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Abstract

Diese Masterarbeit beschäftigt sich mit den Leistungsdaten und den Positionen von Fußball-
Bundesligaspielern und untersucht diese auf Zusammenhänge zwischen den Leistungsdaten
und den Positionen. Um dies auszuarbeiten werden ein multinomiales logistisches Regres-
sionsmodell und ein Random Forest verwendet und die Effekte der Modelle mithilfe von
interpretierbaren Machine Learning Methoden analysiert. Obwohl das Erzeugen der Modelle
auf sehr verschiedene Art und Weise funktioniert, kann mit den interpretierbaren Machine
Learning Methoden gezeigt werden, dass sich die Effekte in den beiden Modellen sehr ähneln.
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1 Einführung

Viele Sportarten werden in der heutigen Zeit zunehmend quantifiziert und in Datenbanken
erfasst. Diese Quantifizierung führt dazu, dass immer mehr statistische Analysen in den ver-
schiedensten Sportarten durchgeführt werden, um die Ereignisse, die in einem Wettkampf
stattfinden, besser zu verstehen. In manchen Sportarten wie zum Beispiel dem Baseball,
werden schon seit Jahren statistische Analysen durchgeführt, um das Team optimal zusam-
menzustellen oder das Abschneiden der Teams in einer Saison zu modellieren.
Im Unterschied zum Baseball ist die Analyse von Leistungsdaten im Fußball etwas
schwieriger. Während im Baseball ein Spielzug hauptsächlich von den Fähigkeiten zweier
Spieler abhängt (dem Ball-werfenden Spieler und dem Ball-schlagenden Spieler), hängt
ein Spielzug im Fußball von mehreren angreifenden und verteidigenden Spielern ab und
macht somit die Ausgangslage eines einzelnen Spielzuges schon deutlich komplexer. Um
diese Spielzüge quantifizierbar zu machen, werden im Fußball mittlerweile allerlei Leis-
tungsdaten erfasst. Angefangen vom Zählen der gespielten Pässe eines Spielers bis hin zum
Messen der Höchstgeschwindigkeit und der Laufweite eines Spielers werden immer größere
Datengrundlagen geschaffen.
Ein sehr moderner Wert, der häufig für die Analyse einer Spielsituation genutzt wird, ist der
“Expected Goals”-Wert. Dieser beschreibt mit welcher Wahrscheinlichkeit in der jeweiligen
Spielsituation ein Tor fällt (Nordmann 2016).
Die folgende Arbeit beschäftigt sich damit, wie die erfassten Leistungsdaten zusammenhän-
gen und wie sich diese zwischen den einzelnen Positionen auf dem Fußballfeld unterscheiden.
Hierfür werden deskriptive Methoden genutzt, um die gemessenen Leistungsdaten besser zu
verstehen und sowohl klassische als auch maschinen-basierte Modellierungen verwendet, um
die Zusammenhänge der Leistungsdaten bezüglich ihrer Positionen zu modellieren.
Wichtig ist es aus Modellen Wissen zu generieren. Modellierungen aus dem Bereich des
Machine Learning haben den Ruf schwer interpretierbar zu sein, weshalb sie oft nur für
Prognosen verwendet werden. In den letzten Jahren entwickeln sich jedoch immer mehr
Methoden, die versuchen die “Blackbox” einer Machine Learning-Methode zu entschlüsseln
und die Modelle interpretierbarer zu machen. Aus diesem Bereich des “Interpretierbaren
Machine Learnings” werden in dieser Arbeit Methoden verwendet, um das klassische Modell
mit dem Machine Learning-Modell zu vergleichen und daraus Wissen zu generieren.
Die Modelle sollen die Position einer Beobachtung anhand ihrer Leistungsdaten schätzen.
Wenn die Modelle diese Beziehung gut beschreiben, kann anhand der Modelle ausgearbeitet
werden, wie sich die Leistungsdaten auf die Positionen auswirken. Im Speziellen soll unter-
sucht werden, ob hohe Werte bestimmter Leistungsdaten für bestimmte Positionen sprechen
(z.B. ob eine hohe Laufweite eher für einen Verteidiger oder einen Mittelfeldspieler spricht).
Die interessantesten Beziehungen werden dabei durch Methoden des interpretierbaren Ma-
chine Learnings näher beschrieben und zwischen den beiden Modellen auf Gemeinsamkeiten
und Unterschiede untersucht.
Darüber hinaus wird in dieser Arbeit eine Methode vorgestellt, die die Topologie der Daten,
die durch die beiden Modelle beschrieben wird, untersuchen soll. Anhand dieser Methode
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wird es möglich sein zu überprüfen, welche Positionen bezüglich eines einzelnen Leistungs-
datums gegeben der anderen Leistungsdaten im Raum benachbart liegen.
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2 Datensatz

2.1 Datengrundlage und Herkunft

Um valide und sinnvolle Analysen durchzuführen wird ein Datensatz mit aktuellen Leistungs-
daten aus mehreren Quellen zusammengeführt. Bevor dies geschehen kann, muss jedoch eine
Datengrundlage definiert werden.
Im Großen und Ganzen sind alle Spieler, die je in der Bundesliga gespielt haben, Teil der
Datengrundlage. Um jedoch nur Spieler in den Datensatz aufzunehmen, die wirklich beze-
ichnend für die Bundesliga sind, müssen Einschränkungen getroffen werden.
Zum Einen ist es wichtig, dass einzelne ausreißende Spiele die Analysen nicht zu stark verz-
erren. Daher wird die Datengrundlage auf alle Spieler, die mindestens 4 Spiele (bzw. 360
Spielminuten) in einer Bundesligasaison gespielt haben, reduziert und die Daten werden
saisonaggregiert betrachtet.
Zum Anderen bestehen Differenzen zwischen der Bundesliga und den niedrigeren Ligen in
Deutschland, bzw. zwischen der Bundesliga und anderen Top-Ligen auf der Welt. Daher wird
die Datengrundlage weiterhin auf Spieler reduziert, die mindestens 3 Jahre in der Bundesliga
gespielt haben und somit über einen längeren Zeitraum gezeigt haben, dass ihre Fähigkeiten
denen eines Bundesligaspielers entsprechen.
Um eine Liste der Namen zu erhalten, wurden die Spielerlisten von Bundesligaprofis auf
der Seite www.weltfussball.de genutzt (“weltfussball.de” 2018). Anhand dieser Liste wurde
nach Leistungsdaten der Bundesligaprofis gesucht. Darüber hinaus konnte überprüft wer-
den, wie viele Saisons ein Spieler in der Bundesliga einem Kader angehörte. Hier sind keine
Spielminuten oder gespielte Spiele angegeben, weshalb dieser Filter im Nachhinein gesetzt
werden musste.
Auf der Seite www.sport1.de waren bis Anfang des Jahres 2019 umfangreiche saisonag-
gregierte Leistungsdaten aufgelistet (“sport1.de” 2018). Dieser große Umfang an Leistungs-
daten existiert jedoch erst seit der Saison 2009/2010. Die Daten vor dieser Saison waren auf
nur wenige Leistungsdaten beschränkt. Daher wurde die Datengrundlage auf alle Spieler, die
seit 2009/2010 in der Bundesliga gespielt haben ein weiteres mal eingeschränkt.
Die Spielerlisten von www.weltfussball.de wurden verwendet, um über die Namen der Spieler
die URLs zum Scrapen der Leistungsdaten zu ermitteln. Nicht alle Spieler sind über ihren
Namen gefunden worden. Die Teilmenge der gefunden Spieler wurde auf Diskriminierungen
bezüglich Herkunft, Position, Alter, Verein und Spielzeit untersucht. Es wurde kein diskri-
minierendes Muster gefunden, weshalb die Stichprobe als repräsentativ betrachtet wird. Die
Leistungsdaten enthielten die Anzahl der Spielminuten, wodurch die Spieler, die weniger als
360 Spielminuten in einer Saison aufgewiesen haben hier gefiltert wurden.
Diese Leistungsdaten bestehen aus:
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Leistungsdatum Reichweite Gruppierung
Spielminuten 360 - 3060 Spielminuten
Ballkontakte 127 - 3066 Spielbeteiligung Generell
Gespielte Pässe 28 - 2595 Spielbeteiligung Generell
Angekommene Pässe 19 - 2343 Spielbeteiligung Generell
Fehlpässe 9 - 464 Spielbeteiligung Generell
Passquote in % 48 - 94 Spielbeteiligung Generell
Zweikämpfe 0 - 1227 Spielbeteiligung Generell
Zweikampfquote in % 0 - 100 Spielbeteiligung Generell
Laufweite in km 20.84 - 398.67 Körperliche Leistungen
Höchstgeschwindigkeit in km/h 24 - 35 Körperliche Leistungen
Sprints 1 - 1162 Körperliche Leistungen
Tore 0 - 31 Tore
Tore mit dem Fuss 0 - 25 Tore
Kopfballtore 0 - 7 Tore
Elfmetertore 0 - 8 Tore
Verschossene Elfmeter 0 - 3 Tore
Schüsse 0 - 151 Spielbeteiligung Offensiv
Schussvorlagen 0 - 124 Spielbeteiligung Offensiv
Torvorlagen 0 - 20 Spielbeteiligung Offensiv
Abseits 0 - 60 Spielbeteiligung Offensiv
Eigentore 0 - 3 Spielbeteiligung Sonstiges
Fouls 0 - 96 Spielbeteiligung Sonstiges
Gefoult worden 0 - 121 Spielbeteiligung Sonstiges
Gegentore 0 - 70 Torwart
Gehaltene Schüsse 0 - 152 Torwart
Gehaltene Elfmeter 0 - 5 Torwart

Tabelle 1: Übersicht über die Leistungsdaten

Diese Daten sind seit Ende Januar 2019 nicht mehr direkt verfügbar, können jedoch noch
über Webarchive gefunden werden. Der Stand der Daten für die Saison 2018/2019 ist der
16.11.2018 (zwischen dem 11. und 12. Spieltag). Im weiteren Teil der Arbeit werden vor
allem für die Modellierung die Leistungsdaten auf ihre Spielminuten bezogen, weshalb es
unproblematisch ist eine noch laufende Saison hier aufzunehmen.
Um eine detailliertere Information über die gespielte Position eines Profis innerhalb einer
Saison zu erhalten, wurden die gespielten Positionen von der Seite www.transfermarkt.de an
den Datensatz angefügt (“transfermarkt.de” 2018). Dort wurden die gespielten Positionen
zusammen mit der Anzahl an Spielen, die die Spieler auf den Positionen in einer bestimmten
Saison gespielt haben, erfasst. Diese Positionen erweitern die bisherigen Informationen, die
aus Torwart, Verteidiger, Mittelfeld und Sturm bestanden, um genauere Angaben. In diesen
Daten ist aufgeführt, wie häufig ein Spieler eine bestimmte Position über die Saison bekleidet
hat. In Tabelle 2 sind die gespielten Positionen zusammen mit der Anzahl an Beobachtungen,
die diese als “Häufigste gespielte Position” aufführen, aufgelistet. Wie zu sehen ist, existiert
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Position Anzahl an Beobachtungen
Torwart 154
Linker Verteidiger 168
Rechter Verteidiger 151
Innenverteidiger 366
Libero 1
Defensives Mittelfeld 246
Linkes Mittelfeld 48
Rechtes Mittelfeld 46
Zentrales Mittelfeld 146
Offensives Mittelfeld 114
Linksaußen 141
Rechtsaußen 132
Hängende Spitze 48
Mittelstürmer 219

Tabelle 2: Anzahl der Beobachtungen pro Position

nur eine Beobachtung mit der Position Libero, was bedeutet, dass nur ein Bundesligaprofi in
diesem Datensatz über eine komplette Saison hauptsächlich als Libero gespielt hat. Daher
wurde diese Beobachtung nur für einen Teil der deskriptiven Analysen der Leistungsdaten
verwendet und nicht für die positionsbezogenen Analysen.
Alles in allem enthält der Datensatz, der in den folgenden Analysen untersucht wird, 1980
Beobachtungen. Jede Beobachtung entspricht den saisonaggregierten Leistungsdaten eines
Bundesligaspielers von einer bestimmten Saison zwischen 2009/2010 bis 2018/2019. Diese
Beobachtungen stammen von 407 verschiedenen Spielern.

2.2 Datenimputationen

Die Leistungsdaten von der Seite www.sport1.de weisen ein Leistungsdatum, das keine Aus-
prägung besitzt (also zum Beispiel einen Torhüter, der keinen Schuss abgegeben hat) nicht
auf, anstatt dieses mit einer 0 zu erfassen. Daher wurde eine 0 -er Imputation für auss-
chließlich plausiblen Variablen durchgeführt.
Die meisten Beobachtungen weisen für die ausschließlich für Torhüter erfassten Variablen
Gegentore, Gehaltene Schüsse und Gehaltene Elfmeter keine Ausprägung auf. Diese wurden
für alle Positionen, abgesehen der Torhüter, mit einer 0 aufgefüllt.
Im Gegenteil dazu fehlen Zweikämpfe ausschließlich bei Torhütern und die Anzahl an Fouls
und wie oft jemand Gefoult worden ist bei Torhütern und Feldspielern mit sehr wenig
Spielminuten. Dies ist sehr plausibel, weshalb diese auch durch 0 en aufgefüllt wurden.
Die Leistungsdaten für offensive Spielbeteiligungen, Tore und Eigentore sind häufig fehlend,
aber primär bei defensiven Spielern und Torhütern, bzw. im Falle der Eigentore bei offensiven
Spielern, weshalb auch diese mit 0 en aufgefüllt wurden.
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In den Saisons vor 2011 fehlt häufig die Laufweite. Es wird vermutet, dass diese eventuell
noch nicht mitgetrackt werden konnte, da eine Laufweite von 0 km in mindestens 4 Spielen
unplausibel ist. Diese Beobachtungen wurden mit NAs aufgefüllt.

2.3 Alter

Das Alter der Spieler in einer Saison wurde an ihrem Geburtstag gemessen und gerundet
aufgenommen. Da die meisten Spieler während der Saison ihren Geburtstag feiern, musste
sich für einen bestimmten Stichtag entschieden werden, an dem das Alter bestimmt wird.
Hierfür wurde der 31.12. als Stichtag bestimmt und das Alter an diesem Tag für die gesamte
Saison gemessen. Wenn ein Spieler vor diesem Tag Geburtstag hat, ist er die komplette
Rückrunde und den Rest der Hinrunde nach seinem Geburtstag bereits ein Jahr älter als
zum Start der Saison (also > 50% der Saison). Wenn ein Spieler erst nach diesem Tag
Geburtstag hat, hat er die komplette Hinrunde und die Rückrunde von Start bis zu seinem
Geburtstag mit dem Alter gespielt, mit dem er in die Saison gestartet ist (also auch > 50%
der Saison). Daher ergibt die Wahl des 31.12. als Stichtag zur Bestimmung des Alters Sinn.
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3 Deskriptive Veranschaulichung der Daten

3.1 Absolute Leistungsdaten

3.1.1 Verteilung der absoluten Leistungsdaten

Die Leistungsdaten sind ganzzahlig und metrisch gegeben. Um die Verteilungen der Leis-
tungsdaten darzustellen, wurden Histogramme verwendet. Diese Histogramme bilden die
Verteilung der Leistungsdaten ab. Anhand dieser kann einerseits erkannt werden, ob ein
Leistungsdatum einer schiefen Verteilung folgt, und andererseits, ob ein Leistungsdatum
mehrgifplig verteilt ist. Da die Leistungsdaten der Torhüter sich deutlich von den Leistungs-
daten der Feldspieler unterscheiden, werden hier nur die Feldspieler betrachtet (bspw. hat
kein Torhüter im Datensatz ein Tor geschossen oder im Abseits gestanden). Für die Vari-
ablen, die nur für die Torhüter Ausprägungen aufweisen, wurden eigene Histogramme nur
mit den Torhütern erstellt.

Fouls Gefoult worden

Sprints Schüsse Schussvorlagen Abseits

Passquote (%) Zweikämpfe Zweikampfquote (%) Laufweite (km)
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Histogramme der gemessenen Leistungsdaten

Abbildung 1: Visualisierung der absoluten Leistungsdaten durch Histogramme - Viele Aus-
prägungen

Für die Leistungsdaten, die eine hohe Anzahl an verschiedenen Ausprägungen aufweisen
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(≥ 25), werden Histogramme mit einer festen Anzahl an Balken abgebildet. Dies bedeutet,
dass Beobachtungen, die Nahe beieinander liegen in diskrete Klassen aufgeteilt werden und
dadurch zusammen abgebildet werden. Würden die Daten nicht zusammengefasst werden, so
wäre die Verteilung bei manchen Leistungsdaten nur schwer zu erkennen, da sie viele Ausprä-
gungen aufweisen, die jeweils nur sehr selten (z.B. 1 bis 5 mal für die Anzahl der gespielten
Pässe) vorkommen. In Abbildung 1 werden alle Beobachtungen, die keine Torhüter sind,
anhand solcher Histogramme abgebildet. Wie hier zu sehen ist, sind die meisten Leistungs-
daten linkssteil verteilt. Die Passquote weist hingegen eine rechtssteile Verteilung auf. Die
Laufweite scheint über den Wertebereich in etwa gleichverteilt zu sein. Die Zweikampfquote
ähnelt noch am meisten einer Normalverteilung. Alle Leistungsdaten liegen in einem plausi-
blen Wertebereich.
Die anderen Leistungsdaten, die nur eine sehr niedrige Anzahl an verschiedenen Ausprägun-
gen aufweisen (≤ 25), sind ohne Zusammenfassen für jede Ausprägung gezählt worden und
in Histogrammen in Abbildung 2 dargestellt.

Torvorlagen Eigentore Alter

Kopfballtore Elfmetertore Verschossene Elfmeter
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Abbildung 2: Visualisierung der absoluten Leistungsdaten durch Histogramme - Wenige Aus-
prägungen

Bis auf die Höchstgeschwindigkeit, die eine leichte rechtssteile Verteilung aufweist, sind die
Leistungsdaten mit wenigen Ausprägungen alle linkssteil.
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Um die drei Torhüter-Leistungsdaten nocheinmal genauer zu betrachten, sind diese nur für
die Torhüter in Abbildung 3 visualisiert.

Gegentore Gehaltene Schüsse Gehaltene Elfmeter

0 20 40 60 0 50 100 150 0 1 2 3 4 5

0
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0
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15
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Torhüter

Histogramme der gemessenen Leistungsdaten

Abbildung 3: Visualisierung der absoluten Leistungsdaten der Torhüter

Bis auf eine klare linkssteile Verteilung der Anzahl an gehaltenen Elfmeter folgen die an-
deren beiden Verteilungen keinen eindeutigen Strukturen. Die Anzahl an Gegentoren weist
eine leicht bimodale Struktur auf, während die Anzahl an gehaltenen Schüssen eine leichte
rechtssteile Verteilung aufweist.

3.1.2 Zusammenhänge der absoluten Leistungsdaten

Um die Zusammenhänge zwischen den Leistungsdaten zu überprüfen, werden ihre Korre-
lationen nach Pearson gemessen. Diese Zusammenhänge sind hier als Heatmap dargestellt.
Eine rote Kachel steht für eine positive Korrelation zwischen den beiden Leistungsdaten und
eine blaue Kachel für eine negative Korrelation. Je höher die Farbsättigung, desto höher die
Korrelation nach Pearson.
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Abbildung 4: Visualisierung der Korrelation nach Pearson der absoluten Leistungsdaten

Auffällig sind die ersten vier aufgeführten Leistungsdaten, also Ballkontakte, Gespielte Pässe,
Angekommene Pässe und Fehlpässe, da diese alle hoch positiv miteinander korreliert sind.
Auch die Laufweite in km weist noch eine hohe positive Korrelation mit den vier Leis-
tungsdaten auf. Abgesehen von der Laufweite messen all diese Leistungsdaten die generelle
Spielbeteiligung der Bundesligaprofis.
Eine weitere Gruppe hoch positiv korrelierter Leistungsdaten sind die Schüsse, Schussvor-
lagen, Torvorlagen und Abseitsstellungen. Diese Leistungsdaten messen die offensive Spiel-
beteiligung der Bundesligaprofis.
Darüber hinaus weisen die Torhüter-Leistungsdaten Gegentore und Gehaltene Schüsse eine
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sehr hohe positive Korrelation auf, während die Variable Gehaltene Elfmeter nur eine leichte
positive Korrelation mit den anderen beiden Torhüter-Leistungsdaten aufweist. Dies ist je-
doch die höchste mit 0 en befüllte Variable, weshalb hier keine hohe Korrelation mit den
anderen Leistungsdaten erwartet werden kann.
Das Alter weist keine hohe Korrelation mit einem der anderen Leistungsdaten auf. Dies
bedeutet, dass keine der Leistungsdaten mit steigendem Alter stark linear abfällt, bzw. zu-
nimmt.

3.2 Relative Leistungsdaten

3.2.1 Verteilung der relativen Leistungsdaten

Die bisherigen Visualisierungen weisen die Verteilungen und Zusammenhänge zwischen den
absolut gemessenen Leistungsdaten auf. Dies bedeutet, dass Verteilungen und Korrelationen
dadurch stark beeinflusst worden sind, wie viel Spielzeit ein Spieler in einer Saison ange-
sammelt hat. Das wirkliche Interesse an diesen Daten steckt aber darin, die Fähigkeiten der
einzelnen Spieler zu messen und diese miteinander zu vergleichen. Aus diesem Grund wur-
den die Leistungsdaten auf ihre Spielzeit bezogen. Da eine Angabe pro Spielminute jedoch
schwer zu interpretieren ist, wurden die Leistungsdaten auf ihre Einheit pro 90 Minuten be-
zogen. Die neuen Leistungsdaten bilden also ab, wie viele Pässe, Zweikämpfe, Schüsse, etc.
ein Spieler pro Spiel (exklusive Nachspielzeit) in einer Saison aufweisen konnte.
Die Leistungsdaten Passquote (in %), die Zweikampfquote (in %) und die Höchst-
geschwindigkeit (in km/h) sind bereits relativ, weshalb diese nicht erneut auf ihre Spielzeit
bezogen wurden.
Die Verteilungen der relativen Leistungsdaten sieht aus wie folgt:
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Abbildung 5: Visualisierung der relativen Leistungsdaten durch Histogramme - Viele Aus-
prägungen - Pro 90 Minuten

Eine große Veränderung ist in der Laufweite zu sehen. Diese weist jetzt eine annähernd
normalverteilte Form auf. Die weiteren Leistungsdaten ändern die Form der Verteilung nur
leicht, der größte Unterschied ist der neue Wertebereich.
Die Leistungsdaten, die zuvor wenige Ausprägungen aufweisen konnten, weisen nun durch das
Relativieren eine höhere Anzahl an verschiedenen Ausprägungen auf, wie die Histogramme
in Abbildung 6 zeigen.
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Abbildung 6: Visualisierung der relativen Leistungsdaten durch Histogramme - Wenige Aus-
prägungen - Pro 90 Minuten

Mit dem die Anzahl der unterschiedlichen Ausprägungen durch das Relativieren steigt, wer-
den abgesehen von der Anzahl der Beobachtungen mit einer 0 als Ausprägung (bspw. weisen
Beobachtungen mit 0 erzielten Kopfballtoren auch beim Relativieren 0 erzielte Kopfballtore
pro Spiel auf) die Anzahlen pro Balken im Histogramm kleiner. Visuell entsteht dadurch
ein stärkerer Effekt im Vergleich von der Anzahl der 0 en mit den restlichen Ausprägungen.
Tendenziell bleiben jedoch alle Verteilungen auch nach Relativieren ihrer Form treu (z.B.
linkssteile Verteilungen bleiben nach Relativieren linkssteil).
Auch für die relativen Torhüter-Leistungsdaten wird eine eigenständige Betrachtung durchge-
führt, damit ein Überblick über diese Daten gegeben werden kann. Dies ist in Abbildung 7
dargestellt.
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Abbildung 7: Visualisierung der relativen Leistungsdaten der Torhüter - Pro 90 Minuten

3.2.2 Zusammenhänge der relativen Leistungsdaten

An den Korrelationen nach Pearson zwischen den Leistungsdaten finden einige Veränderun-
gen statt, wenn diese nicht absolut, sondern relativ betrachtet werden. Warum dies zu großen
Unterschieden führen kann, ist in folgendem Beispiel dargestellt:

• Spieler A spielt in 100 Minuten 40 Pässe und 10 Fehlpässe.

• Spieler B spielt in 400 Minuten 200 Pässe und 20 Fehlpässe.

Die beiden Variablen Pässe und Fehlpässe wären in diesem Beispiel positiv korreliert. Werden
die Daten jedoch auf ihre Spielminuten bezogen, dann ergibt sich folgende Situation:

• Spieler A spielt pro Minute 0.4 Pässe und 0.1 Fehlpass.

• Spieler B spielt pro Minute 0.5 Pässe und 0.05 Fehlpässe.
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Auf die Spielminuten bezogen ergibt sich für dieses Beispiel eine negative Korrelation zwis-
chen den beiden Variablen Pässe und Fehlpässe.
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Abbildung 8: Visualisierung der Korrelation nach Pearson der relativen Leistungsdaten

In Abbildung 8 sind die Korrelationen nach relativieren der Leistungsdaten abgebildet. Die
hohen positiven Korrelationen, die vorher zwischen der Laufweite und den Leistungsdaten,
die die Spielbeteiligung beschreiben, gemessen werden konnten, sind nun gegen 0 gesunken.
Die Torhüter-Leistungsdaten Gegentore und Gehaltene Schüsse haben vorher schwach nega-
tive Korrelationen zu den körperlichen Leistungsdaten Laufweite, Höchstgeschwindigkeit und
Anzahl an Sprints aufgewiesen. Diese sind durch die relative Betrachtung jedoch deutlich
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negativer korreliert.

3.3 Starker Fuss Verteilung auf dem Spielfeld

Wer das ein oder andere Fußballspiel in der Kreisliga verfolgt hat, dem ist bestimmt schon
aufgefallen, dass jeder meint er sei ein Experte darin zu wissen, auf welcher Position ein
Links-, bzw. ein Rechtsfüßler zu spielen hat. Begründung dafür sind zum Beispiel, dass ein
Verteidiger auf dem äußeren Fuß, also ein Rechtsverteidiger auf dem rechten Fuß und ein
Linksverteidiger auf dem linken Fuß stark sein muss, um den angreifenden Flügelspieler
einfacher am Flanken hindern zu können. Genauso benötigt ein Flügelstürmer einen guten
äußeren Fuß, um Flanken zu können. Andere wiederum sind der Meinung, dass der Flügel-
stürmer einen guten inneren Fuß haben muss, damit er gefährlicher aufs Tor schießen kann.

Abbildung 9: Verteilung des starken Fußes auf dem Spielfeld in der Bundesliga

Auf der Homepage von The Guardian ist ein Artikel von 2010, der von dieser Thematik han-
delt (Wilson 2010). In diesem Artikel wird diskutiert, dass immer mehr Flügelspieler auf der
‘falschen’ Seite spielen. Hier wird ein weiteres Argument gebracht, warum ein Flügelspieler
auf der ‘falschen’ Seite effektiv ist. Ein Verteidiger hat in der Regel einen starken äußeren
und schwachen inneren Fuß, damit Flanken verhindert werden können. Ein Flügelspieler
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mit einem starken äußeren Fuß tritt also gegen den starken äußeren Fuß des Verteidigers
an, wohingegen ein Flügelspieler mit einem stärkeren inneren Fuß gegen den schwächeren
inneren Fuß des Verteidigers antritt.
Die Verteilung des starken Fußes der Bundesliga ist in Abbildung 9 dargestellt. Was hier
auffällt, ist die Verteilung des starken Fußes bei den Außenverteidigern und den äußeren
Mittelfeldpositionen. Während auf der linken Seite vorwiegend Linksfüßler spielen, spielen
auf der rechten Seite vorwiegend Rechtsfüßler. Dass auf den Außenverteidigerpositionen also
Spieler mit starkem äußeren Fuß eingesetzt werden ist hier deutlich zu erkennen.
Auf der anderen Seite ist zwischen den Verteilungen der linken und rechten Flügelspieler
kaum ein Unterschied zu erkennen. Wie auch in der gesamten Verteilung des starken Fußes zu
erkennen ist, gibt es ein etwa 65%-iges Übergewicht an Rechtsfüßlern auf beiden Positionen.
Das bedeutet, dass viele Rechtsfüßler auf dem entgegengesetzten Flügel spielen, jedoch nur
wenige Linksfüßler. Dies könnte jedoch keine taktischen Gründe haben, sondern durch die
Verfügbarkeit von Rechts- und Linksfüßlern zu erklären sein. Wenn es nur wenige Linksfüßler
gibt, können auch nur weniger taktisch eingesetzt werden.
Eine weitere interessante Erkenntnis ist der weit überdurchschnittlich hohe Anteil an beid-
füßigen Spielern und die Unterbesetzung der Rechtsfüßler auf der Position des offensiven
Mittelfelds. Ein Spieler auf der Position des offensiven Mittelfelds hat die Aufgabe Chancen
zu kreieren, Abschlüsse zu suchen und die Bälle gezielt zu verteilen. Diese Position ist von
einem sehr hohen Anteil an Kreativität geprägt. Im Journal of Nervous and Mental Disease
wurde 2007 in einem Artikel von Preti und Vellante eine Verbindung zwischen kreativen
Künstlern und ihrer starken Hand untersucht (Preti and Vellante 2007). In dieser Studie
wurde gemessen, dass der Anteil an nicht-Rechtshändern bei kreativen Menschen größer ist
als in ihrer Kontrollgruppe. Wenn sich dies auf Leute übertagen lässt, die nicht-Rechtsfüßler
sind, dann könnte dadurch ein natürlicher Zusammenhang gefunden werden, wieso sich die
Verteilung des starken Fußes auf der kreativen Position des offensiven Mittelfeldspielers so
sehr von der Gesamtpopulation unterscheidet.
Eine weitere Erklärung könnte die Notwendigkeit beider Füße auf dieser Position sein. Ein
offensiver Mittelfeldspieler muss in der Lage sein den Ball auf beide Flügel zu verteilen. Ist
ein Spieler nur rechts- oder linksfüßig, so würde es ihn einen unnatürlichen extra Aufwand
kosten den Ball in die “unnatürliche” Richtung nach Außen zu spielen. Gemeint ist damit
beispielsweise, dass ein Rechtsfüßler mit der Innenseite seines rechten Fußes den Ball mit
Blickrichtung zum gegnerischen Tor einfach auf die linke Seite passen kann. Wenn er einen
Pass auf die rechte Seite spielen möchte, muss er entweder die in der Regel unpräzisere äußere
Seite des Fußes nutzen oder sich erst umdrehen, um den Pass mit dem rechten Fuß zu spielen.
Ist ein Spieler jedoch mit beiden Füßen stark, kann er schnell und präzise den Ball auf beide
Seiten des Spielfelds verteilen.
Diese beiden möglichen Erklärungen müssten jedoch erst in einer aufwendigen Studie unter-
sucht werden, um sie zu bestätigen, was in dieser Arbeit jedoch nicht mehr getan wird.
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3.4 Auswahl der Leistungsdaten für die Modellierung

Für eine durchdringende Analyse und eine gute Modellierung muss eine Auswahl an Variablen
getroffen werden, die dafür relevant sind. Da beispielsweise die Anzahl der angekommenen
Pässe und die Anzahl der Fehlpässe die Gesamtanzahl der Pässe ergeben, würde dadurch
eine lineare Abhängigkeit der Variablen entstehen, was in einer Modellierung zum Problem
der Multikollinearität führt.
Darüber hinaus gibt es Variablen, die sehr hoch miteinander korreliert sind, weswegen es
sinnvoll wäre nur eine der beiden in das Modell aufzunehmen, wie zum Beispiel die Anzahl
der geschossenen Tore und die Anzahl der mit dem Fuß geschossenen Tore.
Andere Variablen wiederum weisen die Problematik auf, dass sie nur Momentaufnahmen sind
und nicht die Leistung eines Spielers über mehrere Spiele widerspiegeln, wie zum Beispiel
die Höchstgeschwindigkeit.
Alles in allem wurde das Variablen-Set auf 11 relevante Variablen reduziert (siehe Tabelle
3). Hier sind nicht die absoluten Werte der Leistungsdaten gemeint, sondern die auf ihre
Spielminuten bezogenen Werte.

Variable Beschreibung
Gespielte Pässe Misst die Spielbeteiligung eines Spielers mit Ball
Angekommene Pässe (in %) Misst die Qualität der Pässe
Geführte Zweikämpfe Misst die Spielbeteiligung eines Spielers mit und gegen

den Ball
Gewonnene Zweikämpfe (in %) Misst die Qualität der Zweikämpfe
Begangene Fouls Misst, wie häufig ein Foul begangen werden muss, um

einen Gegner zu stoppen
Gefoult worden Misst, wie häufig der Gegner foulen muss, um den Spiel-

er zu stoppen
Laufweite Misst die körperliche Ausdauerleistung eines Spielers
Abseits Misst die offensive Einsatzbereitschaft eines Spielers
Vorlagen Misst die Fähigkeit ein Tor vorzubereiten
Geschossene Tore mit dem Fuss Misst die Fähigkeit Tore zu erzielen
Geschossene Tore mit dem Kopf Misst die Kopfballstärke eines Spielers

Tabelle 3: Ausgewählte Variablen

Diese Variablen werden für die Modellierungen verwendet. In Abbildung 10 ist die Korrela-
tion der ausgewählten Variablen dargestellt. Die höchste Korrelation nach Pearson besteht
zwischen der Anzahl der geführten Zweikämpfe und der Laufweite mit 0.76. Trotz dieser
sehr hohen Korrelation sollen beide Variablen für die Modellierung betrachtet werden, da sie
verschiedene Leistungen eines Spielers messen.
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Abbildung 10: Korrelation der ausgewählten Modellvariablen

3.5 Zusammenfassen von Positionen

Wie bereits in Tabelle 2 auf Seite 5 zu sehen ist, sind manche Klassen schwächer besetzt als
andere. Dies gilt vor allem für die äußeren Mittelfeldpositionen und die Hängende Spitze. Um
fehlerhafte Analysen durch unterbesetzte Klassen zu vermeiden, werden daher Positionen,
die (in etwa) diegleiche Funktion auf dem Spielfeld haben, zusammengefasst.
Um durch dieses Vorgehen die Analysen nicht zu verfälschen wird mit bonferroni-korrigierten
t-Tests untersucht, ob sich die Positionen bezüglich ihrer Leistungsdaten signifikant unter-
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scheiden. Die Bonferroni-Korrektur ist nötig, da multiple Tests gleichzeitig betrachtet werden
(und zwar 1 Test pro Leistungsdatum, das überprüft wurde).
Die Beobachtungen, die dabei überprüft werden, sind jedoch nicht unabhängig, da eine Per-
son sowohl auf dergleichen Position, als auch auf den beiden Positionen, die verglichen wer-
den, mehrere Saisons gespielt haben kann. Daher muss der Datensatz zufällig auf einen
Teildatensatz reduziert werden, indem jeder Spieler genau einmal vorkommt. Dies wäre je-
doch nur eine Aufnahme für einen einzelnen zufällig gezogenen Teildatensatz und könnte dem
Zufall geschuldet Unterschiede aufweisen, die im Gesamtdatensatz jedoch nicht vorhanden
sind. Daher werden diese t-Tests 100 mal mit verschiedenen Teildatensätzen wiederholt.

Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−1 0 1

Konfidenzintervall der Differenz − standardisiert

Vergleich linker Verteidiger und rechter Verteidiger

t−Tests − Konfidenzintervalle

Abbildung 11: Vergleich zwischen linken und rechten Verteidigern

In Abbildung 11 ist der Vergleich der Leistungsdaten zwischen den linken und rechten Vertei-
digern abgebildet. Das schwarz eingezeichnete Intervall bildet das Konfidenzintervall der Dif-
ferenz des jeweiligen Leistungsdatums für einen einzelnen beispielhaften Teildatensatz ab.
Das blaue Intervall bildet das Minimum und das Maximum der Konfidenzintervalle der Dif-
ferenz des jeweiligen Leistungsdatums für alle Teildatensätze ab. Um die Intervalle miteinan-
der vergleichbar zu machen, wurden sie standardisiert. Der Wert 1 auf der x-Achse bedeutet,
dass dieser Punkt eine Standardabweichung von der 0 entfernt ist. Enthält das blaue Intervall
die 0, so wird keine signifkante Differenz dieses Leistungsdatums zwischen den beiden betra-
chteten Gruppen festgestellt. Enthält dieses Intervall die 0 nicht, so wurde eine signifikante
Differenz dieses Leistungsdatums zwischen den beiden betrachteten Gruppen festgestellt.
Wie in Abbildung 11 zu sehen ist, unterscheiden sich die linken und rechten Verteidiger nicht
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signifikant, weshalb diese beiden Positionen zu einer gemeinsamen Außenverteidiger-Position
zusammengefasst werden. Wie den weiteren untersuchten Paaren (s. Anhang) zu entnehmen
ist, unterscheiden sich auch die linken und rechten Mittelfeldspieler, die Links- und Recht-
saußen Spieler und die Spieler auf der hängenden Spitze und die offensiven Mittelfeldspieler
nicht. Die linken und rechten Mittelfeldspieler werden als Mittelfeld Außen-Position zusam-
mengeführt, die Links- und Rechtsaußen Spieler werden als Flügelspieler zusammen gefasst
und die als Hängende Spitze Spielenden werden zusammen mit den offensiven Mittelfeld-
spielern als gemeinsames Offensives Mittelfeld betrachtet.
Das Verwenden der einfachen Bonferroni-Korrektur ist ein sehr konservativer Ansatz. Das
bedeutet, dass ein möglicherweise siginifkanter Effekt nicht erkannt werden würde. Das durch
100 Simulationen erzeugte Intervall verbreitert dieses bonferroni-korrigierte Konfidenzinter-
vall noch weiter, was zu einem zu konservativen Intervall führen könnte, das kaum signifikante
Effekte erfassen würde. Um zu demonstrieren, dass dies doch geschehen kann, wenn zwei
wirklich unterschiedliche Gruppen untersucht werden würden, ist in Abbildung 12 ein Ver-
gleich von Innenverteidigern und offensiven Mittelfeldspielern aufgeführt, in dem deutlich
signifikante Effekte zu erkennen sind. In einem solchen Fall würde das Verbinden dieser
beiden Gruppen nicht erlaubt sein.

Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−2 −1 0 1 2 3

Konfidenzintervall der Differenz − standardisiert

Vergleich Innenverteidiger und Offensives Mittelfeld

t−Tests − Konfidenzintervalle

Abbildung 12: Vergleich zwischen Innenverteidigern und offensives Mittelfeldspielern

Durch diese Klassenzusammenführung ergibt sich eine neue Verteilung der Positionen, die
in Tabelle 4 dargestellt ist.
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Position Anzahl an Beobachtungen
Torwart 154
Außenverteidiger 319
Innenverteidiger 366
Libero 1
Defensives Mittelfeld 246
Mittelfeld Außen 94
Zentrales Mittelfeld 146
Offensives Mittelfeld 162
Flügelspieler 273
Mittelstürmer 219

Tabelle 4: Anzahl der Beobachtungen pro Position

3.6 Mittlere Leistungsdaten pro Position

Um einen Eindruck davon zu erhalten, auf welchen Positionen welche Leistungsdaten beson-
ders hoch ausgeprägt sind, werden alle Leistungsdaten bezüglich ihrer Position gemittelt
und in Radarplots miteinander verglichen. Um zu vermeiden, dass durch zu viele Klassen
die Übersicht verloren geht, wurden die defensiven Leistungsdaten für die defensiven
Positionen und die offensiven Leistungsdaten für die offensiven Positionen in Abbil-
dung 13 und Abbildung 14 dargestellt. Für diese Visualisierung wurden auch die Variablen
verwendet, die nicht für die Modellierung hinzugenommen wurden.
Die in den Radarplots abgebildeten Werte mk,l∗ werden für die k Positionen und l Variablen
mit Formel (1) und Formel (2) ermittelt.

mk,l = 1
Nk

Nk∑
i=1

(xk,l)i, (1)

wobei Nk die Anzahl der Beobachtungen für Position k darstellt und (xk,l)i den i-ten Wert
für Position k und Leistungsdatum l.
Diese Mittelwerte pro Position und Leistungsdatum werden für die Visualisierung mit einem
Radarplot auf einen Wertebereich zwischen 0 und 1 skaliert, wobei 0 der natürliche Nullpunkt
darstellt und 1 das Maximum der Werte m•,l pro Leistungsdatum. Diese Umskalierung
geschieht durch Formel (2).

mk,l∗ = mk,l

max(m•,l)
, (2)

wobei m•,l den Vektor mk,l über alle k für ein festes Leistungsdatum l darstellt.
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Abbildung 13: Mittlere defensive Leistungsdaten pro Position

In Abbildung 13 fallen sehr schnell die Variablen auf, die nur für Torhüter Werte enthalten. In
diesen Variablen dominieren natürlich die Torhüter im Vergleich zu den anderen Positionen.
Darüber hinaus dominieren Torhüter in der prozentualen Anzahl gewonnener Zweikämpfe
und haben ein leicht überdurchschnittlich hohes Alter im Vergleich zu den restlichen Posi-
tionen. Bei allen anderen Variablen belegen sie deutlich den letzten Platz.
Während die Außenverteidiger die meisten Ballkontakte und etwas mehr Fehlpässe als der
Rest aufweisen, weisen die übrigen Spielanteilsvariablen wie die Anzahl gespielter Pässe,
die Anzahl der angekommenen Pässe die Anzahl der prozentual angekommenen Pässe und
die Anzahl der prozentual gewonnenen Zweikämpfe (nach den Torhütern) bei den Innen-
verteidigern die höchsten Werte auf. Sehr dominant sind die Zahlen der Eigentore bei den
Innenverteidigern.
Die meisten Zweikämpfe und die meisten Fouls finden im zentralen Mittelfeld statt. Die
Spieler dort werden darüber hinaus noch am häufigsten gefoult.
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Abbildung 14: Mittlere offensive Leistungsdaten pro Position

In Abbildung 14 fallen die Werte der Mittelstürmer sehr schnell auf, da sie in 7 der 12 of-
fensiven Kategorien die höchsten Werte aufweisen, nämlich in der Anzahl der abgegebenen
Schüsse, der Tore, der Kopfballtore, der Tore mit dem Fuß, der Elfmetertore, der verschosse-
nen Elfmeter und der Abseitsstellungen.
Die meisten Schussvorlagen und dann zum Tor führende Vorlagen werden von den offensiven
Mittelfeldspielern abgegeben, dicht gefolgt von den Flügelspielern.
Die Flügelspieler weisen die höchsten Werte in den schnellen körperlichen Kategorien auf.
In der durchschnittlichen Anzahl der Sprints führen die Flügelspieler deutlich, während sie
in der durchschnittlichen Höchstgeschwindigkeit nur knapp führen.
Die höchste Laufweite weisen die zentralen Mittelfeldspieler auf. Diese und die durchschnit-
tliche Höchstgeschwindigkeit weisen jedoch zwischen den Positionen die geringsten Differen-
zen auf.
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4 Modellierung der Daten

4.1 Modellierungsziel

Um zu verstehen, wie sich die Leistungsdaten zwischen den verschiedenen Positionen unter-
scheiden, wird eine Modellierung vorgenommen, in der die Position anhand der Leistungs-
daten eines Spielers klassifiziert wird. Mit interpretierbaren Machine Learning Methoden, die
auch auf klassische Modelle angewendet werden können, wird dann versucht die Beziehung
zwischen den Leistungsdaten und den verschiedenen Positionen zu erarbeiten und somit die
Modelle zu vergleichen.
Die Beziehung zwischen den Positionen und den Leistungsdaten wird wie folgt formuliert:

ŷi = f(xi), (3)

mit ŷi = PositionSpieleri, xi = LeistungsdatenSpieleri und f(·) eine Funktion, bzw. ein
Modell, das eine Entscheidung darüber fällt, auf welcher Position ein Spieler gegeben seiner
Leistungsdaten gespielt hat.
Ziel ist die Interpretation der Beziehung zwischen x und f(x) und zu verstehen, wie die
Beobachtungen bezüglich der verschiedenen Positionen im Raum der Leistungsdaten verteilt
sind. Darüber hinaus soll die Beziehung zwischen zwei geeigneten, aber verschiedenen, Mod-
ellierungen miteinander vergleichbar gemacht werden.

4.2 Methoden

4.2.1 Modellauswahl

Für die Modellierung soll ein Modell aus der Familie der Regressionsanalysen für Klassifika-
tionen und eine gängige Klassifikationsart aus dem Bereich des Machine Learning verwendet
werden.
Als klassische Regressionsanalyse bietet sich eine multinomiale logistische Regression an.
Diese ist eine Erweiterung der binären logistischen Regression und modelliert den Zusammen-
hang zwischen einem Variablenvektor x und einer kategoriellen Zielgröße y mit k ≥ 2 Klassen
durch einen linearen Prädiktor, der die Chance einer Beobachtung einer Klasse anzugehören
im Vergleich zu einer Referenzkategorie schätzt. Da jede Klasse einen Bezug zur Referen-
zkategorie aufweist, kann für jede Kategorie eine Wahrscheinlichkeit berechnet werden, mit
welcher eine Beobachtung zu dieser Klasse gehört. Für diese Modellierung wird sich auf
lineare Effekte der Einflussgrößen ohne Interaktionen oder quadratische Effekte beschränkt.
Der Hauptgrund dafür ist, dass auch durch lineare Effekte bereits für 8 Klassen (9 Positionen
minus eine Referenzkategorie) und 11 Variablen insgesamt 88 Koeffizienten geschätzt werden
müssen und der Umfang der Daten nur knapp unterhalb von 2000 Beobachtungen liegt.
Für diese multinomiale logistische Regression wird die Funktion multinom aus dem R-Paket
nnet verwendet. Diese Implementatierung der multinomialen logistischen Regression schätzt
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die Regressionskoeffizienten über neuronale Netze. Diese neuronalen Netze updaten itera-
tionsweise die Regressionskeoffizienten, damit der Kleinste-Quadrate-Fehler auf den Train-
ingsdaten minimiert wird. Dieses Verfahren approximiert den KQ-Schätzer für die Regres-
sionskoeffizienten (Venables and Ripley 2002).
Aus dem Bereich des Machine Learning wird ein (Klassifikations-)Random Forest verwen-
det, wie ihn Breiman vorgeschlagen hat (Breiman 2001). Ein Random Forest modelliert
die Beziehung zwischen den Einflussgrößen x und der kategoriellen Zielgröße y mit k ≥ 2
Klassen durch viele möglichst unterschiedliche Bäume mit “guter” Prädiktionsgüte. Jeder
Baum klassifiziert eine Beobachtung in eine der Kategorien, wodurch nach Betrachtung aller
Bäume eine Gesamtwahrscheinlichkeit für jede Kategorie berechnet werden kann, zu der eine
Beobachtung dieser Kategorie angehört.
Für diese Analyse wird die im R-Paket ranger verwendete Implementierung von Random
Forests verwendet. Dies ist eine computational schnelle Implementatierung der Random
Forests, die jedoch nachgewiesen keine schlechtere Prädiktion vorweist als die originale Im-
plementierung von Breimans Random Forests in R (Wright and Ziegler 2017).
Die Funktionsweise der beiden Modellierungen wird im weiteren Teil dieser Arbeit an den
passenden Stellen näher erläutert und anschließend miteinander verglichen.

4.2.2 Interpretierbares Machine Learning zur Vergleichbarkeit

4.2.2.1 Variable Importance
Während die multinomiale logistische Regression aus dem Bereich der Regressionsanalysen
stammt und durch Regressionskoeffizienten leicht zu interpretieren ist, stammen die Ran-
dom Forests aus dem Bereich des Machine Learnings und weisen keine leicht zu interpretier-
baren Regressionskoeffizienten auf. Um die beiden Modellierungen miteinander vergleichbar
zu machen werden interpretierbare Machine Learning Methoden angewendet, die auf beide
Modelle anwendbar sind.
Eine mit dem Random Forest häufig verbundene Methode ist die Berechnung der Vari-
able Importance. Die Variable Importance ist ein Maß um die Variablen gemäß ihrer
“Wichtigkeit” in der Modellierung einzuordnen. Eine Variable Importance zu messen funk-
tioniert auf verschiedene Arten. Für diese Arbeit wird die von Breiman 2001 vorgeschlagene
Idee für das Messen der Variable Importance durch Permutation aufgegriffen.
Diese Implementierung des Random Forests beinhaltet eine automatische Variable Impor-
tance Berechnung nach der Methode “permutation”. Diese Methode nutzt den Vorschlag von
Breiman. Da die beiden Modelle jedoch fair verglichen werden sollen, wird eine eigene Vari-
able Importance nach diesem Vorschlag von Breiman berechnet. Um eine Streuung für diese
Methode zu erhalten, werden die beiden Modelle 100 mal mit verschiedenen Trainingsdaten-
sätzen gefittet. Aus diesen 100 Wiederholungen wird dann für jede Variable eine Streuung
bestimmt.
Um die für die Random Forests berechnete Variable Importance mit der multinomialen logis-
tischen Regression zu vergleichen, wird die Variable Importance wie folgt per Hand berechnet:
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1. Ein Trainings- und Testdatensatz wird generiert

2. Das geschätzte Modell f̂(x) wird auf Trainingsdaten gefittet

3. Ein Gütemaß des Modells wird für einen Testdatensatz berechnet

4. Der Testdatensatz wird durch Permutieren einer einzelnen Variable verändert

5. Die Verschlechterung des Gütemaßes wird berechnet

6. Schritt 4. und 5. werden für jede Variable wiederholt

Als Trainings- und Testdatensplitrate wird ein 2
3 Trainingsdaten- und 1

3 Testdaten-Split
gewählt. Um eine Streuung für die Variable Importance zu schätzen, wird dieser Vorgang
100 mal wiederholt. Als Punktschätzer für die Variable Importance wird das arithmetische
Mittel für jede Variable berechnet, wodurch eine Rangfolge der Variablen bezüglich ihrer
Wichtigkeit für das Modell bestimmt wird.
Jeder einzelne Baum eines Random Forests könnte als eigenständiges Modell betrachtet
werden. Die Variable Importance, die durch das Ensemble der einzelnen Bäume generiert
wird, ist also bereits aufgrund von vielen Modellen gemittelt. Dadurch werden für die Random
Forest Variable Importance etwas kleinere Streuungen erwartet. Die Punktschätzung, und
damit auch die Rangfolge zwischen beiden Modellen, bleibt jedoch vergleichbar.

4.2.2.2 Partial Dependence Plots
Ein Partial Dependence Plot (kurz PDP) ist eine Visualisierungstechnik, die helfen soll
den marginalen Effekt einer bestimmten Variable auf eine Zielgröße über ihren kompletten
Wertebereich zu visualisieren.
Die Idee der partial dependence ist es den Effekt einer oder mehrerer Variablen in dem Modell
durch das Integrieren über die marginale Verteilung der übrigen Kovariablen zu erhalten
(Friedman 2001).
Sei xl die interessierende Variable und x\l die Kovariablen ohne xl, dann ist

Ex\l
(f̂(x)) =

∫
f̂(xl, x\l)p\l(x\l)dx\l (4)

eine Funktion, die die partial dependence für xl bedingt auf x\l abbildet. p\l(x\l) ist hier
die marginale Wahrscheinlichkeitsfunktion von x\l, welche aus den Trainingsdaten ermittelt
werden kann (Friedman 2001). Dies funktioniert jedoch nur dann, wenn die Abhängigkeiten
zwischen den Kovariablen nicht zu stark sind.
Da p\l(x\l) aus den Trainingsdaten ermittelt werden kann, kann (4) zu

fl(xl) = 1
N

n∑
i=1

f̂(xl, xi,\l) (5)
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umgeformt werden. Dies bedeutet, dass die partial dependence an einem bestimmten Punkt
(oder für eine bestimmte Kovariablen-Kombination, falls die partial dependence für mehrere
Variablen gebildet werden soll) als Durchschnitt über die Prädiktionen des Modells f̂(x) für
alle Beobachtungen gebildet wird, wobei xl einem fixen Wert entspricht.
Algorithmisch wird der Partial Dependence Plot wie folgt für eine bestimmte metrische
Variable xl erzeugt:

1. Definiere Punkte q = q1, ...qr innerhalb des Wertebereichs der Variable xl, an denen
der PDP berechnet werden soll

2. Berechne für jede Beobachtung die Prädiktion, mit xm =
xm, wenn m 6= l,

qp, wenn m = l

3. Berechne das arithmetische Mittel für die neuen Prädiktionen aller Beobachtungen

4. Wiederhole Schritt 2. und Schritt 3. für alle p = 1, ..., r

5. Plotte den gemittelten Verlauf der Prädiktion über den Wertebereich der Variable xl

Für die Visualisierung in dieser Analyse werden für die Werte q die empirischen Perzen-
tile der jeweiligen Variable xl betrachtet (also das 0%-Quantil, das 10%-Quantil, das 20%-
Quantil. . . ). Da die Prädiktion eine Klassifikation ist, wird für jeden Auswertungspunkt q
für jede Beobachtung die Klassenzugehörigkeitswahrscheinlichkeit berechnet, und diese dann
für jede Klasse über alle Beobachtungen hinweg separat gemittelt.
Die daraus resultierende Visualisierung der gemittelten Klassenwahrscheinlichkeiten und des
Wertebereichs einer Variable gibt den marginalen Effekt dieser Variable auf die verschiedenen
Klassenwahrscheinlichkeiten für dieses Modell an. Damit kann festgestellt werden, ob in
einem geschätzten Modell f̂(·) eine bestimmte Variable einen linearen, quadratischen oder
unstrukturierten Effekt auf die Klassenwahrscheinlichkeit hat.
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Abbildung 15: Datenbeispiel mit 2 Klassen, 2 Variablen und eindeutigen marginalen Effekten

Um die Interpretation eines Partial Dependence Plots zu erklären, wurde ein Datenbeispiel
(Abbildung 15) generiert, das eindeutige marginale Effekte aufweist. Die Wahrscheinlichkeit
für Klasse 1 sinkt mit steigendem Wert von x1, während x2 so generiert wurde, dass es
unabhängig von x1 ist und keinen Einfluss auf die Klasse hat.
Für dieses Datenbeispiel wurden ein multinomiales logistisches Regressionsmodell und ein
Random Forest trainiert und der Partial Dependence Plot an den Dezilen ausgewertet und
veranschaulicht. Der Partial Dependence Plot kann auch an feineren Quantilen ausgewertet
werden, bis hin zu allen Werten imWertebereich der Variable oder sogar künstlich generierten
Werten. In Abbildung 16 sind 2 Plots abgebildet, die jeweils aus 2 Sub-Plots bestehen.
Der linke Plot bildet die Partial Dependence Kurven für das multinomiale logistische Re-
gressionsmodell ab, wobei der linke Sub-Plot den PDP für x1 und der rechte Sub-Plot den
PDP für x2 darstellt.
Der rechte Plot bildet die Partial Dependence Kurven für den Random Forest ab, wobei auch
hier der linke Sub-Plot den PDP für x1 und der rechte Sub-Plot den PDP für x2 darstellt.
Die gelbe Kurve bildet den Verlauf des marginalen Effekts der jeweiligen Variable auf die
Wahrscheinlichkeit für Klasse 0 ab, während die rote Kurve den Verlauf des marginalen
Effekts der jeweiligen Variable auf die Wahrscheinlichkeit für Klasse 1 abbildet.
Wie in Abbildung 16 zu sehen ist, erfasst das multinomiale logistische Regressionsmodell
den Effekt von x1 bei Konstanhaltung von x2 sehr gut. Bei zunehmendem Wert von x1
erhöht sich die Wahrscheinlichkeit auf Klasse 0 und dementsprechend verringert sich die
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Abbildung 16: Partial Dependence Plots durch multinomiale logistische Regression und Ran-
dom Forest

Wahrscheinlichkeit für Klasse 1. Der nicht-vorhandene Effekt von x2 bei Konstanthaltung
von x1 auf die Klasse ist hier zu erahnen, da dieser über den Wertebereich kaum eine
Veränderung aufzeigt.
Der Random Forest erfasst die zugrunde liegende Logik von x1 nicht ganz so gut, wie das
multinomiale logistische Regressionsmodell. Im mittleren Wertebereich wird ein Knick abge-
bildet, der im datengenerierenden Prozess nicht vorhanden war. Der steigende Trend der
Wahrscheinlichkeit für Klasse 0 bei steigendem x1 und Konstanthaltung von x2 kann in
dieser Kurve jedoch trotzdem erkannt werden. Der nicht-vorhandene Effekt von x2 auf die
Klasse ist auch hier gut zu erkennen. Es wird ein sehr schwacher Einfluss abgebildet, der
beiden Klassen bei Konstanthaltung von x1 auf dem gesamten Wertebereich von x2 eine
um 0.5 schwankende konstante Wahrscheinlichkeit zuweist.

4.2.2.3 Individual Conditional Expectation Plots
Eine weitere Visualisierungstechnik aus dem Bereich des interpretierbaren Machine Learnings
sind die Individual Conditional Expectation Plots (kurz ICE-Plots). Genau wie für den Par-
tial Dependence Plot werden Punkte für jede Variable definiert, an denen für jede Beobach-
tung eine Prädiktion bei Gleichhalten der anderen Variablen bestimmt wird. Diese werden
jedoch an ihren Auswertungspunkten nicht gemittelt, sondern individuell betrachtet. Somit
wird ein individueller Verlauf für jede Beobachtung über den Wertebereich einer Variable
erzeugt, der zwischen den einzelnen Beobachtungen auf Gemeinsamkeiten und Unterschiede
überprüft werden kann.
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Der ICE-Plot für eine bestimmte Variable ist also pro Beobachtung i nichts anderes als

f̂ (i)(xl) = E(f(xl, x
(i)
\l )) (6)

ausgewertet an allen relevanten Punkten von xl (Goldstein et al. 2013). Diese Funktion für
jede Beobachtung i = 1, ..., N über den gesamten Wertebereich von xl ausgewertet, ergibt
den ICE-Plot für f̂(xl). Da für diese Arbeit eine Klassifikation durchgeführt wird, kann für
die Wahrscheinlichkeitsprädiktion für jede Klasse ein eigener ICE-Plot erzeugt werden.
Der ICE-Plot wird für eine bestimmte metrische Variable xl wie folgt erzeugt:

1. Definiere Punkte q = q1, ...qr innerhalb des Wertebereichs der Variable xl, an denen
der ICE-Plot berechnet werden soll

2. Berechne für jede Beobachtung die Prädiktion, mit xm =
xm, wenn m 6= l,

qp, wenn m = l

3. Wiederhole Schritt 2. für alle p = 1, ..., r

4. Plotte die Prädiktion für jede Beobachtung über den Wertebereich der Variable Xl

Da die ICE-Plot Visualisierung einen gemeinsamen Verlauf der Prädiktion über den Wer-
tebereich von Xl darstellen soll, wird auch für diese Visualisierung die Berechnung der
Prädiktion an den empirischen Perzentilen der betrachteten Variable xl ausgewertet (also
am 0%-Perzentil, am 1%-Perzentil, . . . ).
Im Gegensatz zum PDP, der pro Variable für jede Klasse eine gemittelte Kurve angibt,
existiert im ICE-Plot für jede Beobachtung und jede Klasse eine Kurve, was in einem
einzelnen Plot zu unerkennbaren Effekten führen würde. Daher wird für jede Klasse ein
eigener ICE-Plot erstellt. Daraus resultieren insgesamt 99 verschiedene ICE-Plots (für jede
der 9 Klassen und für jede der 11 Variablen).
Der ICE-Plot selbst kann richtungsweisend für Zusammenhänge zwischen den betrachteten
Variablen und den betrachteten Klassenwahrscheinlichkeit sein. Möglicherweise nimmt die
Wahrscheinlichkeit einer bestimmten Klasse anzugehören über den Wertebereich einer Vari-
able für alle Beobachtungen konstant zu oder ab. In diesem Fall kann von einem monoton
steigenden oder fallenden Effekt der Variable auf die Klassenwahrscheinlichkeit gesprochen
werden. Häufig passiert es jedoch, dass für manche Beobachtungen die Klassenwahrschein-
lichkeit steigt, während sie für andere Beobachtungen fällt. In diesen Fällen kann keine klare
Struktur zwischen dem modellierten Zusammenhang zwischen der Variable und der Klasse
erkannt werden.
Die in dieser Arbeit weiter behandelten Daten weisen alle verschiedene Verteilungen auf
(siehe Kapitel 3.2.1). Weist eine Variable beispielsweise eine bimodale Verteilung mit einer
großen Lücke auf, so würde der zugehörige ICE-Plot in diesem Bereich “springen” und einen
Verlauf suggerieren, der nicht existiert. Um diese Lücke aufzufangen besteht die Möglichkeit
die x-Achse des ICE-Plots nicht aufgrund des Wertebereichs der betrachteten Variable zu
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skalieren, sondern auf die empirischen Quantile. Dies entzerrt auch unter anderem eine sehr
dichte Datenstelle, in der ein großer Effekt zu sehen ist, welcher jedoch bei quantilsweiser
Betrachtung entzerrt betrachtet werden kann.
Da die Kovariablen konstant gehalten werden und den echten Variablen entsprechen, be-
ginnen die ICE-Plots am Minimum des Wertebereichs der betrachteten Variable auf ver-
schiedenen Niveaus (Höhe der Prädiktion bei Transformation von xl = min(xl)). Um den
gemeinsamen Verlauf und nicht die aktuelle Höhe zu betrachten, kann der ICE Plot zentriert
werden. Dies bedeutet, dass jede Positionsvorhersage am unteren Rand des Wertebereichs
von xl über den gesamten Verlauf der Kurve subtrahiert wird und somit alle Kurven auf
dem Niveau 0 starten. Ein gemeinsames Wachstum oder eine gemeinsame Verringerung der
Kurven kann somit einfacher erkannt werden (Goldstein et al. 2013).
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Abbildung 17: ICE Plots für x1 durch Random Forest

In Abbildung 17 sind die drei beschriebenen Typen an ICE-Plots dargestellt. Diese ICE-Plots
wurden für das Datenbeispiel aus Abbildung 15 erstellt. Zu sehen ist hier der Zusammen-
hang von der Variable x1 und der Wahrscheinlichkeit auf Klasse 1, so wie ihn der Random
Forest modelliert. Aus Gründen der Übersichtlichkeit wurde hier zufällig ein Subsample der
ursprünglichen Daten generiert.
Der linke Plot beschreibt den Zusammenhang zwischen x1 und der Wahrscheinlichkeit für
Klasse 1 indem für jede Beobachtung an jedem Wert von x1 eine künstliche Beobachtung
erstellt wird (bei Konstanthaltung der übrigen Variablen; in diesem Beispiel x2). Alle künst-
lichen Beobachtungen, die so für eine ursüprünglich zugrunde liegende Beobachtung erstellt
wurden, bilden einen grauen Verlauf in dieser Grafik ab. Der gelb-umrandete schwarze Verlauf
bildet den für diese Beobachtungen kreierten Partial Dependence Plot ab. Dieser wurde genau
wie die ICE-Kurven an den Perzentilen der Verteilung von x1 ausgewertet. Die Verteilung
von x1 ist durch die blauen Makierungen an der x-Achse zu sehen. Gäbe es zum Beispiel
einen Wertebereich von x1 in dem keine Beobachtungen erfasst wurden, so wäre dies durch
die blauen Makierungen gekennzeichnet.
Im Allgemeinen ist eine abfallende Wahrscheinlichkeit für Klasse 1 bei steigendem x1
erkennbar. Dieser schwankt im Gegensatz zum Partial Dependence Plot für den Random



4 MODELLIERUNG DER DATEN 33

Forest aus Abbildung 16 sehr stark, da er an mehr Punkten ausgewertet wurde und somit
kleine Schwankungen eher erfasst werden.
Der mittlere Plot bildet für dieses Datenbeispiel in etwa dengleichen Verlauf ab wie der linke
Plot. Der Unterschied ist, dass die x-Achse auf die empirischen Quantile von x1 skaliert
wurde, das heißt, dass bspw. das 20%-Quantil an der Stelle 0.2 liegt und der Median an der
Stelle 0.5. Eine mögliche Sprungstelle würde dadurch überbrückt werden. Wie im späteren
Verlauf dieser Arbeit noch gezeigt wird, können Sprungstellen die Interpretation dieser ICE-
Kurven schwieriger gestalten, was durch diese quantilsweise Betrachtung behoben werden
würde. Der Bereich, in dem viele Datenpunkte liegen (also im oberen und unteren Teil des
Wertebereichs von x1), wird durch diese Betrachtung etwas entzerrt, während der Bereich,
in dem wenige Datenpunkte liegen (im mittleren Teil des Wertebereichs) etwas gestaucht
wird.
Der rechte Plot bildet eine zentrierte Art der ICE-Plots ab. Wie im linken Plot zu erkennen
ist, beginnen die verschiedenen Verläufe alle auf unterschiedlichen Niveaus (der Auswer-
tungspunkt von x1 ist zwar dergleiche für alle Beobachtungen, x2 jedoch nicht!). Diese
Niveaus werden im rechten Plot alle zusammengeführt und beginnen damit am gleichen
Punkt. Durch die Zentrierung werden nicht nur die absoluten Vorhersagewerte an den ver-
schiedenen Auswertungspunkten vergleichbar gemacht, sondern auch die Verläufe der Vorher-
sagewerte über den gesamten Wertebereich von x1.
An dieser Stelle soll eine Problematik dieser Art Plots erwähnt werden. Werden die Plots an
zu wenigen Stellen ausgewertet, so könnten Schwankungen eventuell nicht erkannt werden,
da vor und nach einer möglicherweise relevanten Schwankung der Plot ausgewertet wird.
Wird aber an sehr vielen Stellen ausgewertet, so werden richtigerweise alle Schwankungen,
die durch das Modell prädiktiert werden, abgebildet, jedoch könnte dadurch eine zugrun-
deliegende Logik, die einen Anwender interessiert, nicht erkannt werden. Vor allem durch
Sprungstellen im Wertebereich der betrachteten Variable könnten dadurch Effekte erkannt
werden, die dem zugrundeliegenden Zusammenhang zwischen der Variable und der Zielgröße
überhaupt nicht entsprechen.

4.2.2.4 Accumulated Local Effect Plots
Eine Schwachstelle der Partial Dependence Plots und der ICE-Plots ist, dass durch die
künstliche Datenmanipulation Beobachtungen kreiert werden können, die in der Realität
unmögliche Beobachtungen sind. Dies kann für die Leistungsdaten bei Fußballspielern zum
Beispiel bedeuten, dass ein Spieler mehr Tore geschossen hat, als er Torschüsse abgegeben
hat. Es können auch höchstunwahrscheinliche Beobachtungen auftauchen, zum Beispiel ein
Spieler, der pro Spiel nur 10 Pässe spielt, aber davon 9 Fehlpässe sind.
Die Idee ist es die auf xl bedingten Wahrscheinlichkeiten für die möglichen Kovariablenkombi-
nationen von x\l zu nutzen, damit unwahrscheinliche Kovariablenkombinationen an Gewicht
verlieren (Apley 2016).
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f̂l,ALE(xl) ≡
xl∫

z0,l

E[f l(xl, x\l)|xl = zl]dzl − constant

=
xl∫

z0,l

∫
P\l|l(x\l|zl)f l(zl, z\l)dx\ldzl − constant,

(7)

wobei f l(zl, z\l) = ∂f(xl,x\l)
∂xl

die partielle Ableitung darstellt. Da die partielle Ableitung in der
Regel unbekannt ist, wird diese durch Einteilen des Wertebereichs von xl in Intervalle mit
den Intervallgrenzen {z0,l, ..., zr,l} diskretisiert. Für diese Intervalle werden finite Differenzen
gebildet, wodurch die partielle Ableitung approximiert wird (Scholbeck et al. 2019). Der
bedingte Erwartungswert wird anschließend intervallweise durch Monte Carlo Integration
geschätzt, wodurch das innere Integral für das jeweilige Intervall, in dem zl liegt, bestimmt
wird. Dadurch entsteht im inneren Integral eine Art Treppenfunktion. Da über all diese
intervallmäßigen Erwartungswerte integriert wird, ist die Breite der Intervalle irrelevant.
Üblicherweise sollten die Intervalle jedoch entweder äquidistant oder anhand der Quantile
der Daten gebildet werden (Apley 2016). Während die äquidistanten Intervalle den Werte-
bereich in gleich große Bereiche einteilen, hat die quantilsweise Einteilung den Vorteil, dass in
Bereichen, in denen viele Beobachtungen vorkommen, feinere Einteilungen gemacht werden.
Dadurch können relevante Effekte in kleineren Bereichen genauer erfasst werden.
Die Funktion f̂l,ALE(Xl) ergibt die Kurve für den ALE-Plot für Xl, dessen Höhe durch die
abgezogene Konstante bestimmt wird. In der Regel wird die Konstante so gewählt, dass die
Kurve “zentriert” ist, was bedeutet, dass die y-Achse der Abweichung vom durchschnittlichen
Effekt einer Variable auf die Zielgröße im Modell entspricht.
Der ALE-Plot wird vereinfacht für eine Variable Xl wie folgt erzeugt:

1. Definiere Intervallgrenzen q = q0, ...qr innerhalb des Wertebereichs der Variable Xl,
zwischen denen der ALE-Plot berechnet werden soll

2. Bestimme für Intervall i einen Teildatensatz Si mit allen Beobachtungen, für die qi ≤
Xl < qi+1 gilt

3. Bestimme für alle Beobachtungen in Teildatensatz Si die Prädiktion an der unteren
und oberen Intervallgrenze i (also Xl = qi und Xl = qi+1) bei Konstanthalten der
Kovariablen

4. Bestimme für jede Beobachtung eine lineare Steigung für das Intervall i durch Inter-
polieren der beiden Prädiktionen an den Intervallgrenzen

5. Berechne eine mittlere Steigung für den Teildatensatz Si, um eine durchschnittliche
Steigung für Intervall i zu erhalten

6. Wiederhole Schritt 2. bis 5. für i = 0, ..., r − 1
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7. Kumuliere die ermittelten Steigungen für jedes Intervall um eine stetige Kurve zu
erhalten

Um die Intervalle klein genug zu machen, damit die Kovariablen ihren Effekt auf den Prädik-
tionsunterschied der Intervallgrenzen verlieren, aber trotzdem genug Beobachtungen in jedem
Intervall zu behalten um stabile Steigungen für die Intervalle zu erhalten, wurde entschieden
insgesamt 15 Intervalle mit etwa 100 Beobachtungen pro Intervall für die ALE-Plots zu
bilden.
In Abbildung 18 ist für die Datensituation aus Abbildung 15 der Accumulated Local Effects-
Plot für x1 für die Wahrscheinlichkeitsvorhersage für Klasse 1 im Random Forest abgebildet.
Auf der x-Achse ist der Wertebereich für x1 zu erkennen. Auf der y-Achse ist die Abweichung
der mittleren Prädiktion der Wahrscheinlichkeitsvorhersage für Klasse 1 abgebildet. Wie zu
erkennen ist, sinkt die Wahrscheinlichkeitsvorhersage für Klasse 1 mit steigendem x1. Auch
hier zeigt der Abwärtstrend leichte Schwankungen und ähnelt dem Partial Dependence Plot
für x1.

Abbildung 18: ALE-Plot für x1 durch Random Forest

Der Hauptunterschied zwischen diesen beiden Plots ist jedoch die Interpretation der y-Achse.
Während beim Partial Dependence Plot die y-Achse als “mittlere Wahrscheinlichkeitsvorher-
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sage für Wert x” interpretiert werden kann, gibt der Accumulated Local Effects-Plot die
Abweichung der mittleren Wahrscheinlichkeitsvorhersage an. Mit anderen Worten bedeutet
ein Wert auf der y-Achse von 0.25, dass die Wahrscheinlichkeitsvorhersage für Klasse 1 bei
diesem Wert x um 0.25 höher ist als die durchschnittliche Wahrscheinlichkeitsvorhersage für
Klasse 1.
Eine wirklich große Diskrepanz kann für Variablen mit starken Abhängigkeiten zu anderen
Variablen entstehen. Der Partial Dependence Plot würde einen Punkt x∗ mit allen Beobach-
tungen auswerten, egal wie nah oder weit sie von diesem Punkt entfernt liegen. Dass die
Wahrscheinlichkeitsvorhersage dafür durch die Kovariablen stark beeinflusst wird, ist de-
mentsprechend für starke Abhängigkeiten zwischen den Variablen sehr wahrscheinlich. Wenn
jedoch nur Beobachtungen betrachtet werden, die Nahe an x∗ liegen, so wird dieser Ab-
hängigkeitseffekt der Kovariablen reduziert.

4.2.2.5 Erarbeitung der Topologie der Modelle
Eine interessante Fragestellung, abgesehen von den Beziehungen zwischen den Leistungsdat-
en und den Positionen, wäre es die Topologie der Daten im mehrdimensionalen Raum näher
zu untersuchen. Dafür wird hier eine Methode beschrieben, mit der untersucht wird, welche
Klassen in Bezug auf einzelne Leistungsdaten im mehrdimensionalen Raum nebeneinander
liegen (also konkret, welche Positionen bezüglich eines Leistungsdatums benachbart sind).
Um die angewendete Methode für diese Untersuchung genauer zu erklären, wird diese im
Folgenden anhand von Beispielen dargestellt und erklärt, wie die Resultate zu interpretieren
sind.
Angenommen es existiert eine in Abbildung 19 dargestellte Datenlage. In diesem Beispiel
existieren 4 verschiedene Klassen und 2 Variablen, durch welche die Klassen perfekt getrennt
werden.
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Abbildung 19: Datenbeispiel für perfekt getrennte Klassen

Zwischen jeweils zwei Klassen kann bezüglich jeder Variable ein Bezug formuliert werden,
was zu insgesamt 4 ∗ 3 ∗ 2 = 24 Kombinationen führt (dabei ist die Beziehung “A ist ober-
halb von B” und “B ist unterhalb von A” doppelt gezählt). All diese Kombinationen können
von unserem Hirn gleichzeitig erfasst und verarbeitet werden, wodurch die Beziehung zwi-
schen den Klassen durch diese Visualisierung schnell erfasst werden kann. Für ein solches
Datenbeispiel genügt also die Betrachtung einer 2-dimensionalen Grafik wie dieser, um zu
ermitteln, welche Klassen in welcher Beziehung nebeneinander liegen. In der multinomialen
logistischen Regression werden Regressionskoeffizienten ermittelt, welche diese Beziehung
ausdrücken. Ein positiver Koeffizient bedeutet, dass Punkte in der Klasse bezüglich der
Punkte in der Referenzkategorie einen höheren Wert der betrachteten Variable aufweist,
während ein negativer Koeffizient ausdrückt, dass Punkte in der Klasse bezüglich der Punk-
te in der Referenzkategorie einen niedrigeren Wert der betrachteten Variable aufweisen.
Was jedoch nicht direkt durch die Regressionskoeffizienten ermittelt werden kann, ist die
Tatsache, ob zwischen zwei Klassen eine weitere Klasse liegt, oder ob zwei Klassen aufgrund
der Kovariablen gar nicht bezüglich einer betrachteten Variable nebeneinander liegen (in
Abbildung 19 die diagonal benachbarten Klassen).
Die eigentliche Problematik beginnt jedoch, wenn mehr Klassen auftreten und nicht eindeutig
durch 2 Variablen zu trennen sind.
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Abbildung 20: Datenbeispiel für nicht perfekt getrennte Klassen

Angenommen es existiert eine in Abbildung 20 dargestellte Datenlage. Wie hier zu erkennen
ist, werden die Klassen 1, 2, 3 und 4 weiterhin durch die Variablen x1 und x2 perfekt
voneinander getrennt, existieren zwei weitere Klassen 5 und 6, welche zwar durch Variable
x2 perfekt voneinander getrennt werden, jedoch zwischen den anderen Klassen liegen. Eine
exakte Definition des Nachbarschaftsverhältnisses ist hier erst nach näherer Betrachtung
genau anzugeben, da die beiden Variablen nicht reichen die Daten perfekt zu trennen.
Nun wird zusätzlich angenommen, dass eine Variable x3 existiert, welche die Klassen 5 und 6
perfekt von den Klassen 1, 2, 3 und 4 trennt. Eine 3-dimensionale Grafik, in der die Klassen
5 und 6 hinter, bzw. vor den anderen Klassen liegen, wodurch die Daten wieder perfekt
getrennt sind, ist mit leichtem Aufwand vorstellbar und es können direkt Nachbarschaftsver-
hältnisse erfasst werden. Wenn sich die Anzahl der Klassen und die Höhe der Dimensionalität
jedoch weiter erhöhen, wird das ganze unvorstellbar (und nur sehr schwer darstellbar).
Ein weiteres Problem ist, dass Klassen oft nicht perfekt trennbar sind und nicht als “einzelne
Cluster” im Raum liegen, sondern “punktweise verteilt” sind. Es soll nun eine Methode gefun-
den werden, die das Nachbarschaftsverhältnis zwischen den verschiedenen Klassen bezüglich
der einzelnen Variablen ermittelt.
Das Ziel einer Klassifikation ist es anhand der vorliegenden Daten den Raum in Bereiche
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einzuteilen, in denen Beobachtungen Wahrscheinlichkeiten zugewiesen werden können, mit
welchen sie den verschiedenen Klassen angehören. Einer neuen Beobachtung kann anhand
seiner Lage im Raum eine Klasse zugeordnet werden, die aufgrund der ursprünglichen Daten
am wahrscheinlichsten für diese Position ist. Ein sehr gutes Modell teilt den Raum also in
“perfekte Bereiche” ein, in denen die verschiedenen Klassen liegen. Es ist somit möglich eine
sehr gute Modellierung zu nutzen, um die Lage der einzelnen Klassen im Raum und die
Nachbarschaftsverhältnisse zwischen den verschiedenen Klassen zu ermitteln.
Die Methode, die die Nachbarschaftsverhältnisse zwischen den einzelnen Klassen bezüglich
einzelner Variablen gegeben der Kovariablen beschreiben soll, geht wie folgt vor:

1. Schätze ein Modell f̂(·)

2. Nutze echte (oder für spezielle Betrachtungen simulierte) Daten und merke ihre Prädik-
tionen ŷ durch das Modell

3. Erhöhe/Verringere eine bestimmte Variable geringfügig, während alle anderen Kovari-
ablen gleichgehalten werden

4. Ermittle anhand der manipulierten Daten die neuen Prädiktionen ŷ∗

5. Betrachte die Wechsel zwischen den einzelnen Klassenvorhersagen

Dieses Vorgehen soll anhand des ersten Datenbeispiels aus Abbildung 19 erläutert werden.
In Schritt 1. wird ein Modell (z.B. ein Klassifikationsbaum) anhand der Daten geschätzt und
teilt für diese Datensitation den Raum wie in Abbildung 21 ein.
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Abbildung 21: Perfekte Trennung durch Klassifikationsbaum

Als erstes soll das Nachbarschaftsverhältnis bezüglich der Variable x1 betrachtet werden.
Um dies zu ermitteln werden die originalen Daten verwendet (ein Trainings- und Testdaten-
split ist für diese Methode nicht notwendig) und ihnen wird eine Prädiktion zugewiesen. Für
diesen Spezialfall einer perfekten Trennung werden allen Daten als Prädiktion ihre originalen
und richtigen Klassen zugewiesen. Nun wird, wie in Schritt 3. beschrieben, der x1-Wert jeder
Beobachtung leicht erhöht (in diesem Beispiel um 0.1) und wie in Schritt 4. beschrieben die
Prädiktion ŷ∗ für jede Beobachtung ermittelt (siehe Abbildung 22). Wichtig ist, dass durch
die Datenmanipulation das Risiko auf unmögliche Datenkonstellationen gering gehalten wer-
den soll, weshalb nur kleine Datenmanipulationen durchgeführt werden sollen.
Die Form der Beobachtung gibt an, welche Prädiktion die Beobachtung vor der Datenma-
nipulation hatte, und die Farbe, welche Prädiktion eine Beobachtung nach der Datenmanip-
ulation hatte. Wie zu erkennen ist, hat die Vorhersage einiger Beobachtungen aus Klasse 3
zu Klasse 1 gewechselt, während einige Beobachtungen aus Klasse 4 zu Klasse 2 gewechselt
haben.
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Abbildung 22: Vorhersage nach Datenmanipulation

Die Wechsel der Prädiktionen können anhand einer einfachen 4x4-Matrix erfasst werden
(siehe Tabelle 5). Wie an dieser Tabelle abzulesen ist, haben sich nach der Datenmanipulation
ein paar Prädiktionswechsel ergeben. Zum Einen haben 12 der Beobachtungen, die vorher
in Klasse 3 waren, durch die Datenmanipulation in Klasse 1 gewechselt. Zum Anderen
haben 9 der Beobachtungen aus Klasse 4 in Klasse 2 gewechselt. Dies bedeutet, dass bei
Konstanthalten der Kovariablen (hier nur x2) ein Gebiet mit Klasse 1, das einen höheren
x1-Wert aufweist, neben einem Gebiet mit Klasse 3 liegt, und dass ein Gebiet mit Klasse 2,
das einen höheren x1-Wert aufweist, neben einem Gebiet mit Klasse 4 liegt. Genau dieses
Nachbarschaftsverhältnis ist auch in der Grafik beobachtbar.

Neue Prädiktion in: 1 2 3 4
Original 1 100 0 0 0
Original 2 0 100 0 0
Original 3 12 0 88 0
Original 4 0 9 0 91

Tabelle 5: Prädiktionswechsel der Beobachtungen nach Datenmanipulation
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Der Unterschied zum Ermitteln des Nachbarschaftsverhältnisses durch Grafiken ist jedoch,
dass diese Methode keinen “dimensionellen Restriktionen” unterliegt und mit beliebig vie-
len Klassen und beliebig vielen Kovariablen durchgeführt werden kann. Des Weiteren ist
der Vorteil gegenüber den Regressionskoeffizienten einer multinomialen logistischen Regres-
sion das Verhältnis zwischen allen Klassen gleichzeitig zu ermitteln, während durch die Re-
gressionskoeffizienten nur der Bezug zu einer bestimmten Referenzkategorie bestimmt wird.
Darüber hinaus unterliegt diese Methode keiner Restriktion bezüglich der Modellform und
kann für alle klassifizierende Modelle angewendet werden.
Ein Nachteil gegenüber der Regressionskoeffizienten einer multinomialen logistischen Regres-
sion ist jedoch, dass jede Variable und jede Richtung der Datenmanipulation der Variable
einzeln betrachtet werden muss.
Bezüglich der Interpretation müssen jedoch einige Dinge beachtet werden. Zum Einen ist
es möglich, dass eine Grenze des Modells an einer Stelle liegt, an welcher nur Datenpunkte
aus Klasse A, aber keine Datenpunkte aus Klasse B liegen. Dies bedeutet, dass beim Über-
prüfen einer Richtung (Variable xm Erhöhen oder Verringern) ein Nachbarschaftsverhältnis
festgestellt wird, in die andere Richtung jedoch nicht. Dieses Ergebnis bedeutet NICHT
bspw. “Ein Gebiet mit Klasse A liegt neben einem Gebiet mit Klasse B mit höherem xm-
Wert, aber kein Gebiet der Klasse B liegt neben einem Gebiet mit Klasse A mit niedrigerem
xm-Wert”, sondern “Ein Gebiet mit Klasse A liegt neben einem Gebiet mit Klasse B mit
höherem xm-Wert, aber keine Punkte der Klasse B liegen neben einem Gebiet mit Klasse A
mit niedrigerem xm-Wert”. Es könnte zum Beispiel passieren, dass das Modell eine sinnvolle
Grenze zieht, dort jedoch eine unmögliche Datensituation vorliegt, weshalb dort keine Daten
liegen; es könnten allerdings auch einfach keine Beobachtungen dort erhoben worden sein.
Ein weiterer Punkt, der beachtet werden muss, ist das Gesetz der Transitivität. Es kann
passieren, dass durch punktweise verteilte Gebiete Situationen entstehen, in denen bspw. ein
Gebiet der Klasse B an einer Stelle “über” einem Gebiet der Klasse A und an einer anderen
Stelle “unter” einem Gebiet der Klasse C liegt, wodurch aber nicht impliziert werden kann,
dass ein Gebiet der Klasse A auch “unter” einem Gebiet der Klasse C liegt (vergleiche
Abbildung 23). Damit sind die Resultate nicht transitiv zu interpretieren.
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Abbildung 23: Beispiel für Transitivitätsproblem für m1 6= m2

Alles in allem sind die Ergebnisse also wie folgt zu interpretieren:

1. Wechsel von Klasse A in Klasse B bei Erhöhen von Variable xm bedeutet, dass Gebiete
mit Klasse B existieren, die in Bezug auf xm oberhalb von Gebieten mit Klasse A
liegen (bei Konstanthaltung der anderen Variablen) und umgekehrt existieren Gebiete
mit Klasse A, die in Bezug auf xm unterhalb von Gebieten mit Klasse B liegen!

2. Wechsel von Klasse A in Klasse B bei Verringern von Variable xm bedeutet, dass
Gebiete mit Klasse B existieren, die in Bezug auf xm unterhalb von Gebieten mit
Klasse A liegen (bei Konstanthaltung der anderen Variablen) und umgekehrt existieren
Gebiete mit Klasse A, die in Bezug auf xm oberhalb von Gebieten mit Klasse B liegen!

3. Wenn Punkt 1. und 2. gleichzeitig auftreten, bedeutet es nicht, dass ein Gebiet um-
schlossen ist, sondern dass an einem Punkt im Raum ein Gebiet mit Klasse A in Bezug
auf xm oberhalb von einem Gebiet mit Klasse B liegt und an einem möglicherweise
anderen Punkt ein Gebiet mit Klasse A unterhalb von einem Gebiet mit Klasse B liegt
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Die in Tabelle 5 aufgeführte Migrationsmatrix kann in einem Chordgraph visuell dargestellt
werden (siehe Abbildung 24). In diesem Graphen ist einerseits zu sehen, wie groß die prädik-
tierten Klassen vor und nach der Datenmanipulation sind, und andererseits von welcher
Klasse in welche andere Klasse die Prädiktion wechselt.

Abbildung 24: Chordgraph als Visualisierung für Migrationsmatrix

Die Zahlensträhle am Rand der verschiedenen Klassen geben die absolute Anzahl an
Beobachtungen, die wechseln, bzw. nicht wechseln, an. Jede Klasse wurde so konstruiert,
dass sie 100 Beobachtungen enthält. Vor der Datenmanipulation waren genau 100 Beobach-
tungen durch das Modell richtig prädiktiert. Dies wird an den Zahlenstrählen jeweils von 0
bis 100 angezeigt. In Klasse 3 ist zu erkennen, dass ein Teil der ersten 100 Beobachtungen in
Klasse 1 wechselt. Aus Klasse 1 wechselt keine Beobachtung in eine andere Klasse. Folglich
wechseln alle 100 Beobachtungen aus Klasse 1 “in sich selbst” und erhalten aus Klasse 3
zusätzliche Beobachtungen.
Durch diese Verbindungen ist also das zu erkennen, was auch in der Migrationsmatrix zu
erkennen ist:

• Es existiert ein Gebiet mit Klasse 1, das bezüglich x1 oberhalb von einem Gebiet mit
Klasse 3 liegt.
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• Es existiert ein Gebiet mit Klasse 2, das bezüglich x1 oberhalb von einem Gebiet mit
Klasse 4 liegt.

• Zwischen den Klassen 1 und 2, zwischen den Klassen 3 und 4, zwischen den Klassen
1 und 4 und zwischen den Klassen 2 und 3 können bezüglich x1 keine benachbarten
Gebiete festgestellt werden.

Der letzte Punkt könnte sich bei einem erneuten Überprüfen durch das Verringern von x1
jedoch ändern (nur nicht für dieses simulierte Datenbeispiel)!

4.3 Modellaufbau in grafischem Kontext

4.3.1 Random Forest

Der Klassifikations-Random Forest ist ein Ensemble von verschiedenen Klassifikationsbäu-
men. Jeder einzelne Baum teilt einen Raum in rechtwinklige Flächen ein, in denen bei einem
unbeschnittenen Baum zu 100% eine bestimmte Klasse prognostiziert wird. Um eine neue
Beobachtung durch diesen Random Forest zu klassifizieren, wird die neue Beobachtung in
jeden einzelnen dieser eingeteilten Räume eingesetzt und erhält dadurch eine Klassifikation
(Majority-Vote der Bäume oder Wahrscheinlichkeiten für jede Klasse).

Abbildung 25: Einteilung eines Raums durch Baumstümpfe

In Abbildung 25 ist eine beispielhafte Einteilung eines Raumes durch 3 verschiedene Baum-
stümpfe abgebildet. Diese 3 Baumstümpfe zusammen teilen den Raum in Bereiche ein, in
denen:

1. Zu 100% Klasse A prognostiziert wird, da alle 3 Bäume diesen Bereich Klasse A
zuweisen (roter Bereich)
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2. Zu 67% Klasse A prognostiziert wird, da 2 der 3 Bäume diesen Bereich Klasse A
zuweisen (dunkel-oranger Bereich)

3. Zu 67% Klasse B prognostiziert wird, da 2 der 3 Bäume diesen Bereich Klasse B
zuweisen (hell-oranger Bereich)

4. Zu 100% Klasse B prognostiziert wird, da alle 3 Bäume diesen Bereich Klasse B
zuweisen (gelber Bereich)

Wie an diesem Beispiel zu sehen ist, wird durch das Übereinanderlegen der Bäume eine
rechtwinklige Einteilung im 2-dimensionalen Raum kreiert. Für eine simple Prognose, die die
Wahrscheinlichkeiten für eine Klasse nicht beachtet, sondern nur die wahrscheinlichste Klasse
betrachtet, können Bereiche zusammengefasst werden. Die roten und dunkel-orangenen Bere-
iche ergeben einen Bereich, der zu Klasse A gehört, während die hell-orangenen und gelben
Bereiche zu einem gemeinsamen Bereich zusammengefasst werden können, der zu Klasse B
gehört.
Der unbeschnittene Random Forest selbst ist viel komplexer aufgebaut. Anstatt nur einmal
die Daten in 2 Bereiche zu trennen, trennt jeder einzelne Baum die Daten solange, bis jede
einzelne Beobachtung ein eigenes Gebiet zugewiesen bekommt. All diese Bäume übereinander
gelegt ergeben einen weit aus komplexeren Raum (der für mehr als 2 Variablen auch in
der Dimension viel komplexer wird), indem viele verschiedene Gebiete mit verschiedenen
Vorhersagen liegen.
Wird das hier vorgeschlagene Verfahren zur Erarbeitung der Topologie auf einen Random
Forest angewendet, so werden Grenzen zwischen den verschiedenen Klassifikationsbereichen
gefunden, unabhängig von der Wahrscheinlichkeit, mit der in diesem Bereich klassifiziert
wird. Eine solche Grenze kann als direkte Nachbarschaft zweier Klassen bezüglich einer
bestimmten Variable interpretiert werden.
Durch diese Einteilung können jedoch leicht eine oder mehrere “Inseln” entstehen, wie in
Abbildung 23 angedeutet ist. Wenn also eine kleine Ausreißergruppe dazu beiträgt, dass eine
Insel innerhalb einer anderen Klasse entsteht, so kann durch das hier vorgeschlagene Ver-
fahren ein schwaches Nachbarschaftsverhältnis angedeutet werden, wobei die größten Gebiete
der beiden Klassen überhaupt nicht aneinander grenzen. Mit “schwachem Nachbarschaftsver-
hältnis” ist hier gemeint, dass ganz vereinzelt Beobachtungen zwischen den beiden Klassen
wechseln, während bei einem “starken Nachbarschaftsverhältnis” viele Beobachtungen zwis-
chen den Klassen wechseln würden, da sie längere gemeinsame Grenzen aufweisen.

4.3.2 Multinomiales Logistisches Regressionsmodell

Der größte Unterschied zwischen der Raumeinteilung durch einen Klassifikations-Random
Forest und der Raumeinteilung durch ein multinomiales logistisches Regressionsmodell ist
das Prinzip der abschnittsweisen Raumeinteilung im Vergleich zu einer stetigen Raumein-
teilung. Während der Raum durch den Random Forest in Bereiche mit festen Klassifikation-
swahrscheinlichkeiten eingeteilt wird, welche sich innerhalb eines einzelnen Bereichs nicht
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ändert, ändern sich die Klassifikationswahrscheinlichkeiten im multinomialen logistischen
Modell stetig im Raum. Ddadurch entstehen “glattere” Übergänge zwischen den verschiede-
nen Klassifikationsbereichen.
Eine Einteilung in Bereiche ist jedoch trotzdem möglich, da an jedem Punkt im Raum eine
bestimmte Klasse als “am wahrscheinlichsten” modelliert wird und somit der gesamte Raum,
in dem diese Klasse am wahrscheinlichsten ist, als Bereich für diese Klasse bezeichnet werden
kann. Zwischen diesen Bereichen kann das hier vorgeschlagene Verfahren zur Erarbeitung
der Topologie angewendet werden und Nachbarschaftsverhältnisse erarbeitet werden.
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Abbildung 26: Einteilung eines Raums durch Multinomiale logistische Regression

Für Abbildung 26 wurde eine Datengrundlage mit 2 verschiedenen Klassen simuliert. Diese
beiden Klassen vermischen sich etwas, können jedoch im 2-dimensionalen Raum deutlich
voneinander getrennt werden. Die multinomiale logistische Regression weist jedem Punk im
betrachteten Raum eine Wahrscheinlichkeit für Klasse 1 zu, die an einer klar erkennbaren
Trenngeraden langsam von über 0.5 auf unter 0.5 wechselt. An dieser Stelle entsteht eine
Grenze, die einen Bereich für Klasse 1 von einem Bereich für Klasse 0 trennt.
Für dieses Beispiel würde das vorgeschlagene Verfahren für die Erarbeitung der Topologie
ein Nachbarschaftsverhältnis zwischen Klasse 0 und Klasse 1 feststellen, wobei:

• bezüglich x1 ein Gebiet der Klasse 0 oberhalb eines Gebietes der Klasse 1 liegt bei
Konstanthaltung von x2

• bezüglich x2 ein Gebiet der Klasse 0 oberhalb eines Gebietes der Klasse 1 liegt bei
Konstanthaltung von x1
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Ein deutlicher Nachteil der multinomialen logistischen Regression gegenüber der Flexibilität
eines Random Forests wird jedoch erst bei den Beispielen im folgenden Abschnitt erkannt.

4.3.3 Vergleich zwischen multinomialer logistischer Regression und Random
Forest

Für den folgenden Vergleich zwischen der multinomialen logistischen Regression und dem
Random Forest werden zwei simulierte Datensituationen verglichen (vgl. Abbildung 27).
Die erste Datensituation ähnelt der Datensituation aus Abbildung 26. Hinzu kommt jedoch
noch eine dritte Klasse, die in der Nähe des Nullpunkts von x1 und x2 vorkommt.
Für die zweite Datensituation wird die dritte Klasse als 2 getrennte Inseln eingeführt, die
eine in der Nähe des Nullpunkts und die andere bei hohem x1 und hohem x2. Letztere
kommt in ihrem Bereich sogar “rein” vor, das heißt keine Beobachtung einer der anderen
beiden Klassen existiert in diesem Bereich.
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Abbildung 27: Datenbeispiele mit 3 Klassen und 2 Variablen mit und ohne Inseln

Für die beiden Datensituationen wird jeweils ein multinomiales logistisches Regressionsmod-
ell und ein Random Forest geschätzt. Künstlich wird nun ein ganz feines Gitter an Punkten
genutzt um eine Karte zu erstellen, an welchen Punkten das Modell welche Klasse als am
“wahrscheinlichsten” modelliert.
In Abbildung 28 sind 4 verschiedene Raumeinteilungen durch die beiden Modelle zu sehen. In
der ersten Zeile ist links die Raumeinteilung für das 1. Datenbeispiel durch das multinomiale
logistische Regressionsmodell und rechts die Raumeinteilung für das 1. Datenbeispiel durch
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Abbildung 28: Klassifikation durch multinomiales logistisches Regressionsmodell und Ran-
dom Forest
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einen Random Forest zu sehen. Was schnell auffällt ist, dass der Random Forest sowohl die
Logik der runden Abtrennung zwischen Klasse 0 und Klasse 1 sehr gut modelliert hat als
auch die Logik der linearen Abtrennung zwischen Klasse 1 und Klasse 2. Das multinomi-
ale logistische Regressionsmodell hat hingegen lineare Abgrenzungen zwischen den Klassen
gefunden, die in etwa die Lage der Punkte abbilden.
Ein weiterer Unterschied zwischen den beiden Modellierungen ist die Reinheit der abgetren-
nten Gebiete. Während durch das multinomiale logistische Regressionsmodell reine Bereiche
modelliert werden, in denen jeweils eine Klasse am wahrscheinlichsten vorkommt, modelliert
der Random Forest viele kleine Inseln innerhalb der großflächigen Bereiche.
Im multinomialen logistischen Regressionsmodell würde sich die Unreinheit dieser Bereiche
in den Wahrscheinlichkeiten für die einzelnen Klassen widerspiegeln, was für eine Prädiktion
der wahrscheinlichsten Klasse jedoch irrelevant ist.
Ob die Abbildung der Unreinheit im Allgemeinen eine positive oder negative Eigenschaft
darstellt, soll an dieser Stelle unbewertet bleiben, da es einerseits die zugrundeliegende Un-
reinheit widerspiegelt, andererseits jedoch zu einer zu hohen Datenanpassung und damit zu
möglichen falschen Prädiktionen führen kann.
Für den hier erbrachten Vorschlag zur Erarbeitung der Topologie der Daten, kann die Un-
reinheitsmodellierung jedoch zu Problemen führen, da die Hauptlogik, mit der 2 Gebiete
voneinander getrennt sind (zum Beispiel Klasse 0 liegt bezüglich x1 oberhalb von Klasse 1
bei Konstanthaltung von x2), unerkannt bleiben kann.
Ein großes Problem der multinomialen logistischen Regression kann im 2. Datenbeispiel
erkannt werden. In diesem Beispiel liegt Klasse 2 auf zwei Inseln verteilt im Raum. Der
Random Forest hat kein Problem die beiden Inseln abzubilden, während in der multinomi-
alen logistischen Regression die Klasse 2 im relevanten Raum überhaupt nicht auftaucht.
Die Wahrscheinlichkeit für Klasse 2 ist im gesamten relevanten Raum durch die Wahrschein-
lichkeit für Klasse 0 oder Klasse 1 überdeckt.
Mit “relevantem Raum” ist hier der “für die Daten relevante Raum” gemeint. Die Ursprungs-
daten lagen in einem Raum S(x1,x2) mit 0 ≤ x1 ≤ 2 und 0 ≤ x2 ≤ 2. Auf den gesamten
reelen 2-dimensionalen Raum betrachtet, existieren Bereiche, in denen das multinomiale lo-
gistische Regressionsmodell Klasse 2 prädiktiert, jedoch ist dies nicht in dem Bereich, in dem
Klasse 2 in den Ursprungsdaten auftaucht.
Der “nicht-relevante Raum” ist der Raum, auf den die Modelle nicht trainiert wurden. Da
Beobachtungen, die durch diese Modelle prädiktiert werden sollen, eigentlich aus der Grund-
verteilung stammen sollten, sollten auch keine Probleme durch diese Gebiete entstehen. Es
kann jedoch passieren, dass sich in der Grundgesamtheit etwas ändert und die Modelle für
Gebiete angewendet werden, auf die sie nicht trainiert wurden. Für manche interpretierbare
Machine Learning-Methoden werden sogar einige Beobachtungen unvermeidbar in diesen
Gebieten erzeugt.
In Abbildung 29 ist zu sehen, dass das multinomiale logistische Regressionsmodell beim
“Rauszoomen” des betrachteten Bereichs an einem bestimmten Punkt anfängt Klasse 2 als
wahrscheinlichste Klasse zu prädiktieren. Dies liegt jedoch weit außerhalb des Bereichs, in
dem Klasse 2 tatsächlich vorkommt. Selbst wenn die beiden Inseln für Klasse 2 außerhalb
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des relevanten Raums mit ihren linearen Abgrenzungen weitergeführt werden, so wäre der
Raum weit weg von der Stelle, an der Klasse 2 wirklich prädiktiert werden würde.
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Abbildung 29: Klassifikation durch multinomiales logistisches Regressionsmodell und Ran-
dom Forest außerhalb des relevanten Raumes

Für den Random Forest ist zu erkennen, dass der äußerste Punkt innerhalb des relevanten
Raumes den Bereich des irrelevanten Raums bestimmt. Wieso dies der Fall ist, kann sogar
leicht erklärt werden. Am Rande des Wertebereichs splitten die Bäume des Random Forests
einen Raum ab, der in einer Ecke bezüglich 2 Richtungen beschränkt ist und an den Rändern
bezüglich 3 Richtungen. Ein Split kann nicht außerhalb des ursprünglichen Wertebereichs
erfolgen, weshalb der Rand selbst keine Einschränkung für die Raumaufteilung aufweist. Auf-
grund von kleineren Unreinheiten können also außerhalb des relevanten Raumes großflächige
Bereiche entstehen, die nichts mit der zugrundeliegenden Logik der Datenverteilung zu tun
haben.
Alles in allem sollen trotzdem diese beiden Modelle, die vor allem für das 1. Datenbeispiel
verschiedene, aber dennoch gute Grundlogiken, aus den Daten modelliert haben, verwendet
werden, um die Lage der Leistungsdaten der Bundesligaspieler im Raum bezüglich ihrer
Position zu erarbeiten. Da diese beiden Modelle, wie hier gezeigt, doch sehr unterschiedlich
modellieren, sollen Gemeinsamkeiten und Unterschiede für das Erarbeiten der Topologie der
Daten ermittelt werden.
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5 Ergebnisse

5.1 Hyperparameter Tuning Random Forest

Wie die meisten Machine Learning Methoden besitzt auch der Random Forest Hyperpa-
rameter, die die Prädiktion des Modells verbessern können. Für die Modellierung in dieser
Arbeit werden drei dieser Hyperparameter betrachtet:

1. mtry: Der mtry-Hyperparameter gibt an, wie viele verschiedene Variablen an den einzel-
nen Splitpunkten in Betracht gezogen werden sollen, um den nächsten Splitpunkt zu
bestimmen.

2. min.node.size: Der min.node.size-Hyperparameter bestimmt, wie viele Beobach-
tungen in einem Knoten sein sollen, damit der Baum die Daten weiter trennen soll.

3. ntree: Der ntree-Hyperparameter bestimmt, wie viele Bäume innerhalb des Forests
erzeugt werden sollen.

Der mtry-Hyperparameter ist in Random Forests in den meisten Datensituationen der
wichtigste Hyperparameter. Angenommen es wird vermutet, dass nur wenige Einflussgrößen
den größten Teil der Daten erklären, dann wäre es wichtig, wenn mindestens einer dieser
Einflussgrößen an den Splits ausgewählt werden würde. Für einen solchen Fall wäre ein
hoher Wert für mtry wichtig. In anderen Datensituationen kann aber auch ein sehr geringer
Wert von mtry eine gute Modellierung herbeiführen (Liaw and Wiener 2002).
Wie bereits in Abbildung 28 zu sehen ist, bildet ein Random Forest aufgrund von kleineren
Unreinheiten und Ausreißern diese Unreinheiten mit ab. Dies liegt vor allem daran, dass die
Bäume komplett aufgespannt werden. Angenommen es gäbe einen Ausreißer der Klasse 2 in
einem Gebiet, in dem sonst nur Klasse 1 vorkommt. Der Ausreißer würde in etwa 62% der
Bäume vorkommen (Natur des Bootstrapping), wodurch 62% der Bäume an diesem exakten
Punkt Klasse 2 prädiktieren. Da dies mehr als der Hälfte aller Bäume entspricht, prädik-
tiert der Random Forest an exakt dieser Stelle auch für neue Daten Klasse 2. Das Erhöhen
des min.node.size-Hyperparameter führt dazu, dass einzelne Ausreißer in einem Termi-
nalknoten mit nahen anderen Beobachtungen vorkommen können. Durch Erhöhen dieses
Hyperparameters wird die Gewichtung von Ausreißern reduziert und Unreinheiten somit
glättet. Ein zu hoher Wert des min.node.size-Hyperparameters würde jedoch dazu führen,
dass echte Inseln geglättet und nicht mehr erkannt werden würden.
Der ntree-Hyperparameter sollte einen gewissen Wert überschreiten, der sich von Datensi-
tuation zu Datensituation unterscheidet. Besteht ein Random Forest aus zu wenigen Bäu-
men, könnte es sein, dass die zugrundeliegenden Strukturen noch nicht erkannt worden sind.
Aufgrund der Einschränkungen pro Baum (nur wenige Variablen pro Split betrachtet, im
Regelfall ungeprunet) könnte es sogar sein, dass ein zu kleiner Random Forest schlechter
als ein standardmäßiger Klassifikationsbaum modelliert. Sobald eine bestimmte Anzahl an
Bäumen gefunden wurde, verbessert sich die Vorhersage jedoch nicht mehr (bzw. nur ger-
ingfügig). Die Anzahl der notwenidgen Bäume steigt in der Regel mit der Anzahl der Vari-
ablen im Random Forest (Liaw and Wiener 2002).
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Für den Random Forest in dieser Modellierung wurde ein Grid Search für das beste Para-
metersetting für die folgenden Werte durchgeführt:

Hyperparameter Minimum Maximum Schrittweite
mtry 3 8 1
min.node.size 1 10 1
ntree 200 500 50

Tabelle 6: Hyperparameter-Raum für Grid Search

Als Performance-Maß zum Messen der Güte der einzelnen Hyperparameterkombinationen
wurde die Accuracy gewählt. Die Accuracy misst, welcher Anteil der Beobachtungen durch
das Modell richtig klassifiziert wird.
Um dieses Performance-Maß nicht durch Overfitting zu beeinflussen, wurde eine 5-fache
Kreuzvalidierung zum Berechnen der Accuracy verwendet. Dies bedeutet, dass der Datensatz
in 5 Teile eingeteilt wird, auf jeweils 4 dieser Teile das Modell gefittet wird und der 5. Teil,
der nicht verwendet wurde, als Testdatensatz verwendet wird. Insgesamt wird dies 5 mal
wiederholt, sodass jeder Teildatensatz einmal als Testdatensatz benutzt wird. Aus diesen
5 Moderllierungen ergibt sich eine geschätzte Gesamtaccuracy, anhand welcher das beste
Parametersetting gefunden werden soll.
In Abbildung 30 sind die Ergebnisse des Hyperparametertunings für den Random Forest
abgebildet. Jeder Lineplot ist dafür da den Effekt eines bestimmten Hyperparameters auf die
Accuracy abzubilden, während jede Linie in diesen Lineplots für ein festes Parametersetting
der jeweils anderen beiden Hyperparameter steht. Die dicke Linie in der Mitte stellt eine
durchschnittliche Accuracy pro Parametersetting des betrachteten Hyperparameters dar.
Der obere Lineplot bildet den Effekt des mtry-Hyperparameters auf die Accuracy ab. Anhand
der durchschnittlichen Accuray ist kein eindeutiger Verlauf oder bestes Setting zu erkennen
und auch die einzelnen Linien bilden keinen Trend zu einem optimalen Hyperparameterset-
ting ab. Das Maximum liegt bei einem Hyperparametersetting mit einem mtry Wert von 6,
was bedeutet, dass an jedem Splitpunkt im Random Forest für eine gute Accuracy 6 Vari-
ablen in Betracht gezogen werden sollen. Es ist jedoch anzumerken, dass das Maximum von
0.684 nur leicht über dem Minimum von 0.666 liegt und somit ein Hyperparametertuning
keine wirkliche Verbesserung zu einem ungetuneten Random Forest bringt.
Der mittlere Lineplot bildet den Effekt des min.node.size-Hyperparameters auf die Ac-
curacy ab. Auch dort ist anhand der durchschnittlichen Accuracy kein wirklicher Effekt zu
erkennen. Das bereits angesprochene Maximum, das mit einem mtry-Hyperparameter von
6 gefunden wurde, ist hier bei einem min.node.size-Hyperparametersetting von 9 zu find-
en, was bedeutet, dass die beste Accuracy kreuzvalidiert für einen Random Forest gefunden
wurde, in dem nur bei einer Knotengröße von mindestens 9 Beobachtungen ein weiterer Split
durchgeführt wird.
Der untere Lineplot bildet den Effekt des ntree-Hyperparameters auf die Accuracy ab.
Genau wie für die beiden anderen Hyperparameter ist in der durchschnittlichen Accuracy kein



5 ERGEBNISSE 54

wirklich bestes Hyperparametersetting zu erkennen. Das Maximum, das für die beiden an-
deren Hyperparameter gefunden wurde, liegt bei einem Setting des ntree-Hyperparameters
von 450. Dies bedeutet, dass kreuzvalidiert die beste Accuracy durch insgesamt 450 Bäume
erzeugt wurde.
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Abbildung 30: Hyperparametertuning für Random Forest

Insgesamt scheint das Hyperparametertuning des Random Forest bezüglich der Accuracy für
diesen Datensatz keine großen Unterschiede zu machen. Dem kreuzvalidierten Hyperpara-
metertuning wird jedoch vertraut und das finale Parametersetting von

• mtry = 6

• min.node.size = 9
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• ntree = 450

gewählt, bei dem eine leichte Verbesserung der Accuracy erwartet wird.

5.2 Klassifikationsgüte der Modellierungen

Um zu überprüfen, wie gut die Modelle die Daten einteilen, wird eine 10-fache Kreuzva-
lidierung auf dem Gesamtdatensatz durchgeführt. Dabei wird der Datensatz in zehn Teile
eingeteilt, neun werden zum Erstellen eines Modells verwendet und einer wird verwendet,
um eine Accuracy zu messen. Dies resultiert in 10 gemessenen Accuracy-Werten, die über
alle Teile hinweg eine geschätzte Gesamt-Accuracy des Modells ergeben. Die Einteilungen
des Datensatzes in 10 Teile sind für beide Modellierungen identisch.

Multinomiale logistische Regression Random Forest
Accuracy 0.680 0.669

Tabelle 7: Kreuzvalidierte Accuracy für multinomiales logistisches Regressionsmodell und
Random Forest

In Tabelle 7 ist zu erkennen, dass beide Modelle bei 10-facher Kreuzvalidierung eine ähn-
liche Accuracy aufweisen, wobei das multinomiale logistische Regressionsmodell etwas besser
abschneidet. Während des Hyperparameter Tunings wurde jedoch bereits festgestellt, dass
die Accuracy des Random Forest in einem ähnlichen Bereich schwankt, weshalb die beiden
Modelle insgesamt als etwa gleich gut bewertet werden.
Darüber hinaus wurde noch überprüft, wie die beiden Modelle für die einzelnen Positionen
abschneiden.

Accuracy für: Multinomiale logistische Regression Random Forest
Außenverteidiger 0.77 0.77

Defensives Mittelfeld 0.667 0.657
Flügelspieler 0.66 0.635

Innenverteidiger 0.904 0.869
Mittelfeld Außen 0.07 0

Mittelstürmer 0.764 0.785
Offensives Mittelfeld 0.227 0.234

Torwart 1 1
Zentrales Mittelfeld 0.396 0.396

Tabelle 8: Kreuzvalidierte Accuracy pro Position für multinomiales logistisches Regressions-
modell und Random Forest

In Tabelle 8 fällt auf, dass beide Modelle die Positionen in etwa gleich gut modellieren.
Manche Positionen sind nahezu perfekt modelliert worden (z.B. die Torhüter und die Innen-
verteidiger), wohingegen manche Positionen sehr schlecht modelliert worden sind (z.B. die
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äußeren Mittelfeldspieler und die offensiven Mittelfeldspieler). Wird die Accuracy pro Posi-
tion mit den Klassengrößen verglichen, fällt auf, dass vor allem kleinere Klassen schlechter
modelliert wurden (vgl. Tabelle 4).
Des Weiteren fällt auf, dass die Positionen im Mittelfeld am schlechtesten modelliert werden.
Dies könnte dafür sprechen, dass sich die verschiedenen Positionen im Mittelfeld bezüglich
der hier ausgewählten Leistungsdaten nicht sehr stark unterscheiden.

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 31: Konfusionsmatritzen als Chordgraphen

Im Gegensatz zu der Visualisierung der Topologie, die in Kapitel 4.2.2.5 anhand von Chord-
graphen vorgestellt wurde, werden die Chordgraphen in Abbildung 31 genutzt, um die Fehl-
klassifikationen der beiden Modellierungen zu vergleichen. Jede eingezeichnete Verbindung,
die nicht in der eigenen Klasse endet, steht für einen Anteil der ausgehenden Gruppe, der in
die Zielgruppe fehlklassifiziert wurde.
Auf den ersten Blick sehen die beiden Grafiken identisch aus, weisen aber kleine Unterschiede
auf (hauptsächlich in der Breite der Anteile). Die in Tabelle 8 aufgeführten auffälligsten Po-
sitionen, sind die Torhüter und die äußeren Mittelfeldspieler. Auch in dieser Grafik unter-
scheiden sich die beiden Positionen klar von den anderen, da von den Torhütern kein einziger
misklassifizierter Teil in eine andere Gruppe ausgeht und von den äußeren Mittelfeldspielern
kaum eine Verbindung in sich selbst führt (also richtig klassifiziert wurde).
Auf den zweiten Blick fällt auf, dass die Positionen, zwischen denen viel Fehlklassifikation
besteht, häufig auch auf dem Spielfeld nebeneinander liegen. Die am schwächsten modellierte
Klasse der äußeren Mittelfeldspieler wird beispielsweise häufig als Flügelspieler (was auf dem
Spielfeld direkt vor den äußeren Mittelfeldspielern liegt), als Außenverteidiger (was direkt
dahinter liegt) oder als zentrale Mittelfeldspieler (was direkt daneben liegt) klassifiziert. Die
Aufgaben, die die Spieler auf diesen Positionen haben, unterscheiden sich nur geringfügig
von denen eines äußeren Mittelfeldspielers, weshalb die Fehlklassifikationen wahrscheinlich
größtenteils in diese Klassen resultieren.
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Auch die Position, die am zweit-schlechtesten modelliert wurde, weist diese Zusammenhänge
auf. Die offensiven Mittelfeldspieler wurden sehr häufig als Flügelspieler (was nach außen
hin direkt neben den offensiven Mittelfeldspielern liegt), als zentrale Mittelfeldspieler (was
direkt dahinter liegt) oder als Mittelstürmer (was direkt davor liegt) klassifiziert.
Es gibt Gütemaße, die die Fehlklassifikationen verschieden gewichten - dies bedeutet bei-
spielsweise, dass eine Fehlklassifikation von Klasse A in Klasse B nicht so schwer gewichtet
ist, wie eine Fehlklassifikation von Klasse A in Klasse C - . Wenn die Distanz zwischen zwei
Positionen als Gewicht genommen werden würde, könnte es sein, dass die beiden Modelle
bezüglich eines solchen Gütemaßes sogar noch besser abschneiden, als die hier gemessene
Accuracy. Aufgrund der Tatsache, dass im folgenden Teil der Arbeit nur die Prädiktion der
wahrscheinlichsten Klasse vorwiegend untersucht wird, ist eine Gütemessung bezüglich eines
solchen gewichteten Gütemaßes hier nicht durchgeführt worden.
Alles in allem kann durch diese Betrachtung der Fehlklassifikationen offensichtlich kein großer
Unterschied zwischen den beiden grundsätzlich verschiedenen Modellen festgestellt werden.

5.3 Regressionskoeffizienten in multinomialem logistischen Re-
gressionsmodell

Das multinomiale logistische Regressionsmodell hat die Eigenschaft Regressionskoeffizienten
zu schätzen, die einzeln interpretiert werden können. Ein positiver Regressionskoeffizient für
eine bestimmte Klasse k und eine bestimmte Variable l bedeutet eine höhere Chance auf
Klasse k im Vergleich zur Referenzkategorie bei einer höheren Ausprägung der Variable l.
Das Schätzen der Regressionskoeffizienten wurde mit der multinom-Funktion aus dem
R-Paket nnet durchgeführt. Diese schätzt das multinomiale logistische Regressionsmodell
mit neuronalen Netzen. Die Konvergenz zu einem Minimum der kleinsten-Quadrate-
Approximation ist nach etwa 190 Iterationen eingetreten (+- 10 Iterationen bei der
Kreuzvalidierung). Durch diese Modellierung können Punktschätzer und Standardfehler für
die Regressionskoeffizienten geschätzt werden. Die geschätzten Regressionskoeffizienten des
multinomialen logistischen Regressionsmodells sind in Tabelle 9 abgetragen.
Tabelle 9 zeigt die geschätzten Beziehungen der Referenzkategorie Zentrales Mittelfeld mit
den anderen Positionen durch die Regressionskoeffizienten des multinomialen logistischen
Regressionsmodells auf.
Was bei näherer Betrachtung auffällt, sind die Standardabweichungen der Regressionskoef-
fizienten für die Torhüter, welche oft deutlich größer oder deutlich kleiner als die der restlichen
Positionen sind. Bei genauerer Betrachtung der zugrundeliegenden Daten fällt auf, dass für
den Teildatensatz der Torhüter mehrere Leistungsdaten Null-Vektoren sind. Kein Torhüter
in diesem Datensatz hat bspw. ein Tor geschossen oder im Abseits gestanden, weshalb die
Koeffizienten für die Torhüter nicht überinterpretiert werden sollten.
Des Weiteren fallen bei zeilenweiser Betrachtung interessante Zusammenhänge der Leistungs-
daten und der Positionen auf. Das zentrale Mittelfeld wurde als Referenzkategorie gewählt,
da die Position sehr zentral auf dem Fußballplatz steht. Die Reihenfolge der Spalten in
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Tabelle 9 wurde auch aufgrund der Platzierung auf einem Fußballfeld festgelegt. Während
der Torhüter die defensivste Position von allen ist, ist der Mittelstürmer die offensivste.

TW IV AV DM AM OM FS MS

Gespielte Pässe coeff. -0.08 -0.06 -0.05 -0.02 -0.12 -0.08 -0.13 -0.16
std.dev. 2.52 0.02 0.02 0.01 0.02 0.02 0.02 0.03

Passquote
(in %)

coeff. -0.26 0.05 -0.1 0.01 -0.09 -0.01 -0.07 -0.13
std.dev. 2.67 0.04 0.03 0.03 0.03 0.03 0.03 0.04

Zweikämpfe coeff. -0.42 -0.17 -0.08 -0.1 -0.02 0.13 0.18 0.2
std.dev. 4.67 0.07 0.05 0.04 0.05 0.05 0.05 0.06

Zweikampfquote
(in %)

coeff. 0.29 0.55 0.3 0.2 0.05 -0.13 -0.08 -0.2
std.dev. 1.76 0.05 0.04 0.03 0.04 0.04 0.04 0.05

Begangene Fouls coeff. -7.83 0.55 -1.17 0.71 -1.24 -2.23 -2.52 -2.25
std.dev. 0.27 0.48 0.34 0.27 0.36 0.34 0.34 0.38

Gefoult worden coeff. -2.46 -3.35 -1.45 -0.26 -0.56 0.21 -0.19 -0.3
std.dev. 0.32 0.45 0.3 0.23 0.31 0.27 0.27 0.34

Laufweite (in km) coeff. -10.21 -4.38 -2.44 -0.22 -0.95 -0.54 -1.2 -1.99
std.dev. 0.92 0.39 0.27 0.23 0.27 0.23 0.22 0.27

Abseits coeff. 6.89 -5.92 -1.33 -6.34 4.24 5.9 6.81 8.52
std.dev. 0.11 2.52 1.52 1.58 1.17 1.09 1.09 1.14

Vorlagen coeff. -22.02 -16.31 1.66 -5.79 3.68 3.6 4.58 2.76
std.dev. 0.01 3.34 1.7 1.6 1.6 1.41 1.42 1.7

Tore mit dem Fuß coeff. 2.31 -10.08 -10.31 -4.85 -3.49 3.49 2.84 5.82
std.dev. 0.1 4.16 2.56 1.86 1.93 1.37 1.39 1.56

Kopfballtore coeff. 4.65 11.36 -11.15 0.34 -8.36 8.31 4.68 16.67
std.dev. 0.02 3.02 3.48 2.55 4.05 2.64 2.59 2.76

Tabelle 9: Regressionskoeffizienten des multinomialen logistischen Regressionsmodells mit
Zentralem Mittelfeld als Referenzkategorie

Was gespielte Pässe angeht, so ist dies die wichtigste Aufgabe eines zentralen Mittelfeld-
spielers. Dies spiegelt sich auch in den Regressionskoeffizienten wider, die für alle anderen
Kategorien negativ sind. Auffällig ist auch, dass der Regressionskoeffizient negativer wird, je
weiter weg ein Spieler von der zentralen Mittelfeld-Position spielt (mit den höchsten Beträgen
für die Torhüter und Mittelstürmer).
Die Qualität der Pässe ist jedoch anscheinend für defensivere Positionen höher als für offen-
sive. Den höchsten und positiven Regressionskoeffizienten für die Passquote weisen die In-
nenverteidigern auf. Die niedrigsten und negativen Regressionskoeffizienten für die Passquote
weisen, abgesehen von den Torhütern, die Mittelstürmer auf.
Die Anzahl der geführten Zweikämpfe steigen wohl mit zunehmender offensiver Position des
Spielers. Den höchsten und positiven Regressionskoeffizienten weisen die Mittelstürmer auf,
während den niedrigsten und negativen Regressionskoeffizienten die Torhüter gefolgt von
den Innenverteidigern aufweisen.
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Die Qualität der Zweikämpfe ist jedoch anscheinend umgekehrt. Den höchsten und positiven
Regressionskoeffizienten für die Zweikampfquote weisen die Innenverteidiger auf, während die
niedrigsten und negativen Regressionskoeffizienten die Mittelstürmer aufweisen.
Für die Anzahl an begangenen Fouls lässt sich keine klare Struktur auf dem Feld erkennen. Die
höchsten positiven Regressionskoeffizienten weisen die defensiven Mittelfeldspieler und die
Innenverteidiger auf, wobei dies die Positionen sind, an denen am häufigsten mit taktischen
Fouls gearbeitet wird.
Die am häufigsten gefoulte Position ist mit dem einzigen positiven Regressionskoeffizienten
die Position des offensiven Mittelfelds. Dies deckt sich auf dem Fußballplatz mit der am
häufigsten foulenden Position (angreifende gegen verteidigende Mannschaft).
Für die Laufweite werden nur negative Regressionskoeffizienten für die verschiedenen Posi-
tionen geschätzt, was bedeutet, dass eine hohe Laufweite für einen zentralen Mittelfeldspieler
spricht. Während betragsmäßig die niedrigsten negativen Regressionskoeffizienten für die
Mittelfeldpositionen geschätzt werden, sind die negativen Regressionskoeffizienten für die
wirklich offensiven und defensiven Positionen betragsmäßig hoch. Dies spricht dafür, dass im
Mittelfeld am meisten gelaufen wird.
Was Abseitsstellungen und Vorlagen angeht, so weisen die wirklich offensiven Positionen
einen positiven Regressionskoeffizienten auf, während die defensiven Positionen einen neg-
ativen Regressionskoeffizienten aufweisen. Eine Ausnahme bilden die Außenverteidiger, die
einen positiven Regressionskoeffizienten für Vorlagen aufweisen, was dafür spricht, dass sich
die Außenverteidiger häufig an Angriffen beteiligen. Eine weitere Ausnahme ist der positive
Regressionskoeffizient für die Torhüter bei der Anzahl an Abseitsstellungen. Da dies jedoch
wie bereits erwähnt im Datensatz für keinen Torhüter vorgekommen ist, sollte auch dieser
Regressionskoeffizient nicht überinterpretiert werden.
Die höchsten positiven Regressionskoeffizienten für geschossene Tore und Kopfballtore weisen
wie zu erwarten die Mittelstürmer auf. Interessant ist hier, dass der zweit-höchste positive
Regressionskoeffizient für Kopfballtore für die Innenverteidiger geschätzt wird. Mit ihrer
Größe und Kopfballstärke in der Defensive den Ball aus dem eigenen Strafraum rauszuköpfen
und in der Offensive für Gefährlichkeit vor dem gegnerischen Tor zu sorgen ist eine typische
Aufgabe für Innenverteidiger bei Ecken. Dass diese großen und kopfballstarken Spieler viele
Kopfballtore erzielen ist also durchaus etwas, das in der Bundesliga beobachtet werden kann.
Alles in allem sind bereits durch die Regressionskoeffizienten Strukturen und Zusammen-
hänge zwischen den Positionen und den Leistungsdaten zu erkennen. Um diese Zusammen-
hänge jedoch auch mit den modellierten Zusammenhängen eines Machine Learning-Modells
vergleichbar zu machen, werden in den folgenden Kapiteln die beiden Modelle mit Methoden
verglichen, die für beide Modelle angewendet werden können.

5.4 Variable Importance

Die Variable Importance wird wie in Kapitel 4.2.2.1 beschrieben für die beiden Modelle
erzeugt. In Abbildung 32 ist die Variable Importance für die beiden Modelle dargestellt.
Die Rangfolge der Variablen ist durch die Punktschätzer der Variable Importance für die
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jeweilige Variable im jeweiligen Modell bestimmt worden. Um Ausreißer nicht zu stark zu
gewichten, zeigen die Balken die Streuung durch die Spannweite der gemessenen Variable
Importance-Werten vom 5%-Quantil bis zum 95%-Quantil an.
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Abbildung 32: Variable Importance für beiden Modelle

In Abbildung 32 ist die Variable Importance für das multinomiale logistische Regressions-
modell und den Random Forest abgebildet. Die Variable Importance-Werte für den Random
Forest streuen nur unmerklich weniger, als für das multinomiale logistische Regressions-
modell. Darüber hinaus treten die beiden höchsten Variable Importance-Werte für die Leis-
tungsdaten in der multinomialen logistisches Regression auf, was bedeutet, dass es für dieses
Modell “schlimmer” ist, wenn diese beiden Leistungsdaten permutiert werden, als jede an-
dere Variable für den Random Forest. Dies könnte für eine höhere Abhängigkeit der beiden
Leistungsdaten mit den anderen Kovariablen sprechen.
Die Reihenfolgen scheinen sich auf den ersten Blick sehr zu unterscheiden. Bei näherer Be-
trachtung fällt jedoch auf, dass die Reihenfolgen sich sogar ziemlich ähneln.
Die wichtigsten drei Variablen für beide Modelle sind die Laufweite, die Zweikampfquote
und die Anzahl der Abseitsstellungen, jedoch in verschiedener Reihenfolge. Dies bedeutet,
dass durch das Permutieren dieser drei Leistungsdaten die Prädiktionen der Modelle am
schlechtesten werden. Die Variable Importance dieser drei Leistungsdaten hebt sich für beide
Modelle deutlich von den anderen ab.
Die Ränge dahinter liegen alle ziemlich dicht mit stark überlappenden Streuungsintervallen
beieinander. Gemeinsam ist bei beiden Modellen, dass die Anzahl der Torvorlagen und die
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Anzahl der begangenen Fouls noch eine relativ hohe Variable Importance aufweisen, während
die Anzahl der Kopfballtore und die Anzahl der geschossenen Tore mit dem Fuß für beide
Modelle eher niedrige Werte der Variable Importance aufweisen.

5.5 Partial Dependence Plots

Die Partial Dependence Plots für die beiden Modellierungen sollen Trends für Zusammen-
hänge zwischen den Leistungsdaten und den Positionen aufzeigen.
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Abbildung 33: Partial Dependence Plot für multinomiales logistisches Regressionsmodell

In Abbildung 33 sind die Partial Dependence Plots für das multinomiale logistische Regres-
sionsmodell aufgeführt. Am auffälligsten sind die Partial Dependence Plots für die Laufweite
und die Zweikampfquote, da dort am meisten Aktivität herrscht. Dies bedeutet, dass der Par-
tial Dependence Plot aufzeigt, dass die mittlere Vorhersage für die verschiedenen Klassen
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über den Wertebereich dieser Variablen stark schwankt. Dass diese beiden Variablen wichtig
für das Modell sind, wurde bereits in Abbildung 32 gezeigt und bestätigt sich hier.
Ein kleiner Wert der Laufweite spricht stark für die Position des Torhüters oder des Innen-
verteidigers, während ein hoher Wert für einen defensiven Mittelfeldspieler spricht. In Tabelle
9 wurde bezüglich der Laufweite gezeigt, dass alle Positionen im Vergleich zur Referenzkate-
gorie Zentrales Mittelfeld negative Koeffizienten aufweisen, also eine hohe Laufweite für eine
hohe Wahrscheinlichkeit auf Zentrales Mittelfeld spricht. In diesem Partial Dependence Plot
ist angedeutet, dass die mittlere Wahrscheinlichkeit auf Zentrales Mittelfeld am Rand des
Wertebereichs anfängt zu steigen, jedoch würde das Maximum der mittleren Wahrschein-
lichkeit auf Zentrales Mittelfeld außerhalb des Wertebereichs liegen (also in einem Bereich,
in dem keine Beobachtungen existieren).
Der Partial Dependence Plot für die Zweikampfquote bildet die Regressionskoeffizienten sehr
gut ab. Kleine Werte der Zweikampfquote sprechen für eine hohe mittlere Wahrscheinlichkeit
aufMittelstürmer oder offensive Mittelfeldspieler, also für offensivere Positionen. Hohe Werte
der Zweikampfquote sprechen dagegen für Innenverteidiger und Außenverteidiger, also eher
defensive Positionen. Auch diese Zusammenhänge sind in den Regressionskoeffizienten in
Tabelle 9 erkennbar.
Ein Beispiel für eine Variable, die nur wenig Effekt auf die Vorhersagewahrscheinlichkeiten
hat, wird im Partial Dependence Plot für die Anzahl gefoult worden zu sein dargestellt. Dort
ist kaum ein Unterschied in der Prädiktion über den Wertebereich der Variable festzustellen.
Auch im Variable Importance Plot (Abbildung 32) war zu erkennen, dass diese Variable
für die Prädiktion eher unwichtig ist. Es gibt eine leicht erhöhte Wahrscheinlichkeit auf
Innenverteidiger bei kleinen Werten für die Anzahl gefoult worden zu sein, während hohe
Werte für eine leicht erhöhte Wahrscheinlichkeit auf defensive Mittelfeldspieler sprechen.
Obwohl die Punktschätzer für die Regressionskoeffizienten in Tabelle 9 für die Variable
Gefoult worden betragsmäßig viel höher sind als für die Zweikampfquote, ergeben sich auf
dem gesamten Wertebereich der beiden Variablen für die Variable Gefoult worden weniger
Schwankungen in den Prädiktionen als für die Zweikampfquote. Dies ist etwas, das aus den
Regressionskoeffizienten vorher nicht erkannt werden konnte, was in dieser Art des inter-
pretierbaren Machine Learnings jedoch sichtbar wird.
Alles in allem bildet der Partial Dependence Plot für das multinomiale logsitische Regres-
sionsmodell die Regressionskoeffizienten ab und lässt darüber hinaus noch andeutungsweise
die Variable Importance erkennen.
In Abbildung 34 sind die Partial Dependence Plots für den Random Forest abgebildet. Die
größten Unterschiede, die zu den in Abbildung 33 erzeugten Partial Dependence Plots für
die multinomiale logistische Regression auffallen, sind einerseits die kantigere Form der Kur-
ven und andererseits die niedrigeren mittleren Wahrscheinlichkeiten an den Rändern der
Wertebereiche. Eine große Gemeinsamkeit ist jedoch, dass die Partial Dependence Plots zu
den Variablen, die die höchte Variable Importance aufgewiesen haben, auch für den Random
Forest eine hohe Aktivität aufweisen.
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Abbildung 34: Partial Dependence Plot für Random Forest

Die Laufweite zeigt auch hier für einen geringen Wert eine hohe mittlere Wahrscheinlichkeit
für einen Torhüter, für eine mittlere Laufweite eine hohe mittlere Wahrscheinlichkeit auf
einen Innenverteidiger und für eine hohe Laufweite eine hohe mittlere Wahrscheinlichkeit
auf einen defensiven Mittelfeldspieler.
Auch der Partial Dependence Plot für die Zweikampfquote zeigt einige Gemeinsamkeiten
zwischen den Modellierungen auf. Ein hoher Wert der Zweikampfquote spricht für eine höhere
Wahrscheinlichkeit für Innenverteidiger und Außenverteidiger. Für einen niedrigeren Wert
der Zweikampfquote zeigen sich hier jedoch einige größere Unterschiede zwischen den beiden
Modellen. Während für niedrige Werte der Zweikampfquote die Mittelstürmer für beide Mod-
elle die höchste mittlere Wahrscheinlichkeit aufzeigen, ist die Wahrscheinlichkeit im multi-
nomialen logistischen Regressionsmodell ziemlich hoch, im Random Forest jedoch nur leicht
über den anderen Klassen. Darüber hinaus zeigt das multinomiale logistische Regressions-
modell für niedrige Werte der Zweikampfquote auch eine hohe mittlere Wahrscheinlichkeit
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für einen offensiven Mittelfeldspieler.
Auch für die anderen Variablen ergeben sich viele Ähnlichkeiten, aber auch größere Unter-
schiede. Der Partial Dependence Plot für die Anzahl der gespielten Pässe zeigt zum Beispiel
im multinomialen logistischen Regressionsmodell für hohe Werte eine sehr hohe mittlere
Wahrscheinlichkeit auf einen zentralen Mittelfeldspieler. Der Partial Dependence Plot des
Random Forests hingegen weist für einen zentralen Mittelfeldspieler nur eine recht geringe
mittlere Wahrscheinlichkeit für eine hohe Anzahl an Pässen auf.
Des Weiteren ist höchst auffällig, dass die mittlere Wahrscheinlichkeit für Innenverteidiger
und für Mittelstürmer bei einem hohen Wert an Kopfballtoren zwar für beide Modelle in den
Partial Dependence Plots am höchsten ist, jedoch der Wert an sich im multinomialen lin-
earen logistischen Regressionsmodell etwas höher ist als im Random Forest. An dieser Stelle
sollte aber auffallen, dass es sich bei Kopfballtoren um ein eher seltenes Ereignis handelt.
Dementsprechend sollte es auch viele Kovariablensettings geben, für die nie eine hohe Anzahl
an Kopfballtoren vorgekommen ist. Die mittleren Wahrscheinlichkeiten an diesem Rand mit
allen Beobachtungen zu bestimmen, stellt die beiden Modelle also vor das Problem, dass
Beobachtungen in Gebieten erzeugt werden, auf welche sie gar nicht trainiert wurden (vgl.
Kapitel 4.3.3). Dies könnte in den ICE-Plots auffallen und genau diese Problematik wird in
den ALE-Plots versucht zu beheben.

5.6 Individual Conditional Expectation Plots

Insgesamt wurden durch die 11 verschiedenen Variablen, 9 verschiedenen Positionen, 2 ver-
schiedenen Modelle und 3 Arten von ICE-Plots 594 verschiedene ICE-Plots erzeugt. Hier
werden jedoch lediglich die wichtigsten und auffälligsten von ihnen interpretiert. Die an-
deren ICE-Plots sind im elektronischen Anhang zu finden.

Abbildung 35: ICE-Plot für die Wahrscheinlichkeit auf die Torhüter-Position bezüglich der
Laufweite - multinomiales logistisches Regressionsmodell

Da durch alle Beobachtungen ein viel zu unüberischtlicher Plot entstehen würde, wurden die
ICE-Plots auf ein kleines Subsample beschränkt. In diesem Subsample sind alle Beobachtun-
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gen der Position, für welche der ICE-Plot die Wahrscheinlichkeiten angibt, und zusätzlich
genau so viele Beobachtungen zufällig aus dem restlichen Datensatz ausgewählt.
Bereits bei der Variable Importance und in den Partial Dependence Plots wurde die Laufweite
als wichtige Variable für die Modellierung bestimmt. In Abbildung 35 ist der ICE-Plot für
die Wahrscheinlichkeit darauf ein Torhüter bezüglich der Laufweite im multinomialen logis-
tischen Regressionsmodell zu sein. Auffällig ist der Wertebereich der Laufweite, da dieser
eine größere Sprungstelle beinhaltet. Diese Sprungstelle ist in den Dichteplots in Kapitel
3.2.1 nicht zu erkennen, da dort die Torhüter nicht miteinbezogen wurden. Durch diese
Spieler entsteht jedoch eine stark bimodale Verteilung.
Im linken ICE-Plot in Abbildung 35 ist ersichtlich, dass nach der Sprungstelle die durch das
Modell prognostizierte Wahrscheinlichkeit darauf Torhüter zu sein für die meisten Beobach-
tungen äußerst gering ist. Für einen sehr hohen Wert der Laufweite ist die Wahrschein-
lichkeit darauf Torhüter zu sein sogar für alle Beobachtungen verschwindend gering. Auch
fällt auf, dass für den niedrigsten Wert der Laufweite durch die Kovariablenkombinationen
der Beobachtungen der gesamte Wertebereich von 0 bis 1 abgedeckt wird, jedoch nahezu alle
Kurven bei einer Wahrscheinlichkeit von fast 1 beginnen. Warum dies interessant ist, zeigt
sich im Vergleich mit den ICE-Plots des Random Forests. Der Quantils-ICE-Plot zeigt diesen
Abfall sogar noch extremer auf, da die Lücke der Sprungstelle verschwindet. Im zentrierten
ICE-Plot ist sogar zu erkennen, dass die Wahrscheinlichkeit für alle Beobachtungen ab dem
niedrigsten Wert der Laufweite monoton fällt.

Abbildung 36: ICE-Plot für die Wahrscheinlichkeit auf die Torhüter-Position bezüglich der
Laufweite - Random Forest

Der grundsätzliche Trend, den auch die ICE-Plots für das multinomiale logistische Regres-
sionsmodell gezeigt haben, ist auch für den Random Forest in Abbildung 36 zu erkennen.
Steigt die Laufweite, so verringert sich für die Beobachtungen die durch das Modell geschätzte
Wahrscheinlichkeit darauf ein Torhüter zu sein. Der linke ICE-Plot zeigt dabei einen großen
Unterschied zu den ICE-Plots aus Abbildung 35. Während für das multinomiale logistis-
che Regressionsmodell auf dem gesamten Intervall [0,1] der geschätzten Wahrscheinlichkeit
Beobachtungen am unteren Rand des Wertebereichs der Laufweite beginnen, beginnen die
Kurven für den Random Forest bei einer Höhe von mindestens 0.3. Darüber hinaus begin-
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nen die meisten Kurven im Intervall zwischen 0.3 und 0.5 und nicht bei fast 1 wie in den
ICE-Plots für das multinomiale logistische Regressionsmodell. Diesbezüglich unterscheiden
sich die beiden Modelle also stark voneinander.
Ein weiterer auffälliger Unterschied zwischen den beiden Modellen ist das Verhalten im
unteren Teil des Wertebereichs. Während im multinomialen logistischen Regressionsmodell
die Wahrscheinlichkeit darauf Torhüter zu sein bereits unterhalb der Sprungstelle abnimmt,
bleibt sie für den Random Forest in diesem Bereich konstant. Dies kann so gedeutet werden,
dass der “niedrigste” Split, der für die Laufweite in allen Bäumen gemacht wird, erst in etwa
bei der Sprungstelle beginnt. Der Zusatz “in etwa” ist wichtig, da durch das Bootstrap-
Sampling Bäume existieren, in denen der höchste Wert vor der Sprungstelle nicht vorkommt,
und daher nicht als Splitkriterium genommen werden kann. Dadurch bestimmt der jeweils
nächst höchste Punkt unterhalb der Sprungstelle den Splitpunkt in diesen Bäumen.
Grundsätzlich ist jedoch zu sagen, dass der Random Forest die Sprungstelle als eine solche
modelliert, obwohl ein Split in einem Baum nicht von der Höhe einer metrischen Variable
abhängt, sondern nur von ihrer Einordnung in den Wertebereich.

(a) Multinomiales logistisches Regressionsmodell

(b) Random Forest

Abbildung 37: ICE-Plots für die Wahrscheinlichkeit auf die Außenverteidiger-Position
bezüglich der Zweikampfquote
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Dieses Verhalten könnte ein großer Indikator dafür sein, warum die Laufweite durch die
Variable Importance so wichtig eingestuft wurde. Mit dem die Wahrscheinlichkeit für einen
Torhüter nach der Sprungstelle sinkt, steigt sie natürlich für andere Klassen. Eine Variable,
die eine Gruppe nahezu “rein” absplitten kann, ist für jede Art der Modellierung äußerst
wichtig.
Abgesehen von der Laufweite ist auch die Zweikampfquote für beide Modelle eine wichtige
Variable (vgl. Kapitel 5.4). Ein großer Unterschied zwischen den beiden Modellierungen
kann anhand des ICE-Plots für die modellierte Wahrscheinlichkeit für die Außenverteidiger-
Position in Abbildung 37 erkannt werden.
Die Wahrscheinlichkeitsvorhersage für Außenverteidiger liegt für alle Beobachtungen im
multinomialen logistischen Regressionsmodell für XZweikampfquote = 0 bei nahezu 0%, unab-
hängig von der Ausprägung der Kovariablen. Für den Random Forest ist die Spannweite
der Wahrscheinlichkeitsvorhersagen für die Außenverteidiger-Position um einiges größer,
wodurch eine klare Abhängigkeit zu den Kovariablen für diesen Punkt festgestellt werden
kann.
Auch der weitere Verlauf unterscheidet sich in den beiden Modellen. Wenn eine Kurve bei
einem Wert von exakt 0% beginnt, kann im zentrierten ICE-Plot kein negativer Wert für
diese Kurve aufkommen, da die Wahrscheinlichkeit der Kurve nicht unter 0% fallen kann.
Während also für das multinomiale logistische Regressionsmodell im zentrierten ICE-Plot
keine (oder nur minimale) Werte unter 0 vorkommen, tauchen im zentrierten ICE-Plot für
den Random Forest sehr hohe negative Werte auf. Selbst an den Stellen, an denen der Partial
Dependence Plot des Random Forest einen Anstieg der mittleren Wahrscheinlichkeitsvorher-
sage für die Außenverteidiger-Position aufzeigt, existieren im zentrierten ICE-Plot hohe neg-
ative Werte und vor allem auch weiter sinkende Verläufe. Dies impliziert an dieser Stelle eine
hohe Abhängigkeit mit den Kovariablen, die die Wahrscheinlichkeitsvorhersage diktieren.
Eine hohe Kovariablenabhängigkeit kann jedoch auch in den ICE-Plots für das multinomi-
ale logistische Regressionsmodell festgestellt werden. Würden Kovariablen überhaupt keinen
Einfluss auf die Prädiktion durch eine Variable haben, so wären alle Kurven im ICE-Plot
identisch. Die Kurven besitzen der Natur des multinomialen logistischen Regressionsmod-
ells geschuldet eine ähnliche Form. Wie jedoch in den ICE-Plots in Abbildung 37 zu ent-
nehmen ist, bilden die Kurven alle Glockenkurven mit jeweils einem Maximum, an dem
die Wahrscheinlichkeitsvorhersage durch das multinomiale logistische Regressionsmodell am
höchsten ist. Diese Maxima der einzelnen Kurven liegen aber über eine große Spannweite
des Wertebereichs von XZweikampfquote verteilt, was für eine hohe Ahängigkeit von den Ko-
variablen spricht.
In Abbildung 38 ist im Gegensatz zu den voran gegangenen ICE-Plots mit der Anzahl an
Kopfballtoren eine Variable abgebildet, die laut der Variable Importance für beide Model-
lierungen eher unwichtig ist (vgl. Kapitel 5.4).
Wie in Abbildung 6 zu sehen ist, ist die Verteilung der Variable XKopfballtore sehr linkssteil.
Daher bietet es sich an den Effekt dieser Variable anhand der Quantile zu beurteilen, damit
eine Steigung des ICE-Plots nicht über- oder unterinterpretiert wird. Da die Innenverteidi-
ger-Position bereits bei den Regressionskoeffizienten in Tabelle 9 und im Partial Dependence
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Plot in Abbildung 33 für die Anzahl an Kopfballtoren aufgefallen ist, wird diese Position für
die ICE-Plots verwendet.
Für das multinomiale logistische Regressionsmodell zeigt der linke ICE-Plot für die meis-
ten Beobachtungen einen sehr schnellen Anstieg der Wahrscheinlichkeitsvorhersage für einen
Innenverteidiger, während der Quantils-ICE-Plot zwar einen stetigen, aber langsam wach-
senden Anstieg für die meisten Beobachtungen abbildet. Es lassen sich Kurven finden, die bei
niedrigen Werten von XKopfballtore noch eine sehr niedrige Wahrscheinlichkeitsvorhersage für
die Innenverteidiger-Position aufzeigen, für hohe Werte jedoch eine sehr hohe. Im zentrierten
ICE-Plot ist dies gut zu erkennen, da eine Kurve, die für hohe Werte von XKopfballtore fast
den Wert 1 erreicht, eine sehr niedrige Wahrscheinlichkeit für niedrige Werte von XKopfballtore

und eine hohe Wahrscheinlichkeit für hohe Werte aufgewiesen hat.
Genau dies ist für den Random Forest nicht der Fall. Im Quantils-ICE-Plot ist zu erkennen,
dass die meisten Kurven zwar mit ansteigendem Wert von XKopfballtore wachsen, jedoch nur
geringfügig. Der zentrierte ICE-Plot zeigt auch, dass keine Kurve von ihrem Startwert um
mehr als 0.2 ansteigt.

(a) Multinomiales logistisches Regressionsmodell

(b) Random Forest

Abbildung 38: ICE-Plots für die Wahrscheinlichkeit auf die Innenverteidiger-Position
bezüglich der Kopfballtore
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Insgesamt zeigen diese Beispiele für die ICE-Plots und auch die Partial Dependence Plots,
dass die einzelnen Leistungsdaten innerhalb der Modelle ähnlich funktionieren (beide wach-
sen, beide fallen, beide zeigen intervallmäßige An- und Abstiege, . . . ). Bei genauerer Betra-
chtung weisen sie jedoch viele Unterschiede auf, wie genau die Variablen die Prädiktionen
beeinflussen. Obwohl die beiden Modelle wie in Kapitel 5.2 gezeigt eine ähnliche Modell-
güte aufweisen und sogar für die einzelnen Klassen ähnlich gut funktionieren, funktionieren
die Modelle intern also sehr verschieden. Anhand des Beispiels in Abbildung 29, in dem
dargestellt wurde, wie die beiden Modelle in einem Bereich funktionieren, für den sie nicht
trainiert wurden, kann vermutet werden, dass die größten Unterschiede, die in den Partial
Dependence Plots und den ICE-Plots gezeigt wurden, dadurch entstehen, dass unwahrschein-
liche Variablenkombinationen erzeugt werden. Im nächsten Abschnitt werden ALE-Plots für
den Vergleich der beiden Modelle verwendet, die genau gegen dieses Problem vorgehen sollen.

5.7 Accumulated Local Effect Plots

Genauso wie für die ICE-Plots sind für die ALE-Plots mit 9 verschiedenen Klassen, 11 ver-
schiedenen Variablen und 2 verschiedenen Modellen insgesamt 198 Plots entstanden, welche
alle in dieser Arbeit zu interpretieren zu viel wäre. Daher wurden auch hier verschiedene
ALE-Plots für Variablen und Klassen ausgewählt, die bereits in den Kapiteln zuvor aufge-
fallen und daher von besonderem Interesse sind.

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 39: ALE-Plots für die Wahrscheinlichkeit auf die Torhüter-Position bezüglich der
Laufweite

In Abbildung 39 sind die ALE-Plots für die Torhüter-Position im Bezug auf die Laufweite
dargestellt. In den ICE-Plots in den Abbildungen 35 und 36 war ein klarer Abwärtstrend
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mit Sprungstelle zu sehen. Ein großer Unterschied zu den ICE-Plots sollte beim betrachten
des ALE-Plots für das multinomiale logistische Regressionsmodell auffallen. Während im
dazugehörigen ICE-Plot und auch im Partial Dependence Plot bereits im unteren Teil des
Wertebereichs von XLaufweite ein Gefälle zu erkennen war, scheint der ALE-Plot in diesem
Bereich konstant.
Der Unterschied zwischen der Wahrscheinlichkeitsvorhersage für einen Torhüter im unteren
Bereich verglichen mit dem oberen Bereich von XLaufweite ist hinsichtlich des ALE-Plots für
den Random Forest viel niedriger als für das multinomiale logistische Regressionsmodell.
Dieser Effekt ist an der y-Achse leicht zu abzulesen. Im unteren Teil des Wertebereichs der
Laufweite wird für die Daten, deren wahrer Wert innerhalb dieses Bereichs liegen eine um
mehr als 0.7 höhere Wahrscheinlichkeit prädiktiert, als durchschnittlich für alle Beobach-
tungen, während die Wahrscheinlichkeit im Random Forest für diesen Bereich nur um etwa
0.4 höher ist.

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 40: ALE-Plots für die Wahrscheinlichkeit auf die Außenverteidiger-Position
bezüglich der Zweikampfquote

In Abbildung 40 ist der Einfluss der Zweikampfquote auf die Wahrscheinlichkeit auf die
Außenverteidiger-Position in ALE-Plots dargestellt. Diese zeigen für beide Modellierungen
sowohl verlaufsmäßige als auch von der Höhe der Abweichung der mittleren Prädiktion sehr
große Ähnlichkeiten. Der größte Unterschied ist der Vergleich zwischen dem Niveau im un-
teren Wertebereich und dem oberen Wertebereich von XZweikampfquote. Im multinomialen lo-
gistischen Regressionsmodell hat sowohl der ICE-Plot als auch der Partial Dependence Plot
eine sehr niedrige Wahrscheinlichkeitsvorhersage von fast 0% für Beobachtungen mit einem
niedrigen Wert der Zweikampfquote und eine vergleichsweise hohe bis sehr hohe Wahrschein-
lichkeit über den restlichenWertebereich aufgezeigt. Der ALE-Plot hingegen zeigt nur im mit-
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tleren Wertebereich der Zweikampfquote eine höhere Abweichung der mittleren Wahrschein-
lichkeitsvorhersage an, während er an den beiden Rändern des Wertebereichs sehr niedrige
Werte anzeigt.
Der Random Forest hingegen hat dieses Verhalten, dass nur im mittleren Wertebereich
der Zweikampfquote eine hohe Wahrscheinlichkeit auf die Außenverteidiger-Position und
im unteren und oberen Teil des Wertebereichs eine niedrigere Wahrscheinlichkeit modelliert
wird, schon im ICE-Plot angedeutet. Der ICE-Plot zeigt jedoch im oberen Wertebereich der
Zweikampfquote eine höhere Wahrscheinlichkeitsvorhersage an als im unteren Wertebereich,
der ALE-Plot zeigt dies umgekehrt an.
Der Unterschied zwischen dem Effekt, der durch die ICE-Plots in Abbildung 37 angedeutet
wird, und dem Effekt, der durch die ALE-Plots in Abbildung 40 gezeigt wird, ist am deut-
lichsten an den einzelnen Kurven des ICE-Plots für die multinomiale logistische Regression
zu erkennen. Während auf einem großen Teil des Wertebereichs der Zweikampfquote Maxima
der einzelnen Kurven existieren, zeigt der ALE-Plot ganz klar nur im mittleren Teil des Wer-
tebereichs einen deutlichen Anstieg der Wahrscheinlichkeit auf die Außenverteidiger-Position
an. Dies könnte dafür sprechen, dass die vielen Maxima im restlichen Teil des Wertebereichs
durch Beobachtungen entstanden sind, die unwahrscheinliche Variablenkombinationen dort
gebildet haben.
Obwohl fast alle ALE-Plots sehr ähnliche Effekte aufweisen, existieren auch ALE-Plots, in
denen sich die beiden Modelle sehr stark voneinander unterscheiden.

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 41: ALE-Plots für die Wahrscheinlichkeit auf die Offensive Mittelfeld-Position
bezüglich der Anzahl an Zweikämpfen

In Abbildung 41 sind die ALE-Plots für den Effekt der Anzahl an geführten Zweikämpfen
auf die Wahrscheinlichkeitsvorhersage auf die Offensive Mittelfeld-Position in den beiden Mo-
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dellen abgebildet. Während der ALE-Plot in beiden Modellen im unteren Wertebereich von
XZweikämpfe leicht ansteigt, steigt er im multinomialen logistischen Regressionsmodell danach
stark an und fällt im oberen Wertebereich wieder stark ab. Im Random Forest sinkt der
Accumulated Local Effect im mittleren Wertebereich stark und steigt im oberen Wertebereich
wieder an.
An dieser Stelle sollte jedoch trotz dieses großen Unterschieds auf die y-Achse hingewiesen
werden. Obwohl die Anzahl an geführten Zweikämpfen in beiden Modellen eine eher wichtige
Variable ist, ändert sich die Wahrscheinlichkeitsvorhersage auf einen offensiven Mittelfeld-
spieler über den gesamten Wertebereich kaum.
Auch bei den weiteren Fällen, in denen sich die ALE-Plots stark voneinander unterscheiden,
ist dies zu beobachten. Vor allem ist dies für die Torhüter auffällig, jedoch wurde dies-
bezüglich bereits in Kapitel 5.3 darauf hingewiesen, dass mehrere Variablen für die Torhüter
ausschließlich aus 0 en bestehen, weshalb diese Effekte nicht überinterpretiert werden sollten.

5.8 Erarbeitung der Topologie der Modelle

Die in Kapitel 4.2.2.5 vorgeschlagene Methode zur Erarbeitung der Topologie der Modelle
kann für alle Klassen gleichzeitig erfolgen. Für jede Richtung (Erhöhen und Verringern)
werden jedoch 2 verschiedene “Stärken” der Datenmanipulation verwendet, wodurch für
11 Variablen, 2 Richtungen, 2 verschiedene Stärken und die 2 Modelle insgesamt 88 Plots
entstehen.
Grundsätzlich soll diese Methode helfen nahe beeinander liegende Klassen zu ermitteln und
darüber hinaus herauszufinden, bezüglich welcher Variable diese Nachbarschaft besteht. Dies
könnte zum Beispiel helfen folgende Problemstellungen zu lösen:

1. Ein Spieler hat die letzten Jahre mit variierenden, aber immer passenden, Leistungs-
daten für seine Position als Außenverteidiger in der Bundesliga gespielt. Leider hatte
er sich verletzt und ist zusätzlich aufgrund seines Alters nicht mehr in der Lage so
viel zu laufen, wie die Jahre zu vor. Auf welcher Position könnte ein Außenverteidiger,
von dem davon ausgegangen wird, dass seine anderen Fähigkeiten (Passgenauigkeit,
Zweikampfquote, etc.) konstant bleiben, mit einer niedrigeren Laufleistung einge-
setzt werden?

2. Ein junger Spieler, der bisher die Position eines zentralen Mittelfeldspielers beklei-
det hat, trainiert in der Sommerpause viele Zweikämpfe, wodurch seine Fähigkeit
Zweikämpfe zu gewinnen (höhere Zweikampfquote) steigt. Auf welcher Position
könnte er durch diese neuen Fähigkeiten flexibel einen verletzten Spieler ersetzen, wenn
davon ausgegangen wird, dass seine anderen Leistungen konstant bleiben?

Um die erste der beiden Fragen zu beantworten, muss der Chordgraph für die Laufweite
angeschaut werden. In Abbildung 42 sind auf der linken Seite zwei Chordgraphen für eine
Verringerung der Laufweite und auf der rechten Seite für eine Erhöhung der Laufweite für
das multinomiale logistische Regressionsmodell abgebildet. Die obere Zeile gibt dabei eine
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schwache Datenmanipulation (Änderung der Werte um 0.05-Quantile) und die untere Zeile
eine etwas stärkere Datenmanipulation (Änderung der Werte um 0.1-Quantile) an.

Abbildung 42: Chordgraph für die Nachbarschaftsverhältnisse bezüglich der Laufweite im
multinomialen logistischen Regressionsmodell

Für die erste Frage sind vor allem die beiden linken Chordgraphen interessant. Ein Spiel-
er, der zuvor Außenverteidiger war und auch diese Leistungsdaten passend für die Position
erbracht hat und weiter erbringen wird, kann nur eine geringe Laufweite für die neue Sai-
son aufs Spielfeld bringen. In dem linken oberen Chordgraphen, ist aufgeführt, dass ein Teil
der durch das Modell als Außenverteidiger modellierten Beobachtungen bei Konstanthaltung
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der Kovariablen und Verringerung der Laufweite in die Klasse der Innenverteidiger wechseln.
Auch bei stärkerer Verringerung der Laufweite, existieren aus der Klasse der Außenvertei-
diger nur Wechsel in die Klasse der Innenverteidiger. Dies bedeutet, dass es möglich wäre,
den Spieler auf der Position des Innenverteidigers auszuprobieren, da er dort gut in die
Bundesliga passen könnte.

Abbildung 43: Chordgraph für die Nachbarschaftsverhältnisse bezüglich der Laufweite im
Random Forest

Um zu überprüfen, ob durch die Datenmanipulation ein Bereich erreicht wird, in dem sonst
keine Beobachtungen existieren, kann als Gegenprobe überprüft werden, ob auch Innen-
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verteidiger durch Erhöhen der Laufweite in die Klasse der Außenverteidiger wechseln.
Diese Gegenprobe ist in den beiden rechten Chordgraphen in Abbildung 42 dargestellt. Dort
ist zu erkennen, dass es Beobachtungen gibt, die zunächst der Klasse der Innenverteidiger
zugehören und durch Datenmanipulation in die Klasse der Außenverteidiger wechseln.
Hier sollte auffallen, dass dieses Verfahren für schlechte Modelle problematisch werden kann.
Angenommen die Punkte sind komplett zufällig im Raum verteilt, dann würde es zwar ein
Gebiet geben, indem Außenverteidiger vor der Datenmanipulation durch das Modell prognos-
tiziert wird, jedoch könnte es passieren, dass in diesem Gebiet überhaupt keine Beobachtun-
gen für die Außenverteidiger-Position existieren (vgl. Modellierungsproblem aus Abbildung
29).
Der Random Forest kann genutzt werden, um dieses modellierte Nachbarschaftsverhältnis
zu überprüfen. In dem linken unteren Chordgraphen aus Abbildung 43 ist deutlich zu erken-
nen, dass auch der Random Forest einen Teil der als Außenverteidiger prognostizierten
Beobachtungen bei Verringerung der Laufweite als Innenverteidiger prognostiziert. Auch
in der Gegenprobe zeigt der Chrodgraph auf, dass Beobachtungen von der Prognose als
Innenverteidiger durch Erhöhen der Laufweite als Außenverteidiger prognostiziert werden.
Wenn die beiden Modelle durch diese Chordgraphen ohne eine Fragestellung näher miteinan-
der verglichen werden, so fällt sehr schnell das durch das multinomiale logistische Regres-
sionsmodell aufgezeigte Nachbarschaftsverhältnis zwischen den Torhütern und Innenvertei-
digern auf, während dieses in den Chordgraphen für den Random Forest überhaupt nicht
existiert. Dies könnte darauf hinweisen, dass durch die doch grundlegend verschiedene Ein-
teilung des Raumes durch die beiden Modelle Nachbarschaftsverhältnisse aufgezeigt werden
könnten, die in Wahrheit nicht existieren, oder die nur durch die Beschaffenheit des Mo-
dells existieren. Aus diesem Grund ist diese Methode auch nur dafür geeignet die Topologie
in einem Modell und nicht die Topologie der Daten zu bestimmen. Für ein perfekt klas-
sifizierendes Modell wäre dies äquivalent, da die Einteilung des Raumes durch das Modell
auch approximativ der Einteilung des Raumes der Daten entspricht. Auch hier ist also zu
erkennen, dass diese Methode besser funktioniert, wenn das Modell die vorliegende Daten-
situation besser klassifiziert. Genauso ratsam ist es diese Nachbarschaftsverhältnisse durch
grundlegend verschiedene, aber gut klassifizierende Modelle zu vergleichen.
Wird ein Nachbarschaftsverhältnis von einem Modell erkannt, von einem anderen aber nicht,
so empfiehlt es sich die Daten dort genauer anzuschauen. Einerseits könnte dies aufgrund von
Interaktionseffekten vorkommen, die trotzdem durch Manipulieren einer einzelnen Variable
einen Effekt auf die Prädiktion ausüben. Andererseits kann dies aber auch an der Natur
eines Modells liegen, das “gröber” oder “feiner” die Daten einteilt und daher “Unreinheiten”
zu diesen Unterschieden führen.
Die zweite Frage kann ebenso durch die potentiellen Nachbarschaftsverhältnisse beantwortet
werden. In Abbildung 44 sind die 4 Chordgraphen für die Nachbarschaftsverhältnisse
bezüglich der Zweikampfquote im multinomialen logistischen Regressionsmodell abgebildet.
Für einen Spieler, dessen Zweikampfquote sich leicht erhöht und seine anderen Fähigkeiten
konstant bleiben, existiert ein modelliertes Gebiet für zentrale Mittelfeldspieler unterhalb
eines modellierten Gebietes für defensive Mittelfeldspieler. Bei ganz genauer Betrachtung
existieren auch noch sehr schwache Nachbarschaftsverhältnisse zwischen den zentralen



5 ERGEBNISSE 76

Mittelfeldspielern und den bezüglich der Zweikampfquote darüber liegenden äußeren
Mittelfeldspielern und Außenverteidigern. Bei der Gegenprobe durch das Verringern der
Zweikampfquote bestätigen sich jedoch nur die Nachbarschaftsverhältnisse zu den defensiven
Mittelfeldspielern und den äußeren Mittelfeldspielern.

Abbildung 44: Chordgraph für die Nachbarschaftsverhältnisse bezüglich der Zweikampfquote
im multinomialen logistischen Regressionsmodell

Dies bedeutet, dass es für den Spieler aus Fragestellung 2. möglich sein könnte einen de-
fensiven Mittelfeldspieler oder einen äußeren Mittelfeldspieler auf Bundesliganiveau zu er-
setzen. Das nicht-Bestätigen des Nachbarschaftsverhältns der zentralen Mittelfeldspieler und
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der Außenverteidiger kann so gedeutet werden, dass das Modell zwar 2 benachbarte Gebiete
modelliert, an dessen Grenze Beobachtungen im Gebiet der zentralen Mittelfeldspieler liegen,
jedoch auf der anderen Seite keine Beobachtungen auf der Seite der Außenverteidiger. Dort
könnte also eine unmögliche oder unwahrscheinliche Datensituation vorliegen.
Um die beiden gefundenen Nachbarschaftsverhältnisse zu bestätigen, können wieder die
Chordgraphen für den Random Forest betrachtet werden.

Abbildung 45: Chordgraph für die Nachbarschaftsverhältnisse bezüglich der Zweikampfquote
im Random Forest

In Abbildung 45 wird das Nachbarschaftsverhältnis im Random Forest bezüglich der
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Zweikampfquote zwischen der Prädiktion als zentraler Mittelfeldspieler und der Prädiktion
als defensiver Mittelfeldspieler durch beide Richtungen der Datenmanipulation bestätigt.
Ein Nachbarschaftsverhältnis zwischen dem zentralen Mittelfeld und äußeren Mittelfeld wird
nur gegenläufig angezeigt, sodass ein modelliertes Gebiet mit zentralen Mittelfeldspielern
oberhalb eines modellierten Gebietes mit äußeren Mittelfeldspielern liegt. Ein Nach-
barschaftsverhältnis zwischen den zentralen Mittelfeldspielern und den Außenverteidigern
wird, wie im Chordgraph für das multinomiale logistische Regressionsmodell, bei Erhöhen
der Zweikampfquote in diegleiche Richtung angezeigt, jedoch wird auch dieses hier nicht
durch die Gegenprobe bestätigt.
Zusammengefasst ist zu sagen, dass der junge Spieler als guter Ersatz für einen defensiven
Mittelfeldspieler gelten kann. Das modellierte Gebiet für die äußeren Mittelfeldspieler könnte
durch Unreinheiten, Ausreißer oder Inseln entstanden sein, da dieses Nachbarschaftsverhält-
nis durch die beiden Modelle sogar gegenläufig modelliert wird. Da beide Modelle das “ein-
seitige” und sehr schwache Nachbarschaftsverhältnis zu den Außenverteidigern modellieren,
könnte dies entuell auch durch eine kleine Gruppe Ausreißer, die dort ein Gebiet suggerieren,
das nicht dem typischen zentralen Mittelfeldspieler entspricht, entstanden worden sein. Ein
Einsatz auf dieser Position könnte also funktionieren, ist jedoch mit Vorsicht zu raten.
Praktisch gesehen ergibt sich für diese Frage ein neuer Gedankengang: “Durch hartes Training
der Zweikampfquote erhöht sich nicht nur diese, sondern auch die Bereitschaft Zweikämpfe
zu führen!” (Theoretisch ausgedrückt: Durch das Erhöhen einer Variable erhöhen sich auch
andere). Das Messen der Nachbarschaftsverhältnisse in der Modellierung wurde hier nur
bezüglich einzelner Variablen durchgeführt. Existiert jedoch ein hohes Ahängigkeitsverhältnis
zu anderen Variablen, so müssten diese gemeinsam erhöht werden. Dadurch würden sich
ganz neue Nachbarschaftsverhältnisse ergeben. Dies wird in dieser Arbeit hier nicht weiter
überprüft, eröffnet aber einen noch weiteren Anwendungsraum für diese Methode.
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6 Fazit

Das Ziel dieser Arbeit war es Zusammenhänge zwischen den Positionen der Bundesligaspieler
und ihrer Leistungsdaten mit verschiedenen Methoden zu erkennen und aufzuzeigen. Für die
Analysen wurde sowohl ein multinomiales logistisches Regressionsmodell als auch ein Ran-
dom Forest verwendet und anschließend mit Methoden aus dem Bereich des interpretierbaren
Machine Learnings verglichen.
Obwohl die beiden Modelle an sich sehr unterschiedlich aufgebaut sind, konnte vor allem
durch die Methode der Accumulated Local Effect Plots gezeigt werden, dass sie im Grunde
die Daten sehr ähnlich modellieren und sich nur geringfügig voneinander unterscheiden. An-
hand dieser Methode konnten Effekte ausgearbeitet werden, die deutlich für eine bestimmte
Position sprechen, wie zum Beispiel eine niedrige Laufweite für einen Torhüter. Die Partial
Dependence Plots und die Individual Conditional Expectation Plots haben noch deutlichere
Unterschiede zwischen den beiden Modellen aufgezeigt. Im Gegensatz zu den Accumulat-
ed Local Effect Plots werden diese Methoden jedoch mit Datenmanipulationen erzeugt, die
häufig sehr unwahrscheinliche Datenkombinationen kreieren.
Des Weiteren wurden die Fehlklassifikationen der beiden Modelle betrachtet und entdeckt,
dass die meisten Fehlklassifikationen in Positionen geschehen, die auf dem Fußballplatz
nebeneinander liegen. Beim Testen der Methode zum Erarbeiten der Topologie der Mo-
delle ist aufgefallen, dass häufig Positionen, die auch auf dem Fußballfeld benachbart sind
auch durch die Modelle im Datenraum benachbart modelliert werden. Zusätzlich wurden
neue Fragestellungen formuliert, die mit dieser Methode beantwortet werden konnten. Auch
für diese Methode ähneln sich die beiden Modellierungen sehr.
Da zwar eindeutige Zusammenhänge zwischen den Positionen und den Leistungsdaten ge-
funden wurden, diese aber nicht auf ihre Kausalität getestet wurden, bleibt die Frage offen,
ob die Position die Leistungsdaten, die von einem Spieler auf dieser Position erzeugt werden,
beeinflusst, oder ob ein Spieler mit einer bestimmten Fähigkeit auf einer gewissen Position
eingesetzt wird. Dies könnte noch in einer weiterführenden Analyse untersucht werden. Eine
weitere Möglichkeit wäre es noch die aufgezeigten Zusammenhänge auf ihre Zeitlosigkeit zu
untersuchen. Dabei könnte überprüft werden, ob sich diese Effekte über die Jahre verändern
oder konstant bleiben.
Alles in allem wurde in dieser Arbeit gezeigt, dass es eindeutige Zusammenhänge zwischen
den Leistungsdaten der Bundesligaspieler und ihrer Positionen gibt, und dass diese mithilfe
von verschiedensten Modellen und Methoden ermittelt werden können. Für diese Analysen
wurde nach subjektiven Kriterien eine Variablenselektion durchgeführt. Die Ergebnisse wären
durch Hinzunahme neuer Leistungsdaten zwar komplexer zu interpretieren; je nach Interesse
können für weitere Analysen jedoch Variablen hinzugefügt oder weggelassen werden. Im
Gegensatz zu multinomialen logistischen Regressionsmodellen haben Random Forests keine
Probleme mit Multikollinearität, wodurch vor allem für Random Forests eine Hinzunahme
von zusätzlichen Variablen für diese Analysen möglich wäre.
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Anhang

Nicht ausgewählte Variablen

Variable Beschreibung
Alter Generell wurde sich gegen demografische Variablen

entschieden, da Spieler nur an ihren Fähigkeiten
gemessen werden sollen

Eigentore Eigentore passieren einerseits viel zu selten und ander-
erseits geschehen diese oft durch Zufälle, die nicht die
Leistung eines Spielers abbilden

Schüsse Die Anzahl der Schüsse ist höchstkorreliert mit der An-
zahl an Toren. Die Anzahl an Toren misst die Fähigkeit-
en eines Spielers besser als die Anzahl der Schüsse

Schussvorlagen Die Anzahl der Schussvorlagen ist höchstkorreliert mit
der Anzahl an Torvorlagen. Die Anzahl an Torvorlagen
misst die Fähigkeiten eines Spielers besser als die Anzahl
der Schussvorlagen

Ballkontakte Die Anzahl der Ballkontakte ist höchstkorreliert mit der
Anzahl der gespielten Pässe. Diese messen die Fähigkeit-
en eins Spielers besser

Angekommene Pässe Die Anzahl der angekommenen Pässe misst die
Fähigkeiten eines Spielers am besten in Kombination
mit der Anzahl der gespielten Pässe, was der Passquote
entspricht, weshalb diese stattdessen aufgenommen
wurde

Fehlpässe Die Anzahl der Fehlpässe misst die Fähigkeiten eines
Spielers am besten in Kombination mit der Anzahl der
gespielten Pässe, was der Passquote entspricht, weshalb
diese stattdessen aufgenommen wurde

Sprints Die Anzahl der Sprints ist höchstkorreliert mit der
Laufweite, welche die Fähigkeiten eines Spielers bess-
er aufnimmt (konstante Messung gegen Anzahl langer
oder kurzer Sprints)

Höchstgeschwindigkeit Die Höchstgeschwindigkeit bildet nur eine einzelne Mo-
mentaufnahme in einem einzigen Spiel ab, was keine
konstante Leistungserfassung abbildet

Tore Die Anzahl der Tore ist höchstkorreliert mit der Anzahl
der Tore mit dem Fuss. Die Tore mit dem Fuss wur-
den aufgenommen, da auch die Kopfballtore aufgenom-
men werden sollten und diese gemeinsam (abzüglich der
Elfmetertore - seltenes Ereignis) die Anzahl der Tore
angeben



Elfmetertore Die Elfmetertore geben nicht wirklich die Fähigkeiten
eines Spielers an, da nicht jeder die Chance hat Elfme-
tertore zu schießen

Verschossene Elfmeter Da nicht jeder die Chance hat Elfmeter zu schießen
hat auch nicht jeder die Chance einen Elfmeter zu ver-
schießen

Gegentore Diese Variable wurde nur für Torhüter erhoben und ist
daher nicht repräsentativ für die Fähigkeiten der einzel-
nen Spieler

Gehaltene Bälle Diese Variable wurde nur für Torhüter erhoben und ist
daher nicht repräsentativ für die Fähigkeiten der einzel-
nen Spieler

Gehaltene Elfmeter Diese Variable wurde nur für Torhüter erhoben und ist
daher nicht repräsentativ für die Fähigkeiten der einzel-
nen Spieler

Tabelle 10: Nicht ausgewählte Variablen

Zusammengefasste Positionen

Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−1 0 1

Konfidenzintervall der Differenz − standardisiert

Vergleich linker Verteidiger und rechter Verteidiger

t−Tests − Konfidenzintervalle

Abbildung 46: Vergleich zwischen linken und rechten Verteidigern



Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−7.5 −5.0 −2.5 0.0 2.5 5.0

Konfidenzintervall der Differenz − standardisiert

Vergleich linkes Mittelfeld und rechtes Mittelfeld

t−Tests − Konfidenzintervalle

Abbildung 47: Vergleich zwischen linken und rechten Mittelfeldspielern

Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−1 0 1

Konfidenzintervall der Differenz − standardisiert

Vergleich Linksaußen und Rechtsaußen

t−Tests − Konfidenzintervalle

Abbildung 48: Vergleich zwischen Linksaußen und Rechtsaußen



Kopfballtore

Tore mit dem Fuß

Torvorlagen

Abseits

Laufweite (km)

Gefoult worden

Fouls

Zweikampfquote (%)

Zweikämpfe

Passquote (%)

Gespielte Pässe

−5 0 5

Konfidenzintervall der Differenz − standardisiert

Vergleich Hängende Spitze und Offensives Mittelfeld

t−Tests − Konfidenzintervalle

Abbildung 49: Vergleich zwischen hängender Spitze und offensiven Mittelfeld

ICE-Plots

Zu viele für gedruckten Anhang - siehe elektronischer Anhang

ALE-Plots

Zu viele für gedruckten Anhang - siehe elektronischer Anhang



Chordgraphen

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 50: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Passquote



(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 51: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Abseitsstel-
lungen

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 52: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Torvorlagen



(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 53: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Fouls

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 54: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Tore mit
dem Fuss



(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 55: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Anzahl
gefoult zu werden

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 56: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Kopfballtore



(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 57: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Laufweite

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 58: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Anzahl
Pässe



(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 59: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der Anzahl
Zweikämpfe

(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 60: Chordgraphen für die erarbeiteten Nachbarschaften bezüglich der
Zweikampfquote
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