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Abstract

The field of data science often faces the problem of missing data, especially
for large-scale data. If missing data is not handled properly, to a certain de-
gree this has a negative impact on the validity of statistical research results.
Missing data imputation is an option to deal with this problem. This thesis
conducts a simulation study in order to quantitatively analyze the perfor-
mance of different imputation methods applied to a data set with missing
values under a variety of different missing rates and missing data mecha-
nisms.
The imputation methods compared in this simulation study are mean sub-
stitution, which is a single imputation method, and the multiple imputation
method, with the help of three powerful R-packages: MICE, Amelia II,
and missForest. To enable comparison, the predicted residual error sum of
squares (PRESS) statistic is selected as the evaluation criterion, and is cal-
culated based on selected models after conducting variable selection. The
comparison results are presented in the form of boxplots comprising the
log-transformed PRESS statistic values of the four imputation methods.
According to the comparison results three main conclusions can be drawn.
First, missForest always exhibits the best performance, regardless of the
missing rate and the missing data mechanism. Second, the performances
of MICE and Amelia II do not show a fixed pattern. Third, mean substitu-
tion performs better than both MICE and Amelia II in certain situations.

Keywords: Missing data, imputation, mean substitution, MICE, Amelia II,
missForest, variable selection, PRESS statistic



Abbreviations and Notations
Abbreviations:

MCAR Missing completely at random

MAR Missing at random

NMAR Not missing at random

PRESS Predicted residual error sum of squares

EM Expectation Maximization

MI Multiple Imputation

Notations:

Y = (yi j) Complete data

M = (Mi j) Misssing-data indicator matrix

φ Unknown parameters

Yobs Observed components

Ymis Missing components

Yobs Observed components

p Probability
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1. INTRODUCTION AND OVERVIEW

1 Introduction and Overview

Since almost all statistical analyses are based on data, statistical forecasts
with a lack of high-quality data are prone to inaccuracy. When the proba-
bility of missingness is extremely small, the missing values may be omitted
from the data set in certain situations or processed manually. However, the
proportions of missing values are generally large for specific variables in
actual data. In this case it is inefficient and time-consuming to process
manually, and also tends to produce errors. Specifically, when the quantity
of missing data is relatively large (greater than 10%) the results of subse-
quent statistical analysis may be biased (Derrick A. Bennett (2009)). In
general, if the negative influence caused by missing data is not considered
during the analyzing process, the results of the statistical forecasts will be
biased and may even lead to erroneous conclusions. Therefore, it is neces-
sary to choose an appropriate method to handle the missing data.
In practice, data may be missing due to many different factors, such as the
loss of questionnaires in a survey or the reluctance of respondents to an-
swer. To handle the remaining data correctly, it is crucial to understand the
forms of missingness and the possible reasons that lead to them. Accord-
ing to (Roderick J. A. Little, Donald B. Rubin (2002)) it is well known
that standard statistical methods have been developed to analyze rectan-
gular data sets. Rows of data represent units, which can also be called
cases or observations depending on the context, and columns represent the
variables measured for each unit. Based on this prerequisite, the form of
missingness can be classified into two categories as listed below.
1.Unit missing, also called unit nonresponse. This refers to the missing-
ness situation whereby an interviewee does not provide sufficient informa-
tion for the response to be considered of use, or even provides no infor-
mation at all. For example, an epidemiological survey of lung cancer and
smoking habits conducted on 1,000 smokers was carried out using a ques-
tionnaire. After recycling, the number of effective questionnaires is 500,
indicating that the effective questionnaire recycling rate is 50%. Possible
reasons for this rate are that the respondents are not familiar with the ques-
tionnaire or did not want to answer the questions.
2.Item missing, also called item nonresponse. This refers to the missing
situation whereby answers to certain questions are absent after the inter-
viewee has agreed to take part in the survey (Ting Yan, Richard Curtin
(2010)). For example, in order to test different types of drugs used to treat
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1. INTRODUCTION AND OVERVIEW

high blood pressure, the blood pressure of each participant was recorded at
times 0, 1, 2, 3, and 4 weeks after the start of the experiment. However, a
common missing data problem arose after 2 weeks when some participants
quit before the end of the study and did not return. This problem is espe-
cially noticeable for longitudinal data. Furthermore, the pattern of missing
values is an example of monotone missing data, as presented in Figure 1.1
b).

!"				!$				!%				!&				!' !"				!$				!%				!&				!' !"				!$				!%				!&				!'

a) Univariate Nonresponse b) Monotone c) General

Figure 1.1: Example of missing-data patterns.

In addition to monotone missing data, other missing data patterns can be
identified. For instance, Figure 1.1 a) indicates univariate missing data,
whereby a single variable has missing values. In reality, the pattern of
missing data is always neither monotone nor univariate nonresponse. The
most common missing data pattern is the general missing data pattern
shown in Figure 1.1 c), where multiple variables have missing values si-
multaneously with random missingness for each variable. Accordingly,
this bachelor’s thesis concentrates on the general missing data pattern.
Regardless of whether the form of missingness is unit nonresponse or item
nonresponse, the missing data mechanism can be further divided into three
types: missing completely at random (MCAR), missing at random (MAR),
or missing not at random (MNAR) (S. Fielding, P. M. Fayers and C. R.
Ramsay (2009)). Each of the three missing data mechanisms implies a re-
lationship between the missingness rate and values of both the missing and
the observed data. Regarding the missing data mechanisms, explanations
and mathematical definitions are discussed in detail in section 3.
Besides the identification of the missing data mechanism, variable selec-
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1. INTRODUCTION AND OVERVIEW

tion should also be conducted. Otherwise, a large number of redundant
variables will remain in the regression model. Without variable selection,
these redundant variables will introduce irrelevant information ("noise")
into the model, which is one of the main causes of overfitting. Therefore,
variable selection is an important component of this thesis. Two variable
selection methods are used in the simulation study: backward elimination
and forward selection. In order to compare the results produced by these
two methods, they are applied to the same data set. The detailed process
of variable selection is described in section 4. In addition, the value of the
predicted residual error sum of squares (PRESS) is calculated based on the
selected models, the details of which are provided in section 5.3.

3



1. INTRODUCTION AND OVERVIEW

4



2. SIMULATIONS AND EXAMPLES

2 Simulations and Examples

2.1 Introduction to Simulation
This section presents the motivation behind carrying out a simulation study.
Simulation studies play an important role in statistical research. A simu-
lation is an imitation of the operation of a real-world process or system (J.
Banks; J. Carson; B. Nelson; D. Nicol (2001)). This definition implies that
a simulation is constructed such that the product is identical to the reality.
In this thesis it is advantageous to conduct a simulation because it is an
efficient way to compare different imputation methods under various con-
ditions. In addition, it is rarely possible to identify the missing data pattern
of an actual data set with missing values. However, the desired missing
data pattern can be simulated with the help of simulation studies.

Algorithm

Start

Simulate data set (!)

Generate dependent variable (" )

Original complete data set(", !)

MCAR

MAR

NMAR

Mean imputation

Mean imputation

Mean imputation

MICE

MICE

MICE

AMELIA II

AMELIA II

AMELIA II

missForest

missForest

missForest

Imputed complete data set PRESS Boxplot

Imputed complete data set

Imputed complete data set

PRESS

PRESS

Boxplot

Boxplot

PRESS

Variable
selection

Variable
selection

Variable
selection

Variable
selection

1000 Repeats

Figure 2.1: The "6 steps": an algorithm for comparison of imputation methods for simu-
lated data.

Figure 2.1 presents an unambiguous algorithm to determine the PRESS
statistic in order to compare different imputation methods. The algorithm
includes a series of steps that each perform a particular computation or
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2. SIMULATIONS AND EXAMPLES

task, and generally runs with six steps:

1. Simulate a data set (X) with different types of variables,

2. Generate a dependent variable (Y) from a Poisson distribution,

3. Simulate three types of missing data mechanisms,

4. Use different methods to impute missing values,

5. Perform variable selection for the original complete data set and
imputed complete data set,

6. Calculate the PRESS statistic.

First, the six steps of the algorithm are defined. These six steps are then
run 1,000 times and all repeat loop outputs are stored in a matrix, after
which boxplots based on this matrix are created. According to the results
displayed in the boxplots, the different imputation methods can then be
compared visually.
In the next section, the original complete data set containing different types
of variables is explained. Multiple types of missing data are then simulated
and analyzed in order to compare a range of imputation methods under
certain conditions.

6



2. SIMULATIONS AND EXAMPLES

2.2 Generating Simulated Data Set
A variety of methods can be used to impute missing data, the effects of
which depend largely on the simulated data set. Many factors can signifi-
cantly affect the result of the comparison of different imputation methods.
These include different types of variables, such as continuous variables and
categorical variables; the size of the data set; and the missing rate. There-
fore, in order to obtain a more convincing result from the comparison it is
necessary to introduce the simulated data set in detail. In this section the
original complete data sets are presented, based on which missing data are
generated. Four different methods are then applied to impute these missing
data, and the performances of the methods are evaluated and compared.

2.2.1 Types of Variables

In this simulation study two kinds of variables are simulated: continuous
variables and categorical variables.
A continuous variable is one of two types of numerical variables which
takes on infinite and uncountable values and is always collected in the form
of numbers, despite the fact that other types of data also appear in the form
of numbers. Examples of continuous variables include the number of gal-
lons of milk that a cow produces, or the length of time taken for a train
to travel from one city to another. In contrast to continuous variables, a
discrete variable can only take on a certain number of values, meaning that
a discrete variable is numerical and countable. In other words, if a set of
items can be counted, then it is a discrete variable. Examples of discrete
variables are the number of applicants who apply for a vacant position at a
company, or the number of students who enroll in a university at the start
of a semester.
Categorical variables are another type of variable and differ from numer-
ical variables. A categorical variable is a type of statistical variable that
can take on one of a finite and usually fixed number of possible values.
Examples of categorical variables include the breed of a cat (e.g. Raga-
muffin, American Shorthair, Scottish Fold) or the brand of a pair of shoes.
Based on previously known qualitative properties, this kind of variable
assigns each individual or other single unit of observed objects to a spe-
cific group or nominal category (Daren S. Starnes(2012)). This simulation
study includes three categorical variables, two of which are binary vari-
ables: gender and smoker status. The two possible outcomes of the gender

7



2. SIMULATIONS AND EXAMPLES

variable are "Male" and "Female," whereas "Yes" and "No" are the possi-
ble outcomes of the smoker status variable. Another simulated variable is
occupation class, which is a multi-way variable. Multi-way variables have
more than two possible outcomes; in this simulation study occupation class
has four possible outcomes, which are "A", "B", "C", and "D".
In the field of life and health reinsurance, smoker status and occupation
class are two of the most significant risk factors that influence the price of
an insurance premium for an insurance policy. Gender is also a rather im-
portant characteristic of the person being insured. In disability and mortal-
ity studies of reinsurance companies, the consideration of gender is shown
to improve the accuracy of insurance product pricing. As mentioned above,
gender, smoker status, and occupation class are simulated in this study.
Different types of variables indicate various kinds of distributions. Based
on generated data, the theories of various distributions are briefly explained
in the following sections. Graphs are also included to provide further detail
for this simulation study.

Binomial distribution

The binomial distribution is a common discrete probability distribution
used in statistics. Here the possible outcome of a single trial takes one of
two independent values having a specified set of parameters and assump-
tions. The parameters are established as n and p, where n represents the
number of trials and p represents the probability of success in each trial.
More specifically, for a single trial (where n is equal to 1) the binomial
distribution can be classified as a Bernoulli distribution. An example is
the result of a university exam which may be either "pass" or "fail". If a
random variable X has the Bernoulli distribution, then it can be presented
as:

Pr(X = 1) = p = 1−Pr(X = 0) = 1−q (1)

The probability mass function of this distribution with possible outcomes
k is written as:

f (k; p) =

{
p if k = 1,
q = 1− p if k = 0.

(2)

In general, the Bernoulli distribution can simply be written as X ∼ B(1, p)
or X ∼ Bernoulli(p).

8



2. SIMULATIONS AND EXAMPLES

Generally, the binomial distribution is the sum of multiple Bernoulli tri-
als. Remarkably, there are three assumptions of the binomial distribution,
which are listed as follows.

• There is only one outcome for each trial.

• Each trial is mutually exclusive or indepent.

• Each trial has the same probability of success.

A typical example of the binomial distribution would be the results of flip-
ping a coin for multiple times, which are either "head" or "tail". The prob-
ability mass function of this distribution is written as:

f (k,n, p) = Pr(k;n, p) = Pr(X = k) =
(

n
k

)
pk(1− p)n−k,n ∈ N, p ∈ [0,1]

(3)

for k = 0,1,2, ...,n, where (
n
k

)
=

n!
k!(n− k)!

In comparison to the Bernoulli distribution, the binomial distribution can
simply be written as X ∼ B(n, p). This simulation study includes two vari-
ables that follow the binomial distribution, namely gender and smoker sta-
tus.

Multinomial distribution

In probability theory the multinomial distribution is a generalization of the
binomial distribution. In the latter, the number of possible outcomes or
categories k equals two, whereas in the multinomial distribution k is larger
than two and the number of trials n is larger than one. To be more specific,
for a single trial (when n is equal to one) the multinomial distribution can
be classified as a categorical distribution, which is an extended distribution
of the Bernoulli distribution for a categorical random variable. In this case
the sum of the probabilities of all possible outcomes is equal to one.

9



2. SIMULATIONS AND EXAMPLES

A classic example of categorical distribution is shown by the possible out-
comes of rolling a dice once, which are {1,2,...,6} with the same probabil-
ity of 1

6 . If a random variable X has the categorical distribution, then the
probability mass function f can be presented as:

f (x = i | p) = pi, (4)

where p = (p1, . . . , pk) represents the probability of the ith category and
∑

k
i=1 pi = 1.

According to Minka, T. (2003), a more complicated mathematical formu-
lation is written as:

f (x | p) =
k

∏
i=1

p[x=i]
i (5)

where [x = i] evaluates to 1 if x = i, 0 otherwise.
As mentioned above, the multinomial distribution can be applied to model
the probabilities of more than two possible categories over n trials. An
example of this distribution is provided by the results of the German federal
election, whereby several parties run for political leadership in Germany,
thus implying that k is larger than 2. In this case every lawful voter supports
one of many parties. As there are millions of voters, this implies that n is
larger than 1.
The probability mass function of this multinomial distribution is:

f (x1, . . . ,xk;n, p1, . . . , pk) = Pr(X1 = x1 and . . . and Xk = xk) (6)

=


n!

x1! · · ·xk!
px1

1 ×·· ·× pxk
k , when ∑

k
i=1 xi = n

0 otherwise,
(7)

for non-negative integers x1,x2, ...,xk
In this simulation study one variable follows the multinomial distribution,
which is the occupation class having four possible categories.

The following figure summarizes the relationships between the four types
of distributions discussed above. When k is two and n is one, the multi-
nomial distribution is the Bernoulli distribution. When k is two and n is
larger than one, it is the binomial distribution. When k is larger than two

10



2. SIMULATIONS AND EXAMPLES

and n is one, it is the categorical distribution. When k is larger than two
and n is larger than one, it is the multinomial distribution.

Binomial distribution Bernoulli distribution

Categorical distribution Multinomial distribution

! = 1

! = 1

! > 1

! > 1
% = 2% > 2% > 2 % = 2

Figure 2.2: Relationships among 4 distributions for categorical variables

Multivariate normal distribution
In this data set seven variables are simulated, which altogether comprise
a multivariate distribution. In probability theory, unlike a discrete proba-
bility distribution, the multivariate normal distribution is a relatively com-
mon continuous probability distribution, on the basis of which several vari-
ables are simulated in this study. The multivariate normal distribution, also
termed the multivariate Gaussian distribution, is one of the most important
multivariate distributions. Indeed, it is the multivariate form of the univari-
ate (one-dimensional) normal distribution.
The normal distribution is a crucial probability distribution. Its two pa-
rameters, mean and variance, determine the shape of the probability den-
sity curve. The most significant characteristic of the normal distribution is
symmetry; this implies that most of the observations are situated around
the central peak and that the probabilities for values further from the mean
decrease in both directions to the same degree. The steepness of the curve
depends on the variance.
The probability density of the univariate normal distribution is

f (x|µ,σ2) =
1√

2πσ2
exp
(
−(x−µ)2

2σ2

)
,x ∈ R (8)

where µ is the mean or expectation of the distribution and σ2 is the vari-
ance. Specifically, when a random variable X is normally distributed, the

11



2. SIMULATIONS AND EXAMPLES

mathematical notation can simply be written as X ∼ N(µ,σ2).
Just as mentioned above, the multivariate normal distribution is a general-
ization of the univariate normal distribution to higher dimensions. To be
more specific, a random vector X= (X1,X2, ...,Xk)

T is multivariate normal
if for any constants a1,a2, ..,ak every linear combination of these random
variables X1,X2, ...,Xk has a normal distribution,

a1X1 +a2X2 + ...+akXk

is normally distributed.
A k-variate normally distributed random variable X= (X1,X2, ...,Xk)

T has
density function

fX(x1, . . . ,xk) =
exp
(
−1

2(x−µ)TΣ
−1(x−µ)

)√
(2π)kdet(Σ)

µ ∈ Rk, Σ ∈ Rk×k

(9)

where µ = E[X] = [E[X1],E[X2], . . . ,E[Xk]]
T is the known k-dimensional

mean vector.
If there is completely no correlation among the simulated variables, in-
dicating that under all circumstances the covariance is equal to 0, then it
contradicts with the reality because in reality there is a correlation among
variables to a certain extent. Therefore, the covariance matrix among mul-
tiple random variables is generally defined as follows:
The k× k covariance matrix

Σ=: E((X−µ)(X−µ)T)=



Var(X1) Cov(X1,X2) · · · Cov(X1,Xk)

Cov(X2,X1) Var(X2) · · · Cov(X2,Xk)

... ... . . . ...

Cov(Xk,X1) Cov(Xk,X2) · · · Var(Xk)


After the concrete values of mean and variance are determined, variables
that match the multivariate normal distribution could be generated. Similar
to the univariate normal distribution, the mathematical notation of multi-
variate normal distribution can be written as X ∼ Nk(µ,σ

2) where k com-
ponents has a univariate normal distribution.

12



2. SIMULATIONS AND EXAMPLES

Poisson distribution

In the field of reinsurance the Poisson distribution is often applied to de-
scribe the number of losses in a portfolio. The Poisson distribution is a
discrete probability distribution that presents the probability of a number
of independent events occurring within a specified interval, where a known
constant rate λ is given (Frank A. Haight (1967)). In the case of reinsur-
ance the constant rate λ is the expected value of the number of losses,
which is not necessarily an integer in reality. The horizontal axis usually
represents the number of losses, which is a discrete random variable, while
the vertical axis is the probability of losses given λ .
In the simulated data set the response or dependent variable Y is generated
based on the Poisson distribution, which is a particular distribution in the
exponential family. This family has a mass function or probability density
function of the following form:

f (yi, |θi,φi) = exp
(

yiθi−b(θi)

φi
+ c(yi,φi)

)
(10)

where

θi is the natural parameter of the family
φi is a scale or dispersion parameter and
b(.) and c(.) are specific function corresponding to

the type of the family

The Poisson distribution is included in the generalized linear model, which
is a flexible generalization of linear regression that considers response vari-
ables whose error distribution models are not restricted to a normal distri-
bution. The response variable Y is generated by applying the linear predic-
tor as follows:

ηi = xT
i β (11)

where xT
i stands for the independent variables, and β represents the re-

gression coefficients, which are used to estimate the unknown population
parameters and to describe the statistical relationship between one or more
independent variables and the response variable.
In the generalized linear model the link function is a crucial element. Gen-
erally, it can be written as

13



2. SIMULATIONS AND EXAMPLES

g(µi) = ηi = xT
i β (12)

The conditional expectation µi = E(yi|xi) is determined by

µi = h(ηi) = h(xT
i β ) (13)

where h is the inverse of g.
In the Poisson distribution, the link function is the log link function, which
can be expressed as

g(µi) = ln(µi) = ηi = xT
i β (14)

Given X and β , the mean function is applied to specify the only parameter
λ and to generate the response variable Y from the Poisson distribution. In
this case, the mean function is written as

µi = h(ηi) = h(xT
i β ) = exp(xT

i β ) (15)

The simulation process of all variables mentioned above will be explained
in detail in the section 2.3 "Implementation in R".
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2. SIMULATIONS AND EXAMPLES

2.2.2 The Size of the Data Set

According to (Roderick J.A. Little (2002)) standard statistical methods are
often applied to analyze rectangular data sets, in which Y = (yi j) represents
an (n× p) rectangular data set without missing values, and yi j is the value
of the jth variable associated with the ith row yi = (yi1, ...,yip). Generally,
the columns of a data matrix represent variables measured for each unit,
while the rows of the data matrix represent units, which are also known as
observations or subjects depending on the context.
In addition, a data set can be described as a matrix of data which has a
dimension of n-by-p, where n is the number of samples observed and p is
the number of variables.
In this study 10 different variables are simulated, and exist together in the
form of an (n× 10) matrix. In this case the value of p equals 10. To be
more specific, of these 10 variables 7 are continuous and make up a set
of numerical data. The remaining variables are categorical variables. For
each variable 1,000 observations are simulated; thus here n equals 1,000.
Ultimately, the size of one single data matrix is an (1000×10) rectangular
data set. In total 1,000 data sets with the same size are simulated randomly
in this study, although these data sets are different and irrelevant.
By applying the algorithm mentioned in section 2.1, processing one single
(1000×10) matrix of data can produce a set of values. However, it is not
convincing or reasonable to compare only one set of values to determine
the optimal imputation method. Therefore, in order to improve the stability
and validity of the comparison result, it is necessary to simulate multiple
data sets under the same circumstance. Thus in this simulation study 1,000
data sets are simulated and 1,000 sets of values are generated, based on
which four different missing data imputation methods are compared.

2.2.3 The Missing Rate

Missing data is a common situation and a constant challenge in actuar-
ial statistical analyses. According to a survey by Peng et al. (2006) of
11 quantitative studies in the field of education and psychology, 36% of
these studies have no missing data, 48% have missing data, and for about
16% this cannot be determined. Enders (2003) also states that missing data
commonly occur in education and psychology studies, whose missing rate
usually ranges from 15% to 20%. The missing rate, which indicates the
proportion of missing data, has a significant influence on the quality of

15



2. SIMULATIONS AND EXAMPLES

statistical inferences. This influence tends to vary with different degrees
of the missing rate. However, approaches to handling data with different
proportions of missing values remain inconsistent. For instance, Schafer
(1999) states that a missing rate of 5% or less can be ignored because
the missing values would barely affect the results of statistical predictive
analyses. Meanwhile, Bennett ( 2001 ) asserts that statistical analysis can
produce a biased result when the missing rate exceeds 10%. According to
Yiran Dong et al. (2013) an acceptable percentage of missing data in a data
set has not been established for valid statistical inferences.
Theoretically, if the missing rate is low then the missing data can be ig-
nored because there is no noticeable effect on statistical inferences. Con-
versely, if the missing rate is relatively high then observed values for the
considered variable in the data set are not representative, thus the variable
should not be taken into account in the statistical analysis.
However, currently no standardized criteria have been established for the
missing rate. If the missing rate is relatively low then the imputed complete
data set after the application of imputation methods is relatively similar to
the original complete data set. If the missing rate is particularly high then
an imputed complete data set can also be generated, but it may vary rela-
tively widely from the original complete data set.
Therefore, this bachelor’s thesis conducts a simulation study in order to
quantitatively study and analyze the differences between an imputed com-
plete data set after applying imputation methods, and the original complete
data set under the circumstances of different missing rates.
In this thesis 1,000 original complete data matrices are simulated by apply-
ing R. In other words, there are no missing values in these 1,000 original
complete data matrices. Because the purpose of this study is to compare
the benefits and disadvantages of various imputation methods and deter-
mine the most appropriate approach under different circumstances, it is
necessary to generate a number of missing values. These should be based
on three different missing data mechanisms and should also be conducted
with a proper missing rate.
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Two typical examples of the significance of the missing rate in the field of
life and health reinsurance are now introduced.

Figure 2.3: The number of missing values in mortality analysis

As shown in Figure 2.3, there are two common risk factors in mortality
analysis, namely smoker status and body mass index. These two risk fac-
tors exhibit a large number of missing values in the collected data, which
are denoted by "N/A", a common abbreviation for the phrase "not avail-
able" or "no answer." In this circumstance, the proper distributions of these
two variables cannot be estimated based on the observed values. Hence, it
is inappropriate to apply imputation methods to impute these missing val-
ues.

Figure 2.4: Distribution of recoveries ratio according to occupation class in disability
analysis

Figure 2.4 presents the distribution of recoveries ratio by occupation class
in a disability analysis, which indicates that the missing rate is around 2%.
From my point of view, given this missing rate it is appropriate to apply
imputation methods to impute the missing values.

17



2. SIMULATIONS AND EXAMPLES

2.3 Implementation in R
This section explains how the original complete data set is generated using
R. The original complete data set is composed of 10 independent vari-
ables and one response variable. The 10 independent variables consist of 7
continuous variables and 3 categorical variables. In order to produce mul-
tivariate normally distributed continuous random variables with the help of
R, the function mvrnorm from the MASS package is applied. This function
has three necessary arguments, namely the sample size n, the mean vector
(µ), and a square covariance matrix (Σ), which should all be specified in
advance. As mentioned in section 2.2.1, these continuous variables should
be correlated, thus a random correlation matrix is generated by specify-
ing Σ. The corrplot package is applied to graphically display a correlation
matrix, which indicates correlation coefficients among the continuous vari-
ables. The generated matrix is shown in Figure 2.5.

Figure 2.5: Correlations among independent continuous variables in one data set

18
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Figure 2.6: Comparison between empirical and theoretical distributions

As mentioned above, seven continuous variables with multivariate normal
distributions are simulated. The f itdist function from the fitdistrplus pack-
age is used, which enables the fit of a parametric univariate distribution to
non-censored or censored data by the maximum likelihood method. A
quantil-quantil-Plot (Q-Q plot) is shown in Figure 2.6 and compares two
probability distributions, namely the theoretical distribution and the em-
pirical distribution. The points in the Q-Q plot represent the distribution
of the simulated data. The linearity of the points suggests that the data
fit a normal distribution. In conclusion, each continuous variable is uni-
variate normally distributed, implying that the seven continuous variables
comprise a multivariate normal distribution.
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Table 2.1: Construction of all independent variables

Var Distribution detail

X= [x1,x2, ...,x7]
T Multivariate normal distribution X ∼ N7(µ, Σ)

µ = E[X] = [E[X1],E[X2], . . . ,E[X7]]
T

Σ =: E[(X−µ)(X−µ)T]

Gender Binomial distribution f (Gender) =

0.3, if Gender = Male,

0.7, if Gender = Female.

Occu Multinomial distribution f (Occu) =



0.1, if Occu = A,

0.2, if Occu = B,

0.65, if Occu = C,

0.05, if Occu = D.

Smoker Binomial distribution f (Smoker) =

0.4, if Smoker = Yes,

0.6, if Smoker = No.

In addition to the continuous variables mentioned above, three categorical
variables are also simulated, namely gender, occupation class, and smoker
status. Gender and smoker status fit binomial distributions, while occupa-
tion class fits the multinomial distribution. Table 2.1 presents the construc-
tions of all independent variables.
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Figure 2.7: Graphical representation of the distribution of the response variable

This simulation study is based on the Poisson regression model, which
implies that the response variable Y fits the Poisson distribution. Given
all simulated independent variables, the regression coefficients β should
be determined in order to generate a Poisson distributed response variable.
The coefficients β are defined as follows.

β = (β0,β1,β2,β3,β4,β5,β6,β7,β8,β9,β10)
T

= (0.1,2,2,2,0,0,0,0,0,0,1)T

As mentioned in section 2.2.1, given the independent variables and the
regression coefficients, the response variable Y is generated by the use of
the log link function. The corresponding log link function used in this
study is expressed as follows.
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
η1
η2
...

η1000

=



x(1,1) x(1,2) · · · x(1,10)

x(2,1) x(2,2) · · · x(2,10)

... ... . . . ...

x(1000,1) x(1000,2) · · · x(1000,10)


× (β0,β1, ...,β10)

T

(16)

In the next step, based on particular properties of the Poisson distribution
λ = E(X) = Var(X), the rpois function from the stats package is used,
which generates multi-Poission random variables based on an Aitchison
composition. Figure 2.7 visualizes the distribution of the response variable
Y , implying that Y fits the Poisson distribution.
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3. MISSING DATA

3 Missing data

3.1 Three Types of Missing Data Mechanism

Three main factors determine the risk of bias due to missing data, namely
the proportion of missing data, the reasons why data are missing, and the
type of missing data mechanism, which is of greatest importance. The
extent to which the missing data bias statistical results is dependent on
the type of missing data mechanism. For example, if the missing data
are MCAR, the data sample can still be considered as representative of
the population because the joint distribution is the same for the complete
data and the observed subset. Alternatively, if values are missing in a sys-
tematic way then the observed data cannot represent the population. For
instance, consider an example where researchers are carrying out a study
to analyze the relationship between education level and income level, with
the assumption that individuals whose education level is relatively lower
are likely not to answer the question "What is your salary?" In this case, if
those data that are MAR are not taken into consideration then the analysis
is prone to a wrong conclusion regarding the relationship between educa-
tion level and income level. Accordingly, it is vital to understand missing
data mechanisms when comparing different imputation methods.
The relationship between missing variables and the underlying values of
variables in the data set is based on the corresponding missing data mech-
anism. In 1976, Little and Rubin proposed a theoretical framework which
led to the generally accepted classification method used today (Roderick
J. A. Little and Donald B. Rubin(2002)). Figure 3.1 further explains the
differences between the three missing data mechanisms, namely MCAR,
MAR, and NMAR (Schafer & Graham (2002)), where X represents vari-
ables that are completely observed, Y represents a variable that is partly
missing, Z represents the element of the causes of missingness unrelated
to both X and Y, and R represents the missingness. Figure 3.1 a) explains
the MCAR mechanism, which implies that there is no relationship between
the missing data mechanism and the values of any variable in the data set,
whether missing or observed. The second mechanism, shown in Figure
3.1 b), is MAR, and indicates that there is a systematic relationship be-
tween the tendency of missing values and the observed data instead of the
missing data. Figure 3.1 c) presents NMAR data (nonignorable nonre-
sponse), which are neither MAR nor MCAR data (Polit, D.F. and Beck,
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C.T. (2012)). In other words, if the missing data are non-random and are
dependent on the missing variables, then they are classified as NMAR.

!

"#

$!

" #

$

" #

$!

Schafer & Graham (2002)

a) MCAR b) MAR c) NMAR

Figure 3.1: Graphical representations of a) missing completely at random (MCAR), b)
missing at random (MAR), and c) not missing at random (NMAR).

In the following sections, descriptions of different types of missing data
mechanisms and their corresponding consequences are explained in de-
tail using mathematical notations. In addition, the simulation processes of
these mechanisms are also introduced.

3.1.1 Missing Completely at Random

If the events that lead to any specific data item being missing are indepen-
dent not only of observable variables but also of unobservable parameters
of interest, and if they occur completely at random, then the corresponding
missing values in a data set are MCAR (Polit, D.F. and Beck, C.T.). An
example of this type of missing data is an accident whereby researchers
carelessly lose a few questionnaires when studying risk factors for high
blood pressure. In this case, it is not possible to assume that the missing
questionnaires (i.e. missing values) are related to the value of blood pres-
sure or to other variables, thus the missing data can be considered as a
random subset of the data.
Of the three missing data mechanisms, MCAR is the only type that can be
tested for. As mentioned above, the joint distribution is the same for the
complete data set and the observed subset, which is why MCAR is not a
problematic missing data mechanism. Therefore, in this case there is no
need to make adjustments for missing data because by using the observed
data or the whole data set, the approximate results would be reached. This
kind of handling method, of simply using the observed data, is called com-
plete case analysis. When MCAR data occurs, these missing data can be
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ignored and it is not necessary to include the modeling of the missing data
mechanism in the estimation process. However, MCAR data is often an
ideal situation which is unlikely to occur in reality.

Several notations and terms are used to further explain the differences be-
tween MCAR and other missing data mechanisms. If missingness is un-
related to the values of the data, whether missing or observed, this means
that the data are MCAR and can be denoted mathematically as:

f (M|Y,φ) = f (M|φ) f or all Y, φ

where Y = (yi j) is defined as the complete data as mentioned in the previ-
ous section, M = (Mi j) stands for the missing-data indicator matrix, and φ

is the unknown parameter.

3.1.2 Missing at Random

In contrast to MCAR data, the MAR mechanism occurs when the missing-
ness is not completely random, and can be explained by at least one other
variable with complete information. In this case, the missingness proba-
bility is related to some of the observed data instead of the missing data
itself. This type of missing data mechanism occurs more often in reality,
but unlike MCAR it cannot be tested. For the MAR mechanism the dis-
tribution of the observed data and the complete data are generally not the
same. Hence the observed data cannot be applied for analysis, or biased
estimates would occur.
For example, if questionnaire respondents with a higher education level are
more likely to report their income than those who have a relatively lower
education level, then it is reasonable to consider that a missing income
level value can be attributed to the MAR mechanism. In this circumstance
the education level is completely observed, which implies that this variable
has complete information.
As in the previous section, the observed components Yobs and the missing
components Ymis are defined and the missing data mechanism MAR can be
expressed as follows:

f (M|Y,φ) = f (Ymis|φ) f or all Ymis, φ

While MAR is less restrictive than MCAR, it still depends on the values of
other variables. Both of the two mechanisms described above are random
missing data mechanisms.
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3.1.3 Not Missing at Random

The last type of missing data mechanism is NMAR. When the missing
data are NMAR, the missingness has an exclusive relationship with the
missing data. In other words, the missingness probability is allowed to be
dependent on the missing values themselves. To further explain this, the
example mentioned in section 3.1.2 can be applied again. As described,
the missing income level values, which can be considered as MAR data,
are related to education level. However, regarding the assumption that
those respondents with a higher income level are more likely to report their
income level than those with a relatively lower income level, this can be
classified as NMAR instead of MAR, because the missing income level
values are not related to other variables which have complete information,
but rather depend on the missing values themselves.
In addition, several terms and notations are applied to distinguish NMAR
from other types of missing data mechanisms:

f (M|Y,φ) = f (Yobs|φ) f or all Ymis, φ

If data are NMAR then this missing data mechanism cannot be ignored,
as this mechanism must be modeled as part of the estimation process.
However, it is not easy to determine the optimal modeling method because
the observed data do not contain information on this mechanism. Unlike
MCAR and MAR, NMAR is not a random missing data mechanism.
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3.2 Implementation in R
The three missing data mechanisms discussed above can be simulated by
applying R. This section illustrates the R code used in this simulation study.
The R code is written based on the theoretical differences identified be-
tween the three missing data mechanisms that are explained in the previous
section.
As mentioned in section 2.2.2, there are 10 different variables, and 7 of
them are continuous variables, which are x1,x2, ...,x7. The rest of the
variables are categorical variables, including gender (Gender), occupation
class (Occu), and smoker status (Smoker). The following R-code simulates
three different missing data mechanisms, regarding two types of variables.

MCAR
# for variable x1
set.seed(111)
x1.miss.tag <- rbinom(1000,1,0.5)
Data.MCAR$x1[x1.miss.tag == 1] <- NA

# for variable Gender
set.seed(888)
Gender.miss.tag <- rbinom(1000,1,0.5)
Data.MCAR$Gender[Gender.miss.tag == 1] <- NA

The variable x1 has a normal distribution. Since the missingness is inde-
pendent both of observed variables and of unobserved variables, MCAR is
completely random. Therefore, an object (miss.tag) should be defined by
using the function rbinom from the package stats. This function generates
the required number of random values of given probability from a specified
sample. The simulation process of the variable Gender is identical to that
of x1.

MAR
# for variable x1
set.seed(1111)
x1.miss.tag.MAR <- rbinom(1000,1,0.7)
Data.MAR$x1[Data.MAR$Y_possi <= 530

& x1.miss.tag.MAR==1] <- NA

# for variable Gender
set.seed(108)
Gender.miss.tag.MAR <- rbinom(1000,1,0.55)
Data.MAR$Gender[Data.MAR$Y_possi <= 1000

& Gender.miss.tag.MAR ==1 ] <- NA
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MAR occurs when the missingness can be accounted for by one or more
other variables with complete information. In the simulated data set, the
response variable Y (Y _possi) does not have missing values, and missing
values frequently occur in the variable x1 when the value of the response
variable equals to or is less than 530 in this case. The simulation process
of the variable Gender is also same as that of x1.

NMAR
# for variable x1
set.seed(101)
x1.miss.tag.NMAR <- rbinom(1000,1,0.8)
Data.NMAR$x1[Data.NMAR$x1 <= 0.8

& x1.miss.tag.NMAR ==1 ] <- NA

# for variable Gender
set.seed(108)
Gender.miss.tag.NMAR <- rbinom(1000,1,0.7)
Data.NMAR$Gender[Data.NMAR$Gender == "Female"

& Gender.miss.tag.NMAR ==1 ] <- NA

When data are NMAR, this missing data mechanism is neither MCAR
nor MAR because the tendency of a value to be missing is related to its
values. Regarding the continuous variable x1, missing values occur more
frequently in the case that the value itself is equal to or less than 0.8. The R
code shown above simulates a data set with a missing rate of around 50%.
The missing rate can be adjusted by altering the argument (prob) in the
function rbinom, thus the purpose of simulating different missing rates can
be achieved.
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4 Variable Selection

In statistics stepwise regression is applied to fit regression models, whereby
predictive variables are chosen by an automatic procedure (Efroymson,M.
A. (1960)). Before further describing this method as it is used in this thesis,
the purpose and necessity of adopting variable selection is explained in
detail.
Through variable selection, the "best" subset of variables or predictors are
selected. Variables should be selected in studies for three reasons, which
are listed and explained as follows.

1. If there are a large number of predictor variables in the multiple re-
gression model and there are certain correlations between these vari-
ables, then they cannot independently predict the dependent variable.
In other words, too many predictor variables would predict the de-
pendent variable at the same time. However, this simply cannot be
accomplished due to the linear relationships existing between these
variables. Under this circumstance, these redundant variables can
lead to multicollinearity, which in multiple regression models is a
phenomenon in which one predictor variable can be linearly predicted
from the others with a high degree of accuracy.

2. It is known that the more predictor variables there are in a regression
model, the more information they can represent. Nevertheless, unnec-
essary and thus redundant predictors add noise to the estimation of
other important quantities. Moreover, degrees of freedom are wasted.
According to (Julian J. Faraway(2009)) a smaller model may generate
more precise estimates and predictors.

3. Variable selection should be considered during algorithm design, es-
pecially for larger or relatively more complex algorithms, which usu-
ally require more computing time. Therefore, in order to reduce the
required computing time it is necessary to conduct variable selection.
Firstly, it can find the most important variables and keep them in the
regression model. Secondly, it can also identify the comparatively
less important variables and remove them from the model in order to
achieve the goal of reducing the calculation time as much as possible.
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4.1 Best Subsets Regression
In this section, the best subsets regression and stepwise regression are dis-
cussed in detail. The reasons for applying stepwise regression instead of
the best subsets regression are then explained.
The best subsets regression, which is also known as the "all possible model,"
is an automatic process that can be applied to assist in choosing from a
large number of independent variables. The best subsets regression proce-
dure considers all possible combinations of independent variables and fits
all possible models based on these remaining independent variables after
conducting variable selection. For example, if there are 10 independent
variables in the regression model, then it fits 1,024 models. In other words,
if there are p independent variables in the model, the best subsets regres-
sion takes each variable into consideration and determines whether or not
these variables can remain in the model. Accordingly, in total there are 2p

possible models (Patrick Royston, Willi Sauerbrei(2008)).
The results of comparisons between all possible models indicate that the
best subsets regression is the optimal fitting model with one independent
variable, two independent variables, three independent variables, and so
on. Therefore, the best subsets regression is considered advantageous as it
can present different sizes of fitted models with one variable up to the full
model. The subset of predictors that performs best can be determined after
a certain criterion is met, which is either the adjusted R2 or Mallows’ Cp.
The Mallows’ Cp for selecting P regressors from a set of K > P is defined
as:

Cp =
SSEp

S2 −N +2P

where:

• SSEp = ∑
N
i=1(Yi−Ypi)

2 is the error sum of squares for the model,

• Ypi is the predicted value of Y ,

• S2 is the residual mean square,

• N is the sample size.

The adjusted R2 is defined as:

R2
ad j = 1− (1−R2)

n−1
n− p−1
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• R2 is the coefficient of determination,

• p is the total number of explanatory variables in the model ,

• n is the sample size,

4.2 Stepwise Regression
Besides the best subsets regression, stepwise regression is another option
for variable selection. Compared with the best subsets regression, the step-
wise regression procedure automatically selects a model by adding or re-
moving predictor variables step by step. Whether to add or remove vari-
ables depends on their corresponding statistical significance, which implies
that the most statistically significant variables would be added and the least
significant variable in the model would be removed. In this case, a single
regression model is eventually produced instead of many possible combi-
nations of independent variables.

Stepwise Regression

Choose a set of criteria !

Fit with initial model

Test predictor variables

At least one predictor 
variables satisfy !"#

At least one predictor 
variables satisfy !$%&

The model has been selected

Forward
Selected

Backward 
Elimination

Remove 
the most 
satisfying
predictor 
variable

Add
the most 
satisfying
predictor 
variable

No No

Yes Yes

Re-fit modelRe-fit model

Figure 4.1: A schematic diagram of stepwise regression.

The flowchart shown in Figure 4.1 explains the process of stepwise regres-
sion and shows the two main approaches that it applies, namely forward
selection and backward elimination. In short, stepwise regression gener-
ally consists of two steps:
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Step 1:
From a set of criteria, a specific criterion should be chosen to determine
whether predictor variables should be added or removed. With this set of
criteria, all of the possible models can be fitted and the best regression
model can be chosen. Possible criteria are the Bayes information crite-
rion (BIC), the Akaike information criterion (AIC), cross-validation (CV),
and Mallows’ Cp. In practice, AIC and BIC are the most frequently used
methods. In general (Akaike, H. (1974)) (Wit, Ernst(2012)):

AIC = 2k−2ln(L̂)

while
BIC = ln(n)k−2ln(L̂)

where:

• L̂ is the maximized value of the likelihood function of the model,

• n is the number of observations or the sample size,

• k is the number of parameters estimated by the model.

By comparing the formulae of the two criteria, it can be seen that the for-
mula of the BIC is similar to that of the AIC, only with a different penalty
for the number of parameters. To be more specific, in the AIC the penalty
is 2k, while in the BIC the penalty is ln(n)k. Hence, it is important to
choose a fixed criterion as the principle for model selection. A comparison
between AIC and BIC is conducted by Burnham and Anderson (Burnham
& Anderson (2004)), according to which the AIC can be derived in the
same Bayesian framework as the BIC simply by using different prior prob-
abilities. In the Bayesian derivation of the BIC each candidate model has
a prior probability of 1/R (where R is the number of candidate models),
which, however, should be a decreasing function of k. Therefore, such a
derivation is "not sensible." In addition, the abovementioned authors also
demonstrate a number of simulation studies indicating that in practice the
AIC tends to be more advantageous than the BIC. For this reason the AIC
is used in this paper instead of the BIC.
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Step 2:

Many available methods can be chosen to fit the most appropriate regres-
sion model, such as forward selection, backward elimination, block-wise
selection, and so on. From these options this thesis focuses on forward se-
lection and backward elimination, which are both considered as statistical
regression methods.
Notably, forward selection begins with no predictor variables; these are
added step by step following the order of correlation with the response
variable, from the highest to the lowest. When none of the remaining pre-
dictor variables are significant, the procedure stops to add a new predictor
variable into the regression model, which means that the selected model
is determined. In contrast, backward elimination is the reverse process of
forward selection, as it begins with all predictor variables in the regres-
sion model. These are removed step by step according to their significance
level. The predictor variable with the lowest significance level is supposed
to be removed first. If no insignificant predictor variables remain in the
regression model then backward elimination stops; this is the difference
between the forward selection and backward elimination procedures. The
number of predictor variables should be considered as one of the main de-
termining factors when choosing between forward selection and backward
elimination.
For instance, when a large number of variables are present in the model the
forward selection method is recommended rather than the backward elimi-
nation method, because in the latter case the model would initially include
all predictor variables, which could lead to the problem that unnecessary
variables may also be included. However, the number of predictor vari-
ables in this simulation study is not large, and after a series of tests it is
determined that the same selected model can be acquired using both for-
ward selection and backward elimination. In conclusion, both methods are
suitable for use in this simulation study.

As mentioned above, the best subsets regression and stepwise regression
are both possible alternatives for variable selection. However, only step-
wise regression is used in this simulation study due to the following:

• Stepwise regression returns a single best selected model constructed
using the p-values of the predictor variables. In contrast, the best
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subsets regression assesses all possible models and presents different
sizes of fitted models along with some criteria. In this bachelor’s
thesis the PRESS statistic is calculated based on the selected model.
Consequently, the use of stepwise regression is more suitable.

• Furthermore, stepwise regression is faster than other automatic model
selection methods, which is advantageous as it reduces the required
computing time.
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5 Methodology
In general, there are two approaches to handling problems related to miss-
ing data. The first option is to simply omit units with missing data, and is
known as complete case analysis. A second option is to infill missing val-
ues, and is called imputation. These methods maintain the complete sam-
ple size, which is considered beneficial for reducing biases and increasing
precision when appropriate methods are applied. However, imputation also
has drawbacks. According to Dempster and Rubin (1983):

“The idea of imputation is both seductive and dangerous. It is
seductive because it can lull the user into the pleasurable state
of believing that the data are complete after all, and it is dan-
gerous because it lumps together situations where the problem is
sufficiently minor that it can be legitimately handled in this way
and situations where standard estimators applied to the real and
imputed data have substantial biases.”

– Dempster and Rubin (1983)

Imputation is the procedure of using substituted values to replace missing
data, for which a predictive distribution is created based on the observed
data. Generally, two types of methods are used to generate this distribution:
single imputation methods and multiple imputation methods.

5.1 Single Imputation Methods
A single imputation method implies the use of a single estimate to impute
a missing value, for which a variety of approaches can be applied. These
include mean substitution, hot deck imputation, and cold deck imputation.
Considering its conceptual simplicity and simple operation, single impu-
tation is widely applied. Compared to listwise deletion, single imputa-
tion methods can maintain the same number of observations as the original
complete data set.
However, this type of imputation method also has its disadvantages. If
the missing data are not classified as MCAR then biased parameter esti-
mates are likely to be produced by a single imputation method, for exam-
ple means, correlations, and regression coefficients. It is possible that the
imputed values produced using a single imputation method would proba-
bly be more biased than values produced by listwise deletion.
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In this thesis mean substitution is the applied single imputation method,
which is not recommended in practice. Thus, the emphasis of applying
this approach is not placed on its imputation effectiveness. Rather, mean
substitution acts as a measurement criterion used to study the upper limit of
the missing rate, with which any imputation method is not recommended
for application because the imputed complete data set is almost entirely
unrepresentative of the characteristics of the original complete data set.

Mean substitution

Mean substitution or mean imputation is the most straightforward method
to impute, whereby each missing value is replaced with the mean of the
observed values for this variable. This method is widely used in question-
naire manuals. The greatest benefit of this method is that it does not reduce
the complete sample size but does lead to the reduction of variability in the
data, which implies that the standard deviations and variance estimates
are likely to be underestimated. However, restricting the variability also
decreases the significance of the covariances and correlation. Biased esti-
mates are often produced using this method, regardless of the underlying
missing data mechanism (Enders, 2010; Eekhout et al, (2013)).
In general, there are two types of mean imputation, namely item-mean
imputation and person-mean imputation. By applying person-mean impu-
tation, the mean of an individual’s total completed items is substituted for
those items with missing values, to a certain degree. Meanwhile, item-
mean imputation substitutes the mean response of the entire sample that
responded to the item. In this simulation study, item-mean imputation is
applied to impute missing values.
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5.2 Multiple Imputation Methods

According to Royston (2004) an appropriate imputation method should be
able "to inject the correct degree of randomness into the imputations and
to incorporate that uncertainty when computing standard errors and con-
fidence intervals for parameters of interest." Traditional single imputation
methods such as mean substitution cannot yet fulfill these criteria, for two
main reasons. First, they do not take into consideration the randomness
of values, which is based on specific distributions. Second, standard errors
are not considered. Although single imputation methods can technically be
applied to impute all missing data, this would distort the true distribution
of variables.
Unlike single imputation methods, multiple imputation (MI) methods can
fulfill the criteria mentioned above and have a relatively wider application
in practice. With the use of MI methods, instead of replacing each missing
value in a data set with only one randomly imputed value, which does not
reflect the uncertainty relating to the imputation model, each missing value
is replaced with several imputed values. When model-based imputation is
applied it can reflect both to what extent the imputed values vary from the
observed values, which is also called the sampling variability, and the un-
certainty relating to the regression coefficients existing in the model. To do
so, MI creates more than one imputed value for each missing value. The
created values are predicted from a regression model that is different to a
small degree, which can reflect sampling variability.
Created by Rubin in 1987, the procedure for conducting multiple impu-
tation for missing data is introduced as follows. This method generally
consists of six steps. First, an appropriate regression model that incorpo-
rates random variation should be built. Second, the first step should be
repeated several times. Third, a standard and complete MI method should
be applied to conduct the analysis on each data set. In order to acquire a
single point estimate, the next step is to average the values of the parame-
ter estimates across the missing value samples. Subsequently, the standard
errors should be obtained by averaging the squared standard errors of the
missing value estimates, and the variance of the missing value parameter
across the samples should be calculated. Finally, the two quantities in MI
for missing data should be combined to calculate the standard errors. Be-
fore performing MI for missing data, certain conditions should be satisfied.
The first condition is that the data should be MAR or MCAR, which im-
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plies that the missingness probability is related to some of the observed
data with complete information instead of the missing data themselves.
The second condition is that the model should be appropriate and that it
should match other models. However, in reality these two conditions tend
not to be entirely satisfied. For example, the missing data mechanism is un-
likely to be classified as a certain type of mechanism in practical data sets.
Therefore, this simulation study performs MI methods under the circum-
stance of different missing data mechanisms. Three powerful R-packages
that can help to realize MI methods are explained in the following sections.

5.2.1 With MICE Package

Introduction

In contrast to single imputation, MI considers statistical uncertainty when
imputing missing values. One of the three powerful R-packages that han-
dle missing data is multivariate imputation by chained equations (MICE),
also called "sequential regression multiple imputation" or "fully condi-
tional specification." This is one of the most important methods used to ad-
dress and impute missing data. In consideration of the flexibility of chained
equations, MICE can handle various types of variables in the data set, such
as continuous variables, categorical variables, and mixed-type variables.
If the distribution of each variable in the data set is already established,
this method is more applicable. For example, if a variable fits the normal
distribution then specific approaches can be defined in advance to impute
the missing values of this variable by using the MICE function. Even if no
appropriate multivariate distribution can be found, MICE remains an ap-
plicable option; this implies that MICE is suitable for data sets composed
of mixed-type data. In conclusion, for the application of MICE the specific
distribution of each variable in the data set should be defined in advance,
which is based on a univariate distribution. The R-package MICE uses the
FCS algorithm, which imputes each variable with missing values in the
data set by conducting several repetitions.
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Assumption

Regarding the application of MICE, two assumptions should be taken into
consideration. The first assumption is that the missing data mechanism is
MAR, which implies that the missingness probability is not related to the
missing data but is related to some of the observed data (Schafer & Graham
(2002)). If data are not MAR, biased results are likely to be obtained when
applying MICE. However, in order to compare the performance of MICE
under the circumstances of different missing data mechanisms, MICE is
also implemented in the cases of MCAR and NMAR data.
The second assumption concerns the size of the data set. In practice,
data sets tend to be large in size, which implies that they include thou-
sands of observations and hundreds of variables (He et al.(2009); Stuart et
al.(2009)). Furthermore, in these large data sets a high variety of variables
often exists. Based on the large size of data sets, a large joint model for all
of the various types of variables should be fitted. With the help of the flex-
ibility of MICE a series of regression models is run for each variable with
missing data, which are based on the distribution of each variable. For the
purposes of operability and objective comparison between different impu-
tation methods, the data set in this simulation study is not large.

Algorithm

Generally, implementing MICE involves five basic steps. First, each vari-
able with missing values in the data set is substituted using single impu-
tation methods such as mean substitution, after which the imputations can
be considered as temporarily occupying the missing place.
Second, the substituted values are set back to missing while the observed
values of other variables remain the same. These substituted values should
be imputed using a new estimated regression model.
In the third step the observed values of the target variable, the missing
values of which should be imputed, are considered as the response vari-
able in a new estimated linear regression model, in which all of the other
variables are independent variables. Since several variables in a data set
may have missing values, a series of linear regression models is generated;
these models are conducted under the same assumption.
Fourth, the predictions are obtained from the regression model mentioned
in the last step and are applied to replace the missing values. Following
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this replacement, the predictions and the observed values of this variable
are considered as independent variables in the estimation of the subsequent
regression model, in which the next variable with missing values to be im-
puted becomes the dependent variable.
In the last step the abovementioned stages are repeated for each variable
with missing values in the data set, like a cycle. Once each missing value is
replaced with predictions from regression models, the data set is complete
and without missing values.
One cycle can generate only one imputed complete data set. The number
of cycles determines the number of imputed data sets that can be produced,
which can be defined by the user. In this simulation study the cycle is re-
peated five times, generating five imputed complete data sets with the same
size. The following paragraph further explains how this algorithm is ap-
plied in the simulation study.

Implementation in R

Two types of data sets are used in this simulation study: one consists of
seven continuous variables, and the other consists of seven continuous vari-
ables and three categorical variables. With the help of the aggr() function
from the V IM package, the missingness pattern is visualized as shown in
Figure 5.1. The two figures therein present the missing rate of each vari-
able and the frequencies of the combination of missing variables in the data
set with mixed-type variables.

40



5. METHODOLOGY

P
ro

p
o

rt
io

n
 o

f 
m

is
s
in

g
s

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Y
_

p
o

s
s
i

x
1

x
2

x
3

x
4

x
5

x
6

x
7

g
e

n
d

e
r

O
c
c
u

S
m

o
k
e

r

C
o

m
b

in
a

ti
o

n
s

Y
_

p
o

s
s
i

x
1

x
2

x
3

x
4

x
5

x
6

x
7

g
e

n
d

e
r

O
c
c
u

S
m

o
k
e

r

Figure 5.1: Missing pattern when the data are MAR and the missing rate is 30% in the
data set with mixed-type variables

The left-hand figure shows that the variable (Ypossi) does not have missing
values, whereas the other variables all have missing values with missing
rates of around 30%. This is one of the simulated cases. Due to the num-
ber of variables and different missing situations of these variables the com-
bination of the variables is complex, as can be seen in the right-hand figure.
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Figure 5.2, proposed by (Van Buuren and Groothuis-Oudshoorn,(2011)),
illustrates the application of MICE in R.

Figure 5.2: Graphic demonstration of the main steps of MICE

The mice() function imputes each missing value by using the algorithm
described above. There is an argument m, the number of multiple imputa-
tions, with a used default value of m = 5, which indicates that five imputed
complete data sets with the same size are generated. The with() function
produces an analysis report regarding each individual data set. All of the
results are combined with the pool() function based on Rubin’s rule (Ru-
bin, 1987).
Before applying the mice() function, appropriate methods should be de-
fined for each variable based on the types of variables and the correspond-
ing distributions. For this purpose, several possible methods can be applied
as shown in Table 5.1.
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Table 5.1: List of univariate imputation methods

Method Name of variable Type of variable Type of regression
pmm x1,...,x7 any Predictive mean matching
norm x1,...,x7 numeric Bayesian linear regression
logreg gender,Smoker binary Logistic regression
polyreg Occu unordered Polytomous logistic regression

In the data set the two variables gender (gender) and smoker status (Smoker)
have the binomial distribution, based on which the logistic regression model
is used and the logreg method is applied to the mice() function. Another
categorical variable, occupation class (Occu), has the multinomial distri-
bution. On this basis the multinomial logistic regression model is used and
the polyreg method is the most appropriate.

The seven continuous variables have the multivariate normal distribution,
for which two possible methods can be used, namely pmm and norm. In
order to choose the better method, the following figures compare the im-
putation effects between the two methods by using the densityplot() func-
tion.
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Figure 5.3: Density of observed data and imputed data by applying norm with MAR
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Figure 5.4: Density of observed data and imputed data by applying pmm with MAR

In these figures the density of the observed data is shown in blue, while the
density of the imputed data is shown in red for each data set. In conclu-
sion, the imputation effects of the two methods exhibit no distinguishing
difference, but the pmm method is generally a better option.

5.2.2 With AMELIA II Package

Introduction

Amelia II is a complete R-package developed by James Honaker, Gary
King, and Matthew Blackwell (J. Honaker et al. (2011)), and is used for
the MI of missing data. This package is similar to MICE; indeed, the two
packages are both MI methods. In comparison to listwise deletion and sin-
gle imputation methods, Amelia II is able to significantly reduce the bias
in variances and covariances.
Although MICE and Amelia II are both MI methods, certain differences
exist between them. For instance, the algorithm applied by Amelia II is
the expectation-maximization with bootstrapping (EMB) algorithm, which
is a unique bootstrapping approach whereby the expectation-maximization
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(EM) algorithm works on multiple bootstrapped samples of the original in-
complete data. The missing values are then imputed based on the estimated
bootstrapped parameters. Furthermore, if potentially useful information is
available that can be used as Bayesian priors, Amelia II can use this in-
formation as an additional boost to improve imputation models. Because
Amelia II has a relatively high efficiency and the ability to handle a large
number of variables, it is one of the MI methods used in this simulation
study.

Assumption

There are two basic assumptions in the application of Amelia II. Similar
to MICE, Amelia II also assumes that data are MAR. According to (J.
Honaker et al. (2011)) a special case of MAR is MCAR, whereby the
missing values are created completely randomly and the missingness is
not at all dependent on all of the variables. As a result, Amelia II is also
suitable for the MCAR missing data mechanism. Another notable point is
that for MAR the missingness of one variable depends on other variables,
so additional information about these variables helps to predict the missing
values of the variable being considered.
A second assumption of Amelia II is that the complete data set, which in-
cludes both the observed values and missing values, fits the multivariate
normal distribution. In this simulation study the joint distribution of all
continuous variables is the multivariate normal distribution with a given
mean and covariance, which satisfies this assumption. However, there are
also categorical variables in the simulated data set which do not fit the
multivariate normal distribution. Nevertheless, Amelia II works just as
effectively on these variables (Schafer and Olsen 1998)).

Algorithm

Amelia II combines the bootstrapping approach and the EM (Expectation-
Maximization) algorithm. As mentioned above, Amelia II is an MI method
within which bootstrapping can generate multiple data sets. Bootstrapping
is an efficient statistical method that can produce multiple bootstrapped
samples, which fulfills the purpose of MI. A great advantage of applying
bootstrapping is that it does not consider the distribution of the data. When
the size of the original sample is small this approach is especially useful to
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estimate bootstrapped parameters. Unlike other statistical methods, which
determine confidence intervals with the known mean or standard deviation
of the population, bootstrapping utilizes only the sample itself.
Based on the original incomplete data set, resampling is conducted. To be
more specific, each element of a bootstrapped sample is extracted from the
original incomplete data set, after which the element is returned to the data
set and extracted again. Then, each generated bootstrapped data set has
the same dimension as the original incomplete data set. Through entirely
random resampling, bootstrapped data sets are generated that are mutually
exclusive and independent from other bootstrapped data sets, and that are
each different from the original incomplete data set.

Figure 5.5 illustrates the procedure of Amelia II.

Figure 5.5: Graphic demonstration of multiple imputation with the EMB algorithm from
(Honaker et al.(2011)).

Each bootstrapped data set should have missing values. These are im-
puted using the EM algorithm, an iterative process consisted of two steps.
The first is the expectation step (E) and the second is the maximization
step (M). In the first step E, a starting value for the estimation of param-
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eter θ = (µ,σ) is assumed, based on which the values that would replace
the missing values are predicted. After this, an initial imputed complete
data set is generated, based on which the new parameter θ̂ML is computed
by using the maximum likelihood estimate (MLE) to maximize the log-
likelihood θ found on the first E step. If the distribution of the latent vari-
ables in the next E step can be determined by the new parameter θ̂ML in
the M step, the next E step can be conducted. The process above would
be repeated, which constructs an iteration. Generally, the iteration process
would end when the values of the parameter estimates on the successive
E step and M step are the closest, indicating that they are convergent. In
short, the iteration process stops when convergence occurs. The rate of
convergence depends on the missing rate in the data set, which implies
that the number of iterations should increase with the increase of missing
values in the data set. For instance, if there are no missing values in the
data set, then convergence would occur instantly. During each iteration,
only the missing values should be replaced while the values of the ob-
served data should remain constant.

Implementation in R

For the purpose of conducting Amelia II as an MI method certain infor-
mation should be supplied, such as the function of the original incomplete
data set, the desired number of multiple imputed data sets m, and the types
of variables.
Regarding the types of variables, nominal variables should be handled in
a rather different way to continuous variables. In the simulated data set
there are several nominal variables, which should additionally be speci-
fied by the argument noms. By setting this argument, Amelia II is able to
determine the number of categories p of a multinomial variable, and thus
replace p− 1 binary variables to specify each possible category. In the
multivariate normal imputation method these p−1 variables, whose miss-
ing values are imputed, are treated as other continuous variables.
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Table 5.2: List of possible statement for the regression model in Amelia II

Method Regression Type of variable
logit binomial (logit) binary
ls linear (least squares) continuous
normal linear (MLE) continuous
poisson poisson count data
probit binomial (probit) binary

The possible statements for the regression models can be specified as the
table above

In this simulation study, four different missing rates are simulated. Un-
der the circumstance of missing rates 30% and 50% with certain missing
data mechanisms, perfect collinearity is likely to occur. Thus, there would
be an error report and the process would be unable to carry on. In order
to solve this problem, a necessary logical argument should be specified,
namely incheck, which determines whether or not the inputs to the func-
tion should be checked before performing imputation. The default setting
of incheck is TRUE, but it should be set to FALSE if perfect collinearity
occurs. Another numerical argument empri is also a possible solution to
this problem, which decreases the covariance of the simulated data while
keeps the means and variances constant for high missing rates. For dif-
ferent types of data sets a number of other arguments can be used. These
alternative arguments are not relevant to this simulation study so they are
not applied here, but they are covered in (Honaker et al. (2011)).
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5.2.3 With missForest Package

Introduction

According to (D. J. Stekhoven and P. Bühlmann (2011)) most current im-
putation methods have certain pitfalls. These methods are suitable for ei-
ther continuous variables or categorical variables, leading to a lack of con-
sideration of the interactions between different types of variables within
mixed-type data sets. Therefore, another imputation method, missForest,
was developed by (D. J. Stekhoven et al. (2011)). MissForest is an it-
erative method for imputing missing values based on the random forest
algorithm, which is nonparametric. This characteristic is adopted by miss-
Forest, which makes it possible for this method to handle different types
of variables simultaneously.
In MICE, parametric regression models are needed and assumptions about
the distribution of data are considered as prior knowledge. In the applica-
tion of MICE it is necessary to specify the appropriate approach for each
imputed variable in advance. If the assumptions are not correct then bi-
ased imputation results are likely to be produced. For example, it is as-
sumed that a continuous variable fits the normal distribution; in fact this
variable cannot perfectly fit normal distribution, which would lead to the
estimation of problematic parameters. In addition, if there are complicated
interactions, nonlinear relation structures, or high correlation between the
regression model variables in the data sets, then predictions made using
MICE tend to be less accurate. Consequently, the quality of the imputation
would be decreased. As mentioned above missForest is a nonparametric
method, which implies that it does not need to make assumptions about
structural aspects of the data. Therefore, biased imputation results would
not be caused by improper assumptions when applying missForest.
Meanwhile, one of the assumptions of Amelia II is that the complete data
set, which includes both the observed values and missing values, fits the
multivariate normal distribution. However, in reality not all variables that
need to be imputed are continuous variables. Although Amelia II can also
be applied to impute categorical variables, its performance is less satisfy-
ing than that of missForest, which is based on a random forest and thus
is more able to deal with mixed-type data. In conclusion, missForest is
highly practical in the circumstances of a large number of variables, com-
plex interactions, and nonlinear relation data structures. Additionally, an-
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other great advantage of missForest is that it can provide an out-of-bag
(OOB) error, a method that can numerically display the prediction error
of random forests. With the help of OOB, the number of variables being
randomly sampled at each split and the number of decision trees in the ran-
dom forest can be adjusted.

Algorithm

In order to deal with mixed-type data, missForest uses a nonparametric
approach called random forest. Nonparametric statistical approaches do
not need to fit an appropriate distribution or the corresponding distribution
parameters. Random forest is a method that constructs a large number of
classification and regression trees (CART). Depending on the purpose, the
CART algorithm generates two types of decision tree: classification trees
and regression trees. A classification tree performs binary splits of the data,
with each split generated based on only one variable. In consideration of
randomness, each classification tree has a different sub-set. Hence, each
tree generates different results and votes for a particular class. Meanwhile,
the regression tree minimizes the sum of mean squared errors of the re-
sponse variable and outputs a mean prediction for continuous variables.
The CART algorithm has two main disadvantages, namely instability and
overfitting. To handle these problems random forest generates boot-strapped
data sets from the original data set. According to the types of variables,
each bootstrapped data set produces either a classification tree or a regres-
sion tree. Subsequently, m variables are selected in every twig or knot, and
the most appropriate split can be determined. Each decision tree is gener-
ated based on its corresponding bootstrapped data set, which is combined
by random forest. Eventually, random forest combines the results of all
decision trees and generates the final outcome by selecting the class that
has the greatest number of votes.
In this case, the random forest algorithm is applied to estimate the missing
values based on the remaining observed data. For the imputation of miss-
ing values, the R-package missForest developed by (D. J. Stekhoven et al.
(2011)) is applied. According to the developers, suppose there is a covari-
able matrix X(n× q), where X = (X1,X2, ...,Xq), then for the variable Xs,
s ∈ {1, ...,q}, its missing values are denoted as i(s)miss ⊆ {1, ...,n}, whereas
its given observed values are denoted as i(s)miss ⊆ {1, ...,n}.
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Algorithm Impute missing values with random forest.
Require: X an n× p matrix, stopping criterion γ

1: Make initial guess for missing values;
2: k← vector of sorted indices of columns in X

w.r.t. increasing amount of missing values;
3: while not γ do
4: Ximp

old ← store previously imputed matrix;
5: for s in k do
6: Fit a random forest: y(s)obs ∼ x(s)obs;
7: Predict y(s)mis using x(s)mis;
8: Ximp

new← update imputed matrix,using predicted y(s)mis;
9: end for
10: update γ .
11: end while
12: return the imputed matrix Ximp

The algorithm of missForest is described as above. The data set can be
divided into four parts as follows.

1. ys
obs The observed values of the variable Xs

2. ys
miss: The missing values of the variable Xs

3. xs
obs: The values of all other variables except Xs in the place of i(s)obs

4. xs
miss: The values of all other variables except Xs in the place of i(s)miss

In the application of missForest, there is a stopping criterion γ , which is
met as soon as the difference between the newly imputed data matrix and
the former one increases for the first time. This is the case for both con-
tinuous and categorical variables. The difference for the set of continuous
variables N is defined as

∆N =
∑ j∈N(X

imp
new−Ximp

old )
2

∑ j∈N(X
imp
new)2

(17)

and as for the set of categorical variables F , the difference is defined as
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∆F =
∑ j∈F ∑

n
i=1 IXimp

new 6=Ximp
old

#NA
(18)

where #NA is the number of missing values in the categorical variables.

Implementation in R

In this part, the application of missForest in R to impute missing values
will be explained in detail. As mentioned above, missForest is an imple-
mentation of random forest algorithm.

MissForest <- missForest(missForest ,maxiter = 10, ntree = 100,
mtry = floor(sqrt(ncol(missForest ))), replace = TRUE)

There are a number of arguments that can be specified by applying missForest
function. The following table illustrates some possible arguments used in
this simulation study.

Table 5.3: List of possible arguments applied in missForest function

Argument Setting Description
xmis missForest The imported data set
maxiter 10 Maximun number of iterations

equals to 10
ntree 100 100 trees to grow in each forest
mtry floor(sqrt(ncol(missForest))) The number of variables in the

simulated data set
replace TRUE Bootstrap sampling is performed

with replacements

The missForest function returns a list object with three components: "ximp",
"OOBerror", and "error". Here "ximp" represents the imputed complete
data set, "OOBerror" represents the out-of-bag estimated imputation error,
and "error" stands for the true imputation error. In this simulation study
the imported data set with missing values is a data frame. The "$" operator
is used to return the imputed complete data set from which the OOBerror
rates are returned, consisting of two statistical measurements. The first is
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the proportion falsely classified (PFC), which is used for categorical vari-
ables. The second measurement is the normalized root mean squared error
(NRMSE), which is used for continuous variables.
The NRMSE is a normalization of the mean squared error (MSE), which
measures the average of the squares of the errors and is also known as the
average squared difference between the estimated values and the observed
values in the data set. The MSE can be computed as

MSE = MSE(θ̂) = E((θ̂ −θ)2) =
1
n

n

∑
i=1

(Yi− Ŷi)
2 (19)

The root-mean-square error (RMSE), which is the square root of MSE, is
also a significant measurement. It is denoted as

RMSE = RMSE(θ̂) =
√

MSE(θ̂) =
√

E((θ̂ −θ)2) (20)

With the help of normalizing, comparison between data sets with different
scales can be improved(S. Oba et al. (2003)). NRMSE is denoted as

NRMSE = NRMSE(θ̂) =

√
MSE(θ̂)
var(Yi)

=

√
1
n ∑

n
i=1(Yi− Ŷi)2

var(Yi)
(21)

In this case, the effect of imputation improves with the decrease of NRMSE.

MissForest$OOBerror
NRMSE PFC
0.0004937029 0.3061538373

The R-code above is an example of the result of OOBerror, which shows
the effect of imputation with MAR and 50% missing rate. The value of
NRMSE is 0.000494, which implies the predictive power for random for-
est and the model can explain the average deviation ±0.05% of the range.
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5.3 Predicted Residual Error Sum of Squares (PRESS)
In this thesis the PRESS statistic is the chosen criterion to measure the ef-
fect of different imputation methods. The coefficient of determination is
an alternative used to measure the quality of fit in regression, but it does
not have predictive power. Hence it is not suitable in this case.
The coefficient of determination, denoted as R2, represents the proportion
of the variance in the response variable, which can be predicted from the
independent variable. In other words, this index measures how well the
model fits with given observations without the ability to make predictions
about future values. The coefficient of determination is expressed as fol-
lows.

R2 ≡
SSreg

SStot
=

∑
i
(ŷi− y)2

∑
i
(yi− y)2 = 1− SSres

SStot
= 1−

∑
i
(yi− ŷi)

2

∑
i
(yi− y)2 (22)

where

SStot = ∑i(yi− ȳ)2 is the total sum of squares,
SSreg = ∑i( fi− ȳ)2 is the regression sum of squares,
SSres = ∑i(yi− fi)

2 = ∑i e2
i is the sum of squares of residuals.

In regression analysis, as one of the CV methods, the PRESS statistic is
a measure of how well a model fits a sample of observations which them-
selves were not used to estimate the model. To be more specific, in CV the
data set is divided into two separate parts, namely the training data and the
test data. Based on the training data a predicted model is fitted, from which
the predicted values are calculated and compared to observed values in the
test data. As the following formula shows, the PRESS statistic is calculated
as the sums of squares of the prediction residuals for the observations.

PRESS =
n

∑
i=1

(yi− ŷi)
2 (23)

The fitted model based on the training data affects the values of the PRESS
statistic to a large degree, thus the more appropriate the model, the lower
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the value of the PRESS statistic. There are missing values in both the
training data and test data. If these missing values are imputed by any im-
putation method, the imputed complete data set inevitably deviates from
the original complete data set on some level, which negatively influences
the quality of the training data. Based on the biased training data, the qual-
ity of the fitted predictive model may be unsatisfying, which in turn affects
the value of the PRESS statistic. Therefore, this thesis uses the PRESS
statistic as the criterion to measure different imputation methods.
The PRESS statistic is calculated as the sums of squares of the prediction
residuals, which have a considerable value in the case of large samples.
This is a disadvantage for graphical organization. Accordingly, this the-
sis uses a logarithmic transformation of the PRESS statistic to present the
results of the comparison.

56



6. ANALYSES AND RESULTS

6 Analyses and Results
As mentioned in section 5, the MI methods used in this simulation study
are realized by applying three powerful R-packages, namely MICE, Amelia
II, and missForest, while the single imputation method used is mean sub-
stitution (mean imputation). All of these imputation methods are com-
pared based on two different types of data sets under two dimensions,
which are missing rates and missing data mechanisms. In this section
the detailed results of comparison between these methods are presented
in the form of boxplots, which illustrate the value of the log-transformed
PRESS statistic for a more intuitive demonstration. The label "replace" in
the boxplots denotes "replace with column mean", which indicates mean
substitution.

6.1 Data Set with Only Continuous Variables
6.1.1 In the MCAR Data Set
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Figure 6.1: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism MCAR

1. With missing rates of around 10%, 30%, and 50%, the order of perfor-
mance of the imputation methods ranked from best to worst is fixed:
missForest, MICE, Amelia II, mean substitution.

2. When the missing rate is around 10%, the values of the log-transformed
PRESS statistic of missForest and MICE are relatively further from
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12, while these values of Amelia II and mean substitution are around
12. With an increased missing rate the values of the log-transformed
PRESS statistic of all imputation methods gradually become closer
to 12 and even exceed 12. This implies that the imputation effect of
all imputation methods exhibits a decreasing trend with an increased
missing rate.

3. When the missing rate reaches around 10%, the performances of Amelia
II and mean substitution display almost no difference.

6.1.2 In the MAR Data Set
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Figure 6.2: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism MAR

1. With a missing rate of around 10%, the order of performance of the
imputation methods ranked from best to worst is: missForest, Amelia
II, MICE, mean substitution. With missing rates of around 30% and
50% the corresponding order is: missForest, MICE, Amelia II, mean
substitution. From the boxplots it can be observed that missForest
always performs best, while mean substitution always produces the
worst effects of imputation.

2. When the missing rate is around 10% the values of the log-transformed
PRESS statistic of all imputation methods are furthest from 12, im-
plying that the aggregate effect of imputation reaches its optimum. As
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with the MCAR situations, the value of the log-transformed PRESS
statistic gradually increases, implying that the performances of all im-
putation methods worsen with an increased missing rate.

3. Of the considered methods, when the missing rate is around 10%
the value of the log-transformed PRESS statistic of missForest dif-
fers least from that of the original complete data set. This indicates
that missForest has the best performance. Hence, applying missFor-
est in this situation is able to restore the original complete data set to
the greatest extent.

4. Disregarding missForest, there is no fixed order of the imputation ef-
fect of the other three imputation methods. Indeed, when the missing
rate reaches around 30% the performances of these three imputation
methods exhibit almost no difference.

5. The difference between the imputation effect of missForest and those
of the other three imputation methods does not present a fixed pattern.

6.1.3 In the NMAR Data Set
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Figure 6.3: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism NMAR

1. With a missing rate of around 10% the order of performance is: miss-
Forest, Amelia II, MICE, mean substitution. Noticeably, at missing
rates of around 30% and 50%, as a single imputation method mean
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substitution performs better than two other imputation methods. The
possible reasons for this will be explained in the conclusion section.
To compare the performance of MI methods with missing rates of
around 10%, 30%, and 50%, the order is: missForest, Amelia II,
MICE.

2. When the missing rate is around 10%, the values of the log-transformed
PRESS statistic of all imputation methods are furthest from 12. When
the missing rate reaches around 30%, the log-transformed PRESS
statistic values of Amelia II and MICE exceed 12, and as the miss-
ing rate hits around 50% these values all exceed 12, thus proving that
the imputation effect declines.

3. When the missing rate is around 10% the imputation effects of Amelia
II and MICE are almost equal. Excepting missForest, the imputation
effects of the other three imputation methods demonstrate no signifi-
cant difference when the missing rate is around 30% and 50%.
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6.2 Data Set with Continuous and Categorical Variables

6.2.1 In the MCAR Data Set
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Figure 6.4: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism MCAR

1. With a missing rate of around 10%, the order of performance is:
missForest, MICE, mean substitution, Amelia II. At missing rates of
around 30% and 50% the corresponding order is: missForest, MICE,
Amelia II, mean substitution. The results suggest that the perfor-
mance of MICE is always better than that of Amelia II. If only the
MI methods are compared then the order is fixed: missForest, MICE,
Amelia II.

2. When the missing rate is around 10% the log-transformed PRESS
statistic values of all imputation methods barely exceed 16. As the
missing rate increases, these values become closer to 16 and even
surpass 16, which implies that the imputation effect of all imputation
methods worsens.

3. When the missing rate is around 10% the log-transformed PRESS
statistic value of missForest differs considerably from that of the other
three imputation methods. As the missing rate increases this differ-
ence gradually reduces, which indicates that the imputation effect of
missForest approaches that of the other methods.
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6.2.2 In the MAR Data Set

10

12

14

16

Complete data missForest MICE AMELIA replace
Imputation Methods

th
e 

lo
g−

tra
ns

fo
rm

ed
 P

R
ES

S 
st

at
is

tic

method
AMELIA

Complete data

MICE

missForest

replace

MAR missing rate around 10%

10

12

14

16

18

Complete data missForest MICE AMELIA replace
Imputation Methods

th
e 

lo
g−

tra
ns

fo
rm

ed
 P

R
ES

S 
st

at
is

tic

method
AMELIA

Complete data

MICE

missForest

replace

MAR missing rate around 30%

9

12

15

18

Complete data missForest replace MICE AMELIA
Imputation Methods

th
e 

lo
g−

tra
ns

fo
rm

ed
 P

R
ES

S 
st

at
is

tic

method
AMELIA

Complete data

MICE

missForest

replace

MAR missing rate around 50%

Figure 6.5: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism MAR

1. At missing rates of around 10% and 30% the performance order is:
missForest, MICE, Amelia II, mean substitution. At around a 50%
missing rate the corresponding order is: missForest, mean substitu-
tion, MICE, Amelia II. Notably, the imputation effect of MICE is
always better than that of Amelia II, even though both approaches are
based on the assumption that the missing data mechanism is MAR.

2. Similar to the situations with MCAR data, the log-transformed PRESS
statistic values of all imputation methods gradually increase as the
missing rate increases. When the missing rate reaches around 50%,
the log-transformed PRESS statistic values of almost all imputation
methods becomes closest to or even exceeds 16.

3. When the missing rate is around 10%, the log-transformed PRESS
statistic value of missForest exhibits the least difference from that of
the original complete data set. Hence, applying missForest under this
circumstance is recommended.

4. The difference between the imputation effects of missForest and the
other methods gradually decreases, which implies that the imputa-
tion effect of missForest approaches that of the other three imputation
methods.
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6.2.3 In the NMAR Data Set
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Figure 6.6: Performances of different imputation methods with missing rate around 10%,
30%, and 50% under the missing data mechanism NMAR

1. At a missing rate of around 10% the performance order is: miss-
Forest, mean substitution, Amelia II, MICE. At a missing rate of
around 30% the corresponding order is: missForest, MICE, Amelia
II, mean substitution. Finally, at the missing rate of around 50% the
corresponding order is: missForest, mean substitution, MICE, Amelia
II.

2. When the missing rate is around 10%, the log-transformed PRESS
statistic values of all imputation methods are slightly lower than 16.
With the increase of the missing rate, these values become closer to
and even exceed 16, implying that the aggregate performance of all
imputation methods diminishes.

3. Excluding missForest, there is no fixed order of the imputation effect
of the remaining three imputation methods.

4. At missing rates of 10%, 30%, and 50%, the four imputation methods
have the closest imputation effect to that demonstrated for MAR and
MCAR.
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6.3 Conclusions
Notably, the following comparison results are all drawn based on the log-
transformed PRESS statistic, which is used as the criterion in this study. If
other criteria are applied, comparison results may differ.

The common aspects identified by the comparisons based on two data sets
are listed as follows.

1. Compared to the other three imputation methods, missForest exhibits
the best performance under all circumstances.

2. The log-transformed PRESS statistic values of all imputation meth-
ods are closest to those of the original complete data set when the
missing rate is around 10%. With an increased missing rate, the dif-
ference between the log-transformed PRESS statistic values of all
imputation methods and those of the original complete data set in-
creases. This implies that the imputation effect of all imputation
methods displays a decreasing trend with the increase of the missing
rate.

3. The values of the log-transformed PRESS statistic of the original
complete data set are almost the same under all circumstances. This
value is not affected by changing the missing rate because no missing
value is created in the original complete data set, thus no imputa-
tion method is conducted. Therefore, these values can be considered
as a standard to enable comparison of the imputation method perfor-
mances.

The differences observed from the comparisons based on two data sets are
listed as follows.

1. For the continuous data set the interval of the log-transformed PRESS
statistic value of the original complete data set is (9,10), and that of
the mixed-type data set is (11,12). All log-transformed PRESS statis-
tic values for continuous variables are lower than the same values
for mixed-type data. A possible reason is that the number of pre-
dictor variables differs between these two data sets, which can affect
the log-transformed PRESS statistic values considerably. To be more
specific, there are seven variables in the continuous data set, while the
mixed-type data set contains 10 values.
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2. For the continuous data set, the dotted line represents a log-transformed
PRESS statistic value equal to 12 and acts as a fixed reference. Mean-
while, the dotted line representing the value 16 is a fixed reference for
the mixed-type data set.

According to the results, single imputation methods appear to perform bet-
ter than MI methods in certain situations. Possible reasons are explained
in the following.
A certain amount of information is stored in the observed values of a data
set. For instance, if a data set has missing values then it contains a fixed
amount of information. When complete case analysis is applied to deal
with the missing values, some information is lost. In contrast, if single im-
putation methods such as mean substitution are applied to replace missing
values by using the existing information in the data set, then the standard
deviation is reduced.
A key problem of mean substitution is that it does not take imputation
uncertainty into account. As a result, standard errors computed from the
imputed data are systematically underestimated. Thus, MI was proposed
to deal with this problem.
By applying MI methods, multiple data sets with the same size are gen-
erated by stochastic resampling, such as bootstrapping, after which these
data sets are imputed. The pooled standard deviation and pooled coeffi-
cient are derived from the pooled multiple imputed data sets. With the ap-
plication of bootstrapping, random noise is added to the prediction; single
imputation methods do not achieve this. Compared to single imputation
methods, which are intended to impute the missing values as precisely as
possible, MI methods aim to impute without underestimating the standard
deviation by adding variance to the prediction.
In short, although single imputation methods occasionally seem to perform
better, in general MI methods exhibit a better imputation effect.
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