first step, the tree building phase is described. Consider a parametric model
MY, T),0) with

g— intercept(s)
— \7") treatment effect
which is fitted to data denoted by (Y, T'). Therefore, Y is the dependent variable and

T the regressor.

As mentioned above, in GLM trees the treatment effect is not defined as the difference
between the expected outcome in the two treatment groups, but as the log odds ratio.
Therefore, the treatment effect is denoted by 7*(x) instead of 7(x). To compare the
estimation and performance with other methods, the log odds ratio is in this thesis

finally converted to the difference. More details are given in Section 5.1.3.

Given n observations, the parametric model M((Y,T),0) is fitted by minimising a

selected objective function

f = argming g z”: (Y, T);0). (8)

i=1
The objective function is used to estimate the parameters and for partitioning. This
includes testing and split point estimation. In the case of ordinary least squares (OLS),
the objective function W is the error sum of squares. In the case of maximum likelihood
(ML), it is the negative log-likelihood. Equation 8 is equivalent to solving the score

function

n

S WY, T);,0) =0,

i=1

where ¥((Y,T);, é) - w'

In the binary case, minimising the objective function results in a maximum likelihood

estimator. Thus, the objective function is the negative log-likelihood.

In many situations, the global model M((Y,T),0) does not result in a good fit for
all observations in the dataset. Nevertheless, the fit can be improved by partitioning

the observations in subgroups. For this purpose, recursive partitioning based on p
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partitioning variables X1, ..., X, can be applied.

Consider a partition {BM9P},_, p with B leaf nodes. In each leaf a model
M((Y,T),0,) with a node specific parameter 6, holds. The respective partition
{BMOB} is defined by the p partitioning variables X. These variables contain
characteristics of each person that potentially influence the intercept as well as the
treatment effect. If the correct partition {BMOP} is given, the parameters 6, can
be easily computed by minimising the segmented objective function. This leads to
subgroup specific intercepts and treatment effects. For a binary response, generalised
linear models with a binomial family are fitted. The resulting trees are called GLM
trees (Zeileis et al. 2008).

Intercepts and treatment effects of the subgroups are estimated via model-based recursive
partitioning. For this, parameter instabilities are detected by testing for non-constant
parameters. Since the interest lies in detecting non-constant intercepts and treatment

effects, the following partial score functions are applied:

Gu((Y,T),0) = W
b (Y, T),0) = 5‘11((;/;3’)79)‘

In the case of constant intercepts and treatment effects between the subgroups, the
partial score functions are independent of the partitioning variables. A correlation
between a partial score function with some patient characteristics indicates that certain
information was not taken into account. This means that the intercepts and treatment
effects differ between the subgroups and parameter instability exists. Hence, the
corresponding test is an independence test between the partial score functions and the
partitioning variables (Seibold et al. 2016).

For this purpose, Zeileis & Hornik (2007) introduce so-called “M-fluctuation tests”.
These tests are based on the idea to check whether the scores fluctuate randomly
around their zero mean or if there are some systematic deviations from zero over a
partitioning variable. Using these tests requires a distinction between numerical and
categorical partitioning variables. For numerical partitioning variables the supLM
(Lagrange Multiplier) test can be applied. The supLM statistic is the supremum of all
single-split LM statistics. For categorical partitioning variables, a x? test is proposed.

The y? statistic captures the fluctuation within each of the categories of the partitioning
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variable. The x? test is also an LM-type test and asymptotically equivalent to the

corresponding likelihood ratio test.

If there is a significant instability considering any of the partition variables, the node is
split into locally optimal segments. Afterwards the procedure is repeated. For this, the

variable with the lowest p-value is chosen, respectively (Zeileis et al. 2008).

The split point is obtained by using the objective function. For each possible split,
the model is estimated in the two resulting subgroups. Their objective functions are
summed up afterwards. The split optimising the segmented objective function is chosen.
It corresponds to the minimum of the summed objective functions across all splits.
(Zeileis & Hothorn).

The steps of the algorithm, described by Zeileis et al. (2008), are summarised in
Algorithm 1.

Algorithm 1: Model-based recursive partitioning

1. Fit parametric model to a dataset with all observations.

2. Test for parameter instability over a set of partitioning variables Xy, ..., X,.

3. If there is some overall parameter instability, select the variable X; associated
with the highest parameter instability, otherwise stop.

4. Compute the split point(s) that locally optimise the objective function.

5. Split the node with respect to the variable associated with the highest instability

X into child nodes and repeat the procedure.

5.1.2 Tree Pruning

In order to reduce the size and complexity of the tree, some of its sections are removed.
For this purpose, either a pre-pruning or post-pruning strategy can be applied. Pre-
pruning the tree is included in the tree-building phase: the algorithm stops when
no significant parameter instabilities are detected anymore. In the present thesis,
post-pruning is additionally applied manually. The cross table of the treatment and
outcome in each leaf is inspected. There should be at least four observations in each cell.
However, in some leaves this does not hold. In these leaves, the estimated coefficients
are not meaningful anymore. To avoid this problem, the cross table in each leaf of a

tree is checked. If there are less than four observations in one cell, the leaf is pruned.
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5.1.3 Conversion of the Treatment Effect

As already described in the previous chapter, the treatment effect for a binary response

is generally defined by

rz)=P(Y = 1T =1,X) - P(Y = 1|T = 0, X). 9)

In the GLM tree, the treatment effect is directly estimated by a generalised linear
model. Thus, the treatment effect is expressed by a log odds ratio, denoted by 7*. It is
defined by

Y=1T=1X

; P( )/P(Y =0[T"=1,X)
7%@:b%MY:uT:qum _mT—OXQ
L PY =1T =1,X) Y =17 =0,X)
I%QMY:mT:LX) < :mT:QXQ
= logit(P(Y = 1|7 =1, X)) — logit(P(Y = 1|T = 0, X)).

To obtain the treatment effect expressed as difference (see Equation 9), the log odds

ratio is transformed by the response function (see Section 6.3 for details):
logit(P(Y = 1|T, X)) = p(x) + 7%(x) - T;=1.

This results in the equations

exp(u(z))
1+ exp(u(z))’

)

(
exp(p(z) + 7" (x))
1+ exp(p(x) + 7*(x))’

P(Y =1|T =0,X) =

PY =1T=1,X) =

whereas p(x) = mean effect function (intercept).

All other methods that are outlined in the following, either estimate P(Y = 1|7 =1, X)
and P(Y = 1|T = 0, X) separately or they directly estimate the difference.

5.2 Causal Trees

Another possibility of estimating heterogeneous treatment effects are causal trees.

This method directly computes treatment effects with adapted regression trees. The
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treatment effects are expressed as the difference between the expected outcomes of the
two treatment groups. Regression trees partition observations into subgroups of similar
outcomes. It is a well-suited method to identify important predictors of outcomes and

to partition observations into groups with similar characteristics.

5.2.1 The Classical CART Algorithm

The classification and regression tree (CART) algorithm, introduced by Breiman et
al. (1984), can be either used for a continuous or categorical response. Continuous
response variables result in so-called regression trees and categorical response variables
in classification trees. They consist of two parts: the tree building phase and cross-
validation to select the complexity parameter for subsequent pruning. In the tree
building phase, the observations of the training sample are recursively partitioned. In
each leaf, all possible splits are evaluated with the help of a “splitting” (in-sample

goodness of fit) criterion. In regression trees this is the mean squared error (MSE).

To prevent overfitting, cross-validation is used. A penalty term for the tree depth is
specified which is added to the criterion. The penalty parameter represents the costs of
a leaf. Smaller leaf penalties lead to deeper trees and smaller leaves. This results in
higher variance estimates of leaf means and therefore to a larger average MSE across
the cross-validation samples. Applying the penalty term, only splits leading to an
improvement of the goodness of fit criterion larger than some threshold are considered.
The penalty term is chosen, such that the goodness of fit criterion in cross-validation
samples is maximised. For cross-validation, the training sample is repeatedly split into
two subsamples, one to build the tree and estimate the conditional means, the other to

evaluate the estimates.

Athey & Imbens (2015) use the idea of regression trees to detect heterogeneous treatment
effects in a population. They propose four different tree types, which differ with respect
to the splitting criterion: Transformed Outcomes Trees (TOT), Fit-Based Trees (F),
Squared T-Statistic Trees (TS) and Causal Trees (CT). In the following, causal trees
are described and applied. According to Athey & Imbens (2015), this is the preferred
method.
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5.2.2 Honest Causal Trees

There are two main differences between classical regression trees and causal trees. At
first, the focus of causal trees is on estimating conditional average treatment effects
rather than predicting outcomes. Thus, causal trees are based on a splitting criterion
that maximises treatment effect heterogeneity. It focuses on mean squared error of
the estimation of the treatment effects instead of mean squared error of predictions
of outcomes. The treatment effect in each leaf is estimated by taking the difference
between the sample average of the treated group and the sample average of the control

group, respectively.

Furthermore, the method relies on sample splitting. For this purpose, the dataset
is divided in two parts. In the first part the optimal partition (training sample) is
constructed and in the second part the effects within the leaves (estimation sample) are
estimated. After building/splitting the tree with the training sample, the estimation
sample is sent down the tree to a leaf node. The treatment effect is subsequently
estimated within each leaf by taking the difference between means of the treated and
control group. In the binary case the “mean” corresponds to the probability of observing
1. This procedure is called honest estimation. According to Athey & Imbens (2015),
standard machine learning methods are biased because they use the same training
data for model selection and estimation. Spurious correlations between covariates and
outcome affect the selected model. Honest methods avoid this problem by using different
(and independent) information for selecting the model and for estimation. Systematic
bias in the estimation is ignored by adjusting the splitting and cross-validation criteria.
Instead, they focus on the trade-off between leaf size and variance. Small leaf size leads
to more precise estimations, but variance increases at the same time. Honesty eliminates
the bias but at the same time there is also a potential loss of precision resulting from a

smaller sample size.

Furthermore, Athey & Imbens (2015) propose an adaptive, non-honest version. The
trees are estimated without sample splitting. Nevertheless, the honest version should
be preferred because of the reduction of the bias. All other methods mentioned above
(Transformed Outcomes Trees (TOT), Fit-Based Trees (F), Squared T-Statistic Trees

(TS)) provide adaptive as well as honest versions.
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5.2.2.1 Honest Splitting

One problem of estimating the conditional average treatment effect is that the true
value of the treatment effect is not observed. However, it can be estimated. These
estimates are used for splitting as well as for cross-validation. Correspondingly, a causal

tree is a data-driven approach to partition the data into subpopulations.

For each observation a triple (Y%, X;, T;) is observed. Given a sample S, let Sycqr be

the subsample for the treated and S.oniror for the control units.

Let {BSfT},—1. B be a causal tree with B leaf nodes ¢ and £(z, {BST}) a leaf node
¢ € {BSTY} such that x € /.

The population average outcome in both treatment groups of the partition {BS7} is
estimated by

! obs
#{ie S : X, €l(x,{BSTH}) > Yo

iGSt:XiGZ(LE,{BbCT})

itz S, {BSTY) =

Thus, the estimation of the causal effect is

P SABTY) = (1,23 S ABTY) — 0, 2;. 8, {BT}).

The mean squared error for the treatment effect is defined by

> Alm = #(X S ABTY)? - 7

1€8Ste

MSE, (8", 8% {B{T}) =

Nte

whereas S is the test sample, N* is the number of observations in the test sample and
St corresponds to the estimation sample. As mentioned above, S¢ is an independent
sample in the honest estimation algorithm for estimating the leaf means and generating

unbiased estimates.

Taking the expectation of MSE, (S, 8¢t {BST}) over the estimation and test sample
leads to the adjusted expected MSE:

EMSE, ({BS"}) = Egte sest [MSE (S, S5, {BT})).

This criterion cannot be evaluated, because the true treatment effect 7; is unobserved.

It is estimated as follows.
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For the adaptive version, an estimator of the infeasible in-sample goodness of fit criterion
can be constructed by

1
Ntr

— MSE (8", 8" {B{™}) = — 32X 8" {B{T}), (10)

ieStr
whereas S’ is the training sample and N'" the number of observations in the training

sample.

This estimator can be modified to an unbiased honest tree estimator by decoupling the
model selection from the model estimation. The sample is split in two subsamples, one

to build the tree and one to estimate the effects. The splitting objective function is
defined by

—EMSE,({B;""}) = Ex,[7* (X3 {B]" })] — Esewr x, [V(#2(Xi: S {B; ).

Using only the training sample S*",

“EMSE, (8" {BTY) = —— 3 #2(X,: 8™, {BCTY)
N 1€SHT

2 Sg'tr (é) S2 t

P (0
( treat _|_ Scontrol )
N 2

ee{BCTY p l—p

(11)

is the corresponding estimator for the infeasible criterion, with p = N /n, i.e. the
marginal treatment probability (the probability of allocation to the treatment group)
(Athey & Imbens 2015). As described by Athey et al. (2016b), a parameter o can be
added to Equation 11 to control the depth of the tree. That leads to the estimator:

_ 1 X .
~EMSE (8" {B{}) = a- 7 > #(Xa ST ABTY)

trea Scont'ro
— (1 — OC) . Ntr Z < t + !

Sgtr 0) SZ. (€)>
ee{BET} p l—p .

a-values close to 1 indicate that the tree prefers leaves with heterogeneous effects (more
weight on the first part of the equation), which results in deeper trees. a-values near 0

means that the tree prefers leaves with a good fit (more weight on the second part of
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the equation). Thus, the trees are getting smaller.

5.2.2.2 Honest Cross-Validation

For cross-validation in the adaptive version, the objective function defined in Equation
10 can be applied. It is evaluated for the samples S and S'!". This leads to the
cross-validation criterion —@T(StT’C”, Strtr IBETY). St is the part of the training
sample for building a new tree and estimating the conditional means and S for

evaluating the estimates.

For cross-validation in the honest version, the objective function from Equation 11 is used,
but evaluated for the cross-validation sample: —EMSE, (S, {BST}). Nevertheless, it
might have a higher variance than the adaptive criterion. This is due to the smaller

sample-size in the cross-validation sample.

The algorithm of causal trees is summarised in Algorithm 2.

Algorithm 2: Honest causal tree

1. Divide data into tree-building S and estimation samples S¢.
2. Recursively partition covariates into a deep partition {BS7}:
- Select split that minimises EMSE over all possible binary splits.
- Preserve minimum number of treated and control subjects in each child leaf.
3. Use cross-validation to select the depth of the partition.
4. Select partition {BST}* by pruning {BfT}, i.e. pruning leaves that provide the
smallest improvement in goodness of fit.
5. Estimate the treatment effects in each leaf of {BST}* using Se.

Causal trees assume unconfoundedness. To adjust for confounding and to remove bias
in the estimates, IPTW can be applied (Athey & Imbens 2015).

A disadvantage of causal trees is that the treatment effects are not personalised.
Instead, treatment effects are estimated per subgroup. All individuals in one subgroup
are assumed to have the same treatment effect. For this problem Wager & Athey (2018)

propose causal forests.
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5.3 Causal Forests

Causal forests extend the popular random forest algorithm (Breiman 2001). Building
forests reduces the variance of single trees. Distinct trees are created by applying

bootstrap sampling.

A causal forest can be implemented in different ways. The algorithm to grow a forest
as well as the applied splitting rule to maximise heterogeneity in the treatment effect
differ.

Athey et al. (2018) propose generalised random forests (GRF), which express hetero-
geneity in a key parameter of interest. The main idea is based on random forest. Thus,
recursive partitioning, subsampling and random split selection are kept. Nevertheless,
the prediction of a test point x is not obtained by averaging over the trees, but by using
an adaptive nearest neighbour weighting. For this purpose, the forests are treated as a
type of adaptive nearest neighbour estimator. Each observation gets weighted according
to the frequency it falls into the same leaf as the target observation, i.e. the target
value of the covariate vector. Random forests can also be thought of being an adaptive
kernel method. The classical kernel weighting is replaced by forest-based weights, which
are derived from a forest designed to express heterogeneity. Thus, the algorithm is a

computationally efficient way to grow forest-based weighting functions.

The algorithm begins by computing a linear, gradient-based approximation to the
nonlinear estimating equation to be solved. The reason for using a gradient-based
approximation is, that a direct maximisation of a criterion would be computationally
costly. Hence, the algorithm is closely related to gradient boosting. Afterwards, the
approximation is applied to specify the tree-split point as in a standard regression tree.
As in causal trees (see Section 5.2), splitting is performed by simply maximising the
variance of the treatment effect, instead of the variance of the outcome. An honest

splitting procedure is also possible.

5.3.1 Forest-Based Local Estimation

Imagine for each observation ¢ = 1,...,n a quantity O; is observed which contains an
outcome Y; and the treatment assignment T; (O; = {Y;,T;}). That quantity encodes

information about 6(-), which shall be estimated. 6(-) can be any quantity. In the case
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of causal forests, it is defined as the treatment effect. To estimate 6(-), equations of the

form

Elto@)(0:)| X; = 2] =0 Va (12)
have to be solved, whereas 1(+) is some scoring function. For this purpose, some kind of

similarity weights «;(z) are defined. The respective weight «;(x) measures the relevance

of observation i to fit §(-) for a specific x. Afterwards, 6(-) is fitted with an empirical

J

version of the estimating equation:

0(x) € argming{

>~ aila)o(0)

with ||z|]s = /2% + - - - + 22 the euclidean norm.

In the case of a unique root, A(z) solves Y7, i (2)Y0,(0;) = 0.

The weights are traditionally obtained by a deterministic kernel function, which performs
well in a low dimensional parameter-space. In GRF, forest-based weights are used.
First, a set of M trees is grown. Let S/7(z) be the set of training examples of the mth
tree that fall into the same leaf as x. The weights correspond to the frequency of the
training example 7 and x being in the same leaf:

XSy o 1
=" e = g ol

The weights add up to 1. Furthermore, they define the forest-based adaptive neigh-
bourhood of x. This is demonstrated in Figure 5.1. The rectangles in this illustration
correspond to the leaf nodes. In each tree, the training examples located in the same
leaf as the test point x receive the same positive weight. All other training examples

get a weight of zero. The forest averages these tree-based weightings.
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Figure 5.1: Random forest weighting function (Athey et al. 2016, p. 6)

5.3.2 Splitting to Maximise Heterogeneity

The quality of a tree shall be best possible improved by the chosen split. The splitting
procedure focuses on heterogeneity in 6(x). The resulting trees combined into a forest

should induce weights that lead to good estimates of 6(z).

Each split starts with a parent node P given a sample of data S. Let ép(S) be the

solution to the estimating equation

0p(S) € argming{

> v(Os)

{iES:X,’EP}

L}. (13)

Then, P is divided into two child nodes ', C5 to obtain optimal estimates of . The

splits are chosen to maximise

A(Cy, Cy) = neyne, [np(0c,(S) = 06,(S))?,
whereas np is the number of observations in the parent node and n¢; the number of
observations in each child node.

éol and écz are solutions to the estimating equation (see Equation 13) achieved in the
child nodes. This is called the exact loss criterion. With this criterion the solution of

écl and éCQ might be computationally expensive. Therefore, an alternative approximate
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criterion A(Cl, () is applied. That criterion creates gradient-based approximations

and has to be maximised. It is defined by

ACr, C) = Z|{z XeC}\( 2 pi>2’ (14)

{i:X;€C;}

with p; corresponding to some pseudo-outcomes obtained in a first labelling step. The
pseudo-outcomes are computed by using a derivative matrix. Maximising Equation 14
leads to child nodes C; and Cs. After splitting, the observations in each child node
are relabelled by solving the estimating equation (see Equation 13). Overall, the forest
consists of many gradient trees. According to Knaus et al. (2018), the treatment effect

is estimated by

n

=3 Tau(@)Yi - 31— Tau(a)s
i=1 i=1
For observational data, the GRF can be implemented with a local centering approach.
It reduces the bias in the case of confounders. For this, the outcome Y; and the
treatment 7T; are locally centered before building the forest. Hence, the effect of the
features X; is regressed out on all outcomes separately. Define y(z) = E[Y;|X = z]| and
t(z) = E[T;|X = z] as the conditional marginal expectations of Y; and T;. The centered

outcomes are defined by
V=Y, —9(X,) and T, =T, —{°9(X)),

whereas (=" and #(=9 are the leave-one-out estimates of the marginal expectations.
The expected response and the treatment propensities are estimated by regression trees.
They are the nuisance parameters v(z) in the splitting and estimation procedure that
can be added optionally. Afterwards, the causal forest is ran on the centered outcomes
{Y;, T}, instead of {Y;, T;}™, (Athey et al. 2018).

Thus, the causal forest is the only method in this thesis, where confounding is not

considered by a propensity score adjustment.

5.3.3 Alternative Causal Forest Algorithms

Wager & Athey (2018) introduce two more types of causal forests closely related to
GRF.
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o Double Sample Trees: They are similar to GRFs without centering. The main
difference is that the exact loss criterion is used for splitting instead of a gradient-
based loss criterion. Additionally, treatment effects are computed separately in

each tree, rather than using a specific weighting scheme.

o Propensity Forest: This forest obtains its neighbourhood function via a classifi-
cation forest on the treatment assignments. Thus, it only applies the treatment

assignment to place splits. Heterogeneous effects are ignored (Athey et al. 2018).

Athey et al. (2018) compare the four different types of causal forests (Double Sample
Tree, Propensity Forests and GRF with and without local centering) in three different
simulation studies. The simulations include heterogeneous treatment effects with
and without confounding and a non-heterogeneous treatment effect with confounding.
They demonstrate that GRFs with centering perform well in all settings. In case of
confounding, GRFs without centering lead to only slightly worse results. The double
sample trees perform poorly with confounding. Propensity forests cannot handle strong
treatment effect heterogeneity. Due to these results, GRFs with local centering are used

in this thesis.

5.4 Bayesian Additive Regression Trees (BART)

A further method is the Bayesian Additive Regression Tree (BART), developed by
Chipman et al. (2010). In the following, this model is used as a G-computation
approach. “In G-computation any multivariable regression model can be used to regress
the outcome on treatment status and baseline covariates. Using the fitted model,
the two potential outcomes can be estimated for each patient and then the CATE
is estimated by taking the difference between the two imputed potential outcomes”
(Wendling et al. 2018 p. 3). Many off-the-shelf statistical learning algorithms can be

used for G-computation. This is an advantage over causal learning algorithms.

In general, BART is a nonparametric method for fitting functions. It uses the sum
of small regression trees. Hill (2011) describes how these trees are used to estimate
personalised causal effects. For estimating the treatment effect as defined in Equation
7, (1, z) and p(0,z) need to be estimated. The idea is to regress the outcome Y on

the treatment status 7; = ¢ and the baseline covariates X; = z.
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Accordingly, the model
Y = u(t,z)+¢e e~ N(0,0°%)

is specified. BART approximates pu(t, x) with a sum-of-trees model:
M
pt, ) =3 gt o {B) Y, Ar).
m=1

Consequently, the model is expressed as:
Y = g(t,l‘, {BI)BA}17 Al) et g(t7 Z; {BIJBA}M7 AM) tTe€ e N(O, 02)'

Let {B24},, be the mth binary tree with b= 1,..., B leaf nodes. Decision rules send
an observation with (¢,) left or right down to a leaf node of a tree {BZ4}. Each
of the B leaf nodes contains a parameter. This parameter corresponds to the mean
response of the subgroup of observations that fall in that node. A,, is defined as the
associated set of leaf node parameters of the mth tree. Hence, g(t, x; {BEA},,, A,n) is
defined as the value obtained by sending (¢, ) down the tree. BART can be regarded
as a bayesian version of gradient boosting, because it is based on refitting residuals
from former trees: The sum-of-tree models take the predictions from the preceding
base learner, g(t,z, {BP4}1, A,,), and subtract it from the observed response y to form

residuals. The next tree is then fitted to these residuals. This is performed M times.

Overfitting is limited by using a prior, which keeps the trees small. Each tree is only
allowed to contribute a small part to the overall fit. For this, a prior over all parameters

of the sum-of-tree model is specified. Those parameters are o and ({BF},,, A).

The algorithm works like a Gibbs-Sampler: The prior is random, the distribution of the
posterior is unknown, and samples from the posterior are drawn to estimate desired
values. For this purpose, the MCMC (Markov Chain Monte Carlo) method is applied.
Thus, fitting and inference are accomplished with an iterative Bayesian backfitting
MCMC algorithm that generates samples from a posterior. Hence, o and ({BZ4},,, A)
are redrawn at each iteration, but only ¢ is identified (Hill 2011).

For binary outcomes BART can be extended by using a probit model:

M
m=1
with ® = the cumulative distribution function of a standard normal distribution.
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The prior is similar to that for continuous outcomes, but the model sets ¢ to 1 so that
only priors on ({BP4},,, A,,) are needed (Green & Kern 2012).

In case of strong confounding in observational studies, the propensity score can be
included as a baseline covariate in the outcome model (given that there are no unmea-
sured confounders) (Wendling et al. 2018). However, the BART model is in general
robust to confounding, because it can model the response surface very flexibly. Thus,

propensity score adjustment is usually not necessary (Hill 2011).

5.5 Pollinated Transformed Outcome (PTO) Forest

Another approach to estimate personalised treatment effects is the Pollinated Trans-
formed Outcome (PTO) Forest. This algorithm was introduced by Powers et al. (2018).
In a first step it transforms the outcome with the inverse of the propensity score. Hence,
each patient’s transformed outcome is equal to the original outcome divided by the
probability of receiving the respective treatment. For T; = 0, the new value is multiplied
by minus one. Afterwards, a random forest model is fitted with the new transformed
outcome as response based on the whole dataset. The forest is then “pollinated” with
the treated and control population. “Pollinate” means that the control and treated
observations are sent down the tree separately and new predictions are computed for
each leaf node. The treatment effect is obtained by taking the difference of these
predictions. Optionally, a random forest can be fitted to this difference. This optional
step helps with the interpretability of the results, because the importance scores of the
variables are obtained. The algorithm is defined in Algorithm 3. This method is similar

to the virtual twins, described in Chapter 2.

Algorithm 3: Pollinated transformed outcome (PTO) forest

1. Transform outcome: Y;* =T; - e(L)él) —(1-1T;)- %(ZXI)

2. Fit random forest G with transformed outcome (G =Y"* ~ ...)

3. "Pollinate" G for populations with ¢ = 0 and ¢ = 1 separately: Send data down
each tree and compute new predictions — G, Gg

4. Compute treatment effect: §; = G1(X;) — Go(X;)

5. Optionally: Fit a random forest G* to 9;. Then, use G* for prediction of the

treatment effect: 7(z) = G*(x).
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5.6 Causal Multivariate Adaptive Regression Splines
(MARS)

Besides the PTO forest, Powers et al. (2018) developed another method to estimate
personalised treatment effects. This algorithm is called the causal Multivariate Adaptive
Regression Splines (MARS) and is an alternative to tree-based methods. A disadvantage
of trees is the potential high bias in the estimate as they use average treatment effects
within each leaf as prediction. MARS is inspired by recursive partitioning but has the
advantage that the bias of trees is weakened. Furthermore, continuous models with

continuous derivatives are built. This leads to more power and flexibility (Powers et al.
2018).

5.6.1 The Original MARS Algorithm

The causal MARS algorithm is based on the idea of multivariate adaptive regression
splines (MARS), developed by Friedman (1991). The method solves regression-type
problems with the main purpose of predicting values. MARS is a nonparametric exten-
sion of linear models which identifies “non-linearities” and interactions automatically.
Accordingly, no assumptions about the underlying functional relationship between
dependent and independent variables are necessary. Hence, it is a flexible regression
method where spline basis functions are added in each step and bias in predictions is

prevented. The outcome is defined by
A D
Y = f(z1,...,2,) + € where f(z) = Baba(z),
d=1

with bg(x) = basis function and 4 = coefficient.

The relation between a dependent and independent variables is modelled by using a set
of coefficients and basis functions. These are entirely derived from the data. The model
selects a weighted sum of basis functions from the space of basis functions that span all
values of each predictor, i.e. for each variable and for all possible nodes. In this step,
interactions between variables are also considered. The basis functions are added to
the model to maximise an overall least squares goodness of fit criterion (i.e. minimise
the prediction error). It automatically determines the most important independent

variables and the most significant interactions among them. The input space is divided
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into regions, each with its own regression equation. Each breakpoint is estimated from
the data and defines the region of a particular regression equation. These breakpoints

have a similar effect as step functions. See Algorithm 4 for details.

Algorithm 4: Multivariate adaptive regression splines

1. Define f(x) = fy (which means: by(z) = 1).

2. Consider adding function pairs of the form: {(z; — ¢)4, (¢ — z;)+} and the

products of variables in the model with these pairs.
3. Choose pair with biggest reduction in the "training error" when adding it to the
model.

4. Regression coeflicients are estimated via OLS.

In CART, the function pairs have the form: {I;,_c>0y, [{c—z;50}}-

MARS can also handle classification problems. The model is fitted on the indicator
variables of the categorical response variable and the predicted scores are computed.

Each observation is assigned to the class with the highest predicted score.

5.6.2 Causal MARS

To estimate personalised treatment effects with MARS models, a MARS is fitted for
each treatment group, respectively. In each step the same basis function is chosen and
added to each model. In order to find the best basis function in terms of explaining

treatment effect variance, compare:

o Decrease in training error by including the basis in both models with different

coefficients (RSS;).

e Decrease in training error by including the basis in both models with same
coefficients (RSS,,).

The basis function which maximises dRSS = RSS; — RSS,, is chosen. The algorithm

(initially for the randomised case) is summarised in Algorithm 5.

To reduce overfitting and variance, bagging can be used. For this purpose, bootstrap

samples of the original dataset are drawn. The causal MARS model is fitted to each of
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them. Afterwards, the average of the estimates is taken to obtain the treatment effect

of an individual.

In observational data, the model can be built for S propensity strata. The variable
s € {1,...,S5} indicates the stratum a patient belongs to. The same basis function
is used within each stratum, but different coefficients are estimated for each person.
The estimation of the coefficients in the different strata is independent. The criterion
is defined as >, n,dRSS,, with ng equal to the number of patients in each stratum
(Powers et al. 2018).

Algorithm 5: Causal MARS

Define F = {{(z; — ¢)4,(c —z;)+} :c € {X;;},7 € {1,...,p}}.
Initialise I = {1}.

for d in1,..., D (growing the model) do

for each pair of functions

{f, 9} € {bl2)f*(2), b(x)g" ()} : b € K, AT, g7} € F} do
! RS55, = min ; (yi = > (Byb@i) Le,—1y + Bypb(xi) I1t,—0))

bek.
2
~ % he)
he{f.g}

il &

) RSS; = min > (yz‘ = > (Bpb(@i) L=y + Byb(wi) Li1,—0})

BLAY I3 bek
2
- Z (ﬁih(%)]{tizl} +52h($i)]{ti_0})>

he{f.g}

iii)

dRSS = RSS, — RSS,

end

Choose {f, g} which maximise dRSS and add them to K.
end

Backward deletion: delete terms step by step. For this purpose, use the same
criterion as in the first loop (i - iii). For the estimation of the optimal model size,
use the out-of-bag (OOB) error.
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5.7 Overview of Methods

The methods explained in the previous sections take different approaches to estimate
treatment effects. In the following, they are briefly summarised to facilitate their

comparison.

Consider a partition B and a sample §. The treatment effect is defined by

In the binary case this corresponds to the probability of observing Y = 1:
p(l,z) =PY; =1|T; = 1, X; = x]

w(0,2) =PY; =1|T; =0, X; = 2]

1. Model-based (MOB) Recursive Partitioning (GLM tree)

Concept: In each leaf node of a partition B subgroup specific mean and treatment effects
are estimated with a GLM model (with logit link). For this purpose, the objective
function in the corresponding leaf is minimised. In GLMs this corresponds to minimising

the negative log likelihood:

(7&) — 0= argmin, Z —1((Y,T);,0).
=

The resulting treatment effect 7% is expressed by a log odds ratio.

Treatment effect estimation: The log odds ratio is transformed by taking the response

function:

exp(u(x))
I+ expl(p())’

)

(
exp(p() + 77(x))
1+ exp(p(x) + 7*(x))

P(Y =1|T =0,X) =

PY =1|T=1,X) =

In order to obtain the treatment effect as in Equation 15, the difference of these

probabilities is taken.
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2. Causal Tree

Concept: A partition B, that estimates conditional average treatment effects in each leaf,
is built. For honest estimations, different samples for building the tree and estimating

the treatment effects are taken.

Treatment effect estimation: Within each leaf node the population average outcome in
both treatment groups (¢ = 0 or t = 1) is calculated, i.e.

1
({i € Si: X; € U(x,B)}) >

1€8: X, €l(x,B)

PV = 1T =1, Xi =a] = 5 Y.

Afterwards, the difference of these values is taken (see Equation 15).

3. Causal Forest

Concept: A forest of gradient trees is built from which weights «a;(x) are extracted.

Observations close to a particular value x are weighted more heavily.

Treatment effect estimation: The treatment effect is calculated by applying the weights:
#a) = 3 Toa(a)i = 3(1 - Tay(@)Y,
i=1 j

4. BART

Concept: A model for the outcome Y is estimated:

Y = u(t,r) +¢ e~ N(0,0°%).

wu(t, z) is approximated with a sum-of-trees model

M
pt,z) = > g(t,z; Bn, Ap)

m=1

with A,, = the associated set of leaf node parameters of the mth binary tree B,,. A

regularisation prior keeps the trees small.

Treatment effect estimation: For binary outcomes, BART is extended by using a probit

model. BART calculates individual treatment effects by estimating potential outcomes
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for each patient. Therefore, it is similar to the virtual twins approach described in
Chapter 2, where the forest is replaced by BART. Afterwards, the difference of these

values is taken (see Equation 15).

5. PTO Forest

Concept: The outcome of each observation is transformed by dividing it by the prob-
ability of receiving the respective treatment. A random forest G on the transformed
outcome is built. G is “pollinated” for the treatment and control group separately. This

results in the forests Gy and Gj.

Treatment effect estimation: The difference between the predictions of the two pollinated
forests is taken: G1(X;) — Go(X;) = d;. Optionally, a random forest G* on 9; can be
fitted and used to predict the treatment effect: 7(z) = G*(x).

6. Causal MARS

Concept: The MARS algorithm is a flexible regression method that adds a spline basis

function in each step.
D
Y = Z Bdbd(«r) +e€
d=1

with by(z) = basis function and ; = coefficient.

Treatment effect estimation: A MARS model for each treatment group is fitted. The

treatment effect is estimated by taking the difference of the treatment groups.
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6 Simulation Study

To compare the methods explained in the previous chapter, eight different datasets are
simulated (see Section 6.2 for details on the data generation process). To assess the
quality of these estimators, the RMSE (root mean squared error), the bias and the
variance are calculated. The bias quantifies the systematic distortion of the estimated
treatment effects. The variance indicates how far the estimates are moving around their

average value. The RMSE includes both of these measures.

6.1 Performance Measures

The first performance measure applied in the present thesis is the root mean squared
error (RMSE). It corresponds to the root of the mean squared error (MSE). The MSE
is defined as the squared difference between the estimated and the true treatment effect.
Thus, given the estimator 7 of 7, the RMSE is defined by

1
RMSE(7(x)) = \J —
with n = number of observations.

The root is calculated to facilitate interpretability by regarding a performance measure
based on the same units as the quantity being estimated. Per definition the RMSE is

always non-negative. Values close to zero indicate a reasonable estimation.

The MSE incorporates both bias and variance:

MSE(#(z)) = Var(#(z)) + Bias(#(z))>. (16)

For an unbiased estimator, the MSE is equivalent to the variance of the estimator and
the RMSE to the standard error. In order to assess which part of the RMSE stems
from the bias and which part from the variance, these measures are also applied for the

evaluation.

The bias is defined as the difference between the means of the estimated and the true

values:
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Bias(7(x)) =

Thus, in an estimation procedure, there will be an error that is expressed in the bias.
In accordance to the RMSE, values close to zero indicate an appropriate estimate. The
variance of 7(z) is defined by

Var(3(2)) = - 3" (5ia) -

iz
It represents the average deviation of an estimator from its mean.

When predicting on a test dataset, an irreducible error o2 is added to the MSE formula
(see Equation 16). It corresponds to the error, or amount of noise, introduced by the
data. It cannot be reduced by any model (Hastie et al. 2009).

6.2 Simulated Data

Eight different simulation approaches are performed with 300, 600 and 1000 observations,

respectively. A brief overview of these simulations is presented in Table 6.1.

Confounders are those variables that contribute to p(x) and to e(x). In simulations 4-6
the confounder corresponds to the variable z5. In simulations 7 and 8 two confounders,

variables x5 and x5, are specified.

As mentioned above, these functions (u(x), e(x) and 7(x)) vary in some characteristics
to uncover performance distinctions for different scenarios. The key characteristics of

the different datasets are summarised in Table 6.2.
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Simulation p(x) e(x) 7(x)
1 0.5 0.5 3
2 0.5 0.5 3-d(z,>1)
3 0.5 0.5 31
4 05+ 1.2 Iuyco) { 065 itz <0 3
0.4 else
5 0.5+ 1.2 Isyc0) { 065 itz;<0 3Ly )
0.4 else
6 05+ 1.2 Iuyeo) { 065 itz; <0 3a,
0.4 else
] 0.5+ 1.2+ Ipyeo)+ { 065 iz <Oan=F [, | o
0.5 I(z1,=F) 0.4 else
. 0.5+ 1.2+ Ipyeo)+ { 0.65 if zy < 0,215 = F o
0.5 I(z1,=F) 0.4 else
Table 6.1: Functions of eight different simulations
Type of Nb. of Variables
Simulation || Nb. of Confounder | Heterogeneity | Treatment Effect in Treatment
Function Effect Function
1 0 No - 0
2 0 Yes stepwise 1
3 0 Yes linear 1
4 1 No - 0
5 1 Yes stepwise 1
6 1 Yes linear 1
7 2 Yes stepwise 2
8 2 Yes linear 2

Table 6.2: Overview of characteristics of simulations

40




Simulation Study

Covariates:

The simulation of covariates is identical for all datasets. In total, 20 covariates are
generated. Ten of them are binary and ten are numeric. The numeric covariates are
samples from a standard normal distribution. The binary covariates are generated
similarly: They are zero if the sample from a standard normal distribution is smaller or

equal to zero and one if it is greater than zero:

fN

0 if N(0,1) <

0
,1) > 0.
Outcome:

In this thesis, the outcome is a binary variable. It is generated from the probability of

getting a positive outcome given the covariates and the treatment

P(Y = 1T, X) = ju(x) + 7(2) - T,

with p(x) = mean effect (intercept) and 7(x) = treatment effect.

This probability is used to draw from the binomial distribution.

6.3 Propensity Score Model

Before estimating the treatment effects, a model to estimate the propensity scores is
required. This is a crucial step to ensure that the propensity adjustments are as precise

as possible. For this purpose, different models are evaluated in this section.

The propensity score model should include those covariates that are related to the
outcome (prognostical covariates) and, if applicable, the treatment (confounder). The
variables solely influencing the treatment-selection must not be included in the propensity
score model. It could lead to bias and an increased variance in the treatment effect
estimate. Causal inference using the propensity scores requires some assumptions
presented in Chapter 3. Those are consistency, unconfoundedness and positivity.
Additionally, the assumption of no misspecification of the propensity score model has
to be fulfilled (Austin & Stuart 2015).

In order to estimate the propensity score model, the following models are compared:

generalised linear model (GLM) (with a logit link), classification and regression tree
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(CART), random forest, conditional inference tree (ctree) and conditional inference

forest (cforest).

GLM: In a generalised linear model, the non-continuous expected response E(y) is
modelled given a linear predictor 7; = z!'3. A GLM estimates the coefficients 3 by
maximising the log-likelihood. To guarantee that a prediction is limited to the interval
[0, 1], different link functions can be used. For this thesis, the logit link is applied:
m; = h(n;) (with h(-) = response function) or n; = g(m;) (with g(-) = link function).

The response and link functions are defined by

exp(n;) ( e )
mi = h(m) = —exp(n) T g(m;) = log( 7— .

with m; = P(y; = 1|z;) (Fahrmeir et al. 2009).

CART and Random Forest: The classification and regression tree (CART) is defined
as described in Section 5.2.1. Due to the binary response, classification trees are
fitted. A random forest consists of a set of these trees, combined with randomised node
optimisation and bagging. Random forests by Breiman (2001) are an ensemble learning
method for classification. In a random forest model, single deep trees are averaged to
reduce their variance and to avoid overfitting. Each tree is built based on a bootstrap
sample (random sampling with replacement) of the same size as the original dataset.
Furthermore, at each split point just a random subset of variables is considered as split
variable. The split points are chosen based on an information criterion, like the Gini

impurity.

CTree and CForest: The conditional inference forest consists of a set of many conditional
inference trees, developed by Hothorn et al. (2006). It is similar to CART or random
forests. The main difference is the choice of split points. In CART / random forests, an
information measure is maximised while ctrees / cforests use a permutation-based signif-
icance test procedure to select the variables. Hence, ctrees/cforests are computationally

more demanding.

The propensity scores for simulations 4-8 are evaluated with the RMSE. Simulations
1-3 are already randomised, so there is no need to estimate the propensity score. Since
the propensity scores of simulations 4-6 and 7-8 are similar, they are summarised.

Additionally, a distinction between including all the covariates in the model and just
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including the confounder is made. The prediction of the propensity score for each
scenario and method is repeated 50 times. That means that each model is fitted on 50
datasets from which the propensity scores are estimated. The datasets contain 1000

observations, respectively. The results are presented in Figure 6.1.

Simulations 4-6 - Only confounder Simulations 4-6 - All variables
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Figure 6.1: RMSE of propensity score models

On the left side, the RMSEs of the models with only confounders included are plotted.
The right side shows the RMSEs of the models with all available variables included.
The results are distinguished between simulations 4-6 and simulations 7-8, respectively.
Naturally, it is not reasonable to fit a random forest or a cforest just with one or two
covariates. Therefore, they are printed in grey for the case of only using the confounders.
According to the RMSE, ctree is superior for all scenarios. Overall, it has the lowest
RMSE. Especially for simulations 7-8 it fits better by just including the confounder
instead of all covariates into the model. Thus, in the following, ctree is used to estimate

the propensity scores. Moreover, the ctrees are fitted with just the confounders.
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6.4 Computational Details

In this section, some details about the implementation and packages used for the
previously explained methods are presented. For computations, the statistical software
R (version 3.5.1) is used (R Core Team 2014). All plots are created with the R package
ggplot2 (version 3.0.0) (Wickham 2016).

6.4.1 Propensity Score Model

As illustrated in Section 6.3, the propensity score is estimated by using a causal inference
tree (ctree) with only the confounders as covariates. For this purpose, the function
ctree of the package party (version 1.3-1) is applied (Hothorn et al. 2006). The
cforest is fitted with the same package and the function cforest. The random forest is
fitted with the function randomForest of the package randomForest (version 4.6-14)
and CART with the function rpart of the package rpart (version 4.1-13). For the
GLM the glm function of the package stats (version 3.5.1) is utilised. All methods
are applied with default hyperparameter settings because tuning would go beyond the

scope of this thesis.

6.4.2 Outcome Model

After fitting and choosing the propensity score model, the treatment effects are estimated.

The packages utilised to fit the outcome models are described in this section.

6.4.2.1 GLM Tree with IPTW

In order to use a model-based recursive partitioning based on generalised linear models,
the glmtree-function of the R Package partykit (version 1.2-2) was used (Hothorn
& Zeileis 2015). This is a new implementation of the general model-based (MOB)
recursive partitioning algorithm. The R package can be utilised for several different
models, like OLS regression or survival regression. Since the response is binary in the
present thesis, a generalised linear model (a logit model) is applied. Thus, in each leaf
of the tree a GLM (with family = binomial and link = logit) is fitted.
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To fit the model, three different types of variables are available: the response y
(the outcome), the regressor t (the treatment) and the partitioning variables X (all

covariates).

To get unbiased results from observational data, the observations are weighted by
the inverse probability of receiving a treatment (see Section 4.1). In R, the argument

weights can be added. For all other parameters, the default settings are applied.

The model is implemented as follows:

glmt <- glmtree(y ~ t | x1 + ... + xp, data = ..., weights = ...,
family = binomial(link = "logit"))

6.4.2.2 GLM Tree with Matching

For the matching procedure, the R package MatchIt (version 3.0.2) is used. It contains
implementations of the suggestions of Ho et al. (2007). It is designed for causal inference
with dichotomous treatment variables. The new matched dataset is generated with the

following function:

matcheddata <- matchit(t ~ ., data = ..., method = "nearest",
distance = "logit", m.order = "random",
caliper = 0.2, discard = "none"

The nearest neighbour matching as described in Section 4.2 is used. It is specified
by method = nearest. By determining the hyperparameter distance = "logit",
the matching is performed based on the propensity score. The propensity scores are
estimated with a logistic regression in a first step. Matches are chosen step by step
for each treated unit, in the order specified by the m.order command (here: random).
With caliper = 0.2, the matched treated and control subjects are always within the
standard deviation of 0.2 of the distance measure. Figure 6.2 shows an example of a

matched dataset of simulation 4.
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Distribution of Propensity Scores

Unmatched Treatment Units

Propensity Score

Figure 6.2: Jitterplot of matched dataset

The plot shows a similar propensity score distribution of the treatment and control
units after the matching procedure. This helps to reduce confounding. The unmatched
observations in both treatment groups are excluded from the analysis. The matched

dataset is then used to fit a GLM tree, as defined in the previous section.

6.4.2.3 Causal Tree

Causal trees are implemented in the package causalTree (version 0.0) (Athey et al.

2016a). To fit honest causal trees, the following code is applied:

ct <- causalTree(y ~ ., treatment = t, data = ...,
cv.Honest = TRUE, split.Honest = TRUE,
split.Rule = "CT", cv.option = "CT",
split.Bucket = TRUE, weights = ..., maxdepth = ...)

The function expects a formula with response and features and a vector with the binary
treatment status of each observation (dummy-coded). To fit the honest version of
splitting and cross-validation, cv.Honest, as well as split.Honest should be set to
TRUE. A causal tree (instead of a transformed outcome tree, a fit-based tree or a squared
t-statistic tree) is achieved by setting the split.Rule and the cv.option to CT. The
hyperparameter split.Bucket = T ensures that a discrete method for splitting the
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tree is applied. Furthermore, the observations in a leaf will be partitioned into buckets.
This prevents unnecessary splitting. Without this hyperparameter, the tree might split
too often on covariates that have a strong influence on the level of the outcome. Imagine
an observation in the treatment group. The expected estimated difference in treatment
effects across the left and right leaves fluctuates greatly with the split point. The reason
is that it just influences the average of the treatment group. This leads to an increased
variance of the estimated treatment effect. As in GLM trees, weights are included by a

weights parameter.

Pruning the tree by a complexity parameter is not possible since no minimum in
the 10-fold cross-validated relative error (xerror) can be determined. Consequently,
according to the complexity parameter, the tree should not be pruned at all. To
guarantee trees with an adequate size, the maximal depth was fixed beforehand using
the hyperparameter maxdepth. Thus, the causal tree has a small advantage over the

other methods because the number of expected leaves is specified in advance.

6.4.2.4 Causal Forest

The generalised random forests are implemented in the grf package (version 0.10.1).
This package provides non-parametric methods for least-squares regression, quantile
regression, and treatment effect estimation (Tibshirani et al. 2018). The causal forest
function in this package provides an honest version as well as a tuning function. This
function tunes the minimal node size, mtry (number of variables tried for each split),
alpha (controls the maximum imbalance of a split) and the imbalance penalty (parameter
to control the extent of penalisation in imbalanced splits). Theoretically, the fraction
of data used to build each tree can be tuned. Since the honest version is applied, the

fraction is fixed to 0.5. With the following code, a causal forest is fitted:

cf <- causal_forest(X =X, Y=y, W=1t, What = ..., Y.hat = ...,
min.node.size = ..., sample.fraction = ...,
mtry = ..., alpha = ..., imbalance.penalty = ...,

tune.parameters = TRUE, honesty = TRUE)

The outcome y, as well as the covariates X and the treatment assignment ¢ have to be
numeric in this function. For all factor variables 0/1 dummy encoding can be used. For

the covariates X, this is implemented in the R-Function model .matrix. To improve the
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fit, W.hat and Y.hat functions are included. They estimate the treatment propensities,
as well as the expected response using a separate regression forest. With these estimates,
local centering is performed and the causal forest is fitted on the centered outcomes. If

W.hat and Y.hat are set to zero, no centering is performed.

The package grf is still in beta version. The tuning function does not tune all variables
and it is not yet completely documented. The tuning results can be found in the
appendix in Table A.1 and Figure A.1. For each forest, the parameters are tuned anew.
According to the tuning results, the alpha parameter is relatively small for stepwise
functions (simulations 2, 5 and 7). In the case of no heterogeneity (simulations 1 and
4), the minimal node size gets large. For linear functions (simulations 3, 6 and 8), the

mtry parameter gets large. The imbalance penalty is quite similar for all simulations.

6.4.2.5 BART

To fit a bayesian additive regression tree (BART), the function pbart of the package
BART (version 1.9) is utilised (McCulloch et al. 2018). This function fits BART for a

binary response.

In this package, the number of posteriori draws returned (ndpost), as well as the
number of MCMC iterations used as burn in (nskip) have to be defined. The covariates
are defined in the parameter x.train where also the treatment assignment is included.
y.train contains the outcome variable. The function returns a matrix with ndpost
rows (draws from the posterior) and n (number of observations) columns. To obtain
one value per person, the columns are averaged. In the binary case, the probit link of
the posterior probability P(Y = 1|t,x) (=u!(x)) is required. The default setting is used
as prior as recommended by Chipman et al. (2010). The code to fit a BART model is
the following:

bart <- pbart(x.train = X_train, y.train = y, nskip = 500, ndpost = 1000)

There are also other packages that provide BART computations. One of them is the
dbarts package. It is much faster and allows more complexity (e.g. random effects)
than the BART package. Another package is bartCause, developed by Jennifer Hill and
Vince Dorie. It can handle all relevant things concerning causal inference. Furthermore,
it can print out individual treatment effect distributions. However, a problem of these

packages is their limitation to a binary response.
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6.4.2.6 PTO Forest

The PTO forest algorithm is implemented in the R package causallearning (version
1.0.0) (Powers et al.). This package contains methods developed by Powers et al. (2018).
To apply IPTW, the propensity score has to be passed to the function (pscore). The
default value for the propensity score is 0.5 for all observations. All covariates need
to be numeric in this package. For the binary case, 0/1 dummy encoding can be used.
The following code fits a PTO forest:

PTOf <- PTOforest(x = X, t =t, y =y, pscore = ...)

6.4.2.7 Causal MARS

Like the PTO forest, the causal MARS algorithm is implemented in the package
causalLearning (Powers et al.). The bagged version of the causal MARS is computed

with the following code:

cM <- bagged.causalMARS(x = X, t =t, y =y,
propensity = TRUE, stratum = ...,
backstep = TRUE, nbag = 20)

The function expects a matrix of covariates x, a vector of treatment indicators ¢t and a
vector of response values y. Just like in PTO forests, numeric variables are required
in this package and in the binary case, a 0/1 dummy encoding can be used. The
hyperparameter nbag defines the number of models to bag. To adjust for confounding,
data is stratified beforehand. Afterwards, the strata is given to the function with
the stratum hyperparameter. To guarantee the use of propensity score stratification,
propensity is set to TRUE. Each model is pruned based on OOB samples by setting
the hyperparameter backstep.
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6.5 Results

The performance of the eight scenarios is evaluated by refitting the model and predicting
100 times for each method. In each iteration, a new train and a new test dataset are
generated. The predictions are calculated for the respective test dataset. The training
dataset is 4 times as large as the test dataset. For n = 1000 in the train dataset, the
test dataset would contain 250 observations. The resulting RMSEs and biases are
graphically presented in Figures 6.3 - 6.10. The corresponding variances are displayed

in the appendix in Figures A.2 and A.3.

6.5.1 Simulation 1

In simulation 1, no confounders and a similar treatment effect for all observations are
assumed. Thus, all methods are used without an adjustment for confounding. Figure
6.3 shows boxplots of the RMSEs for all methods on the left side and of the biases
on the right side. The results are divided into the different numbers of observations,
respectively. According to the RMSEs, the GLM tree and the causal forest perform
best in this scenario. For n = 300, the RMSEs of the causal tree and causal MARS
are the worst. The difference to the other methods is relatively small. However, their
biases are close to zero. Thus, the variances of these two methods are higher than for
the remaining ones (see Figure A.2 in the appendix). For all methods, especially for
causal MARS, the RMSE gets better for a higher number of observations. PTO forest
and BART are the most biased methods in this simulation.
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Figure 6.3: RMSE and bias of different methods for simulation 1

6.5.2 Simulation 2

The results for simulation 2 are depicted in Figure 6.4. There are still no confounders
but heterogeneous treatment effects, constructed with a stepwise function. Thus, the
methods are used without adjustment as before. In general, the methods perform
almost similar and none of them is strongly biased. For n = 300 and n = 600, the
causal tree has a large interquartile range in the RMSE. However, for n = 1000, it
performs best. The other methods seem to be more stable. The causal tree has the

highest variance in this scenario for all n (see Figure A.2).
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Figure 6.4: RMSE and bias of different methods for simulation 2

6.5.3 Simulation 3

Except for a linear treatment effect function, the data of simulation 3 is similar to
simulation 2. Thus, no adjustment for confounding is necessary. As illustrated in
Figure 6.5, the RMSE is generally higher than in simulation 2. Especially the causal
tree deteriorates extremely. However, all biases are close to zero. This implies a high
variance for the results of the causal tree. Also for the other methods, the variances are
much higher than in simulation 2 (see Figure A.2). For the GLM tree, the interquartile
range of the variance is large for small n. Nevertheless, it gets smaller with an increasing
number of observations. BART has the lowest variance for small n. For large n, the
variance of the causal forest is the lowest. The most (but not strong) biased method
is the PTO forest. The RMSE and variance for the causal tree exceed the y-axis.
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Therefore, the values are illustrated with an extended y-axis in Figure A.4 in the

appendix.
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Figure 6.5: RMSE and bias of different methods for simulation 3

6.5.4 Simulation 4

Simulation 4 is the first scenario with confounding. Thus, the comparison between the
methods with and without adjustment is meaningful. The methods without adjustment
are labelled with a “0” at the end. Hence, it is expected that the methods without
a “0” have a lower RMSE and a bias close to zero. For the GLM tree, two different
propensity score adjustments are investigated: Matching and IPTW.

In simulation 4, the treatment effects are not heterogeneous. According to Figure 6.6

the RMSE is relatively low for all methods. The approaches with adjustment do not
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perform better considering the RMSE except for the causal tree and the causal forest.
The same applies for the bias. One exception is the bias of the causal MARS model.
It is reduced by propensity score stratification. Additionally, matching and IPTW in
the GLM tree reduce the bias. The improvement of the causal MARS model with the
propensity score stratification is not visible in the RMSE because of many extreme
values in the variance (see Figure A.2). The same applies for the GLM tree, where the
IPTW adjustment and matching result in slightly increased variance for large n. The
bias of the BART is getting negative with propensity score adjustment. Without the

adjustment, the bias is closer to zero.
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Figure 6.6: RMSE and bias of different methods for simulation 4
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6.5.5 Simulation 5

In the case of one confounder and heterogeneous treatment effects, generated with a
stepwise function, the causal tree is clearly performing worse compared to the other
methods (see Figure 6.7). The RMSE only slightly differs between the values with and
without adjustment. Nevertheless, the causal tree, the causal forest, and the causal
MARS are clearly less biased with the adjustment. Especially for the causal tree, the
bias is getting closer to zero. That indicates a relatively high variance for the causal
tree with adjustment (see Figure A.3). Thus, the bias reduction is not visible in the
RMSE anymore. As before, the RMSE of the causal MARS contains many outliers.
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Figure 6.7: RMSE and bias of different methods for simulation 5
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6.5.6 Simulation 6

Except for the linear treatment effect function, the dataset in simulation 6 is similar to
simulation 5. As illustrated by Figure 6.8 the RMSEs are higher compared to simulation
5, especially for small n. Causal MARS has the lowest RMSE values for n = 300
and 600. Correspondingly, it can handle stepwise functions as well as linear functions
for small sample sizes. For n = 1000, the RMSEs of all methods are similar. One
exception are the causal trees that perform worse with the linear function. They boast
high variances in the estimates, which is reflected in the RMSE results. For small n,
GLM trees have a large interquartile range in the RMSE due to the high variance. As
before, the bias is close to zero for almost all methods. Except for the PTO forest, the
adjustment is reasonable and results in less bias. In the variance plots (see Figure A.3)
more differences between the methods are visible. BART shows the lowest variance for
small n, followed by causal forest, PTO forest, causal MARS, GLM tree and causal tree.
For n = 1000, causal forest has the lowest variance. The variances for the methods with
propensity score adaptation are slightly higher than without. Thus, the improvement
of the bias is not reflected in the RMSE. As in simulation 3, the RMSE and variance
for the causal tree exceed the y-axis. For this reason, the plots are printed with an

extended y-axis in Figure A.4 in the appendix.
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Figure 6.8: RMSE and bias of different methods for simulation 6

6.5.7 Simulation 7

A second confounder is included in the dataset of scenario 7. Additionally, the stepwise
treatment effect function is now influenced by two variables. As depicted in Figure
6.9, the causal tree shows the worst performance with respect to the RMSE. This is
caused by its high variance (see Figure A.3). Moreover, the causal MARS model has
many outliers in the RMSE. The RMSE is the lowest for GLM tree and BART. The
methods with and without adjustment hardly differ. The bias is slightly improving
with adjustment for all methods except for PTO forest and BART. For large n, the
GLM tree is not biased even without the IPTW. This has not been the case with a

linear treatment effect function (simulation 6).
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Figure 6.9: RMSE and bias of different methods for simulation 7

6.5.8 Simulation 8

The results of simulation 8 are illustrated in Figure 6.10. In contrast to simulation 7,
the treatment effect function is linear and the RMSEs are generally higher. In this
scenario, the performance of the distinct methods differs more. For a small sample size,
causal MARS has the lowest RMSE, followed by PTO forest, causal forest, BART and
GLM tree. The causal tree provides the worst fit. For n = 1000, BART’s performance
improves and is similar to the performance of causal MARS. The adjustment for
confounding shows a little improvement in the bias for all methods, except for the PTO
forest. The propensity score adjustment for BART is only effective for large n. The
variance plot (see Figure A.3) illustrates much higher variances than in simulation 7.

For n = 1000, the causal forest has the lowest variance, followed by the PTO forest,
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BART, causal MARS, GLM tree and causal tree. The high variances in causal trees
lead to poor results in the RMSE. Moreover, for small n, the variances of the GLM
tree have a very large interquartile range. Additionally, the variances of BART are the
lowest for small n. In general, adjustment lowers the bias (except for PTO forest and
BART) but increases the variance. Consequently, the RMSE is not improved by the
adjustment. As in simulations 3 and 6, the RMSE and variance for the causal tree are
not completely visible, because they exceed the y-axis. Thus, they are plotted with an

extended y-axis in Figure A.5 in the appendix.
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Figure 6.10: RMSE and bias of different methods for simulation 8
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6.5.9 Overall Remarks

Some remarks to these results are true for all eight simulations. First, the interquartile
range of the RMSE and bias is getting smaller with an increasing number of observations.
Second, there is a clear distinction between linear and stepwise treatment effect functions.
The variances (see Figures A.2 and A.3) are large for linear treatment effect functions
(simulations 3, 6 and 8). Furthermore, the interquartile range of the variance for the
GLM trees is extremely wide for small n. The large variances have an impact on the
RMSEs. The RMSEs and variances of the causal tree are very large for the simulations
with linear treatment effect functions and exceed the y-axis. Therefore, the values are
displayed with an extended y-axis in the appendix in Figures A.4 and A.5. Additionally,
the adjustments for confounding cause less biased results in most cases, but slightly
increase the variance. For large n, causal forest has the lowest variance and for small
n, BART has the lowest variance. This is most apparent for a linear treatment effect

function.

6.5.10 Visualisation of the Estimated Treatment Effect

For a visualisation of the approximation to the true treatment effect function, the true
and the estimated treatment effect values in dependence on the variable z; are plotted
(see Figures A.6 - A.19). The variable x; is the covariate influencing the treatment effect
in simulations 2-8. In simulations 7 and 8, variable z; is an additional confounder. In
simulation 1, the treatment effect is constant for all observations. Simulations 1-3 are
generated without and 4-8 with adjustment for confounding. The GLM tree cannot
handle linear treatment effect functions, especially for small n. Due to its nature, the
GLM tree can only estimate stepwise functions. Additionally, the estimations of the
causal tree vary widely around the true values for all simulations. All other methods

approximate the true treatment effect function better.

6.5.11 Running Time

Another important aspect in the evaluation of methods is the running time of the
algorithms. Table A.2 shows the average running time in seconds for the different

methods. The table is split into the different numbers of observations. Figures A.20
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and A.21 visualise these values. For simulations 4,5,7 and 8 the running time of causal
MARS with adjustment is not completely visible. Thus, these plots are printed with an
extended y-axis in Figure A.22 in the appendix. In general, the algorithms are taking
longer with an increasing number of observations. Particularly the running time of the
GLM tree strongly increases with large n and a linear treatment effect function. The
GLM tree fitted with a matched dataset is slightly faster. The causal tree is one of
the fastest methods in all simulations. However, according to the RMSEs this method
performs poorly in the case of confounding. Without the local centering approach, the
causal forest is one of the fastest methods. With local centering, the algorithm takes
much longer. The slowest method is causal MARS, especially with propensity score
adjustment. Compared to the other methods, the running time of PTO forest and
BART are average. The running time of PTO forest is not affected by an adjustment
for confounding. For BART, the running time with propensity score adjustment is
getting slightly worse. The time of the propensity adjusted BART model is in fact even
higher than illustrated here. The reason is that the propensity scores themselves are
estimated by a BART model. Hence, the running time almost doubles. However, the

propensity score can be also estimated with a faster method.

6.5.12 Number of Nodes in the GLM Tree

An TPTW weighted GLM tree is a new method to estimate personalised treatment
effects from observational data. To further examine the performance of the GLM trees,
the expected and the true number of leaves in each scenario are counted. Figures
A.23 and A.24 in the appendix show the frequencies of the number of nodes for all
simulations. Simulations 1-3 are fitted without and simulation 4-8 with adjustment
for confounding. The expected value is marked by the blue dotted line in each plot.
According to these plots, the number of nodes meets expectations in almost all cases for
simulation 1. Most of the trees in simulation 2 and 4 have only one node, whereby two
are expected. This might be due to the manual pruning after the splitting procedure.
An increasing number of observations leads to slightly more trees with two nodes. This
means the expected value is reached more often. For a large number of expected nodes,
(see simulation 5 and 7), the resulting trees become too small. Obviously, no expected
number of nodes can be specified for simulation 3,6 and 8 with a linear treatment effect

function.
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6.6 Further Analyses of GLM Trees

In contrast to the other presented methods, the performance of IPTW weighted GLM
trees has never been investigated before. Hence, additional analyses are presented
in this section to assess the effectiveness of weights in GLM trees. For this purpose,
some characteristics of the previous simulated datasets are modified. As before, the

simulations are iterated 100 times.

6.6.1 Varying Propensity Scores

As a first step, the propensity score is changed. In the previous analysis, it was fixed to
0.65 if the covariate xo was smaller than 0 (and in simulations 7 and 8 if additionally
x12 was equal to FALSE) and 0.4 otherwise. The application of IPTW in GLM trees
showed a little improvement in these simulations. The weights are expected to be more
effective for more imbalanced data. In this context, more imbalance corresponds to

larger distance of the propensity score to 0.5.

To evaluate the correctness of this assumption, the distance to 0.5 is varied. Two

different datasets, as described in Table 6.3, are simulated.

Simulation p(x) e(x) 7(x)
05+d ifze <O
1 0.5+ 1.2 -1, 31,
(r2<0) { 0.5—d else (=)
05+d ifxy<0
2 0.5+ 1.2 -1, 3.z
(r2<0) { 0.5—d else !

Table 6.3: Simulations with varying propensity score, with d = 0.1, 0.2, 0.3

The datasets are similar to simulation 5 and 6 that were described in Section 6.2. Both
have one confounder. While one dataset has a linear treatment effect function, the
other one has a stepwise treatment effect function. The only difference to the analysis
of the previous section is the varying distance d to 0.5. For d, the values 0.1, 0.2, and

0.3 are chosen.
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Figure 6.11: RMSE and bias of GLM trees for different propensity scores
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Figure 6.11 shows the RMSE and bias of the GLM trees with varying propensity
scores. The boxplots with d = 0.1 illustrate weighted and unweighted GLM trees with

propensity scores equal to 0.6 and 0.4. The weights lead to a lower bias and thus lower

RMSEs in both simulations. Moreover, with larger values of d, more biased models

result. In simulation 1, a large n causes a relatively small bias for all values of d, even

without weighting. In simulation 2, the variances and hence the RMSEs are higher than

in the first simulation. Unlike simulation 1, the bias of the trees without IPTW is not
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improving with an increasing number of observations. Thus, in this case, weighting is
more essential than in simulation 1. The interquartile range of the RMSE in simulation
2 is large for small n. This is caused by the variance, where the interquartile is also
large for small n. Furthermore, the variances are slightly larger for weighted than for

unweighted trees. The variance is plotted in Figure A.25 in the appendix.

In accordance to Figure 6.12, an increasing number of observations results in a longer
running time. In contrast, an increasing propensity score does not affect the running
time. KEspecially in simulation 1 the running time for different values of d is quite
similar. Simulation 2 identifies differences between the weighted and unweighted trees.
The GLM trees adjusted by IPTW need more time for fitting. Moreover, the running
time in simulation 2 is generally higher than in simulation 1. Therefore, the fit of GLM

trees takes longer with a linear than with a stepwise treatment effect function.

Simulation 1 Simulation 2
10.01 10.01
— IPTW — IPTW
(&) (&)
B 757 e 375 o
: —_ y=z : = y==
E E
— 50 — 50
=] 4 =] 4
= =
= - 01 E - 0
5 25 -~z 5 25 - 0z
« e ~qg3 [ -
0.0 0.0
300 600 1000 300 600 1000
Number of observations Number of observations

Figure 6.12: Running time of GLM trees for different propensity scores

6.6.2 IPTW with Varying Coefficient

To further examine the influence of the coefficients in the mean effect function u(x)
on the effectiveness of weights in GLM trees, the previous simulations are repeated
with a varying coefficient ¢. The created datasets are illustrated in Table 6.4. For the
propensity score, the distance d to 0.5 is fixed to 0.1. For the coefficient ¢, the values 1,
2 and 4 are tested.
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Simulation w(z) e(x) 7(z)
0.6 ifzs <0,29=F
1 05+c- I($2<0) 2 12 3- I(ac1>1)
0.4 else
0.6 if xy <O, =F
2 0.5+ ¢+ Iigyeo) Hz s 3.1
0.4 else

Table 6.4: Simulations with varying coefficient ¢ = 1, 2, 4

The results of these simulations are displayed in Figure 6.13. Generally, the values
of the RMSE are higher for the linear treatment effect function (simulation 2). This
corresponds to the results of the previous section. Furthermore, in simulation 2, the
RMSEs get larger with an increasing coefficient value c¢. In both simulations, the RMSEs
are similar for weighted and unweighted analyses. For a large value of ¢, the difference
gets more pronounced. In simulation 1, the bias is reduced by weighting for small n
and all values of ¢. For large n, the biases are close to zero, even without weighting.
An exception to this is ¢ = 4, where the difference between the biases with and without
weighting does not change with an increasing n. The biases in simulation 2 are similar
to those of simulation 1. However, the difference between the biases with and without
weighting remains with an increasing n. Thus, weighting is more essential for linear than
for stepwise treatment effect functions. The variances of both simulations, shown in
Figure A.26, are getting smaller with an increasing c¢. This is most visible in simulation
2, where the variances are very large for small ¢. Furthermore, the weighting slightly

increases the variances.
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Figure 6.13: RMSE and bias of GLM trees for different coefficients

IPTW

B no
M yes

IPTW

M no
W yes

IPTW

* no
M yes

IPTW

B no
M yes

IPTW

M no
M yes

IPTW

* no
M yes

According to Figure 6.14, the running time increases with the number of observations in

the dataset. Additionally, in simulation 1, a large value for ¢ results in a higher running

time. In simulation 2, this difference no longer exists.

66



Simulation Study

Simulation 1 Simulation 2
10.0 10.0
—_ PTW —_ > | oETw
(&) (&)
275 e 275 Tom
Py — v o — e
£ £
= 50 = 50
o c o c
£ — £ —
c c
5 25 -~ 5 25 -~
[T — [T —
0.0 0.01
300 G600 1000 300 G600 1000
Number of observations Number of observations

Figure 6.14: Running time of GLM trees for different coefficients

6.6.3 IPTW with Varying Treatment Effect

As a last step, the value of the treatment effect is modified. For this purpose, the same
datasets considered before are used. d is fixed to 0.1 and c is fixed to 1. The treatment
effect TFE takes the values 0.5, 2 and 5. The datasets are specified in Table 6.5

Simulation wu(x) e(z) 7(x)
0.6 if z9 <0, =F
1 0.5+ 1 Iz,<o e 2 TE-I(z>1)
0.4 else
0.6 ifxzy <0 =F
2 0.5+ 1+ I(yye0) Pz TE-x,
0.4 else

Table 6.5: Simulations with varying treatment effect TE = 0.5, 2, 5

The plots in Figure 6.15 show an increasing RMSE with an increasing TFE. This is
caused by the increasing variance, printed in Figure A.27. Moreover, the interquartile
range of the variance is large for a large value of the treatment effect and small n.
The RMSEs are similar for weighted and unweighted trees. By contrast, the biases
decrease with weighting. In simulation 1, the biases are not influenced by the value of
the treatment effect. As before, they approach zero with an increasing n, even without
weighting. In simulation 2, the biases increase slightly with an increasing value of the
treatment effect. Additionally, weighting is more essential, especially for a large value

of the treatment effect.
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Figure 6.15: RMSE and bias of GLM trees for different treatment effects
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The running time, shown in Figure 6.16, strongly increases with large values of TE.

In particular for the weighted trees in simulation 2, the difference is remarkable. The

larger n and the values of TFE, the longer it takes the model to be fitted. Moreover,

IPTW adjustment extends the running time. In simulation 1, the running time is

almost similar between all scenarios, except for the weighted trees with TE = 5 and

n = 1000, where the running time is higher.
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The running times for TE = 2 and 5 are not completely visible in simulation 2. Thus,

they are visualised with an extended y-axis in the appendix (see Figure A.28).
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Figure 6.16: Running time of GLM trees for different treatment effects
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7 Discussion and Outlook

There is a large interest in estimating personalised treatment effects in the case of non-
randomised datasets. For this purpose, the performance of some tree-based methods and
one regression spline method were tested by conducting a simulation study. Datasets
differing regarding the number of confounders and the type of treatment effect functions
were simulated. The methods showed different performances in distinct scenarios. The

results of the simulation study are briefly summarised in the following.

7.1 Summary of Results

Overall, linear treatment effect functions led to higher variances in the estimates than
stepwise treatment effect functions. Furthermore, with linear treatment effect functions
most differences in the methods became apparent. The trees, i.e. the GLM tree and the
causal tree, performed well in the cases without confounder. In addition, the GLM tree
was stable in the case of confounding except for datasets with a linear treatment effect
function. However, in these cases the bias could be reduced by IPTW and matching,
whereby IPTW is slightly better than matching. Nevertheless, they still had a large
variance leading to a high RMSE. The causal tree was very sensitive to confounding.
Even the inclusion of weights did not substantially improve the fit. The main problem
with causal trees was not the bias, but the increasing variance. The bias by contrast
could be reduced with IPTW. As mentioned, the causal tree had an advantage by fixing
the maximal depth beforehand. Nevertheless, it performed poorly regarding the RMSEs.
The causal forest had the lowest variance of all methods for a large sample size. Its
bias was reduced by the local centering approach. This was also slightly reflected in the
RMSE. With an increasing number of observations, the interquartile range of the bias
was getting smaller and approached zero. This also applied to all other methods. BART
had the smallest variance for small n. The bias approached zero with an increasing
number of observations. Additionally, the RMSE decreased with an increasing n. Thus,
with large n, BART was a well performing method. The propensity score adjustment
did not essentially improve the results. The PTO forest performed well in all scenarios.
Overall, it had a relatively low variance. However, it was slightly biased, especially
for linear treatment effect functions. In contrast to other methods, the propensity

score adjustment slightly worsened the fit. Hence, the PTO forest should be applied
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without adjustment. By contrast, the bias of the causal MARS model was reduced
with propensity score stratification. Nevertheless, the variance of the estimates was
relatively high for a linear treatment effect function. In the case of a stepwise treatment

effect function, the variance occasionally was extremely high.

In these analyses, the causal tree, the causal forest and the GLM trees had a slight
advantage compared to the other methods. For causal trees, the maximal depth of
the trees was defined beforehand. The causal forest was the only method that was
tuned and the GLM trees were manually pruned after the tree building phase. The
reason for tuning the GLM trees was to ensure that the models fitted in each leaf are
reasonable and interpretable. In R, errors occurred in the case of insufficient numbers
of observations in each leaf. These are counted for each simulation in the main analysis

and further analyses parts and included in the electronic appendix.

The results of this thesis are comparable to the results of Wendling et al. (2018).
In their paper, BART, causal forests and causal MARS are compared. Additionally,
they included causal boosting and regularised logistic regression (LASSO + Ridge) in
their analysis. The BART model, as well as causal boosting performed best in their
evaluation. Causal forest and causal MARS were competitive, except for a low variance
of the treatment effect. Causal boosting however, was computationally much more
demanding than BART. Especially for BART and causal boosting, the propensity score

adjustment did not essentially improve the fit.

Obviously, no method is preferable for all situations. The recommended method depends
on the dataset. In simulation 1, with no confounding and homogeneous treatment effects,
the recommended methods are either the GLM tree or the causal forest. These two
methods have the lowest RMSE. In simulation 2, with heterogeneous treatment effects
and a stepwise treatment effect function, the causal tree is a reasonable option. In the
case of a linear treatment effect function (simulation 3), all methods perform similarly.
An exception is the causal tree, resulting in a large RMSE. Looking at simulation 4, the
first simulation with confounding and no heterogeneous treatment effects, the IPTW
adjusted causal tree provides the lowest RMSE for large n. For a small number of
observations, all other methods perform better, except for causal MARS. The method
with the lowest RMSE is the PTO forest without adjustment. For simulations 5 and 7
(stepwise treatment effect function and confounding), all methods perform similarly.

One exception is the causal tree, which has large variances and consequently large
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RMSE values. BART is slightly superior to the other methods. It has the lowest RMSE
for large n and it performs well without propensity score adjustment. For a linear
treatment effect function and confounding (simulations 6 and 8) and small n, causal
MARS has the lowest RMSE. However, it has a long running time. For a large sample
size, BART performs similarly and no propensity score adjustment is necessary. Apart
from this, it is required to apply all methods with an adjustment for confounding,
except for the PTO forest. As described in Section 6.6, weights in GLM trees always
reduce the bias. Thus, weights never worsen the fit. In the worst case, they are only
unnecessary since the bias is already close to zero without any weights. For extreme
propensity scores, weights are reasonable to include. This applies to large coefficients in
the mean effect function as well. However, the running time for weighted GLM trees is
extremely high for large n, especially for a linear treatment effect function. Additionally,

a large value of the treatment effect and IPTW adjustment increases the running time.

7.2 Outlook

In this thesis, not all potential data structures could be covered. In the main analysis
part, the focus was on the number of confounders, the type of the treatment effect
functions and the number of variables in the treatment and mean effect functions. All
datasets had the same coefficients, number of covariates and distribution of covariates.
Additionally, the treatment effect was fixed. The coefficients of the mean effect functions,
different propensity scores and a varying value of the treatment effect were tested for
GLM trees. In a further study, this could be applied to other methods.

Additionally, only confounders were considered in the present thesis. But there might
be more complex data structures in real life, such as the presence of a collider or a
mediator. A collider is a covariate that is influenced by the treatment as well as by the
outcome variable. A mediator is a variable that is directly connecting the treatment
and the outcome variable: the treatment influences the mediator and the mediator the
outcome. Furthermore, in this simulation study, the covariates are all independent. A
further investigation of the influence of dependency structures between the covariates

on the treatment effect estimation could be reasonable.

Moreover, most of the hyperparameters used in this thesis were set to their default

values (except those of the causal forest). In further analysis, these parameters should
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be tuned.

For the matching procedure, only the nearest neighbour method is used. It might be
of interest whether other matching methods improve the fit. However, matching was
criticised by some researchers: problems can arise with matching, that need to be solved.

Imbalance, inefficiency, model dependence, and bias can increase (King & Nielsen 2018).

Furthermore, with an adjustment for confounding the results in most methods showed
a reduction of the bias and at the same time a slightly increased variance. In the IPTW
adjustment one reason for the high variances might be the large weights. To circumvent
this problem, weights might be trimmed to the 90th percentile. That means all weights
with values above the 90th percentile of the weights are set to the 90th percentile. This

approach can be tested in a further study.

There are also other promising approaches that target confounding in the dataset,
e.g. the targeted maximum likelihood estimation (TMLE), which is a doubly robust
method. But also other methods mentioned in Chapter 2 are thinkable, such as the
synthetic forests developed by Ishwaran & Malley (2014). Lu et al. (2018) compare
different random forest methods to estimate personalised treatment effects. They show
that synthetic random forests generally perform best among all methods. They even
outperform the BART model. Thus, this is a promising approach which can be further

investigated in continued work.
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A Appendix

A.1 Parameter Tuning of Causal Forest

’ Simulation ‘ Parameter H Min. ‘ Median ‘ Mean ‘ Max. ‘

Minimal Node Size || 1.00 4.00 11.74 | 62.00

mtry 1.00 7.00 8.61 | 21.00

1 alpha 0.00 | 014 | 013 | 025
Imbalance Penalty || 0.00 0.66 0.85 | 5.18
Minimal Node Size || 1.00 3.00 3.57 | 18.00

mtry 1.00 17.00 | 15.17 | 21.00

2 alpha 0.00 | 007 | 0.08 | 0.23
Imbalance Penalty || 0.01 0.70 0.86 | 6.53
Minimal Node Size || 1.00 2.00 1.97 | 7.00

mtry 14.00 | 18.00 | 17.95 | 21.00

3 alpha 0.01 0.13 0.12 | 0.24
Imbalance Penalty || 0.11 0.67 0.71 | 2.20
Minimal Node Size || 1.00 3.00 5.01 | 36.00

mtry 1.00 18.00 | 16.85 | 21.00

4 alpha 0.00 | 014 | 013 | 0.25
Imbalance Penalty || 0.02 0.67 0.81 | 4.75
Minimal Node Size || 1.00 3.00 3.42 | 19.00

mtry 1.00 18.00 | 16.39 | 21.00

o alpha 0.00 | 011 | 011 | 0.25
Imbalance Penalty || 0.00 0.75 0.90 | 3.31
Minimal Node Size || 1.00 2.00 1.95 | 12.00

mtry 14.00 | 18.00 | 18.06 | 21.00

6 alpha 0.01 0.12 0.12 | 0.23
Imbalance Penalty || 0.04 0.68 0.73 | 2.29
Minimal Node Size || 1.00 2.00 3.49 | 36.00

mtry 1.00 18.00 | 16.92 | 21.00

7 alpha 001 | 013 | 013 | 0.25
Imbalance Penalty || 0.04 0.70 0.84 | 3.37
Minimal Node Size || 1.00 2.00 2.02 | 6.00

mtry 15.00 | 18.00 | 18.37 | 21.00

8 alpha 002 | 012 | 012 | 0.23
Imbalance Penalty | 0.06 0.69 0.75 | 2.56

Table A.1: Summary of results of hyperparameter tuning of causal forest
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Figure A.1: Results of hyperparameter tuning of causal forest
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A.2 Variance of Simulations
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Figure A.2: Variance of different methods for simulations 1 - 4
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Figure A.3: Variance of different methods for simulations 5 - 8
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A.3 Complete Plots of RMSE and Variance
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Figure A.4: RMSE and variance of different methods with extended y-axis for simulations
3 and 6
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A.4 Estimated Treatment Effects
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Figure A.6: Prediction of treatment effect

simulations 1-4
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Figure A.8: Prediction of treatment effect function for GLM tree with matching for

simulations 1-4
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Figure A.9: Prediction of treatment effect function for GLM tree with matching for

simulations 5-8
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Figure A.10: Prediction of treatment effect function for causal tree for simulations 1-4
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Figure A.11: Prediction of treatment effect function for causal tree for simulations 5-8
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Figure A.12: Prediction of treatment effect function for causal forest for simulations 1-4
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Figure A.13: Prediction of treatment effect function for causal forest for simulations 5-8
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Figure A.14: Prediction of treatment effect function for BART for simulations 1-4
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Figure A.15: Prediction of treatment effect function for BART for simulations 5-8
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Figure A.16: Prediction of treatment effect function for PTO forest for simulations 1-4
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Figure A.17: Prediction of treatment effect function for PTO forest for simulations 5-8
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Figure A.19: Prediction of treatment effect function for causal MARS for simulations
5-8
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A.5 Running Time

n = 300
’ Method H Sim 1 ‘ Sim 2 ‘ Sim 3 ‘ Sim 4 ‘ Sim 5 ‘ Sim 6 ‘ Sim 7 ‘ Sim 8 ‘
GLMTree IPTW 0.70 | 0.45 1.31 0.52 1.69
GLMTree Matching 0.34 0.40 0.58 | 0.18 0.49
GLMTree 0.26 | 0.50 1.98 1.58 0.71 1.58 0.58 1.94
CausalT 0.34 | 0.29| 0.32 | 0.31]| 0.32
CausalT0 0.30 0.31 | 0.35 0.34 0.32 0.33 0.31 0.34
CausalF 2.15 3.34 | 358 | 344 | 201
CausalF0 0.23 | 0.28| 036 | 0.23] 0.25| 0.25| 0.17] 0.24
BART 2.95 3.60 | 3.99| 388| 3.29
BARTO 2.32 3.56 3.99 2.96 3.24 3.00 2.96 2.42
PTO 1.42 1.42 1.52 1.51 1.63
PTOO 1.34 1.50 1.36 1.42 1.44 1.52 1.50 1.40
MARS 20.22 | 18.94 | 18.81 | 15.53 | 16.75
MARSO 14.65 8.71 8.88 9.34 9.50 9.41 9.15 7.68
n = 600
Method H Sim 1 ‘ Sim 2 ‘ Sim 3 ‘ Sim 4 ‘ Sim 5 ‘ Sim 6 ‘ Sim 7 ‘ Sim 8 ‘
GLMTree IPTW 3.04 | 240 | 4.48 1.90 | 5.34
GLMTree Matching 1.95 243 2.11 0.94 | 2.00
GLMTree 0.26 4.15 4.69 5.05 3.09 5.89 2.44 6.88
CausalT 0.38 | 0.34 | 0.53 | 044 | 0.51
CausalT0 036 | 0.38| 0.48 | 0.37| 0.39| 0.48 | 0.43 | 0.56
CausalF 6.13 ] 6.08| 599 | 519 | 3.56
CausalF0 0.50 0.85 0.82 0.55 0.64 0.59 0.49 0.61
BART 4.69 | 500 | 6.33| 556 6.28
BARTO 4.10 | 4.42 | 4.67 1.44 1.13 1.68 1.49 1.37
PTO 2.65 2.76 | 2.85 285 | 271
PTOO 3.84 | 3.02| 254 271 2.78 2.80 2.78 2.66
MARS 26.39 | 34.57 | 24.44 | 26.87 | 29.14
MARSO 19.56 | 11.86 | 12.01 | 1241 | 12.62 | 12.48 | 10.62 | 10.32
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n = 1000
Method H Sim 1 ‘ Sim 2 ‘ Sim 3 ‘ Sim 4 ‘ Sim 5 ‘ Sim 6 ‘ Sim 7 ‘ Sim 8 ‘
GLMTree IPTW 838 | 6.63 | 1241 | 6.33 | 18.83
GLMTree Matching 15.51 3.36 | 6.14| 255 5.49
GLMTree 0.44 | 991 815 | 11.51 8.52 | 14.49 7.14 | 15.56
CausalT 0.53 | 0.50| 0.83 | 0.65| 0.88
CausalTO 045 ] 0.51| 0.82| 0.45| 0.51 | 0.77 | 0.55] 0.78
CausalF 9.12 | 9.63| 948 | 5.51 5.68
CausalF'0 0.93 1.82 1.62 1.07 | 1.47 1.11 1.04 1.08
BART 868 | 9.15| 831| 640 | 7.63
BARTO 799 | 6.57 | 7.98 7.11 6.01 9.68 | 6.99| 7.88
PTO 4.61 | 469 | 494 | 492 | 457
PTOO 4.83 | 514 | 4.69 1.63 4.89 1.84 1.47 1.39
MARS 34.76 | 37.34 | 24.21 | 26.67 | 33.11
MARSO 20.59 | 15.22 | 25.26 | 16.44 | 16.76 | 16.72 | 14.16 | 14.71

Table A.2: Running time of methods in seconds with n = 300, 600 and 1000. Bold
numbers indicate the best running time for each simulation and number of observations.
For simulations 4-8 the best running time for methods with and without adjustment
are highlighted, respectively. The running times without adjustment for confounding

are printed in grey for simulations 4-8.
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Figure A.23: Number of nodes in GLM tree for simulations 1-4
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Figure A.24: Number of nodes in GLM tree for simulations 5-8
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A.6 Further Analyses of GLM Trees
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Figure A.25: Variance of GLM trees with varying propensity score
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B Electronic Appendix

The electronic appendix comprises a Make_ File, a README, two folders (Code and
Results) and the thesis as PDF. The Make File runs the code step by step in the
correct order and saves the results. The README-file explains the structure of the
two folders (Code and Results).

The two folders are split into the sections of the present thesis: the choice of the

Propensity Score Model, the Main Simulation and the Further Analyses part.
o The folder Code comprises:

— Propensity Score Model: Contains all R-Scripts for the propensity model
choice. On the one hand, the script PS_model.R is included. It calculates the
RMSE for different scenarios with different methods and saves the resulting
RMSEs. On the other hand, it comprises the script PS model Plot.R that
plots the resulting RMSEs.

— Main Sitmulation: Includes the R-Scripts for Functions, Simulation and Plots

of the main analysis, i.e. comparing different methods.

*x The Functions folder consists on the one hand of the functions for the
data generation (covariates, response and treatment) and the different
Scenarios (1-8) (folder Data). On the other hand it contains the func-
tions to calculate the predictions and performance of the methods (folder
Methods). For each method, a function calculate_prediction_"Method"
exists that fits the model and predicts values for a test dataset. The func-
tion calculate__performance calls these prediction functions, iterates it
multiple times and calculates the RMSE, bias and variance. Furthermore,
the running time is measured.

*x The Simulation R-Scripts call the functions and save the calculated
values for each method separately.

x The Plots folder contains R-Scripts for plotting the generated RMSE,
bias, variance and running time for all methods. Furthermore, a R-Script
that combines the plots for an appropriate presentation in the thesis is
included. Additionally, it contains a folder Methods that comprises the

scripts for plotting method specific features, like the treatment effects
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and number of nodes/error messages for the GLM trees.

— Further Analyses: Includes all R-Scripts that evaluates the IPTW for GLM
trees. As in the main simulation part, it consists of a Functions, a Simulation
and a Plots folder. The folder Functions contains the scenarios as well as
the functions to calculate the predictions and the performances. The folders
Simulation and Plots are split into the sections VaryingPScore, VaryingCoef-
ficient and VaryingTFE, respectively. Thus, the Simulation folder includes
the R-Scripts to run simulations with a varying propensity score, coefficient
and treatment effect. The Plots folder contains the R-Scripts for plotting
the RMSE, bias, variance and running time and number of error messages of

these simulations.

o The folder Results is as well divided into the sections Propensity Score Model,
Main Simulation and Further Analyses, where each includes the generated data
and plots. Next to the plots shown in the thesis, the number of nodes for
matched datasets are saved. Furthermore, the plots illustrating the number of

error messages for the GLM trees are included.
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