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Abstract

Diese Masterarbeit beschéaftigt sich mit den Leistungsdaten und den Positionen von Fufiball-
Bundesligaspielern und untersucht diese auf Zusammenhénge zwischen den Leistungsdaten
und den Positionen. Um dies auszuarbeiten werden ein multinomiales logistisches Regres-
sionsmodell und ein Random Forest verwendet und die Effekte der Modelle mithilfe von
interpretierbaren Machine Learning Methoden analysiert. Obwohl das Erzeugen der Modelle
auf sehr verschiedene Art und Weise funktioniert, kann mit den interpretierbaren Machine
Learning Methoden gezeigt werden, dass sich die Effekte in den beiden Modellen sehr &hneln.
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1 EINFUHRUNG 1

1 Einfiihrung

Viele Sportarten werden in der heutigen Zeit zunehmend quantifiziert und in Datenbanken
erfasst. Diese Quantifizierung fithrt dazu, dass immer mehr statistische Analysen in den ver-
schiedensten Sportarten durchgefiihrt werden, um die Ereignisse, die in einem Wettkampf
stattfinden, besser zu verstehen. In manchen Sportarten wie zum Beispiel dem Baseball,
werden schon seit Jahren statistische Analysen durchgefithrt, um das Team optimal zusam-
menzustellen oder das Abschneiden der Teams in einer Saison zu modellieren.

Im Unterschied zum Baseball ist die Analyse von Leistungsdaten im Fuflball etwas
schwieriger. Wéahrend im Baseball ein Spielzug hauptséichlich von den Fahigkeiten zweier
Spieler abhéangt (dem Ball-werfenden Spieler und dem Ball-schlagenden Spieler), hingt
ein Spielzug im Fufball von mehreren angreifenden und verteidigenden Spielern ab und
macht somit die Ausgangslage eines einzelnen Spielzuges schon deutlich komplexer. Um
diese Spielziige quantifizierbar zu machen, werden im FuBball mittlerweile allerlei Leis-
tungsdaten erfasst. Angefangen vom Zihlen der gespielten Pésse eines Spielers bis hin zum
Messen der Hochstgeschwindigkeit und der Laufweite eines Spielers werden immer grofiere
Datengrundlagen geschaffen.

Ein sehr moderner Wert, der héufig fiir die Analyse einer Spielsituation genutzt wird, ist der
“Expected Goals”-Wert. Dieser beschreibt mit welcher Wahrscheinlichkeit in der jeweiligen
Spielsituation ein Tor fallt (Nordmann 2016).

Die folgende Arbeit beschéaftigt sich damit, wie die erfassten Leistungsdaten zusammenhén-
gen und wie sich diese zwischen den einzelnen Positionen auf dem Fufiballfeld unterscheiden.
Hierfiir werden deskriptive Methoden genutzt, um die gemessenen Leistungsdaten besser zu
verstehen und sowohl klassische als auch maschinen-basierte Modellierungen verwendet, um
die Zusammenhange der Leistungsdaten beziiglich ihrer Positionen zu modellieren.

Wichtig ist es aus Modellen Wissen zu generieren. Modellierungen aus dem Bereich des
Machine Learning haben den Ruf schwer interpretierbar zu sein, weshalb sie oft nur fir
Prognosen verwendet werden. In den letzten Jahren entwickeln sich jedoch immer mehr
Methoden, die versuchen die “Blackbox” einer Machine Learning-Methode zu entschliisseln
und die Modelle interpretierbarer zu machen. Aus diesem Bereich des “Interpretierbaren
Machine Learnings” werden in dieser Arbeit Methoden verwendet, um das klassische Modell
mit dem Machine Learning-Modell zu vergleichen und daraus Wissen zu generieren.

Die Modelle sollen die Position einer Beobachtung anhand ihrer Leistungsdaten schatzen.
Wenn die Modelle diese Beziehung gut beschreiben, kann anhand der Modelle ausgearbeitet
werden, wie sich die Leistungsdaten auf die Positionen auswirken. Im Speziellen soll unter-
sucht werden, ob hohe Werte bestimmter Leistungsdaten fiir bestimmte Positionen sprechen
(z.B. ob eine hohe Laufweite eher fir einen Verteidiger oder einen Mittelfeldspieler spricht).
Die interessantesten Beziehungen werden dabei durch Methoden des interpretierbaren Ma-
chine Learnings naher beschrieben und zwischen den beiden Modellen auf Gemeinsamkeiten
und Unterschiede untersucht.

Dartiber hinaus wird in dieser Arbeit eine Methode vorgestellt, die die Topologie der Daten,
die durch die beiden Modelle beschrieben wird, untersuchen soll. Anhand dieser Methode



1 EINFUHRUNG 2

wird es moglich sein zu tiberpriifen, welche Positionen beziiglich eines einzelnen Leistungs-
datums gegeben der anderen Leistungsdaten im Raum benachbart liegen.
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2 Datensatz

2.1 Datengrundlage und Herkunft

Um valide und sinnvolle Analysen durchzufiihren wird ein Datensatz mit aktuellen Leistungs-
daten aus mehreren Quellen zusammengefiihrt. Bevor dies geschehen kann, muss jedoch eine
Datengrundlage definiert werden.

Im Groflen und Ganzen sind alle Spieler, die je in der Bundesliga gespielt haben, Teil der
Datengrundlage. Um jedoch nur Spieler in den Datensatz aufzunehmen, die wirklich beze-
ichnend fiir die Bundesliga sind, miissen Einschrankungen getroffen werden.

Zum FEinen ist es wichtig, dass einzelne ausreiflende Spiele die Analysen nicht zu stark verz-
erren. Daher wird die Datengrundlage auf alle Spieler, die mindestens 4 Spiele (bzw. 360
Spielminuten) in einer Bundesligasaison gespielt haben, reduziert und die Daten werden
saisonaggregiert betrachtet.

Zum Anderen bestehen Differenzen zwischen der Bundesliga und den niedrigeren Ligen in
Deutschland, bzw. zwischen der Bundesliga und anderen Top-Ligen auf der Welt. Daher wird
die Datengrundlage weiterhin auf Spieler reduziert, die mindestens & Jahre in der Bundesliga
gespielt haben und somit tiber einen langeren Zeitraum gezeigt haben, dass ihre Fahigkeiten
denen eines Bundesligaspielers entsprechen.

Um eine Liste der Namen zu erhalten, wurden die Spielerlisten von Bundesligaprofis auf
der Seite www.weltfussball.de genutzt (“weltfussball.de” 2018). Anhand dieser Liste wurde
nach Leistungsdaten der Bundesligaprofis gesucht. Dariiber hinaus konnte iiberpriift wer-
den, wie viele Saisons ein Spieler in der Bundesliga einem Kader angehorte. Hier sind keine
Spielminuten oder gespielte Spiele angegeben, weshalb dieser Filter im Nachhinein gesetzt
werden musste.

Auf der Seite www.sportl.de waren bis Anfang des Jahres 2019 umfangreiche saisonag-
gregierte Leistungsdaten aufgelistet (“sportl.de” 2018). Dieser grofie Umfang an Leistungs-
daten existiert jedoch erst seit der Saison 2009/2010. Die Daten vor dieser Saison waren auf
nur wenige Leistungsdaten beschrinkt. Daher wurde die Datengrundlage auf alle Spieler, die
seit 2009/2010 in der Bundesliga gespielt haben ein weiteres mal eingeschrankt.

Die Spielerlisten von www.weltfussball.de wurden verwendet, um iiber die Namen der Spieler
die URLs zum Scrapen der Leistungsdaten zu ermitteln. Nicht alle Spieler sind iiber ihren
Namen gefunden worden. Die Teilmenge der gefunden Spieler wurde auf Diskriminierungen
beziiglich Herkunft, Position, Alter, Verein und Spielzeit untersucht. Es wurde kein diskri-
minierendes Muster gefunden, weshalb die Stichprobe als repréisentativ betrachtet wird. Die
Leistungsdaten enthielten die Anzahl der Spielminuten, wodurch die Spieler, die weniger als
360 Spielminuten in einer Saison aufgewiesen haben hier gefiltert wurden.

Diese Leistungsdaten bestehen aus:
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’ Leistungsdatum ‘ Reichweite ‘ Gruppierung
Spielminuten 360 - 3060 Spielminuten
Ballkontakte 127 - 3066 Spielbeteiligung Generell
Gespielte Passe 28 - 2595 Spielbeteiligung Generell
Angekommene Pésse 19 - 2343 Spielbeteiligung Generell
Fehlpasse 9 - 464 Spielbeteiligung Generell
Passquote in % 48 - 94 Spielbeteiligung Generell
Zweikampfe 0- 1227 Spielbeteiligung Generell
Zweikampfquote in % 0- 100 Spielbeteiligung Generell
Laufweite in km 20.84 - 398.67 | Korperliche Leistungen
Hochstgeschwindigkeit in km/h | 24 - 35 Korperliche Leistungen
Sprints 1-1162 Korperliche Leistungen
Tore 0-31 Tore
Tore mit dem Fuss 0-25 Tore
Kopfhballtore 0-7 Tore
Elfmetertore 0-8 Tore
Verschossene Elfmeter 0-3 Tore
Schiisse 0- 151 Spielbeteiligung Offensiv
Schussvorlagen 0-124 Spielbeteiligung Offensiv
Torvorlagen 0-20 Spielbeteiligung Offensiv
Abseits 0-60 Spielbeteiligung Offensiv
Eigentore 0-3 Spielbeteiligung Sonstiges
Fouls 0-96 Spielbeteiligung Sonstiges
Gefoult worden 0-121 Spielbeteiligung Sonstiges
Gegentore 0-70 Torwart
Gehaltene Schiisse 0- 152 Torwart
Gehaltene Elfmeter 0-5 Torwart

Tabelle 1: Ubersicht iiber die Leistungsdaten

Diese Daten sind seit Ende Januar 2019 nicht mehr direkt verfiighar, konnen jedoch noch
tiber Webarchive gefunden werden. Der Stand der Daten fir die Saison 2018/2019 ist der
16.11.2018 (zwischen dem 11. und 12. Spieltag). Im weiteren Teil der Arbeit werden vor
allem fir die Modellierung die Leistungsdaten auf ihre Spielminuten bezogen, weshalb es
unproblematisch ist eine noch laufende Saison hier aufzunehmen.

Um eine detailliertere Information tiber die gespielte Position eines Profis innerhalb einer
Saison zu erhalten, wurden die gespielten Positionen von der Seite www.transfermarkt.de an
den Datensatz angefiigt (“transfermarkt.de” 2018). Dort wurden die gespielten Positionen
zusammen mit der Anzahl an Spielen, die die Spieler auf den Positionen in einer bestimmten
Saison gespielt haben, erfasst. Diese Positionen erweitern die bisherigen Informationen, die
aus Torwart, Verteidiger, Mittelfeld und Sturm bestanden, um genauere Angaben. In diesen
Daten ist aufgefiihrt, wie haufig ein Spieler eine bestimmte Position tiber die Saison bekleidet
hat. In Tabelle 2 sind die gespielten Positionen zusammen mit der Anzahl an Beobachtungen,
die diese als “Haufigste gespielte Position” auffithren, aufgelistet. Wie zu sehen ist, existiert
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Position ‘ Anzahl an Beobachtungen ‘

Torwart 154
Linker Verteidiger 168
Rechter Verteidiger | 151

Innenverteidiger 366
Libero 1
Defensives Mittelfeld | 246
Linkes Mittelfeld 48

Rechtes Mittelfeld 46
Zentrales Mittelfeld 146
Offensives Mittelfeld | 114

Linksauflen 141
Rechtsaufen 132
Héangende Spitze 48

Mittelstiirmer 219

Tabelle 2: Anzahl der Beobachtungen pro Position

nur eine Beobachtung mit der Position Libero, was bedeutet, dass nur ein Bundesligaprofi in
diesem Datensatz iiber eine komplette Saison hauptsichlich als Libero gespielt hat. Daher
wurde diese Beobachtung nur fiir einen Teil der deskriptiven Analysen der Leistungsdaten
verwendet und nicht fir die positionsbezogenen Analysen.

Alles in allem enthélt der Datensatz, der in den folgenden Analysen untersucht wird, 1980
Beobachtungen. Jede Beobachtung entspricht den saisonaggregierten Leistungsdaten eines
Bundesligaspielers von einer bestimmten Saison zwischen 2009/2010 bis 2018/2019. Diese
Beobachtungen stammen von 407 verschiedenen Spielern.

2.2 Datenimputationen

Die Leistungsdaten von der Seite www.sportl.de weisen ein Leistungsdatum, das keine Aus-
priagung besitzt (also zum Beispiel einen Torhiter, der keinen Schuss abgegeben hat) nicht
auf, anstatt dieses mit einer 0 zu erfassen. Daher wurde eine 0-er Imputation fiir auss-
chlielich plausiblen Variablen durchgefiihrt.

Die meisten Beobachtungen weisen fiir die ausschlielich fiir Torhiiter erfassten Variablen
Gegentore, Gehaltene Schiisse und Gehaltene Elfmeter keine Auspragung auf. Diese wurden
fiir alle Positionen, abgesehen der Torhiter, mit einer 0 aufgefiillt.

Im Gegenteil dazu fehlen Zweikdimpfe ausschlieBlich bei Torhitern und die Anzahl an Fouls
und wie oft jemand Gefoult worden ist bei Torhiitern und Feldspielern mit sehr wenig
Spielminuten. Dies ist sehr plausibel, weshalb diese auch durch Oen aufgefiillt wurden.

Die Leistungsdaten fiir offensive Spielbeteiligungen, Tore und FEigentore sind haufig fehlend,
aber primér bei defensiven Spielern und Torhitern, bzw. im Falle der Eigentore bei offensiven
Spielern, weshalb auch diese mit 0en aufgefiillt wurden.
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In den Saisons vor 2011 fehlt haufig die Laufweite. Es wird vermutet, dass diese eventuell
noch nicht mitgetrackt werden konnte, da eine Laufweite von 0 km in mindestens 4 Spielen
unplausibel ist. Diese Beobachtungen wurden mit NAs aufgefillt.

2.3 Alter

Das Alter der Spieler in einer Saison wurde an ihrem Geburtstag gemessen und gerundet
aufgenommen. Da die meisten Spieler wahrend der Saison ihren Geburtstag feiern, musste
sich fiir einen bestimmten Stichtag entschieden werden, an dem das Alter bestimmt wird.
Hierfiir wurde der 31.12. als Stichtag bestimmt und das Alter an diesem Tag fiir die gesamte
Saison gemessen. Wenn ein Spieler vor diesem Tag Geburtstag hat, ist er die komplette
Rickrunde und den Rest der Hinrunde nach seinem Geburtstag bereits ein Jahr alter als
zum Start der Saison (also > 50% der Saison). Wenn ein Spieler erst nach diesem Tag
Geburtstag hat, hat er die komplette Hinrunde und die Riickrunde von Start bis zu seinem
Geburtstag mit dem Alter gespielt, mit dem er in die Saison gestartet ist (also auch > 50%
der Saison). Daher ergibt die Wahl des 31.12. als Stichtag zur Bestimmung des Alters Sinn.
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3 Deskriptive Veranschaulichung der Daten

3.1 Absolute Leistungsdaten

3.1.1 Verteilung der absoluten Leistungsdaten

Die Leistungsdaten sind ganzzahlig und metrisch gegeben. Um die Verteilungen der Leis-
tungsdaten darzustellen, wurden Histogramme verwendet. Diese Histogramme bilden die
Verteilung der Leistungsdaten ab. Anhand dieser kann einerseits erkannt werden, ob ein
Leistungsdatum einer schiefen Verteilung folgt, und andererseits, ob ein Leistungsdatum
mehrgifplig verteilt ist. Da die Leistungsdaten der Torhiiter sich deutlich von den Leistungs-
daten der Feldspieler unterscheiden, werden hier nur die Feldspieler betrachtet (bspw. hat
kein Torhiiter im Datensatz ein Tor geschossen oder im Abseits gestanden). Fiir die Vari-
ablen, die nur fiir die Torhiter Auspragungen aufweisen, wurden eigene Histogramme nur

mit den Torhitern erstellt.

Histogramme der gemessenen Leistungsdaten
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Abbildung 1: Visualisierung der absoluten Leistungsdaten durch Histogramme - Viele Aus-

pragungen

Fur die Leistungsdaten, die eine hohe Anzahl an verschiedenen Auspragungen aufweisen
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(> 25), werden Histogramme mit einer festen Anzahl an Balken abgebildet. Dies bedeutet,
dass Beobachtungen, die Nahe beieinander liegen in diskrete Klassen aufgeteilt werden und
dadurch zusammen abgebildet werden. Wiirden die Daten nicht zusammengefasst werden, so
ware die Verteilung bei manchen Leistungsdaten nur schwer zu erkennen, da sie viele Auspra-
gungen aufweisen, die jeweils nur sehr selten (z.B. 1 bis 5 mal fiir die Anzahl der gespielten
Pdasse) vorkommen. In Abbildung 1 werden alle Beobachtungen, die keine Torhiter sind,
anhand solcher Histogramme abgebildet. Wie hier zu sehen ist, sind die meisten Leistungs-
daten linkssteil verteilt. Die Passquote weist hingegen eine rechtssteile Verteilung auf. Die
Laufweite scheint iiber den Wertebereich in etwa gleichverteilt zu sein. Die Zweikampfquote
ahnelt noch am meisten einer Normalverteilung. Alle Leistungsdaten liegen in einem plausi-

blen Wertebereich.

Die anderen Leistungsdaten, die nur eine sehr niedrige Anzahl an verschiedenen Auspragun-
gen aufweisen (< 25), sind ohne Zusammenfassen fiir jede Ausprigung gezéhlt worden und
in Histogrammen in Abbildung 2 dargestellt.

Histogramme der gemessenen Leistungsdaten
Wenige Auspragungen
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Abbildung 2: Visualisierung der absoluten Leistungsdaten durch Histogramme - Wenige Aus-
pragungen

Bis auf die Hdéchstgeschwindigkeit, die eine leichte rechtssteile Verteilung aufweist, sind die
Leistungsdaten mit wenigen Auspridgungen alle linkssteil.
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Um die drei Torhititer-Leistungsdaten nocheinmal genauer zu betrachten, sind diese nur fiir
die Torhiter in Abbildung 3 visualisiert.

Histogramme der gemessenen Leistungsdaten
Torhter
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Abbildung 3: Visualisierung der absoluten Leistungsdaten der Torhiiter
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Bis auf eine klare linkssteile Verteilung der Anzahl an gehaltenen Elfmeter folgen die an-
deren beiden Verteilungen keinen eindeutigen Strukturen. Die Anzahl an Gegentoren weist
eine leicht bimodale Struktur auf, wihrend die Anzahl an gehaltenen Schiissen eine leichte
rechtssteile Verteilung aufweist.

3.1.2 Zusammenhinge der absoluten Leistungsdaten

Um die Zusammenhénge zwischen den Leistungsdaten zu iiberpriifen, werden ihre Korre-
lationen nach Pearson gemessen. Diese Zusammenhange sind hier als Heatmap dargestellt.
Eine rote Kachel steht fiir eine positive Korrelation zwischen den beiden Leistungsdaten und
eine blaue Kachel fiir eine negative Korrelation. Je hoher die Farbséttigung, desto hoher die
Korrelation nach Pearson.
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Korrelationen
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Abbildung 4: Visualisierung der Korrelation nach Pearson der absoluten Leistungsdaten

Aufféllig sind die ersten vier aufgefithrten Leistungsdaten, also Ballkontakte, Gespielte Pdsse,
Angekommene Pdsse und Fehlpdsse, da diese alle hoch positiv miteinander korreliert sind.
Auch die Laufweite in km weist noch eine hohe positive Korrelation mit den vier Leis-
tungsdaten auf. Abgesehen von der Laufweite messen all diese Leistungsdaten die generelle
Spielbeteiligung der Bundesligaprofis.

Eine weitere Gruppe hoch positiv korrelierter Leistungsdaten sind die Schiisse, Schussvor-
lagen, Torvorlagen und Abseitsstellungen. Diese Leistungsdaten messen die offensive Spiel-
beteiligung der Bundesligaprofis.

Dariiber hinaus weisen die Torhiiter-Leistungsdaten Gegentore und Gehaltene Schiisse eine
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sehr hohe positive Korrelation auf, wiahrend die Variable Gehaltene Elfmeter nur eine leichte
positive Korrelation mit den anderen beiden Torhiiter-Leistungsdaten aufweist. Dies ist je-
doch die hochste mit Oen befiillte Variable, weshalb hier keine hohe Korrelation mit den
anderen Leistungsdaten erwartet werden kann.

Das Alter weist keine hohe Korrelation mit einem der anderen Leistungsdaten auf. Dies
bedeutet, dass keine der Leistungsdaten mit steigendem Alter stark linear abféllt, bzw. zu-
nimmt.

3.2 Relative Leistungsdaten
3.2.1 Verteilung der relativen Leistungsdaten

Die bisherigen Visualisierungen weisen die Verteilungen und Zusammenhange zwischen den
absolut gemessenen Leistungsdaten auf. Dies bedeutet, dass Verteilungen und Korrelationen
dadurch stark beeinflusst worden sind, wie viel Spielzeit ein Spieler in einer Saison ange-
sammelt hat. Das wirkliche Interesse an diesen Daten steckt aber darin, die Fahigkeiten der
einzelnen Spieler zu messen und diese miteinander zu vergleichen. Aus diesem Grund wur-
den die Leistungsdaten auf ihre Spielzeit bezogen. Da eine Angabe pro Spielminute jedoch
schwer zu interpretieren ist, wurden die Leistungsdaten auf ihre Einheit pro 90 Minuten be-
zogen. Die neuen Leistungsdaten bilden also ab, wie viele Pdsse, Zweikimpfe, Schiisse, etc.
ein Spieler pro Spiel (exklusive Nachspielzeit) in einer Saison aufweisen konnte.

Die Leistungsdaten Passquote (in %), die Zweikampfquote (in %) und die Hdchst-
geschwindigkeit (in km/h) sind bereits relativ, weshalb diese nicht erneut auf ihre Spielzeit
bezogen wurden.

Die Verteilungen der relativen Leistungsdaten sieht aus wie folgt:
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Histogramme der gemessenen Leistungsdaten
Viele Auspragungen — Pro 90 Minuten
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Abbildung 5: Visualisierung der relativen Leistungsdaten durch Histogramme - Viele Aus-
pragungen - Pro 90 Minuten

Eine grofle Veranderung ist in der Laufweite zu sehen. Diese weist jetzt eine annahernd
normalverteilte Form auf. Die weiteren Leistungsdaten d&ndern die Form der Verteilung nur
leicht, der grofite Unterschied ist der neue Wertebereich.

Die Leistungsdaten, die zuvor wenige Auspriagungen aufweisen konnten, weisen nun durch das
Relativieren eine hohere Anzahl an verschiedenen Ausprédgungen auf, wie die Histogramme

in Abbildung 6 zeigen.
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Histogramme der gemessenen Leistungsdaten
Wenige Auspragungen — Pro 90 Minuten

Hochstgeschwindigkeit (km/h) Tore Tore mit dem Fuf3
500-
600 -
400 -
400 -
300- 400 -
200- 200-
200-
100- I I
ol _n L - Illll _____ o [ [T —
28 30 32 34 0.0 05 10 0.0 03 0.6 0.9
Kopfballtore Elfmetertore Verschossene Elfmeter
1500 - 1500 -
1000-
1000 - 1000 -
500-
500 - 500 -
0- -I.-—__, 0- -— 0- —
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15
Torvorlagen Eigentore Alter
500- 200 -
1500 -
400- 150-
300- 1000 -
100 -
200-
500 - 50-
ol [ T o _ . W [
' ' ' ' ' ' ' ' ' ' ' ' ' '
0.00 0.25 0.50 0.75 1.00 0.00 0.05 0.10 0.15 20 25 30 35 40

Abbildung 6: Visualisierung der relativen Leistungsdaten durch Histogramme - Wenige Aus-
pragungen - Pro 90 Minuten

Mit dem die Anzahl der unterschiedlichen Ausprédgungen durch das Relativieren steigt, wer-
den abgesehen von der Anzahl der Beobachtungen mit einer 0 als Auspriagung (bspw. weisen
Beobachtungen mit 0 erzielten Kopfballtoren auch beim Relativieren 0 erzielte Kopfballtore
pro Spiel auf) die Anzahlen pro Balken im Histogramm kleiner. Visuell entsteht dadurch
ein starkerer Effekt im Vergleich von der Anzahl der 0en mit den restlichen Ausprédgungen.
Tendenziell bleiben jedoch alle Verteilungen auch nach Relativieren ihrer Form treu (z.B.
linkssteile Verteilungen bleiben nach Relativieren linkssteil).

Auch fir die relativen Torhtiter-Leistungsdaten wird eine eigenstédndige Betrachtung durchge-
fiihrt, damit ein Uberblick iiber diese Daten gegeben werden kann. Dies ist in Abbildung 7
dargestellt.
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Histogramme der gemessenen Leistungsdaten
Torhter — Pro 90 Minuten
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Abbildung 7: Visualisierung der relativen Leistungsdaten der Torhiiter - Pro 90 Minuten

3.2.2 Zusammenhinge der relativen Leistungsdaten

An den Korrelationen nach Pearson zwischen den Leistungsdaten finden einige Verdnderun-
gen statt, wenn diese nicht absolut, sondern relativ betrachtet werden. Warum dies zu grofien
Unterschieden fiithren kann, ist in folgendem Beispiel dargestellt:

o Spieler A spielt in 100 Minuten 40 Pésse und 10 Fehlpasse.

o Spieler B spielt in 400 Minuten 200 Pésse und 20 Fehlpésse.

Die beiden Variablen Pdsse und Fehlpdsse waren in diesem Beispiel positiv korreliert. Werden
die Daten jedoch auf ihre Spielminuten bezogen, dann ergibt sich folgende Situation:

» Spieler A spielt pro Minute 0.4 Passe und 0.1 Fehlpass.

o Spieler B spielt pro Minute 0.5 Passe und 0.05 Fehlpasse.
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Auf die Spielminuten bezogen ergibt sich fiir dieses Beispiel eine negative Korrelation zwis-
chen den beiden Variablen Pdsse und Fehlpdsse.

Korrelationen
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Abbildung 8: Visualisierung der Korrelation nach Pearson der relativen Leistungsdaten

In Abbildung 8 sind die Korrelationen nach relativieren der Leistungsdaten abgebildet. Die
hohen positiven Korrelationen, die vorher zwischen der Laufweite und den Leistungsdaten,
die die Spielbeteiligung beschreiben, gemessen werden konnten, sind nun gegen 0 gesunken.

Die Torhiiter-Leistungsdaten Gegentore und Gehaltene Schiisse haben vorher schwach nega-
tive Korrelationen zu den korperlichen Leistungsdaten Laufweite, Hochstgeschwindigkeit und
Anzahl an Sprints aufgewiesen. Diese sind durch die relative Betrachtung jedoch deutlich
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negativer korreliert.

3.3 Starker Fuss Verteilung auf dem Spielfeld

Wer das ein oder andere FuBballspiel in der Kreisliga verfolgt hat, dem ist bestimmt schon
aufgefallen, dass jeder meint er sei ein Experte darin zu wissen, auf welcher Position ein
Links-, bzw. ein Rechtsfiiller zu spielen hat. Begriindung dafiir sind zum Beispiel, dass ein
Verteidiger auf dem adufleren Fuf}, also ein Rechtsverteidiger auf dem rechten Fufl und ein
Linksverteidiger auf dem linken Fufl stark sein muss, um den angreifenden Fliigelspieler
einfacher am Flanken hindern zu kénnen. Genauso benétigt ein Fliigelstiirmer einen guten
auBeren Fufl, um Flanken zu kénnen. Andere wiederum sind der Meinung, dass der Fliigel-
stiirmer einen guten inneren Fufl haben muss, damit er gefahrlicher aufs Tor schieflen kann.

Starker Fuss pro Position

Absolute Anzahl
Gesamte Verteillung:
(zum Vergleich)

. &
4. .7

Starker Fuld
v DM bl oM s| s I veicinio
[ . } B uinks
-
. Rechts
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RM .

s>

—_—
Spielrichtung

Abbildung 9: Verteilung des starken Fufles auf dem Spielfeld in der Bundesliga

Auf der Homepage von The Guardian ist ein Artikel von 2010, der von dieser Thematik han-
delt (Wilson 2010). In diesem Artikel wird diskutiert, dass immer mehr Fliigelspieler auf der
‘falschen’ Seite spielen. Hier wird ein weiteres Argument gebracht, warum ein Fliigelspieler
auf der ‘falschen’ Seite effektiv ist. Ein Verteidiger hat in der Regel einen starken &ufleren
und schwachen inneren Fuf;, damit Flanken verhindert werden konnen. Ein Fliigelspieler
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mit einem starken aufleren Fuf} tritt also gegen den starken duleren Fufl des Verteidigers
an, wohingegen ein Fliigelspieler mit einem starkeren inneren Fufl gegen den schwécheren
inneren Fufl des Verteidigers antritt.

Die Verteilung des starken Fufles der Bundesliga ist in Abbildung 9 dargestellt. Was hier
auffallt, ist die Verteilung des starken Fufles bei den Auflenverteidigern und den &ufleren
Mittelfeldpositionen. Wahrend auf der linken Seite vorwiegend Linksfiiller spielen, spielen
auf der rechten Seite vorwiegend Rechtsfiifller. Dass auf den Auflenverteidigerpositionen also
Spieler mit starkem aufleren Fufl eingesetzt werden ist hier deutlich zu erkennen.

Auf der anderen Seite ist zwischen den Verteilungen der linken und rechten Fliigelspieler
kaum ein Unterschied zu erkennen. Wie auch in der gesamten Verteilung des starken Fufles zu
erkennen ist, gibt es ein etwa 65%-iges Ubergewicht an Rechtsfiifllern auf beiden Positionen.
Das bedeutet, dass viele Rechtsfiiller auf dem entgegengesetzten Fliigel spielen, jedoch nur
wenige Linksfiiller. Dies konnte jedoch keine taktischen Griinde haben, sondern durch die
Verfiigbarkeit von Rechts- und Linksfiillern zu erklaren sein. Wenn es nur wenige Linksfiifiler
gibt, konnen auch nur weniger taktisch eingesetzt werden.

Eine weitere interessante Erkenntnis ist der weit iiberdurchschnittlich hohe Anteil an beid-
fiifigen Spielern und die Unterbesetzung der Rechtsfiiller auf der Position des offensiven
Mittelfelds. Ein Spieler auf der Position des offensiven Mittelfelds hat die Aufgabe Chancen
zu kreieren, Abschliisse zu suchen und die Bélle gezielt zu verteilen. Diese Position ist von
einem sehr hohen Anteil an Kreativitat gepréigt. Im Journal of Nervous and Mental Disease
wurde 2007 in einem Artikel von Preti und Vellante eine Verbindung zwischen kreativen
Kiinstlern und ihrer starken Hand untersucht (Preti and Vellante 2007). In dieser Studie
wurde gemessen, dass der Anteil an nicht-Rechtshindern bei kreativen Menschen grofier ist
als in ihrer Kontrollgruppe. Wenn sich dies auf Leute tibertagen lasst, die nicht-Rechtsfifller
sind, dann kénnte dadurch ein natiirlicher Zusammenhang gefunden werden, wieso sich die
Verteilung des starken Fufles auf der kreativen Position des offensiven Mittelfeldspielers so
sehr von der Gesamtpopulation unterscheidet.

Eine weitere Erklarung konnte die Notwendigkeit beider Fiifle auf dieser Position sein. Ein
offensiver Mittelfeldspieler muss in der Lage sein den Ball auf beide Fliigel zu verteilen. Ist
ein Spieler nur rechts- oder linksfiiflig, so wiirde es ihn einen unnatiirlichen extra Aufwand
kosten den Ball in die “unnatiirliche” Richtung nach Auflen zu spielen. Gemeint ist damit
beispielsweise, dass ein Rechtsfiiler mit der Innenseite seines rechten Fufles den Ball mit
Blickrichtung zum gegnerischen Tor einfach auf die linke Seite passen kann. Wenn er einen
Pass auf die rechte Seite spielen mochte, muss er entweder die in der Regel unprézisere duflere
Seite des FuBes nutzen oder sich erst umdrehen, um den Pass mit dem rechten Fuf zu spielen.
Ist ein Spieler jedoch mit beiden Fiiflen stark, kann er schnell und prézise den Ball auf beide
Seiten des Spielfelds verteilen.

Diese beiden moglichen Erklarungen miissten jedoch erst in einer aufwendigen Studie unter-
sucht werden, um sie zu bestatigen, was in dieser Arbeit jedoch nicht mehr getan wird.
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3.4 Auswahl der Leistungsdaten fiir die Modellierung

Fiir eine durchdringende Analyse und eine gute Modellierung muss eine Auswahl an Variablen
getroffen werden, die dafiir relevant sind. Da beispielsweise die Anzahl der angekommenen
Pisse und die Anzahl der Fehlpisse die Gesamtanzahl der Pdsse ergeben, wiirde dadurch
eine lineare Abhéngigkeit der Variablen entstehen, was in einer Modellierung zum Problem
der Multikollinearitét fiithrt.

Dariiber hinaus gibt es Variablen, die sehr hoch miteinander korreliert sind, weswegen es
sinnvoll wére nur eine der beiden in das Modell aufzunehmen, wie zum Beispiel die Anzahl
der geschossenen Tore und die Anzahl der mit dem Fufl geschossenen Tore.

Andere Variablen wiederum weisen die Problematik auf, dass sie nur Momentaufnahmen sind
und nicht die Leistung eines Spielers iiber mehrere Spiele widerspiegeln, wie zum Beispiel
die Hdéchstgeschwindigkeit.

Alles in allem wurde das Variablen-Set auf 11 relevante Variablen reduziert (siche Tabelle
3). Hier sind nicht die absoluten Werte der Leistungsdaten gemeint, sondern die auf ihre
Spielminuten bezogenen Werte.

\ Variable \ Beschreibung

Gespielte Passe Misst die Spielbeteiligung eines Spielers mit Ball

Angekommene Pésse (in %) Misst die Qualitat der Pésse

Gefiithrte Zweikampfe Misst die Spielbeteiligung eines Spielers mit und gegen
den Ball

Gewonnene Zweikampfe (in %) | Misst die Qualitat der Zweikdmpfe

Begangene Fouls Misst, wie hdufig ein Foul begangen werden muss, um
einen Gegner zu stoppen

Gefoult worden Misst, wie hdufig der Gegner foulen muss, um den Spiel-
er zu stoppen

Laufweite Misst die korperliche Ausdauerleistung eines Spielers

Abseits Misst die offensive Einsatzbereitschaft eines Spielers

Vorlagen Misst die Fahigkeit ein Tor vorzubereiten

Geschossene Tore mit dem Fuss | Misst die Fahigkeit Tore zu erzielen

Geschossene Tore mit dem Kopf | Misst die Kopfballstéarke eines Spielers

Tabelle 3: Ausgewahlte Variablen

Diese Variablen werden fiir die Modellierungen verwendet. In Abbildung 10 ist die Korrela-
tion der ausgewéhlten Variablen dargestellt. Die hochste Korrelation nach Pearson besteht
zwischen der Anzahl der gefiihrten Zweikimpfe und der Laufweite mit 0.76. Trotz dieser
sehr hohen Korrelation sollen beide Variablen fiir die Modellierung betrachtet werden, da sie
verschiedene Leistungen eines Spielers messen.
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Korrelationen
Leistungsdaten pro Spiel
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Abbildung 10: Korrelation der ausgewéhlten Modellvariablen

3.5 Zusammenfassen von Positionen

Wie bereits in Tabelle 2 auf Seite 5 zu sehen ist, sind manche Klassen schwécher besetzt als
andere. Dies gilt vor allem fiir die dufleren Mittelfeldpositionen und die Hdngende Spitze. Um
fehlerhafte Analysen durch unterbesetzte Klassen zu vermeiden, werden daher Positionen,
die (in etwa) diegleiche Funktion auf dem Spielfeld haben, zusammengefasst.

Um durch dieses Vorgehen die Analysen nicht zu verfilschen wird mit bonferroni-korrigierten
t-Tests untersucht, ob sich die Positionen beziiglich ihrer Leistungsdaten signifikant unter-
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scheiden. Die Bonferroni-Korrektur ist notig, da multiple Tests gleichzeitig betrachtet werden
(und zwar 1 Test pro Leistungsdatum, das tberprift wurde).

Die Beobachtungen, die dabei tiberpriift werden, sind jedoch nicht unabhéngig, da eine Per-
son sowohl auf dergleichen Position, als auch auf den beiden Positionen, die verglichen wer-
den, mehrere Saisons gespielt haben kann. Daher muss der Datensatz zuféllig auf einen
Teildatensatz reduziert werden, indem jeder Spieler genau einmal vorkommt. Dies wére je-
doch nur eine Aufnahme fiir einen einzelnen zuféllig gezogenen Teildatensatz und kénnte dem
Zufall geschuldet Unterschiede aufweisen, die im Gesamtdatensatz jedoch nicht vorhanden
sind. Daher werden diese t-Tests 100 mal mit verschiedenen Teildatensédtzen wiederholt.

t-Tests — Konfidenzintervalle
Vergleich linker Verteidiger und rechter Verteidiger
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Abbildung 11: Vergleich zwischen linken und rechten Verteidigern

In Abbildung 11 ist der Vergleich der Leistungsdaten zwischen den linken und rechten Vertei-
digern abgebildet. Das schwarz eingezeichnete Intervall bildet das Konfidenzintervall der Dif-
ferenz des jeweiligen Leistungsdatums fiir einen einzelnen beispielhaften Teildatensatz ab.
Das blaue Intervall bildet das Minimum und das Maximum der Konfidenzintervalle der Dif-
ferenz des jeweiligen Leistungsdatums fiir alle Teildatensétze ab. Um die Intervalle miteinan-
der vergleichbar zu machen, wurden sie standardisiert. Der Wert 1 auf der x-Achse bedeutet,
dass dieser Punkt eine Standardabweichung von der 0 entfernt ist. Enthélt das blaue Intervall
die 0, so wird keine signifkante Differenz dieses Leistungsdatums zwischen den beiden betra-
chteten Gruppen festgestellt. Enthéalt dieses Intervall die 0 nicht, so wurde eine signifikante
Differenz dieses Leistungsdatums zwischen den beiden betrachteten Gruppen festgestellt.

Wie in Abbildung 11 zu sehen ist, unterscheiden sich die linken und rechten Verteidiger nicht
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signifikant, weshalb diese beiden Positionen zu einer gemeinsamen Aufienverteidiger-Position
zusammengefasst werden. Wie den weiteren untersuchten Paaren (s. Anhang) zu entnehmen
ist, unterscheiden sich auch die linken und rechten Mittelfeldspieler, die Links- und Recht-
sauflen Spieler und die Spieler auf der hdngenden Spitze und die offensiven Mittelfeldspieler
nicht. Die linken und rechten Mittelfeldspieler werden als Mittelfeld Auflen-Position zusam-
mengefiihrt, die Links- und Rechtsauffen Spieler werden als Fligelspieler zusammen gefasst
und die als Hdngende Spitze Spielenden werden zusammen mit den offensiven Mittelfeld-
spielern als gemeinsames Offensives Mittelfeld betrachtet.

Das Verwenden der einfachen Bonferroni-Korrektur ist ein sehr konservativer Ansatz. Das
bedeutet, dass ein moglicherweise siginifkanter Effekt nicht erkannt werden wiirde. Das durch
100 Simulationen erzeugte Intervall verbreitert dieses bonferroni-korrigierte Konfidenzinter-
vall noch weiter, was zu einem zu konservativen Intervall fithren konnte, das kaum signifikante
Effekte erfassen wiirde. Um zu demonstrieren, dass dies doch geschehen kann, wenn zwei
wirklich unterschiedliche Gruppen untersucht werden wiirden, ist in Abbildung 12 ein Ver-
gleich von Innenverteidigern und offensiven Mittelfeldspielern aufgefithrt, in dem deutlich
signifikante Effekte zu erkennen sind. In einem solchen Fall wiirde das Verbinden dieser
beiden Gruppen nicht erlaubt sein.

t-Tests — Konfidenzintervalle
Vergleich Innenverteidiger und Offensives Mittelfeld
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Abbildung 12: Vergleich zwischen Innenverteidigern und offensives Mittelfeldspielern

Durch diese Klassenzusammenfithrung ergibt sich eine neue Verteilung der Positionen, die
in Tabelle 4 dargestellt ist.
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’ Position ‘ Anzahl an Beobachtungen ‘
Torwart 154
AuBenverteidiger 319
Innenverteidiger 366
Libero 1

Defensives Mittelfeld | 246
Mittelfeld Auflen 94

Zentrales Mittelfeld 146
Offensives Mittelfeld | 162
Fligelspieler 273
Mittelstiirmer 219

Tabelle 4: Anzahl der Beobachtungen pro Position

3.6 Mittlere Leistungsdaten pro Position

Um einen Eindruck davon zu erhalten, auf welchen Positionen welche Leistungsdaten beson-
ders hoch ausgepréigt sind, werden alle Leistungsdaten beziiglich ihrer Position gemittelt
und in Radarplots miteinander verglichen. Um zu vermeiden, dass durch zu viele Klassen
die Ubersicht verloren geht, wurden die defensiven Leistungsdaten fiir die defensiven
Positionen und die offensiven Leistungsdaten fiir die offensiven Positionen in Abbil-
dung 13 und Abbildung 14 dargestellt. Fiir diese Visualisierung wurden auch die Variablen
verwendet, die nicht fiir die Modellierung hinzugenommen wurden.

Die in den Radarplots abgebildeten Werte my, ;* werden fir die k& Positionen und [ Variablen
mit Formel (1) und Formel (2) ermittelt.

mip =~ 2 (k)i (1)

wobei Ny die Anzahl der Beobachtungen fiir Position k& darstellt und (zy;); den i-ten Wert
fiir Position k£ und Leistungsdatum I.

Diese Mittelwerte pro Position und Leistungsdatum werden fiir die Visualisierung mit einem
Radarplot auf einen Wertebereich zwischen 0 und 1 skaliert, wobei 0 der natiirliche Nullpunkt
darstellt und 1 das Maximum der Werte m,; pro Leistungsdatum. Diese Umskalierung
geschieht durch Formel (2).

Mg
* = ——— 2
Ml maz(me;)’ 2)

wobei m,; den Vektor my,; iiber alle k fiir ein festes Leistungsdatum [ darstellt.
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Leistungsdaten pro Spiel (Defensive)
Mittlere Leistungsdaten pro Spiel pro Position

Eigentore

Fehlpasse 100% Alter

Angekommene Pésse Ballkontakte

—®— AuRenverteidiger

Gefoult worden Péasse

Defensives Mittelfeld
—®— Innenverteidiger
Mittelfeld Auten

—®— Torwart

Fouls Passquote (%)

—®— Zentrales Mittelfeld

Gehaltene Elfmeter Zweikampf

Gehaltene Biélle Zweikampfquote (%)

Gegentore

Abbildung 13: Mittlere defensive Leistungsdaten pro Position

In Abbildung 13 fallen sehr schnell die Variablen auf, die nur fir Torhiter Werte enthalten. In
diesen Variablen dominieren natiirlich die Torhiter im Vergleich zu den anderen Positionen.
Dariiber hinaus dominieren Torhiter in der prozentualen Anzahl gewonnener Zweikdmpfe
und haben ein leicht tiberdurchschnittlich hohes Alter im Vergleich zu den restlichen Posi-
tionen. Bei allen anderen Variablen belegen sie deutlich den letzten Platz.

Wahrend die Aufienverteidiger die meisten Ballkontakte und etwas mehr Fehlpdsse als der
Rest aufweisen, weisen die tibrigen Spielanteilsvariablen wie die Anzahl gespielter Pdsse,
die Anzahl der angekommenen Pdsse die Anzahl der prozentual angekommenen Pdsse und
die Anzahl der prozentual gewonnenen Zweikimpfe (nach den Torhitern) bei den Innen-
verteidigern die hochsten Werte auf. Sehr dominant sind die Zahlen der Eigentore bei den
Innenverteidigern.

Die meisten Zweikimpfe und die meisten Fouls finden im zentralen Mittelfeld statt. Die
Spieler dort werden dariiber hinaus noch am haufigsten gefoult.



3 DESKRIPTIVE VERANSCHAULICHUNG DER DATEN 24

Leistungsdaten pro Spiel (Offensive)
Mittlere Leistungsdaten pro Spiel pro Position

Schisse

Geschwindigkeit (km/h) Schussvorlagen

Sprints /4 Bgop_-C.. Torvorlagen

—&— Flagelspieler
Mittelfeld AuRen

—&— Mittelstirmer Laufweite (km)  ®'® Tore

Offensives Mittelfeld

—&— Zentrales Mittelfeld

Abseits Kopfballtore

Verschossene Elfmeter Tore mit dem FuR

Elfmetertore

Abbildung 14: Mittlere offensive Leistungsdaten pro Position

In Abbildung 14 fallen die Werte der Mittelstiirmer sehr schnell auf, da sie in 7 der 12 of-
fensiven Kategorien die hochsten Werte aufweisen, ndmlich in der Anzahl der abgegebenen
Schiisse, der Tore, der Kopfballtore, der Tore mit dem Fuf, der Elfmetertore, der verschosse-
nen Elfmeter und der Abseitsstellungen.

Die meisten Schussvorlagen und dann zum Tor fiihrende Vorlagen werden von den offensiven
Mittelfeldspielern abgegeben, dicht gefolgt von den Fligelspielern.

Die Fligelspieler weisen die hochsten Werte in den schnellen korperlichen Kategorien auf.
In der durchschnittlichen Anzahl der Sprints fithren die Fligelspieler deutlich, wahrend sie
in der durchschnittlichen Héchstgeschwindigkeit nur knapp fiihren.

Die hochste Laufweite weisen die zentralen Mittelfeldspieler auf. Diese und die durchschnit-
tliche Hochstgeschwindigkeit weisen jedoch zwischen den Positionen die geringsten Differen-
zen auf.
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4 Modellierung der Daten

4.1 Modellierungsziel

Um zu verstehen, wie sich die Leistungsdaten zwischen den verschiedenen Positionen unter-
scheiden, wird eine Modellierung vorgenommen, in der die Position anhand der Leistungs-
daten eines Spielers klassifiziert wird. Mit interpretierbaren Machine Learning Methoden, die
auch auf klassische Modelle angewendet werden konnen, wird dann versucht die Beziehung
zwischen den Leistungsdaten und den verschiedenen Positionen zu erarbeiten und somit die
Modelle zu vergleichen.

Die Beziehung zwischen den Positionen und den Leistungsdaten wird wie folgt formuliert:

mit §; = PositionSpieler;, x; = LeistungsdatenSpieler; und f(-) eine Funktion, bzw. ein
Modell, das eine Entscheidung dariiber fillt, auf welcher Position ein Spieler gegeben seiner
Leistungsdaten gespielt hat.

Ziel ist die Interpretation der Beziehung zwischen z und f(x) und zu verstehen, wie die
Beobachtungen beziiglich der verschiedenen Positionen im Raum der Leistungsdaten verteilt
sind. Dariiber hinaus soll die Beziehung zwischen zwei geeigneten, aber verschiedenen, Mod-
ellierungen miteinander vergleichbar gemacht werden.

4.2 Methoden
4.2.1 Modellauswahl

Fir die Modellierung soll ein Modell aus der Familie der Regressionsanalysen fiir Klassifika-
tionen und eine giangige Klassifikationsart aus dem Bereich des Machine Learning verwendet
werden.

Als klassische Regressionsanalyse bietet sich eine multinomiale logistische Regression an.
Diese ist eine Erweiterung der binaren logistischen Regression und modelliert den Zusammen-
hang zwischen einem Variablenvektor x und einer kategoriellen Zielgrofle y mit k£ > 2 Klassen
durch einen linearen Priadiktor, der die Chance einer Beobachtung einer Klasse anzugehoren
im Vergleich zu einer Referenzkategorie schatzt. Da jede Klasse einen Bezug zur Referen-
zkategorie aufweist, kann fiir jede Kategorie eine Wahrscheinlichkeit berechnet werden, mit
welcher eine Beobachtung zu dieser Klasse gehort. Fiir diese Modellierung wird sich auf
lineare Effekte der Einflussgrofien ohne Interaktionen oder quadratische Effekte beschréankt.
Der Hauptgrund dafiir ist, dass auch durch lineare Effekte bereits fiir 8 Klassen (9 Positionen
minus eine Referenzkategorie) und 11 Variablen insgesamt 88 Koeffizienten geschéitzt werden
missen und der Umfang der Daten nur knapp unterhalb von 2000 Beobachtungen liegt.

Fiir diese multinomiale logistische Regression wird die Funktion multinom aus dem R-Paket
nnet verwendet. Diese Implementatierung der multinomialen logistischen Regression schatzt
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die Regressionskoeflizienten iiber neuronale Netze. Diese neuronalen Netze updaten itera-
tionsweise die Regressionskeoffizienten, damit der Kleinste-Quadrate-Fehler auf den Train-
ingsdaten minimiert wird. Dieses Verfahren approximiert den KQ-Schétzer fiir die Regres-
sionskoeffizienten (Venables and Ripley 2002).

Aus dem Bereich des Machine Learning wird ein (Klassifikations-) Random Forest verwen-
det, wie ihn Breiman vorgeschlagen hat (Breiman 2001). Ein Random Forest modelliert
die Beziehung zwischen den Einflussgrofien x und der kategoriellen Zielgrofie y mit k& > 2
Klassen durch viele moglichst unterschiedliche Badume mit “guter” Pradiktionsgiite. Jeder
Baum klassifiziert eine Beobachtung in eine der Kategorien, wodurch nach Betrachtung aller
Béaume eine Gesamtwahrscheinlichkeit fiir jede Kategorie berechnet werden kann, zu der eine
Beobachtung dieser Kategorie angehort.

Fir diese Analyse wird die im R-Paket ranger verwendete Implementierung von Random
Forests verwendet. Dies ist eine computational schnelle Implementatierung der Random
Forests, die jedoch nachgewiesen keine schlechtere Pradiktion vorweist als die originale Im-
plementierung von Breimans Random Forests in R (Wright and Ziegler 2017).

Die Funktionsweise der beiden Modellierungen wird im weiteren Teil dieser Arbeit an den
passenden Stellen néher erlautert und anschlieBend miteinander verglichen.

4.2.2 Interpretierbares Machine Learning zur Vergleichbarkeit

4.2.2.1 Variable Importance

Wiéhrend die multinomiale logistische Regression aus dem Bereich der Regressionsanalysen
stammt und durch Regressionskoeffizienten leicht zu interpretieren ist, stammen die Ran-
dom Forests aus dem Bereich des Machine Learnings und weisen keine leicht zu interpretier-
baren Regressionskoeffizienten auf. Um die beiden Modellierungen miteinander vergleichbar
zu machen werden interpretierbare Machine Learning Methoden angewendet, die auf beide
Modelle anwendbar sind.

Eine mit dem Random Forest haufig verbundene Methode ist die Berechnung der Vari-
able Importance. Die Variable Importance ist ein Mal um die Variablen geméafl ihrer
“Wichtigkeit” in der Modellierung einzuordnen. Eine Variable Importance zu messen funk-
tioniert auf verschiedene Arten. Fiir diese Arbeit wird die von Breiman 2001 vorgeschlagene
Idee fiir das Messen der Variable Importance durch Permutation aufgegriffen.

Diese Implementierung des Random Forests beinhaltet eine automatische Variable Impor-
tance Berechnung nach der Methode “permutation”. Diese Methode nutzt den Vorschlag von
Breiman. Da die beiden Modelle jedoch fair verglichen werden sollen, wird eine eigene Vari-
able Importance nach diesem Vorschlag von Breiman berechnet. Um eine Streuung fiir diese
Methode zu erhalten, werden die beiden Modelle 100 mal mit verschiedenen Trainingsdaten-
sitzen gefittet. Aus diesen 100 Wiederholungen wird dann fiir jede Variable eine Streuung
bestimmt.

Um die fiir die Random Forests berechnete Variable Importance mit der multinomialen logis-
tischen Regression zu vergleichen, wird die Variable Importance wie folgt per Hand berechnet:
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1. Ein Trainings- und Testdatensatz wird generiert

2. Das geschitzte Modell f(z) wird auf Trainingsdaten gefittet

3. Ein Giitemafl des Modells wird fiir einen Testdatensatz berechnet

4. Der Testdatensatz wird durch Permutieren einer einzelnen Variable verdndert
5. Die Verschlechterung des Giitemafles wird berechnet

6. Schritt 4. und 5. werden fiir jede Variable wiederholt

Als Trainings- und Testdatensplitrate wird ein % Trainingsdaten- und % Testdaten-Split
gewahlt. Um eine Streuung fiir die Variable Importance zu schitzen, wird dieser Vorgang
100 mal wiederholt. Als Punktschétzer fiir die Variable Importance wird das arithmetische
Mittel fiir jede Variable berechnet, wodurch eine Rangfolge der Variablen beziiglich ihrer
Wichtigkeit fir das Modell bestimmt wird.

Jeder einzelne Baum eines Random Forests konnte als eigenstiandiges Modell betrachtet
werden. Die Variable Importance, die durch das Ensemble der einzelnen Baume generiert
wird, ist also bereits aufgrund von vielen Modellen gemittelt. Dadurch werden fiir die Random
Forest Variable Importance etwas kleinere Streuungen erwartet. Die Punktschatzung, und
damit auch die Rangfolge zwischen beiden Modellen, bleibt jedoch vergleichbar.

4.2.2.2 Partial Dependence Plots

Ein Partial Dependence Plot (kurz PDP) ist eine Visualisierungstechnik, die helfen soll
den marginalen Effekt einer bestimmten Variable auf eine Zielgrofle iiber ihren kompletten
Wertebereich zu visualisieren.

Die Idee der partial dependence ist es den Effekt einer oder mehrerer Variablen in dem Modell

durch das Integrieren iiber die marginale Verteilung der tibrigen Kovariablen zu erhalten
(Friedman 2001).

Sei x; die interessierende Variable und x\; die Kovariablen ohne z;, dann ist

A

E,\ (/@) = [ flanepu(@)dny 4)

eine Funktion, die die partial dependence fiir x; bedingt auf x\; abbildet. p\;(z\;) ist hier
die marginale Wahrscheinlichkeitsfunktion von x;, welche aus den Trainingsdaten ermittelt
werden kann (Friedman 2001). Dies funktioniert jedoch nur dann, wenn die Abhéngigkeiten
zwischen den Kovariablen nicht zu stark sind.

Da p\;(z\;) aus den Trainingsdaten ermittelt werden kann, kann (4) zu

1
N’L:ZI Xy, T \l (5)
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umgeformt werden. Dies bedeutet, dass die partial dependence an einem bestimmten Punkt
(oder fiir eine bestimmte Kovariablen-Kombination, falls die partial dependence fir mehrere
Variablen gebildet werden soll) als Durchschnitt iiber die Pridiktionen des Modells f(z) fiir
alle Beobachtungen gebildet wird, wobei x; einem fixen Wert entspricht.

Algorithmisch wird der Partial Dependence Plot wie folgt fiir eine bestimmte metrische
Variable x; erzeugt:

1. Definiere Punkte ¢ = ¢y, ...q, innerhalb des Wertebereichs der Variable z;, an denen
der PDP berechnet werden soll

2. Berechne fiir jede Beobachtung die Pradiktion, mit x,, =

{xm, wenn m # [,

qp, wennm =1
3. Berechne das arithmetische Mittel fiir die neuen Prédiktionen aller Beobachtungen
4. Wiederhole Schritt 2. und Schritt 3. fir alle p=1,...;r

5. Plotte den gemittelten Verlauf der Pradiktion iiber den Wertebereich der Variable z;

Fir die Visualisierung in dieser Analyse werden fiir die Werte ¢ die empirischen Perzen-
tile der jeweiligen Variable x; betrachtet (also das 0%-Quantil, das 10%-Quantil, das 20%-
Quantil. .. ). Da die Prédiktion eine Klassifikation ist, wird fiir jeden Auswertungspunkt ¢
fiir jede Beobachtung die Klassenzugehorigkeitswahrscheinlichkeit berechnet, und diese dann
fiir jede Klasse iiber alle Beobachtungen hinweg separat gemittelt.

Die daraus resultierende Visualisierung der gemittelten Klassenwahrscheinlichkeiten und des
Wertebereichs einer Variable gibt den marginalen Effekt dieser Variable auf die verschiedenen
Klassenwahrscheinlichkeiten fiir dieses Modell an. Damit kann festgestellt werden, ob in
einem geschitzten Modell f(-) eine bestimmte Variable einen linearen, quadratischen oder
unstrukturierten Effekt auf die Klassenwahrscheinlichkeit hat.
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Datenbeispiel fiir 2 Klassen und 2 Variablen
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Abbildung 15: Datenbeispiel mit 2 Klassen, 2 Variablen und eindeutigen marginalen Effekten

Um die Interpretation eines Partial Dependence Plots zu erklaren, wurde ein Datenbeispiel
(Abbildung 15) generiert, das eindeutige marginale Effekte aufweist. Die Wahrscheinlichkeit
fir Klasse 1 sinkt mit steigendem Wert von x1, widhrend x2 so generiert wurde, dass es
unabhéngig von x1 ist und keinen Einfluss auf die Klasse hat.

Fiir dieses Datenbeispiel wurden ein multinomiales logistisches Regressionsmodell und ein
Random Forest trainiert und der Partial Dependence Plot an den Dezilen ausgewertet und
veranschaulicht. Der Partial Dependence Plot kann auch an feineren Quantilen ausgewertet
werden, bis hin zu allen Werten im Wertebereich der Variable oder sogar kiinstlich generierten
Werten. In Abbildung 16 sind 2 Plots abgebildet, die jeweils aus 2 Sub-Plots bestehen.

Der linke Plot bildet die Partial Dependence Kurven fiir das multinomiale logistische Re-
gressionsmodell ab, wobei der linke Sub-Plot den PDP fiir x1 und der rechte Sub-Plot den
PDP fiir x2 darstellt.

Der rechte Plot bildet die Partial Dependence Kurven fiir den Random Forest ab, wobei auch
hier der linke Sub-Plot den PDP fiir x1 und der rechte Sub-Plot den PDP fiir x2 darstellt.

Die gelbe Kurve bildet den Verlauf des marginalen Effekts der jeweiligen Variable auf die
Wahrscheinlichkeit fiir Klasse 0 ab, wahrend die rote Kurve den Verlauf des marginalen
Effekts der jeweiligen Variable auf die Wahrscheinlichkeit fiir Klasse 1 abbildet.

Wie in Abbildung 16 zu sehen ist, erfasst das multinomiale logistische Regressionsmodell
den Effekt von x1 bei Konstanhaltung von x2 sehr gut. Bei zunehmendem Wert von x1
erhoht sich die Wahrscheinlichkeit auf Klasse 0 und dementsprechend verringert sich die
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Partial Dependence Plots Partial Dependence Plots
Multinomiales Logit-Modell Random Forest
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Abbildung 16: Partial Dependence Plots durch multinomiale logistische Regression und Ran-
dom Forest

Wahrscheinlichkeit fiir Klasse 1. Der nicht-vorhandene Effekt von x2 bei Konstanthaltung
von x1 auf die Klasse ist hier zu erahnen, da dieser iiber den Wertebereich kaum eine
Verédnderung aufzeigt.

Der Random Forest erfasst die zugrunde liegende Logik von x1 nicht ganz so gut, wie das
multinomiale logistische Regressionsmodell. Im mittleren Wertebereich wird ein Knick abge-
bildet, der im datengenerierenden Prozess nicht vorhanden war. Der steigende Trend der
Wahrscheinlichkeit fiir Klasse 0 bei steigendem x1 und Konstanthaltung von x2 kann in
dieser Kurve jedoch trotzdem erkannt werden. Der nicht-vorhandene Effekt von x2 auf die
Klasse ist auch hier gut zu erkennen. Es wird ein sehr schwacher Einfluss abgebildet, der
beiden Klassen bei Konstanthaltung von x1 auf dem gesamten Wertebereich von x2 eine
um 0.5 schwankende konstante Wahrscheinlichkeit zuweist.

4.2.2.3 Individual Conditional Expectation Plots

Eine weitere Visualisierungstechnik aus dem Bereich des interpretierbaren Machine Learnings
sind die Individual Conditional Expectation Plots (kurz ICE-Plots). Genau wie fiir den Par-
tial Dependence Plot werden Punkte fiir jede Variable definiert, an denen fiir jede Beobach-
tung eine Préadiktion bei Gleichhalten der anderen Variablen bestimmt wird. Diese werden
jedoch an ihren Auswertungspunkten nicht gemittelt, sondern individuell betrachtet. Somit
wird ein individueller Verlauf fiir jede Beobachtung iiber den Wertebereich einer Variable
erzeugt, der zwischen den einzelnen Beobachtungen auf Gemeinsamkeiten und Unterschiede
iiberprift werden kann.

200

Klasse
0

- 1
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Der ICE-Plot fiir eine bestimmte Variable ist also pro Beobachtung i nichts anderes als

A

fO (@) = B(f (21, 2)) (6)

ausgewertet an allen relevanten Punkten von z; (Goldstein et al. 2013). Diese Funktion fiir
jede Beobachtung ¢ = 1, ..., N iiber den gesamten Wertebereich von z; ausgewertet, ergibt
den ICE-Plot fiir f(z;). Da fiir diese Arbeit eine Klassifikation durchgefiihrt wird, kann fiir
die Wahrscheinlichkeitspradiktion fiir jede Klasse ein eigener ICE-Plot erzeugt werden.

Der ICE-Plot wird fiir eine bestimmte metrische Variable z; wie folgt erzeugt:

1. Definiere Punkte ¢ = ¢y, ...q, innerhalb des Wertebereichs der Variable z;, an denen
der ICE-Plot berechnet werden soll

ms L,
2. Berechne fiir jede Beobachtung die Préadiktion, mit z,, = v wenr m 7
qp, wennm =1

3. Wiederhole Schritt 2. fir alle p=1,...;r

4. Plotte die Pradiktion fiir jede Beobachtung tiber den Wertebereich der Variable X

Da die ICE-Plot Visualisierung einen gemeinsamen Verlauf der Pradiktion iiber den Wer-
tebereich von X; darstellen soll, wird auch fiir diese Visualisierung die Berechnung der
Prédiktion an den empirischen Perzentilen der betrachteten Variable z; ausgewertet (also
am 0%-Perzentil, am 1%-Perzentil, ... ).

Im Gegensatz zum PDP, der pro Variable fiir jede Klasse eine gemittelte Kurve angibt,
existiert im ICE-Plot fiir jede Beobachtung und jede Klasse eine Kurve, was in einem
einzelnen Plot zu unerkennbaren Effekten fithren wiirde. Daher wird fiir jede Klasse ein
eigener ICE-Plot erstellt. Daraus resultieren insgesamt 99 verschiedene ICE-Plots (fiir jede
der 9 Klassen und fiir jede der 11 Variablen).

Der ICE-Plot selbst kann richtungsweisend fiir Zusammenhénge zwischen den betrachteten
Variablen und den betrachteten Klassenwahrscheinlichkeit sein. Moglicherweise nimmt die
Wahrscheinlichkeit einer bestimmten Klasse anzugehoren iiber den Wertebereich einer Vari-
able fiir alle Beobachtungen konstant zu oder ab. In diesem Fall kann von einem monoton
steigenden oder fallenden Effekt der Variable auf die Klassenwahrscheinlichkeit gesprochen
werden. Haufig passiert es jedoch, dass fiir manche Beobachtungen die Klassenwahrschein-
lichkeit steigt, wiahrend sie fiir andere Beobachtungen fallt. In diesen Féllen kann keine klare
Struktur zwischen dem modellierten Zusammenhang zwischen der Variable und der Klasse
erkannt werden.

Die in dieser Arbeit weiter behandelten Daten weisen alle verschiedene Verteilungen auf
(siche Kapitel 3.2.1). Weist eine Variable beispielsweise eine bimodale Verteilung mit einer
groflen Liicke auf, so wiirde der zugehorige ICE-Plot in diesem Bereich “springen” und einen
Verlauf suggerieren, der nicht existiert. Um diese Liicke aufzufangen besteht die Moglichkeit
die x-Achse des ICE-Plots nicht aufgrund des Wertebereichs der betrachteten Variable zu



4 MODELLIERUNG DER DATEN 32

skalieren, sondern auf die empirischen Quantile. Dies entzerrt auch unter anderem eine sehr
dichte Datenstelle, in der ein grofler Effekt zu sehen ist, welcher jedoch bei quantilsweiser
Betrachtung entzerrt betrachtet werden kann.

Da die Kovariablen konstant gehalten werden und den echten Variablen entsprechen, be-
ginnen die ICE-Plots am Minimum des Wertebereichs der betrachteten Variable auf ver-
schiedenen Niveaus (Hohe der Préadiktion bei Transformation von z; = min(z;)). Um den
gemeinsamen Verlauf und nicht die aktuelle Hohe zu betrachten, kann der ICE Plot zentriert
werden. Dies bedeutet, dass jede Positionsvorhersage am unteren Rand des Wertebereichs
von z; iber den gesamten Verlauf der Kurve subtrahiert wird und somit alle Kurven auf
dem Niveau 0 starten. Ein gemeinsames Wachstum oder eine gemeinsame Verringerung der
Kurven kann somit einfacher erkannt werden (Goldstein et al. 2013).

ICE Plot Random Forest ICE Plot Random Forest — Quantiles ICE Plot Random Forest - zentriert
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Abbildung 17: ICE Plots fiir x1 durch Random Forest

In Abbildung 17 sind die drei beschriebenen Typen an ICE-Plots dargestellt. Diese ICE-Plots
wurden flir das Datenbeispiel aus Abbildung 15 erstellt. Zu sehen ist hier der Zusammen-
hang von der Variable x1 und der Wahrscheinlichkeit auf Klasse 1, so wie ihn der Random
Forest modelliert. Aus Griinden der Ubersichtlichkeit wurde hier zufillig ein Subsample der
urspriinglichen Daten generiert.

Der linke Plot beschreibt den Zusammenhang zwischen x1 und der Wahrscheinlichkeit fiir
Klasse 1 indem fiir jede Beobachtung an jedem Wert von x1 eine kiinstliche Beobachtung
erstellt wird (bei Konstanthaltung der iibrigen Variablen; in diesem Beispiel x2). Alle kiinst-
lichen Beobachtungen, die so fiir eine urstipriinglich zugrunde liegende Beobachtung erstellt
wurden, bilden einen grauen Verlauf in dieser Grafik ab. Der gelb-umrandete schwarze Verlauf
bildet den fiir diese Beobachtungen kreierten Partial Dependence Plot ab. Dieser wurde genau
wie die ICE-Kurven an den Perzentilen der Verteilung von x1 ausgewertet. Die Verteilung
von x1 ist durch die blauen Makierungen an der x-Achse zu sehen. Géabe es zum Beispiel
einen Wertebereich von x1 in dem keine Beobachtungen erfasst wurden, so wéare dies durch
die blauen Makierungen gekennzeichnet.

Im Allgemeinen ist eine abfallende Wahrscheinlichkeit fir Klasse I bei steigendem x1
erkennbar. Dieser schwankt im Gegensatz zum Partial Dependence Plot fiir den Random
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Forest aus Abbildung 16 sehr stark, da er an mehr Punkten ausgewertet wurde und somit
kleine Schwankungen eher erfasst werden.

Der mittlere Plot bildet fiir dieses Datenbeispiel in etwa dengleichen Verlauf ab wie der linke
Plot. Der Unterschied ist, dass die x-Achse auf die empirischen Quantile von x1 skaliert
wurde, das heifit, dass bspw. das 20%-Quantil an der Stelle 0.2 liegt und der Median an der
Stelle 0.5. Eine mogliche Sprungstelle wiirde dadurch iiberbriickt werden. Wie im spateren
Verlauf dieser Arbeit noch gezeigt wird, kénnen Sprungstellen die Interpretation dieser ICE-
Kurven schwieriger gestalten, was durch diese quantilsweise Betrachtung behoben werden
wiirde. Der Bereich, in dem viele Datenpunkte liegen (also im oberen und unteren Teil des
Wertebereichs von x1), wird durch diese Betrachtung etwas entzerrt, wihrend der Bereich,
in dem wenige Datenpunkte liegen (im mittleren Teil des Wertebereichs) etwas gestaucht
wird.

Der rechte Plot bildet eine zentrierte Art der ICE-Plots ab. Wie im linken Plot zu erkennen
ist, beginnen die verschiedenen Verldufe alle auf unterschiedlichen Niveaus (der Auswer-
tungspunkt von x1 ist zwar dergleiche fiir alle Beobachtungen, x2 jedoch nicht!). Diese
Niveaus werden im rechten Plot alle zusammengefiihrt und beginnen damit am gleichen
Punkt. Durch die Zentrierung werden nicht nur die absoluten Vorhersagewerte an den ver-
schiedenen Auswertungspunkten vergleichbar gemacht, sondern auch die Verlédufe der Vorher-
sagewerte iiber den gesamten Wertebereich von x1.

An dieser Stelle soll eine Problematik dieser Art Plots erwahnt werden. Werden die Plots an
zu wenigen Stellen ausgewertet, so konnten Schwankungen eventuell nicht erkannt werden,
da vor und nach einer moéglicherweise relevanten Schwankung der Plot ausgewertet wird.
Wird aber an sehr vielen Stellen ausgewertet, so werden richtigerweise alle Schwankungen,
die durch das Modell pradiktiert werden, abgebildet, jedoch konnte dadurch eine zugrun-
deliegende Logik, die einen Anwender interessiert, nicht erkannt werden. Vor allem durch
Sprungstellen im Wertebereich der betrachteten Variable konnten dadurch Effekte erkannt
werden, die dem zugrundeliegenden Zusammenhang zwischen der Variable und der Zielgrofie
iiberhaupt nicht entsprechen.

4.2.2.4 Accumulated Local Effect Plots

Eine Schwachstelle der Partial Dependence Plots und der ICE-Plots ist, dass durch die
kiinstliche Datenmanipulation Beobachtungen kreiert werden koénnen, die in der Realitat
unmogliche Beobachtungen sind. Dies kann fiir die Leistungsdaten bei Fuballspielern zum
Beispiel bedeuten, dass ein Spieler mehr Tore geschossen hat, als er Torschiisse abgegeben
hat. Es konnen auch hochstunwahrscheinliche Beobachtungen auftauchen, zum Beispiel ein
Spieler, der pro Spiel nur 10 Pésse spielt, aber davon 9 Fehlpésse sind.

Die Idee ist es die auf x; bedingten Wahrscheinlichkeiten fiir die moglichen Kovariablenkombi-
nationen von x\; zu nutzen, damit unwahrscheinliche Kovariablenkombinationen an Gewicht
verlieren (Apley 2016).
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z;
fl,ALE(l’z) = /E[fl(:z:l,x\l)\xl = z]dz; — constant
20,1
(7)
— //P\l|l(x\l|zl)fl(zl,z\l)dm\ldzl — constant,
20,1

wobei f!(z;,2y) = %j\l) die partielle Ableitung darstellt. Da die partielle Ableitung in der

Regel unbekannt ist, wird diese durch Einteilen des Wertebereichs von z; in Intervalle mit
den Intervallgrenzen {zo, ..., 2, } diskretisiert. Fiir diese Intervalle werden finite Differenzen
gebildet, wodurch die partielle Ableitung approximiert wird (Scholbeck et al. 2019). Der
bedingte Erwartungswert wird anschlieBend intervallweise durch Monte Carlo Integration
geschétzt, wodurch das innere Integral fiir das jeweilige Intervall, in dem z; liegt, bestimmt
wird. Dadurch entsteht im inneren Integral eine Art Treppenfunktion. Da tber all diese
intervallméfligen Erwartungswerte integriert wird, ist die Breite der Intervalle irrelevant.
Ublicherweise sollten die Intervalle jedoch entweder dquidistant oder anhand der Quantile
der Daten gebildet werden (Apley 2016). Wéhrend die dquidistanten Intervalle den Werte-
bereich in gleich grofie Bereiche einteilen, hat die quantilsweise Einteilung den Vorteil, dass in
Bereichen, in denen viele Beobachtungen vorkommen, feinere Einteilungen gemacht werden.
Dadurch konnen relevante Effekte in kleineren Bereichen genauer erfasst werden.

Die Funktion fl ane(X;) ergibt die Kurve fiir den ALE-Plot fir X;, dessen Hohe durch die
abgezogene Konstante bestimmt wird. In der Regel wird die Konstante so gewahlt, dass die
Kurve “zentriert” ist, was bedeutet, dass die y-Achse der Abweichung vom durchschnittlichen
Effekt einer Variable auf die Zielgrole im Modell entspricht.

Der ALE-Plot wird vereinfacht fiir eine Variable X; wie folgt erzeugt:

1. Definiere Intervallgrenzen ¢ = qq, ...q. innerhalb des Wertebereichs der Variable X,
zwischen denen der ALE-Plot berechnet werden soll

2. Bestimme fiir Intervall i einen Teildatensatz S; mit allen Beobachtungen, fir die ¢; <
X; < gip gilt

3. Bestimme fiir alle Beobachtungen in Teildatensatz S; die Pradiktion an der unteren
und oberen Intervallgrenze i (also X; = ¢; und X; = ¢;41) bei Konstanthalten der
Kovariablen

4. Bestimme fiir jede Beobachtung eine lineare Steigung fiir das Intervall ¢ durch Inter-
polieren der beiden Prédiktionen an den Intervallgrenzen

5. Berechne eine mittlere Steigung fiir den Teildatensatz S;, um eine durchschnittliche
Steigung fiir Intervall ¢ zu erhalten

6. Wiederhole Schritt 2. bis 5. fir ¢ =0,...,7 — 1
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7. Kumuliere die ermittelten Steigungen fiir jedes Intervall um eine stetige Kurve zu
erhalten

Um die Intervalle klein genug zu machen, damit die Kovariablen ihren Effekt auf den Pradik-
tionsunterschied der Intervallgrenzen verlieren, aber trotzdem genug Beobachtungen in jedem
Intervall zu behalten um stabile Steigungen fiir die Intervalle zu erhalten, wurde entschieden
insgesamt 15 Intervalle mit etwa 100 Beobachtungen pro Intervall fir die ALE-Plots zu
bilden.

In Abbildung 18 ist fiir die Datensituation aus Abbildung 15 der Accumulated Local Effects-
Plot fiir x1 fiir die Wahrscheinlichkeitsvorhersage fiir Klasse 1 im Random Forest abgebildet.
Auf der x-Achse ist der Wertebereich fiir x1 zu erkennen. Auf der y-Achse ist die Abweichung
der mittleren Prédiktion der Wahrscheinlichkeitsvorhersage fiir Klasse 1 abgebildet. Wie zu
erkennen ist, sinkt die Wahrscheinlichkeitsvorhersage fiir Klasse 7 mit steigendem x1. Auch
hier zeigt der Abwértstrend leichte Schwankungen und &hnelt dem Partial Dependence Plot
fir x1.

ALE-Plot Random Forest - x1

Abweichung der mittleren Wahrscheinlichkeitsvorhersage fir Klasse 1

0.50-

o

N

o
'

Abweichung der mittleren Pradiktion
g

-0.25-

0.0 05 10 15 20
x1

Abbildung 18: ALE-Plot fiir x1 durch Random Forest

Der Hauptunterschied zwischen diesen beiden Plots ist jedoch die Interpretation der y-Achse.
Wiéhrend beim Partial Dependence Plot die y-Achse als “mittlere Wahrscheinlichkeitsvorher-
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sage fiir Wert x” interpretiert werden kann, gibt der Accumulated Local Effects-Plot die
Abweichung der mittleren Wahrscheinlichkeitsvorhersage an. Mit anderen Worten bedeutet
ein Wert auf der y-Achse von 0.25, dass die Wahrscheinlichkeitsvorhersage fiir Klasse 1 bei
diesem Wert x um 0.25 hoher ist als die durchschnittliche Wahrscheinlichkeitsvorhersage fiir
Klasse 1.

Eine wirklich grofie Diskrepanz kann fiir Variablen mit starken Abhéngigkeiten zu anderen
Variablen entstehen. Der Partial Dependence Plot wiirde einen Punkt z* mit allen Beobach-
tungen auswerten, egal wie nah oder weit sie von diesem Punkt entfernt liegen. Dass die
Wahrscheinlichkeitsvorhersage dafiir durch die Kovariablen stark beeinflusst wird, ist de-
mentsprechend fiir starke Abhéngigkeiten zwischen den Variablen sehr wahrscheinlich. Wenn
jedoch nur Beobachtungen betrachtet werden, die Nahe an z* liegen, so wird dieser Ab-
hangigkeitseffekt der Kovariablen reduziert.

4.2.2.5 Erarbeitung der Topologie der Modelle

Eine interessante Fragestellung, abgesehen von den Beziehungen zwischen den Leistungsdat-
en und den Positionen, ware es die Topologie der Daten im mehrdimensionalen Raum naher
zu untersuchen. Dafiir wird hier eine Methode beschrieben, mit der untersucht wird, welche
Klassen in Bezug auf einzelne Leistungsdaten im mehrdimensionalen Raum nebeneinander
liegen (also konkret, welche Positionen beziiglich eines Leistungsdatums benachbart sind).

Um die angewendete Methode fiir diese Untersuchung genauer zu erklaren, wird diese im
Folgenden anhand von Beispielen dargestellt und erkléart, wie die Resultate zu interpretieren
sind.

Angenommen es existiert eine in Abbildung 19 dargestellte Datenlage. In diesem Beispiel
existieren 4 verschiedene Klassen und 2 Variablen, durch welche die Klassen perfekt getrennt
werden.
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Datenbeispiel fir 4 Klassen und 2 Variablen
Perfekte Trennung durch 2 Variablen
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Abbildung 19: Datenbeispiel fiir perfekt getrennte Klassen

Zwischen jeweils zwei Klassen kann beziiglich jeder Variable ein Bezug formuliert werden,
was zu insgesamt 4 * 3 % 2 = 24 Kombinationen fithrt (dabei ist die Beziehung “A ist ober-
halb von B” und “B ist unterhalb von A” doppelt gezahlt). All diese Kombinationen kénnen
von unserem Hirn gleichzeitig erfasst und verarbeitet werden, wodurch die Beziehung zwi-
schen den Klassen durch diese Visualisierung schnell erfasst werden kann. Fiir ein solches
Datenbeispiel geniigt also die Betrachtung einer 2-dimensionalen Grafik wie dieser, um zu
ermitteln, welche Klassen in welcher Beziehung nebeneinander liegen. In der multinomialen
logistischen Regression werden Regressionskoeffizienten ermittelt, welche diese Beziehung
ausdriicken. Ein positiver Koeffizient bedeutet, dass Punkte in der Klasse beziiglich der
Punkte in der Referenzkategorie einen héheren Wert der betrachteten Variable aufweist,
wahrend ein negativer Koeffizient ausdriickt, dass Punkte in der Klasse beziiglich der Punk-
te in der Referenzkategorie einen niedrigeren Wert der betrachteten Variable aufweisen.
Was jedoch nicht direkt durch die Regressionskoeffizienten ermittelt werden kann, ist die
Tatsache, ob zwischen zwei Klassen eine weitere Klasse liegt, oder ob zwei Klassen aufgrund
der Kovariablen gar nicht beziiglich einer betrachteten Variable nebeneinander liegen (in
Abbildung 19 die diagonal benachbarten Klassen).

Die eigentliche Problematik beginnt jedoch, wenn mehr Klassen auftreten und nicht eindeutig
durch 2 Variablen zu trennen sind.
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Datenbeispiel fUr & Klassen und 2 Variablen
Keine perfekte Trennung durch 2 Variablen
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Abbildung 20: Datenbeispiel fiir nicht perfekt getrennte Klassen

Angenommen es existiert eine in Abbildung 20 dargestellte Datenlage. Wie hier zu erkennen
ist, werden die Klassen 1, 2, & und 4 weiterhin durch die Variablen x1 und x2 perfekt
voneinander getrennt, existieren zwei weitere Klassen 4 und 6, welche zwar durch Variable
x2 perfekt voneinander getrennt werden, jedoch zwischen den anderen Klassen liegen. Eine
exakte Definition des Nachbarschaftsverhaltnisses ist hier erst nach ndherer Betrachtung
genau anzugeben, da die beiden Variablen nicht reichen die Daten perfekt zu trennen.

Nun wird zusatzlich angenommen, dass eine Variable x3 existiert, welche die Klassen 4 und 6
perfekt von den Klassen 1, 2, 3 und 4 trennt. Eine 3-dimensionale Grafik, in der die Klassen
5 und 6 hinter, bzw. vor den anderen Klassen liegen, wodurch die Daten wieder perfekt
getrennt sind, ist mit leichtem Aufwand vorstellbar und es konnen direkt Nachbarschaftsver-
héltnisse erfasst werden. Wenn sich die Anzahl der Klassen und die Hohe der Dimensionalitat
jedoch weiter erhohen, wird das ganze unvorstellbar (und nur sehr schwer darstellbar).

Ein weiteres Problem ist, dass Klassen oft nicht perfekt trennbar sind und nicht als “einzelne
Cluster” im Raum liegen, sondern “punktweise verteilt” sind. Es soll nun eine Methode gefun-
den werden, die das Nachbarschaftsverhéltnis zwischen den verschiedenen Klassen beziiglich
der einzelnen Variablen ermittelt.

Das Ziel einer Klassifikation ist es anhand der vorliegenden Daten den Raum in Bereiche
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einzuteilen, in denen Beobachtungen Wahrscheinlichkeiten zugewiesen werden kénnen, mit
welchen sie den verschiedenen Klassen angehéren. Einer neuen Beobachtung kann anhand
seiner Lage im Raum eine Klasse zugeordnet werden, die aufgrund der urspriinglichen Daten
am wahrscheinlichsten fiir diese Position ist. Ein sehr gutes Modell teilt den Raum also in
“perfekte Bereiche” ein, in denen die verschiedenen Klassen liegen. Es ist somit moglich eine
sehr gute Modellierung zu nutzen, um die Lage der einzelnen Klassen im Raum und die
Nachbarschaftsverhaltnisse zwischen den verschiedenen Klassen zu ermitteln.

Die Methode, die die Nachbarschaftsverhéltnisse zwischen den einzelnen Klassen beziiglich
einzelner Variablen gegeben der Kovariablen beschreiben soll, geht wie folgt vor:

1. Schitze ein Modell f(-)

2. Nutze echte (oder fiir spezielle Betrachtungen simulierte) Daten und merke ihre Préadik-
tionen gy durch das Modell

3. Erhohe/Verringere eine bestimmte Variable geringfiigig, wiahrend alle anderen Kovari-
ablen gleichgehalten werden

4. Ermittle anhand der manipulierten Daten die neuen Pradiktionen §*

5. Betrachte die Wechsel zwischen den einzelnen Klassenvorhersagen

Dieses Vorgehen soll anhand des ersten Datenbeispiels aus Abbildung 19 erlédutert werden.
In Schritt 1. wird ein Modell (z.B. ein Klassifikationsbaum) anhand der Daten geschatzt und
teilt fir diese Datensitation den Raum wie in Abbildung 21 ein.
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Datenbeispiel fir 4 Klassen und 2 Variablen
Perfekte Trennung durch Klassifikationsbaum
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Abbildung 21: Perfekte Trennung durch Klassifikationsbaum

Als erstes soll das Nachbarschaftsverhaltnis beziiglich der Variable x1 betrachtet werden.
Um dies zu ermitteln werden die originalen Daten verwendet (ein Trainings- und Testdaten-
split ist fir diese Methode nicht notwendig) und ihnen wird eine Pradiktion zugewiesen. Fiir
diesen Spezialfall einer perfekten Trennung werden allen Daten als Prédiktion ihre originalen
und richtigen Klassen zugewiesen. Nun wird, wie in Schritt 3. beschrieben, der x1-Wert jeder
Beobachtung leicht erhéht (in diesem Beispiel um 0.1) und wie in Schritt 4. beschrieben die
Préadiktion §* fiir jede Beobachtung ermittelt (siche Abbildung 22). Wichtig ist, dass durch
die Datenmanipulation das Risiko auf unmégliche Datenkonstellationen gering gehalten wer-
den soll, weshalb nur kleine Datenmanipulationen durchgefithrt werden sollen.

Die Form der Beobachtung gibt an, welche Pradiktion die Beobachtung vor der Datenma-
nipulation hatte, und die Farbe, welche Pridiktion eine Beobachtung nach der Datenmanip-
ulation hatte. Wie zu erkennen ist, hat die Vorhersage einiger Beobachtungen aus Klasse 3
zu Klasse I gewechselt, wiahrend einige Beobachtungen aus Klasse 4 zu Klasse 2 gewechselt
haben.
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Datenbeispiel fir 4 Klassen und 2 Variablen
Pradiktion nach Datenmanipulation
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Abbildung 22: Vorhersage nach Datenmanipulation

Die Wechsel der Pradiktionen konnen anhand einer einfachen 4x4-Matrix erfasst werden
(siche Tabelle 5). Wie an dieser Tabelle abzulesen ist, haben sich nach der Datenmanipulation
ein paar Pradiktionswechsel ergeben. Zum Einen haben 12 der Beobachtungen, die vorher
in Klasse & waren, durch die Datenmanipulation in Klasse I gewechselt. Zum Anderen
haben 9 der Beobachtungen aus Klasse 4 in Klasse 2 gewechselt. Dies bedeutet, dass bei
Konstanthalten der Kovariablen (hier nur x2) ein Gebiet mit Klasse I, das einen héheren
x1-Wert aufweist, neben einem Gebiet mit Klasse 3 liegt, und dass ein Gebiet mit Klasse 2,
das einen hoheren x1-Wert aufweist, neben einem Gebiet mit Klasse 4 liegt. Genau dieses
Nachbarschaftsverhéaltnis ist auch in der Grafik beobachtbar.

Neue Pradiktion in: | 1 2 3 |4
Original 1 | 100 | 0 010
Original 2 | 0 1000 |0
Original 3 | 12 | 0 88 10
Original 4 | 0 9 0 |91

Tabelle 5: Pradiktionswechsel der Beobachtungen nach Datenmanipulation
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Der Unterschied zum Ermitteln des Nachbarschaftsverhaltnisses durch Grafiken ist jedoch,
dass diese Methode keinen “dimensionellen Restriktionen” unterliegt und mit beliebig vie-
len Klassen und beliebig vielen Kovariablen durchgefiihrt werden kann. Des Weiteren ist
der Vorteil gegeniiber den Regressionskoeffizienten einer multinomialen logistischen Regres-
sion das Verhéaltnis zwischen allen Klassen gleichzeitig zu ermitteln, wahrend durch die Re-
gressionskoeffizienten nur der Bezug zu einer bestimmten Referenzkategorie bestimmt wird.
Dartiber hinaus unterliegt diese Methode keiner Restriktion beziiglich der Modellform und
kann fiir alle klassifizierende Modelle angewendet werden.

Ein Nachteil gegeniiber der Regressionskoeffizienten einer multinomialen logistischen Regres-
sion ist jedoch, dass jede Variable und jede Richtung der Datenmanipulation der Variable
einzeln betrachtet werden muss.

Beziiglich der Interpretation miissen jedoch einige Dinge beachtet werden. Zum Einen ist
es moglich, dass eine Grenze des Modells an einer Stelle liegt, an welcher nur Datenpunkte
aus Klasse A, aber keine Datenpunkte aus Klasse B liegen. Dies bedeutet, dass beim Uber-
priifen einer Richtung (Variable x,, Erhéhen oder Verringern) ein Nachbarschaftsverhaltnis
festgestellt wird, in die andere Richtung jedoch nicht. Dieses Ergebnis bedeutet NICHT
bspw. “Ein Gebiet mit Klasse A liegt neben einem Gebiet mit Klasse B mit hoherem x,,-
Wert, aber kein Gebiet der Klasse B liegt neben einem Gebiet mit Klasse A mit niedrigerem
Tm-Wert”, sondern “Ein Gebiet mit Klasse A liegt neben einem Gebiet mit Klasse B mit
héherem x,,-Wert, aber keine Punkte der Klasse B liegen neben einem Gebiet mit Klasse A
mit niedrigerem x,,-Wert”. Es konnte zum Beispiel passieren, dass das Modell eine sinnvolle
Grenze zieht, dort jedoch eine unmagliche Datensituation vorliegt, weshalb dort keine Daten
liegen; es konnten allerdings auch einfach keine Beobachtungen dort erhoben worden sein.

Ein weiterer Punkt, der beachtet werden muss, ist das Gesetz der Transitivitat. Es kann
passieren, dass durch punktweise verteilte Gebiete Situationen entstehen, in denen bspw. ein
Gebiet der Klasse B an einer Stelle “iiber” einem Gebiet der Klasse A und an einer anderen
Stelle “unter” einem Gebiet der Klasse C liegt, wodurch aber nicht impliziert werden kann,
dass ein Gebiet der Klasse A auch “unter” einem Gebiet der Klasse C liegt (vergleiche
Abbildung 23). Damit sind die Resultate nicht transitiv zu interpretieren.
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Abbildung 23: Beispiel fiir Transitivitdtsproblem fiir m1 # m2

Alles in allem sind die Ergebnisse also wie folgt zu interpretieren:

1. Wechsel von Klasse A in Klasse B bei Erhéhen von Variable z,, bedeutet, dass Gebiete
mit Klasse B existieren, die in Bezug auf x,, oberhalb von Gebieten mit Klasse A
liegen (bei Konstanthaltung der anderen Variablen) und umgekehrt existieren Gebiete
mit Klasse A, die in Bezug auf z,, unterhalb von Gebieten mit Klasse B liegen!

2. Wechsel von Klasse A in Klasse B bei Verringern von Variable z,, bedeutet, dass
Gebiete mit Klasse B existieren, die in Bezug auf x,, unterhalb von Gebieten mit
Klasse A liegen (bei Konstanthaltung der anderen Variablen) und umgekehrt existieren
Gebiete mit Klasse A, die in Bezug auf x,, oberhalb von Gebieten mit Klasse B liegen!

3. Wenn Punkt 1. und 2. gleichzeitig auftreten, bedeutet es nicht, dass ein Gebiet um-
schlossen ist, sondern dass an einem Punkt im Raum ein Gebiet mit Klasse A in Bezug
auf x,, oberhalb von einem Gebiet mit Klasse B liegt und an einem moglicherweise
anderen Punkt ein Gebiet mit Klasse A unterhalb von einem Gebiet mit Klasse B liegt
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Die in Tabelle 5 aufgefiihrte Migrationsmatrix kann in einem Chordgraph visuell dargestellt
werden (siehe Abbildung 24). In diesem Graphen ist einerseits zu sehen, wie grof die pradik-
tierten Klassen vor und nach der Datenmanipulation sind, und andererseits von welcher
Klasse in welche andere Klasse die Pradiktion wechselt.

Wechsel der Positionsvorhersage bei Erhéhen von x1 um 0.1

Abbildung 24: Chordgraph als Visualisierung fiir Migrationsmatrix

Die Zahlenstrahle am Rand der verschiedenen Klassen geben die absolute Anzahl an
Beobachtungen, die wechseln, bzw. nicht wechseln, an. Jede Klasse wurde so konstruiert,
dass sie 100 Beobachtungen enthalt. Vor der Datenmanipulation waren genau 100 Beobach-
tungen durch das Modell richtig pradiktiert. Dies wird an den Zahlenstréahlen jeweils von 0
bis 100 angezeigt. In Klasse 3 ist zu erkennen, dass ein Teil der ersten 100 Beobachtungen in
Klasse 1 wechselt. Aus Klasse I wechselt keine Beobachtung in eine andere Klasse. Folglich
wechseln alle 100 Beobachtungen aus Klasse I “in sich selbst” und erhalten aus Klasse 3
zusatzliche Beobachtungen.

Durch diese Verbindungen ist also das zu erkennen, was auch in der Migrationsmatrix zu
erkennen ist:

o Es existiert ein Gebiet mit Klasse 1, das beziiglich x1 oberhalb von einem Gebiet mit
Klasse 3 liegt.
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» Es existiert ein Gebiet mit Klasse 2, das beziiglich x1 oberhalb von einem Gebiet mit
Klasse 4 liegt.

o Zwischen den Klassen 1 und 2, zwischen den Klassen & und 4, zwischen den Klassen
1 und 4 und zwischen den Klassen 2 und & kénnen beziiglich x1 keine benachbarten
Gebiete festgestellt werden.

Der letzte Punkt konnte sich bei einem erneuten Uberpriifen durch das Verringern von x1
jedoch dndern (nur nicht fiir dieses simulierte Datenbeispiel)!

4.3 Modellaufbau in grafischem Kontext
4.3.1 Random Forest

Der Klassifikations- Random Forest ist ein Ensemble von verschiedenen Klassifikationsbéau-
men. Jeder einzelne Baum teilt einen Raum in rechtwinklige Fléchen ein, in denen bei einem
unbeschnittenen Baum zu 100% eine bestimmte Klasse prognostiziert wird. Um eine neue
Beobachtung durch diesen Random Forest zu klassifizieren, wird die neue Beobachtung in
jeden einzelnen dieser eingeteilten Radume eingesetzt und erhéilt dadurch eine Klassifikation
(Majority-Vote der Baume oder Wahrscheinlichkeiten fiir jede Klasse).

SRl B
NS

Abbildung 25: Einteilung eines Raums durch Baumstiimpfe

In Abbildung 25 ist eine beispielhafte Einteilung eines Raumes durch 3 verschiedene Baum-
stiimpfe abgebildet. Diese 3 Baumstiimpfe zusammen teilen den Raum in Bereiche ein, in
denen:

1. Zu 100% Klasse A prognostiziert wird, da alle 3 Baume diesen Bereich Klasse A
zuweisen (roter Bereich)
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2. Zu 67% Klasse A prognostiziert wird, da 2 der 3 Baume diesen Bereich Klasse A
zuweisen (dunkel-oranger Bereich)

3. Zu 67% Klasse B prognostiziert wird, da 2 der 3 Baume diesen Bereich Klasse B
zuweisen (hell-oranger Bereich)

4. Zu 100% Klasse B prognostiziert wird, da alle 3 Baume diesen Bereich Klasse B
zuweisen (gelber Bereich)

Wie an diesem Beispiel zu sehen ist, wird durch das Ubereinanderlegen der Baume eine
rechtwinklige Einteilung im 2-dimensionalen Raum kreiert. Fiir eine simple Prognose, die die
Wahrscheinlichkeiten fiir eine Klasse nicht beachtet, sondern nur die wahrscheinlichste Klasse
betrachtet, konnen Bereiche zusammengefasst werden. Die roten und dunkel-orangenen Bere-
iche ergeben einen Bereich, der zu Klasse A gehort, wiahrend die hell-orangenen und gelben
Bereiche zu einem gemeinsamen Bereich zusammengefasst werden konnen, der zu Klasse B
gehort.

Der unbeschnittene Random Forest selbst ist viel komplexer aufgebaut. Anstatt nur einmal
die Daten in 2 Bereiche zu trennen, trennt jeder einzelne Baum die Daten solange, bis jede
einzelne Beobachtung ein eigenes Gebiet zugewiesen bekommt. All diese Baume tibereinander
gelegt ergeben einen weit aus komplexeren Raum (der fiir mehr als 2 Variablen auch in
der Dimension viel komplexer wird), indem viele verschiedene Gebiete mit verschiedenen
Vorhersagen liegen.

Wird das hier vorgeschlagene Verfahren zur Erarbeitung der Topologie auf einen Random
Forest angewendet, so werden Grenzen zwischen den verschiedenen Klassifikationsbereichen
gefunden, unabhéngig von der Wahrscheinlichkeit, mit der in diesem Bereich klassifiziert
wird. Eine solche Grenze kann als direkte Nachbarschaft zweier Klassen beziiglich einer
bestimmten Variable interpretiert werden.

Durch diese Einteilung kénnen jedoch leicht eine oder mehrere “Inseln” entstehen, wie in
Abbildung 23 angedeutet ist. Wenn also eine kleine Ausreiflergruppe dazu beitragt, dass eine
Insel innerhalb einer anderen Klasse entsteht, so kann durch das hier vorgeschlagene Ver-
fahren ein schwaches Nachbarschaftsverhéltnis angedeutet werden, wobei die grofiten Gebiete
der beiden Klassen iiberhaupt nicht aneinander grenzen. Mit “schwachem Nachbarschaftsver-
haltnis” ist hier gemeint, dass ganz vereinzelt Beobachtungen zwischen den beiden Klassen
wechseln, wihrend bei einem “starken Nachbarschaftsverhéltnis” viele Beobachtungen zwis-
chen den Klassen wechseln wiirden, da sie lingere gemeinsame Grenzen aufweisen.

4.3.2 Multinomiales Logistisches Regressionsmodell

Der grofite Unterschied zwischen der Raumeinteilung durch einen Klassifikations- Random
Forest und der Raumeinteilung durch ein multinomiales logistisches Regressionsmodell ist
das Prinzip der abschnittsweisen Raumeinteilung im Vergleich zu einer stetigen Raumein-
teilung. Wahrend der Raum durch den Random Forest in Bereiche mit festen Klassifikation-
swahrscheinlichkeiten eingeteilt wird, welche sich innerhalb eines einzelnen Bereichs nicht
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andert, andern sich die Klassifikationswahrscheinlichkeiten im multinomialen logistischen
Modell stetig im Raum. Ddadurch entstehen “glattere” Ubergéinge zwischen den verschiede-
nen Klassifikationsbereichen.

Eine Einteilung in Bereiche ist jedoch trotzdem moglich, da an jedem Punkt im Raum eine
bestimmte Klasse als “am wahrscheinlichsten” modelliert wird und somit der gesamte Raum,
in dem diese Klasse am wahrscheinlichsten ist, als Bereich fiir diese Klasse bezeichnet werden
kann. Zwischen diesen Bereichen kann das hier vorgeschlagene Verfahren zur Erarbeitung
der Topologie angewendet werden und Nachbarschaftsverhéltnisse erarbeitet werden.

Datenbeispiel fiir 2 Klassen und 2 Variablen Wabhrscheinlichkeit fur Klasse 1
Multinomiale logistische Regression

Wahrscheinlichkeit

0.75
0.50

0.25

00 05 10 15 200 00 05 10 15 200
x1 x1

Abbildung 26: Einteilung eines Raums durch Multinomiale logistische Regression

Fir Abbildung 26 wurde eine Datengrundlage mit 2 verschiedenen Klassen simuliert. Diese
beiden Klassen vermischen sich etwas, kénnen jedoch im 2-dimensionalen Raum deutlich
voneinander getrennt werden. Die multinomiale logistische Regression weist jedem Punk im
betrachteten Raum eine Wahrscheinlichkeit fiir Klasse I zu, die an einer klar erkennbaren
Trenngeraden langsam von iiber 0.5 auf unter 0.5 wechselt. An dieser Stelle entsteht eine
Grenze, die einen Bereich fiir Klasse I von einem Bereich fiir Klasse 0 trennt.

Fiir dieses Beispiel wiirde das vorgeschlagene Verfahren fiir die Erarbeitung der Topologie
ein Nachbarschaftsverhéltnis zwischen Klasse 0 und Klasse 1 feststellen, wobei:

 beziiglich x1 ein Gebiet der Klasse 0 oberhalb eines Gebietes der Klasse I liegt bei
Konstanthaltung von x2

o beziiglich x2 ein Gebiet der Klasse 0 oberhalb eines Gebietes der Klasse 1 liegt bei
Konstanthaltung von x1
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Ein deutlicher Nachteil der multinomialen logistischen Regression gegentiber der Flexibilitat
eines Random Forests wird jedoch erst bei den Beispielen im folgenden Abschnitt erkannt.

4.3.3 Vergleich zwischen multinomialer logistischer Regression und Random
Forest

Fir den folgenden Vergleich zwischen der multinomialen logistischen Regression und dem
Random Forest werden zwei simulierte Datensituationen verglichen (vgl. Abbildung 27).

Die erste Datensituation dhnelt der Datensituation aus Abbildung 26. Hinzu kommt jedoch
noch eine dritte Klasse, die in der Nahe des Nullpunkts von x1 und x2 vorkommt.

Fiir die zweite Datensituation wird die dritte Klasse als 2 getrennte Inseln eingefiihrt, die
eine in der Nahe des Nullpunkts und die andere bei hohem x1 und hohem x2. Letztere
kommt in ihrem Bereich sogar “rein” vor, das heifit keine Beobachtung einer der anderen
beiden Klassen existiert in diesem Bereich.

Datenbeispiel 1 fur 3 Klassen und 2 Variablen Datenbeispiel 2 fur 3 Klassen und 2 Variablen

Ohne Inseln Mit Inseln

2.0-

- :‘..‘
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1.5-

0.5-

0.0-

00 05 10 15 210 00 05 10 15 210

Abbildung 27: Datenbeispiele mit 3 Klassen und 2 Variablen mit und ohne Inseln

Fiir die beiden Datensituationen wird jeweils ein multinomiales logistisches Regressionsmod-
ell und ein Random Forest geschatzt. Kiinstlich wird nun ein ganz feines Gitter an Punkten
genutzt um eine Karte zu erstellen, an welchen Punkten das Modell welche Klasse als am
“wahrscheinlichsten” modelliert.

In Abbildung 28 sind 4 verschiedene Raumeinteilungen durch die beiden Modelle zu sehen. In
der ersten Zeile ist links die Raumeinteilung fiir das 1. Datenbeispiel durch das multinomiale
logistische Regressionsmodell und rechts die Raumeinteilung fiir das 1. Datenbeispiel durch
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Préadiktionsbereiche Préadiktionsbereiche

Multinomiale logistische Regression — Daten ohne Inseln Random Forest — Daten ohne Inseln
2.0- 2.0-
1.5- 1.5-

Klasse Klasse
Y10
0.5- 0.5-
0.0- 0.0-
00 05 10 15 200 00 05 10 15 200
x1 x1

Préadiktionsbereiche Préadiktionsbereiche

Multinomiale logistische Regression — Daten mit Inseln Random Forest — Daten mit Inseln
2.0- 2.0-
1.5- 1.5-

Klasse
Klasse
Y10
0.5- 0.5-
0.0- 0.0-
00 05 10 15 200 00 05 10 15 200
x1 x1

Abbildung 28: Klassifikation durch multinomiales logistisches Regressionsmodell und Ran-
dom Forest
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einen Random Forest zu sehen. Was schnell auffallt ist, dass der Random Forest sowohl die
Logik der runden Abtrennung zwischen Klasse 0 und Klasse 1 sehr gut modelliert hat als
auch die Logik der linearen Abtrennung zwischen Klasse I und Klasse 2. Das multinomi-
ale logistische Regressionsmodell hat hingegen lineare Abgrenzungen zwischen den Klassen
gefunden, die in etwa die Lage der Punkte abbilden.

Ein weiterer Unterschied zwischen den beiden Modellierungen ist die Reinheit der abgetren-
nten Gebiete. Wahrend durch das multinomiale logistische Regressionsmodell reine Bereiche
modelliert werden, in denen jeweils eine Klasse am wahrscheinlichsten vorkommt, modelliert
der Random Forest viele kleine Inseln innerhalb der grofiflichigen Bereiche.

Im multinomialen logistischen Regressionsmodell wiirde sich die Unreinheit dieser Bereiche
in den Wahrscheinlichkeiten fiir die einzelnen Klassen widerspiegeln, was fiir eine Préadiktion
der wahrscheinlichsten Klasse jedoch irrelevant ist.

Ob die Abbildung der Unreinheit im Allgemeinen eine positive oder negative Eigenschaft
darstellt, soll an dieser Stelle unbewertet bleiben, da es einerseits die zugrundeliegende Un-
reinheit widerspiegelt, andererseits jedoch zu einer zu hohen Datenanpassung und damit zu
moglichen falschen Prédiktionen fithren kann.

Fiir den hier erbrachten Vorschlag zur Erarbeitung der Topologie der Daten, kann die Un-
reinheitsmodellierung jedoch zu Problemen fiithren, da die Hauptlogik, mit der 2 Gebiete
voneinander getrennt sind (zum Beispiel Klasse 0 liegt beztiglich x1 oberhalb von Klasse 1
bei Konstanthaltung von x2), unerkannt bleiben kann.

Ein grofies Problem der multinomialen logistischen Regression kann im 2. Datenbeispiel
erkannt werden. In diesem Beispiel liegt Klasse 2 auf zwei Inseln verteilt im Raum. Der
Random Forest hat kein Problem die beiden Inseln abzubilden, wahrend in der multinomi-
alen logistischen Regression die Klasse 2 im relevanten Raum tiberhaupt nicht auftaucht.
Die Wahrscheinlichkeit fiir Klasse 2 ist im gesamten relevanten Raum durch die Wahrschein-
lichkeit fiir Klasse 0 oder Klasse 1 iiberdeckt.

Mit “relevantem Raum?” ist hier der “fiir die Daten relevante Raum” gemeint. Die Ursprungs-
daten lagen in einem Raum S(x1,x2) mit 0 < x1 < 2 und 0 < x2 < 2. Auf den gesamten
reelen 2-dimensionalen Raum betrachtet, existieren Bereiche, in denen das multinomiale lo-
gistische Regressionsmodell Klasse 2 pradiktiert, jedoch ist dies nicht in dem Bereich, in dem
Klasse 2 in den Ursprungsdaten auftaucht.

Der “nicht-relevante Raum” ist der Raum, auf den die Modelle nicht trainiert wurden. Da
Beobachtungen, die durch diese Modelle pradiktiert werden sollen, eigentlich aus der Grund-
verteilung stammen sollten, sollten auch keine Probleme durch diese Gebiete entstehen. Es
kann jedoch passieren, dass sich in der Grundgesamtheit etwas &ndert und die Modelle fiir
Gebiete angewendet werden, auf die sie nicht trainiert wurden. Fiir manche interpretierbare
Machine Learning-Methoden werden sogar einige Beobachtungen unvermeidbar in diesen
Gebieten erzeugt.

In Abbildung 29 ist zu sehen, dass das multinomiale logistische Regressionsmodell beim
“Rauszoomen” des betrachteten Bereichs an einem bestimmten Punkt anfangt Klasse 2 als
wahrscheinlichste Klasse zu pradiktieren. Dies liegt jedoch weit aulerhalb des Bereichs, in
dem Klasse 2 tatsédchlich vorkommt. Selbst wenn die beiden Inseln fiir Klasse 2 auflerhalb
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des relevanten Raums mit ihren linearen Abgrenzungen weitergefithrt werden, so wére der
Raum weit weg von der Stelle, an der Klasse 2 wirklich pradiktiert werden wiirde.

Préadiktionsbereiche Préadiktionsbereiche
Multinomiale logistische Regression — Daten mit Inseln Random Forest — Daten mit Inseln

3- 3-

Klasse Klasse

x2
=

-1 0 i 2 3 -1 0 1 2 3
x1 x1

Abbildung 29: Klassifikation durch multinomiales logistisches Regressionsmodell und Ran-
dom Forest aulerhalb des relevanten Raumes

Fir den Random Forest ist zu erkennen, dass der duflerste Punkt innerhalb des relevanten
Raumes den Bereich des irrelevanten Raums bestimmt. Wieso dies der Fall ist, kann sogar
leicht erklért werden. Am Rande des Wertebereichs splitten die Baume des Random Forests
einen Raum ab, der in einer Ecke beziiglich 2 Richtungen beschrankt ist und an den Réandern
beziiglich 3 Richtungen. Ein Split kann nicht auflerhalb des urspriinglichen Wertebereichs
erfolgen, weshalb der Rand selbst keine Einschrankung fir die Raumaufteilung aufweist. Auf-
grund von kleineren Unreinheiten kénnen also auflerhalb des relevanten Raumes grofiflichige
Bereiche entstehen, die nichts mit der zugrundeliegenden Logik der Datenverteilung zu tun
haben.

Alles in allem sollen trotzdem diese beiden Modelle, die vor allem fiir das 1. Datenbeispiel
verschiedene, aber dennoch gute Grundlogiken, aus den Daten modelliert haben, verwendet
werden, um die Lage der Leistungsdaten der Bundesligaspieler im Raum beziiglich ihrer
Position zu erarbeiten. Da diese beiden Modelle, wie hier gezeigt, doch sehr unterschiedlich
modellieren, sollen Gemeinsamkeiten und Unterschiede fiir das Erarbeiten der Topologie der
Daten ermittelt werden.
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5 Ergebnisse

5.1 Hyperparameter Tuning Random Forest

Wie die meisten Machine Learning Methoden besitzt auch der Random Forest Hyperpa-
rameter, die die Pradiktion des Modells verbessern kénnen. Fiir die Modellierung in dieser
Arbeit werden drei dieser Hyperparameter betrachtet:

1. mtry: Der mtry-Hyperparameter gibt an, wie viele verschiedene Variablen an den einzel-
nen Splitpunkten in Betracht gezogen werden sollen, um den nachsten Splitpunkt zu
bestimmen.

2. min.node.size: Der min.node.size-Hyperparameter bestimmt, wie viele Beobach-
tungen in einem Knoten sein sollen, damit der Baum die Daten weiter trennen soll.

3. ntree: Der ntree-Hyperparameter bestimmt, wie viele Baume innerhalb des Forests
erzeugt werden sollen.

Der mtry-Hyperparameter ist in Random Forests in den meisten Datensituationen der
wichtigste Hyperparameter. Angenommen es wird vermutet, dass nur wenige Einflussgrofien
den groBiten Teil der Daten erklaren, dann wére es wichtig, wenn mindestens einer dieser
Einflussgroffen an den Splits ausgewahlt werden wiirde. Fiir einen solchen Fall wire ein
hoher Wert fiir mtry wichtig. In anderen Datensituationen kann aber auch ein sehr geringer
Wert von mtry eine gute Modellierung herbeifithren (Liaw and Wiener 2002).

Wie bereits in Abbildung 28 zu sehen ist, bildet ein Random Forest aufgrund von kleineren
Unreinheiten und Ausreiflern diese Unreinheiten mit ab. Dies liegt vor allem daran, dass die
Béaume komplett aufgespannt werden. Angenommen es giabe einen Ausreifler der Klasse 2 in
einem Gebiet, in dem sonst nur Klasse I vorkommt. Der Ausreiler wiirde in etwa 62% der
Baume vorkommen (Natur des Bootstrapping), wodurch 62% der Baume an diesem exakten
Punkt Klasse 2 pradiktieren. Da dies mehr als der Halfte aller Baume entspricht, pradik-
tiert der Random Forest an exakt dieser Stelle auch fiir neue Daten Klasse 2. Das Erhohen
des min.node.size-Hyperparameter fithrt dazu, dass einzelne Ausreifler in einem Termi-
nalknoten mit nahen anderen Beobachtungen vorkommen koénnen. Durch Erhoéhen dieses
Hyperparameters wird die Gewichtung von Ausreiflern reduziert und Unreinheiten somit
glattet. Ein zu hoher Wert des min.node.size-Hyperparameters wiirde jedoch dazu fiihren,
dass echte Inseln geglattet und nicht mehr erkannt werden wiirden.

Der ntree-Hyperparameter sollte einen gewissen Wert tiberschreiten, der sich von Datensi-
tuation zu Datensituation unterscheidet. Besteht ein Random Forest aus zu wenigen Bau-
men, konnte es sein, dass die zugrundeliegenden Strukturen noch nicht erkannt worden sind.
Aufgrund der Einschrankungen pro Baum (nur wenige Variablen pro Split betrachtet, im
Regelfall ungeprunet) konnte es sogar sein, dass ein zu kleiner Random Forest schlechter
als ein standardméfiger Klassifikationsbaum modelliert. Sobald eine bestimmte Anzahl an
Baumen gefunden wurde, verbessert sich die Vorhersage jedoch nicht mehr (bzw. nur ger-
ingfiugig). Die Anzahl der notwenidgen Béume steigt in der Regel mit der Anzahl der Vari-
ablen im Random Forest (Liaw and Wiener 2002).
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Fir den Random Forest in dieser Modellierung wurde ein Grid Search fiir das beste Para-
metersetting fiir die folgenden Werte durchgefiihrt:

’ Hyperparameter \ Minimum \ Maximum \ Schrittweite ‘

mtry 3 8 1
min.node.size 1 10 1
ntree 200 500 50

Tabelle 6: Hyperparameter-Raum fiir Grid Search

Als Performance-Mafl zum Messen der Giite der einzelnen Hyperparameterkombinationen
wurde die Accuracy gewahlt. Die Accuracy misst, welcher Anteil der Beobachtungen durch
das Modell richtig klassifiziert wird.

Um dieses Performance-Mafl nicht durch Overfitting zu beeinflussen, wurde eine 5-fache
Kreuzvalidierung zum Berechnen der Accuracy verwendet. Dies bedeutet, dass der Datensatz
in 5 Teile eingeteilt wird, auf jeweils 4 dieser Teile das Modell gefittet wird und der 5. Teil,
der nicht verwendet wurde, als Testdatensatz verwendet wird. Insgesamt wird dies 5 mal
wiederholt, sodass jeder Teildatensatz einmal als Testdatensatz benutzt wird. Aus diesen
5 Moderllierungen ergibt sich eine geschatzte Gesamtaccuracy, anhand welcher das beste
Parametersetting gefunden werden soll.

In Abbildung 30 sind die Ergebnisse des Hyperparametertunings fiir den Random Forest
abgebildet. Jeder Lineplot ist dafiir da den Effekt eines bestimmten Hyperparameters auf die
Accuracy abzubilden, wihrend jede Linie in diesen Lineplots fiir ein festes Parametersetting
der jeweils anderen beiden Hyperparameter steht. Die dicke Linie in der Mitte stellt eine
durchschnittliche Accuracy pro Parametersetting des betrachteten Hyperparameters dar.

Der obere Lineplot bildet den Effekt des mtry-Hyperparameters auf die Accuracy ab. Anhand
der durchschnittlichen Accuray ist kein eindeutiger Verlauf oder bestes Setting zu erkennen
und auch die einzelnen Linien bilden keinen Trend zu einem optimalen Hyperparameterset-
ting ab. Das Maximum liegt bei einem Hyperparametersetting mit einem mtry Wert von 6,
was bedeutet, dass an jedem Splitpunkt im Random Forest fiir eine gute Accuracy 6 Vari-
ablen in Betracht gezogen werden sollen. Es ist jedoch anzumerken, dass das Maximum von
0.684 nur leicht tiber dem Minimum von 0.666 liegt und somit ein Hyperparametertuning
keine wirkliche Verbesserung zu einem ungetuneten Random Forest bringt.

Der mittlere Lineplot bildet den Effekt des min.node.size-Hyperparameters auf die Ac-
curacy ab. Auch dort ist anhand der durchschnittlichen Accuracy kein wirklicher Effekt zu
erkennen. Das bereits angesprochene Maximum, das mit einem mtry-Hyperparameter von
6 gefunden wurde, ist hier bei einem min.node.size-Hyperparametersetting von 9 zu find-
en, was bedeutet, dass die beste Accuracy kreuzvalidiert fiir einen Random Forest gefunden
wurde, in dem nur bei einer Knotengroie von mindestens 9 Beobachtungen ein weiterer Split
durchgefithrt wird.

Der untere Lineplot bildet den Effekt des ntree-Hyperparameters auf die Accuracy ab.
Genau wie fiir die beiden anderen Hyperparameter ist in der durchschnittlichen Accuracy kein
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wirklich bestes Hyperparametersetting zu erkennen. Das Maximum, das fiir die beiden an-
deren Hyperparameter gefunden wurde, liegt bei einem Setting des ntree-Hyperparameters
von 450. Dies bedeutet, dass kreuzvalidiert die beste Accuracy durch insgesamt 450 Baume
erzeugt wurde.

Accuracy Uber Veranderung der Anzahl der genutzten Variablen
685-

0.680-

0.675-

Accuracy

=
N\
e NN/
NN
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Accuracy Uber Veranderung der Mindestknotengréfle
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Accuracy uber Veranderung der Anzahl der genutzten Baume
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Abbildung 30: Hyperparametertuning fiir Random Forest

Insgesamt scheint das Hyperparametertuning des Random Forest beztiglich der Accuracy fiir
diesen Datensatz keine groflen Unterschiede zu machen. Dem kreuzvalidierten Hyperpara-
metertuning wird jedoch vertraut und das finale Parametersetting von

* Miry = 6

e min.node.size = 9
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* Niree = 450

gewdhlt, bei dem eine leichte Verbesserung der Accuracy erwartet wird.

5.2 Kilassifikationsgiite der Modellierungen

Um zu iberpriifen, wie gut die Modelle die Daten einteilen, wird eine 10-fache Kreuzva-
lidierung auf dem Gesamtdatensatz durchgefiihrt. Dabei wird der Datensatz in zehn Teile
eingeteilt, neun werden zum FErstellen eines Modells verwendet und einer wird verwendet,
um eine Accuracy zu messen. Dies resultiert in 10 gemessenen Accuracy-Werten, die tber
alle Teile hinweg eine geschitzte Gesamt-Accuracy des Modells ergeben. Die Einteilungen
des Datensatzes in 10 Teile sind fiir beide Modellierungen identisch.

] \ Multinomiale logistische Regression \ Random Forest ‘
’ Accuracy ‘ 0.680 ‘ 0.669 ‘

Tabelle 7: Kreuzvalidierte Accuracy fiir multinomiales logistisches Regressionsmodell und
Random Forest

In Tabelle 7 ist zu erkennen, dass beide Modelle bei 10-facher Kreuzvalidierung eine dhn-
liche Accuracy aufweisen, wobei das multinomiale logistische Regressionsmodell etwas besser
abschneidet. Wahrend des Hyperparameter Tunings wurde jedoch bereits festgestellt, dass
die Accuracy des Random Forest in einem &hnlichen Bereich schwankt, weshalb die beiden
Modelle insgesamt als etwa gleich gut bewertet werden.

Dariiber hinaus wurde noch iiberpriift, wie die beiden Modelle fiir die einzelnen Positionen
abschneiden.

’ Accuracy fir: \ Multinomiale logistische Regression \ Random Forest

Auflenverteidiger | 0.77 0.77

Defensives Mittelfeld | 0.667 0.657

Fliigelspieler | 0.66 0.635

Innenverteidiger | 0.904 0.869
Mittelfeld Auflen | 0.07 0

Mittelstiirmer | 0.764 0.785

Offensives Mittelfeld | 0.227 0.234
Torwart | 1 1

Zentrales Mittelfeld | 0.396 0.396

Tabelle 8: Kreuzvalidierte Accuracy pro Position fiir multinomiales logistisches Regressions-
modell und Random Forest

In Tabelle 8 fallt auf, dass beide Modelle die Positionen in etwa gleich gut modellieren.
Manche Positionen sind nahezu perfekt modelliert worden (z.B. die Torhiiter und die Innen-
verteidiger), wohingegen manche Positionen sehr schlecht modelliert worden sind (z.B. die
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aufSeren Mittelfeldspieler und die offensiven Mittelfeldspieler). Wird die Accuracy pro Posi-
tion mit den Klassengrofien verglichen, fallt auf, dass vor allem kleinere Klassen schlechter

modelliert wurden (vgl. Tabelle 4).

Des Weiteren fallt auf, dass die Positionen im Mittelfeld am schlechtesten modelliert werden.
Dies konnte dafiir sprechen, dass sich die verschiedenen Positionen im Mittelfeld beziiglich
der hier ausgewéhlten Leistungsdaten nicht sehr stark unterscheiden.

Konfusionsmatrix - Random Forest

Konfusionsmatrix - Multinomiale logistische Regression

e
Nsii,
s Mg, .
&

ma}\amw SBN_SUSLSG — sonsusled
(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 31: Konfusionsmatritzen als Chordgraphen

Im Gegensatz zu der Visualisierung der Topologie, die in Kapitel 4.2.2.5 anhand von Chord-
graphen vorgestellt wurde, werden die Chordgraphen in Abbildung 31 genutzt, um die Fehl-
klassifikationen der beiden Modellierungen zu vergleichen. Jede eingezeichnete Verbindung,
die nicht in der eigenen Klasse endet, steht fiir einen Anteil der ausgehenden Gruppe, der in

die Zielgruppe fehlklassifiziert wurde.

Auf den ersten Blick sehen die beiden Grafiken identisch aus, weisen aber kleine Unterschiede
auf (hauptséchlich in der Breite der Anteile). Die in Tabelle 8 aufgefiihrten auffilligsten Po-
sitionen, sind die Torhiter und die dufieren Mittelfeldspieler. Auch in dieser Grafik unter-
scheiden sich die beiden Positionen klar von den anderen, da von den Torhiitern kein einziger
misklassifizierter Teil in eine andere Gruppe ausgeht und von den dgufferen Mittelfeldspielern
kaum eine Verbindung in sich selbst fithrt (also richtig klassifiziert wurde).

Auf den zweiten Blick féllt auf, dass die Positionen, zwischen denen viel Fehlklassifikation
besteht, hdufig auch auf dem Spielfeld nebeneinander liegen. Die am schwachsten modellierte
Klasse der duferen Mittelfeldspieler wird beispielsweise hiufig als Fligelspieler (was auf dem
Spielfeld direkt vor den dufleren Mittelfeldspielern liegt), als Aufenverteidiger (was direkt
dahinter liegt) oder als zentrale Mittelfeldspieler (was direkt daneben liegt) klassifiziert. Die
Aufgaben, die die Spieler auf diesen Positionen haben, unterscheiden sich nur geringfiigig
von denen eines dufferen Mittelfeldspielers, weshalb die Fehlklassifikationen wahrscheinlich

grofitenteils in diese Klassen resultieren.
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Auch die Position, die am zweit-schlechtesten modelliert wurde, weist diese Zusammenhénge
auf. Die offensiven Mittelfeldspieler wurden sehr héaufig als Fligelspieler (was nach aufien
hin direkt neben den offensiven Mittelfeldspielern liegt), als zentrale Mittelfeldspieler (was
direkt dahinter liegt) oder als Mittelstirmer (was direkt davor liegt) klassifiziert.

Es gibt GiitemaBe, die die Fehlklassifikationen verschieden gewichten - dies bedeutet bei-
spielsweise, dass eine Fehlklassifikation von Klasse A in Klasse B nicht so schwer gewichtet
ist, wie eine Fehlklassifikation von Klasse A in Klasse C - . Wenn die Distanz zwischen zwei
Positionen als Gewicht genommen werden wiirde, konnte es sein, dass die beiden Modelle
beziiglich eines solchen Gilitemafles sogar noch besser abschneiden, als die hier gemessene
Accuracy. Aufgrund der Tatsache, dass im folgenden Teil der Arbeit nur die Pradiktion der
wahrscheinlichsten Klasse vorwiegend untersucht wird, ist eine Giitemessung beziiglich eines
solchen gewichteten Giitemafles hier nicht durchgefithrt worden.

Alles in allem kann durch diese Betrachtung der Fehlklassifikationen offensichtlich kein grofer
Unterschied zwischen den beiden grundsétzlich verschiedenen Modellen festgestellt werden.

5.3 Regressionskoeffizienten in multinomialem logistischen Re-
gressionsmodell

Das multinomiale logistische Regressionsmodell hat die Eigenschaft Regressionskoeffizienten
zu schatzen, die einzeln interpretiert werden kénnen. Ein positiver Regressionskoeffizient fiir
eine bestimmte Klasse k£ und eine bestimmte Variable [ bedeutet eine hohere Chance auf
Klasse k im Vergleich zur Referenzkategorie bei einer hoheren Auspriagung der Variable .

Das Schéatzen der Regressionskoeffizienten wurde mit der multinom-Funktion aus dem
R-Paket nnet durchgefiihrt. Diese schiatzt das multinomiale logistische Regressionsmodell
mit neuronalen Netzen. Die Konvergenz zu einem Minimum der kleinsten-Quadrate-
Approximation ist nach etwa 190 Iterationen eingetreten (+- 10 Iterationen bei der
Kreuzvalidierung). Durch diese Modellierung kénnen Punktschétzer und Standardfehler fur
die Regressionskoeffizienten geschatzt werden. Die geschatzten Regressionskoeffizienten des
multinomialen logistischen Regressionsmodells sind in Tabelle 9 abgetragen.

Tabelle 9 zeigt die geschatzten Beziehungen der Referenzkategorie Zentrales Mittelfeld mit
den anderen Positionen durch die Regressionskoeffizienten des multinomialen logistischen
Regressionsmodells auf.

Was bei ndherer Betrachtung aufféllt, sind die Standardabweichungen der Regressionskoef-
fizienten fiir die Torhiiter, welche oft deutlich grofier oder deutlich kleiner als die der restlichen
Positionen sind. Bei genauerer Betrachtung der zugrundeliegenden Daten féllt auf, dass fir
den Teildatensatz der Torhiiter mehrere Leistungsdaten Null-Vektoren sind. Kein Torhiter
in diesem Datensatz hat bspw. ein Tor geschossen oder im Abseits gestanden, weshalb die
Koeffizienten fir die Torhiiter nicht tiberinterpretiert werden sollten.

Des Weiteren fallen bei zeilenweiser Betrachtung interessante Zusammenhénge der Leistungs-
daten und der Positionen auf. Das zentrale Mittelfeld wurde als Referenzkategorie gewahlt,
da die Position sehr zentral auf dem Fufiballplatz steht. Die Reihenfolge der Spalten in
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Tabelle 9 wurde auch aufgrund der Platzierung auf einem Fufiballfeld festgelegt. Wahrend
der Torhiiter die defensivste Position von allen ist, ist der Mittelstiirmer die offensivste.

| \ | TW | IV [ AV [ DM [ AM [ OM | FS | MS |
coeff. | -0.08 | -0.06 | -0.05 [-0.02-0.12[-0.08 [-0.13 | -0.16
std.dev. | 252 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 [ 0.03
Passquote coeff. -0.26 0.05 -0.1 0.01 | -0.09 | -0.01 | -0.07 | -0.13
(in %) std.dev. | 2.67 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04
coeff. | -0.42 | -0.17 | -0.08 | -0.1 |-0.02[ 0.13 | 0.18 | 0.2
std.dev. | 4.67 | 0.07 | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 [ 0.06
Zweikampfquote | coeff. | 0.29 | 0.55 | 0.3 | 0.2 [ 0.05 [-0.13[-0.08 | -0.2
(in %) std.dev. | 176 | 0.05 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 [ 0.05
coeff. | -7.83 | 0.55 | -1.17 | 0.71 |-1.24 [ -2.23 [ -2.52 | -2.25
std.dev. | 027 | 048 | 034 | 027 | 036 | 034 | 0.34 | 0.38
coeff. | -2.46 | -3.35 | -1.45 [ -0.26 | -0.56 | 0.21 [ -0.19 | -0.3
std.dev. | 032 | 0.45 03 [ 023 [ 031 [027 [ 027 | 034
coeff. |-10.21| -4.38 | -2.44 |[-0.22 | -0.95 [ -0.54 | -1.2 | -1.99
std.dev. | 092 | 039 | 027 | 023 | 027 | 023 | 0.22 | 0.27
coeff. | 6.89 | -5.92 | -1.33 |-6.34 | 424 | 5.9 | 6.81 | 8.52
std.dev. | 011 | 252 | 1.52 | 158 | 1.17 | 1.09 | 1.09 | 1.14
coeff. |-22.02|-16.31 | 1.66 |-5.79 | 3.68 | 3.6 | 4.58 | 2.76
std.dev. | 0.01 | 3.34 1.7 16 [ 16 [ 141 [ 142 ] 17
coeff. | 2.31 |-10.08 | -10.31 | -4.85 | -3.49 | 3.49 | 2.84 | 5.82
std.dev. | 0.1 416 [ 256 | 1.86 | 1.93 | 1.37 | 1.39 | 1.56
coeff. | 4.65 | 11.36 | -11.15 | 0.34 | -8.36 | 8.31 | 4.68 [ 16.67
std.dev. | 0.02 | 3.02 | 348 | 255 | 405 | 2.64 | 259 | 2.76

Gespielte Péasse

Zweikampfe

Begangene Fouls

Gefoult worden

Laufweite (in km)

Abseits

Vorlagen

Tore mit dem Fuf}

Kopfballtore

Tabelle 9: Regressionskoeffizienten des multinomialen logistischen Regressionsmodells mit
Zentralem Mittelfeld als Referenzkategorie

Was gespielte Pdsse angeht, so ist dies die wichtigste Aufgabe eines zentralen Mittelfeld-
spielers. Dies spiegelt sich auch in den Regressionskoeffizienten wider, die fiir alle anderen
Kategorien negativ sind. Auffillig ist auch, dass der Regressionskoeffizient negativer wird, je
weiter weg ein Spieler von der zentralen Mittelfeld-Position spielt (mit den hochsten Betragen
fiur die Torhiiter und Mittelstiirmer).

Die Qualitat der Passe ist jedoch anscheinend fiir defensivere Positionen hoher als fiir offen-
sive. Den hochsten und positiven Regressionskoeffizienten fiir die Passquote weisen die In-
nenverteidigern auf. Die niedrigsten und negativen Regressionskoeffizienten fiir die Passquote
weisen, abgesehen von den Torhitern, die Mittelstirmer auf.

Die Anzahl der gefiihrten Zweikdmpfe steigen wohl mit zunehmender offensiver Position des
Spielers. Den hochsten und positiven Regressionskoeffizienten weisen die Mittelstirmer auf,
wahrend den niedrigsten und negativen Regressionskoeffizienten die Torhiter gefolgt von
den Innenverteidigern aufweisen.
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Die Qualitat der Zweikampfe ist jedoch anscheinend umgekehrt. Den hochsten und positiven
Regressionskoeffizienten fiir die Zweikampfquote weisen die Innenverteidiger auf, wahrend die
niedrigsten und negativen Regressionskoeffizienten die Mittelstirmer aufweisen.

Fir die Anzahl an begangenen Fouls 1asst sich keine klare Struktur auf dem Feld erkennen. Die
hochsten positiven Regressionskoeffizienten weisen die defensiven Mittelfeldspieler und die
Innenverteidiger auf, wobei dies die Positionen sind, an denen am haufigsten mit taktischen
Fouls gearbeitet wird.

Die am haufigsten gefoulte Position ist mit dem einzigen positiven Regressionskoeffizienten
die Position des offensiven Mittelfelds. Dies deckt sich auf dem Fuflballplatz mit der am
héufigsten foulenden Position (angreifende gegen verteidigende Mannschaft).

Fir die Laufweite werden nur negative Regressionskoeffizienten fiir die verschiedenen Posi-
tionen geschatzt, was bedeutet, dass eine hohe Laufweite fir einen zentralen Mittelfeldspieler
spricht. Wahrend betragsméfig die niedrigsten negativen Regressionskoeffizienten fiir die
Mittelfeldpositionen geschatzt werden, sind die negativen Regressionskoeffizienten fiir die
wirklich offensiven und defensiven Positionen betragsméfiig hoch. Dies spricht dafiir, dass im
Mittelfeld am meisten gelaufen wird.

Was Abseitsstellungen und Vorlagen angeht, so weisen die wirklich offensiven Positionen
einen positiven Regressionskoeffizienten auf, wahrend die defensiven Positionen einen neg-
ativen Regressionskoeffizienten aufweisen. Eine Ausnahme bilden die Auflenverteidiger, die
einen positiven Regressionskoeffizienten fir Vorlagen aufweisen, was dafiir spricht, dass sich
die Auffenverteidiger haufig an Angriffen beteiligen. Eine weitere Ausnahme ist der positive
Regressionskoeffizient fiir die Torhiter bei der Anzahl an Abseitsstellungen. Da dies jedoch
wie bereits erwahnt im Datensatz fiir keinen Torhiiter vorgekommen ist, sollte auch dieser
Regressionskoeffizient nicht tiberinterpretiert werden.

Die hochsten positiven Regressionskoeffizienten fiir geschossene Tore und Kopfballtore weisen
wie zu erwarten die Mittelstiirmer auf. Interessant ist hier, dass der zweit-hochste positive
Regressionskoeffizient fir Kopfballtore fiir die Innenverteidiger geschitzt wird. Mit ihrer
GroBe und Kopfballstarke in der Defensive den Ball aus dem eigenen Strafraum rauszuképfen
und in der Offensive fiir Gefdhrlichkeit vor dem gegnerischen Tor zu sorgen ist eine typische
Aufgabe fir Innenverteidiger bei Ecken. Dass diese grofien und kopfballstarken Spieler viele
Kopfballtore erzielen ist also durchaus etwas, das in der Bundesliga beobachtet werden kann.

Alles in allem sind bereits durch die Regressionskoeffizienten Strukturen und Zusammen-
hange zwischen den Positionen und den Leistungsdaten zu erkennen. Um diese Zusammen-
hange jedoch auch mit den modellierten Zusammenhangen eines Machine Learning-Modells
vergleichbar zu machen, werden in den folgenden Kapiteln die beiden Modelle mit Methoden
verglichen, die fiir beide Modelle angewendet werden koénnen.

5.4 Variable Importance

Die Variable Importance wird wie in Kapitel 4.2.2.1 beschrieben fiir die beiden Modelle
erzeugt. In Abbildung 32 ist die Variable Importance fir die beiden Modelle dargestellt.
Die Rangfolge der Variablen ist durch die Punktschétzer der Variable Importance fiir die
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jeweilige Variable im jeweiligen Modell bestimmt worden. Um Ausreifler nicht zu stark zu
gewichten, zeigen die Balken die Streuung durch die Spannweite der gemessenen Variable
Importance-Werten vom 5%-Quantil bis zum 95%-Quantil an.

Variablenwichtigkeit in Multinomialem Logit—-Modell Variablenwichtigkeit in Random Forest
Mit Streuung Mit Streuung
Laufweite - }—v—i Abseits- }—v—i
Zweikampfquote - }—v—i Laufweite- }—v—i
Abseits- }—v—i Zweikampfquote - }—v—i
Begangene Fouls- }—v—i Gespielte Passe- }—v—i
Vorlagen- }—v—i Vorlagen- }—-’—i
.§ Passquote - }—v—i § Begangene Fouls- }—v—i
Gefiihrte Zweikampfe - }—v—i Passquote- }—v—i
Gefoult worden- }—v—i Gefiihrte Zweikampfe- }—v—i
Gespielte Péasse- }—v—i Geschossene Tore mit dem Ful3- }—v—i
Geschossene Tore mit dem Ful3- }—v—i Gefoult worden- }—v—i
Kopfballtore - }—v—i Kopfballtore- H
0.0 01 02 0.0 01
Mittlere Variablenwichtigkeit Mittlere Variablenwichtigkeit
(a) Multinomiales logistisches Regressionsmodell (b) Random Forest

Abbildung 32: Variable Importance fiir beiden Modelle

In Abbildung 32 ist die Variable Importance fir das multinomiale logistische Regressions-
modell und den Random Forest abgebildet. Die Variable Importance-Werte fiir den Random
Forest streuen nur unmerklich weniger, als fiir das multinomiale logistische Regressions-
modell. Dariiber hinaus treten die beiden hochsten Variable Importance-Werte fiir die Leis-
tungsdaten in der multinomialen logistisches Regression auf, was bedeutet, dass es fiir dieses
Modell “schlimmer” ist, wenn diese beiden Leistungsdaten permutiert werden, als jede an-
dere Variable fiir den Random Forest. Dies konnte fiir eine hohere Abhangigkeit der beiden
Leistungsdaten mit den anderen Kovariablen sprechen.

Die Reihenfolgen scheinen sich auf den ersten Blick sehr zu unterscheiden. Bei ndherer Be-
trachtung fallt jedoch auf, dass die Reihenfolgen sich sogar ziemlich &hneln.

Die wichtigsten drei Variablen fiir beide Modelle sind die Laufweite, die Zweikampfquote
und die Anzahl der Abseitsstellungen, jedoch in verschiedener Reihenfolge. Dies bedeutet,
dass durch das Permutieren dieser drei Leistungsdaten die Pradiktionen der Modelle am
schlechtesten werden. Die Variable Importance dieser drei Leistungsdaten hebt sich fiir beide
Modelle deutlich von den anderen ab.

Die Rénge dahinter liegen alle ziemlich dicht mit stark tiberlappenden Streuungsintervallen
beieinander. Gemeinsam ist bei beiden Modellen, dass die Anzahl der Torvorlagen und die

0.2
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Anzahl der begangenen Fouls noch eine relativ hohe Variable Importance aufweisen, wihrend
die Anzahl der Kopfballtore und die Anzahl der geschossenen Tore mit dem Fuf$ fir beide
Modelle eher niedrige Werte der Variable Importance aufweisen.

5.5 Partial Dependence Plots

Die Partial Dependence Plots fiir die beiden Modellierungen sollen Trends fiir Zusammen-
hdnge zwischen den Leistungsdaten und den Positionen aufzeigen.

Partial Dependence Plots
Multinomiales Logit—-Modell
Passe Passquote Zweikampfe Zweikampfquote

1.00-
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0.50- \
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W
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Abbildung 33: Partial Dependence Plot fiir multinomiales logistisches Regressionsmodell

In Abbildung 33 sind die Partial Dependence Plots fiir das multinomiale logistische Regres-
sionsmodell aufgefithrt. Am auffalligsten sind die Partial Dependence Plots fiir die Laufweite
und die Zweikampfquote, da dort am meisten Aktivitat herrscht. Dies bedeutet, dass der Par-
tial Dependence Plot aufzeigt, dass die mittlere Vorhersage fiir die verschiedenen Klassen
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iiber den Wertebereich dieser Variablen stark schwankt. Dass diese beiden Variablen wichtig
fiir das Modell sind, wurde bereits in Abbildung 32 gezeigt und bestétigt sich hier.

Ein kleiner Wert der Laufweite spricht stark fiir die Position des Torhiters oder des Innen-
verteidigers, wihrend ein hoher Wert fiir einen defensiven Mittelfeldspieler spricht. In Tabelle
9 wurde beztiglich der Laufweite gezeigt, dass alle Positionen im Vergleich zur Referenzkate-
gorie Zentrales Mittelfeld negative Koeffizienten aufweisen, also eine hohe Laufweite fiir eine
hohe Wahrscheinlichkeit auf Zentrales Mittelfeld spricht. In diesem Partial Dependence Plot
ist angedeutet, dass die mittlere Wahrscheinlichkeit auf Zentrales Mittelfeld am Rand des
Wertebereichs anfangt zu steigen, jedoch wiirde das Maximum der mittleren Wahrschein-
lichkeit auf Zentrales Mittelfeld aulerhalb des Wertebereichs liegen (also in einem Bereich,
in dem keine Beobachtungen existieren).

Der Partial Dependence Plot fiir die Zweikampfquote bildet die Regressionskoeffizienten sehr
gut ab. Kleine Werte der Zweikampfquote sprechen fiir eine hohe mittlere Wahrscheinlichkeit
auf Mittelstirmer oder offensive Mittelfeldspieler, also fiir offensivere Positionen. Hohe Werte
der Zweikampfquote sprechen dagegen fiir Innenverteidiger und Auflenverteidiger, also eher
defensive Positionen. Auch diese Zusammenhénge sind in den Regressionskoeffizienten in
Tabelle 9 erkennbar.

Ein Beispiel fiir eine Variable, die nur wenig Effekt auf die Vorhersagewahrscheinlichkeiten
hat, wird im Partial Dependence Plot fir die Anzahl gefoult worden zu sein dargestellt. Dort
ist kaum ein Unterschied in der Pradiktion iiber den Wertebereich der Variable festzustellen.
Auch im Variable Importance Plot (Abbildung 32) war zu erkennen, dass diese Variable
fiir die Préadiktion eher unwichtig ist. Es gibt eine leicht erhéhte Wahrscheinlichkeit auf
Innenverteidiger bei kleinen Werten fiir die Anzahl gefoult worden zu sein, wahrend hohe
Werte fiir eine leicht erhohte Wahrscheinlichkeit auf defensive Mittelfeldspieler sprechen.

Obwohl die Punktschatzer fiir die Regressionskoeffizienten in Tabelle 9 fiir die Variable
Gefoult worden betragsmafig viel hoher sind als fiir die Zweikampfquote, ergeben sich auf
dem gesamten Wertebereich der beiden Variablen fiir die Variable Gefoult worden weniger
Schwankungen in den Pradiktionen als fiir die Zweikampfquote. Dies ist etwas, das aus den
Regressionskoeffizienten vorher nicht erkannt werden konnte, was in dieser Art des inter-
pretierbaren Machine Learnings jedoch sichtbar wird.

Alles in allem bildet der Partial Dependence Plot fiir das multinomiale logsitische Regres-
sionsmodell die Regressionskoeffizienten ab und lasst dariiber hinaus noch andeutungsweise
die Variable Importance erkennen.

In Abbildung 34 sind die Partial Dependence Plots fiir den Random Forest abgebildet. Die
grofiten Unterschiede, die zu den in Abbildung 33 erzeugten Partial Dependence Plots fiir
die multinomiale logistische Regression auffallen, sind einerseits die kantigere Form der Kur-
ven und andererseits die niedrigeren mittleren Wahrscheinlichkeiten an den Randern der
Wertebereiche. Eine grofie Gemeinsamkeit ist jedoch, dass die Partial Dependence Plots zu
den Variablen, die die hochte Variable Importance aufgewiesen haben, auch fir den Random
Forest eine hohe Aktivitat aufweisen.
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Partial Dependence Plots
Random Forest
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Abbildung 34: Partial Dependence Plot fiir Random Forest

Die Laufweite zeigt auch hier fiir einen geringen Wert eine hohe mittlere Wahrscheinlichkeit
fir einen Torhiter, fir eine mittlere Laufweite eine hohe mittlere Wahrscheinlichkeit auf
einen Innenverteidiger und fir eine hohe Laufweite eine hohe mittlere Wahrscheinlichkeit
auf einen defensiven Mittelfeldspieler.

Auch der Partial Dependence Plot fiir die Zweikampfquote zeigt einige Gemeinsamkeiten
zwischen den Modellierungen auf. Ein hoher Wert der Zweikampfquote spricht fiir eine hohere
Wahrscheinlichkeit fiir Innenverteidiger und Aufenverteidiger. Fiir einen niedrigeren Wert
der Zweikampfquote zeigen sich hier jedoch einige grofiere Unterschiede zwischen den beiden
Modellen. Wahrend fiir niedrige Werte der Zweikampfquote die Mittelstiirmer fiir beide Mod-
elle die hochste mittlere Wahrscheinlichkeit aufzeigen, ist die Wahrscheinlichkeit im multi-
nomialen logistischen Regressionsmodell ziemlich hoch, im Random Forest jedoch nur leicht
iiber den anderen Klassen. Dartiber hinaus zeigt das multinomiale logistische Regressions-
modell fiir niedrige Werte der Zweikampfquote auch eine hohe mittlere Wahrscheinlichkeit
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fiir einen offensiven Mittelfeldspieler.

Auch fiir die anderen Variablen ergeben sich viele Ahnlichkeiten, aber auch gréSere Unter-
schiede. Der Partial Dependence Plot fiir die Anzahl der gespielten Pdsse zeigt zum Beispiel
im multinomialen logistischen Regressionsmodell fiir hohe Werte eine sehr hohe mittlere
Wahrscheinlichkeit auf einen zentralen Mittelfeldspieler. Der Partial Dependence Plot des
Random Forests hingegen weist flir einen zentralen Mittelfeldspieler nur eine recht geringe
mittlere Wahrscheinlichkeit fiir eine hohe Anzahl an Pdssen auf.

Des Weiteren ist hochst auffallig, dass die mittlere Wahrscheinlichkeit fir Innenverteidiger
und fiir Mittelstirmer bei einem hohen Wert an Kopfballtoren zwar fiir beide Modelle in den
Partial Dependence Plots am hochsten ist, jedoch der Wert an sich im multinomialen lin-
earen logistischen Regressionsmodell etwas hoher ist als im Random Forest. An dieser Stelle
sollte aber auffallen, dass es sich bei Kopfballtoren um ein eher seltenes Ereignis handelt.
Dementsprechend sollte es auch viele Kovariablensettings geben, fir die nie eine hohe Anzahl
an Kopfballtoren vorgekommen ist. Die mittleren Wahrscheinlichkeiten an diesem Rand mit
allen Beobachtungen zu bestimmen, stellt die beiden Modelle also vor das Problem, dass
Beobachtungen in Gebieten erzeugt werden, auf welche sie gar nicht trainiert wurden (vgl.
Kapitel 4.3.3). Dies konnte in den ICE-Plots auffallen und genau diese Problematik wird in
den ALE-Plots versucht zu beheben.

5.6 Individual Conditional Expectation Plots

Insgesamt wurden durch die 11 verschiedenen Variablen, 9 verschiedenen Positionen, 2 ver-
schiedenen Modelle und 3 Arten von ICE-Plots 594 verschiedene ICE-Plots erzeugt. Hier
werden jedoch lediglich die wichtigsten und auffalligsten von ihnen interpretiert. Die an-
deren ICE-Plots sind im elektronischen Anhang zu finden.

ICE Plot Multinomiales Logit Modell ICE Plot Multinomiales Logit Modell - Quantiles ICE Plot Multinomiales Logit Modell - zentriert

Partielle Wahrscheinlichkeitsvorhersage - Torwart
Partielle Wahrscheinlichkeitsvorhersage - Torwart
Partielle Wahrscheinlichkeitsvorhersage - Torwart

Abbildung 35: ICE-Plot fiir die Wahrscheinlichkeit auf die Torhiter-Position beziiglich der
Laufweite - multinomiales logistisches Regressionsmodell

Da durch alle Beobachtungen ein viel zu uniiberischtlicher Plot entstehen wiirde, wurden die
ICE-Plots auf ein kleines Subsample beschrinkt. In diesem Subsample sind alle Beobachtun-
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gen der Position, fiir welche der ICE-Plot die Wahrscheinlichkeiten angibt, und zusétzlich
genau so viele Beobachtungen zuféllig aus dem restlichen Datensatz ausgewahlt.

Bereits bei der Variable Importance und in den Partial Dependence Plots wurde die Laufweite
als wichtige Variable fiir die Modellierung bestimmt. In Abbildung 35 ist der ICE-Plot fiir
die Wahrscheinlichkeit darauf ein Torhiiter beziiglich der Laufweite im multinomialen logis-
tischen Regressionsmodell zu sein. Auffillig ist der Wertebereich der Laufweite, da dieser
eine groflere Sprungstelle beinhaltet. Diese Sprungstelle ist in den Dichteplots in Kapitel
3.2.1 nicht zu erkennen, da dort die Torhiter nicht miteinbezogen wurden. Durch diese
Spieler entsteht jedoch eine stark bimodale Verteilung.

Im linken ICE-Plot in Abbildung 35 ist ersichtlich, dass nach der Sprungstelle die durch das
Modell prognostizierte Wahrscheinlichkeit darauf Torhiter zu sein fiir die meisten Beobach-
tungen auflerst gering ist. Fiir einen sehr hohen Wert der Laufweite ist die Wahrschein-
lichkeit darauf Torhiiter zu sein sogar fiir alle Beobachtungen verschwindend gering. Auch
fallt auf, dass flir den niedrigsten Wert der Laufweite durch die Kovariablenkombinationen
der Beobachtungen der gesamte Wertebereich von 0 bis 1 abgedeckt wird, jedoch nahezu alle
Kurven bei einer Wahrscheinlichkeit von fast 7 beginnen. Warum dies interessant ist, zeigt
sich im Vergleich mit den ICE-Plots des Random Forests. Der Quantils-ICE-Plot zeigt diesen
Abfall sogar noch extremer auf, da die Liicke der Sprungstelle verschwindet. Im zentrierten
ICE-Plot ist sogar zu erkennen, dass die Wahrscheinlichkeit fiir alle Beobachtungen ab dem
niedrigsten Wert der Laufweite monoton fallt.

ICE Plot Random Forest ICE Plot Random Forest - Quantiles ICE Plot Random Forest - zentriert

o
JLin

Partielle Wahrscheinlichkeitsvorhersage - Torwart
Partielle Wahrscheinlichkeitsvorhersage - Torwart
Partielle Wahrscheinlichkeitsvorhersage - Torwart

Abbildung 36: ICE-Plot fiir die Wahrscheinlichkeit auf die Torhiiter-Position beziiglich der
Laufweite - Random Forest

Der grundsétzliche Trend, den auch die ICE-Plots fiir das multinomiale logistische Regres-
sionsmodell gezeigt haben, ist auch fiir den Random Forest in Abbildung 36 zu erkennen.
Steigt die Laufweite, so verringert sich fiir die Beobachtungen die durch das Modell geschatzte
Wahrscheinlichkeit darauf ein Torhiter zu sein. Der linke ICE-Plot zeigt dabei einen grofien
Unterschied zu den ICE-Plots aus Abbildung 35. Wéhrend fiir das multinomiale logistis-
che Regressionsmodell auf dem gesamten Intervall [0,1] der geschétzten Wahrscheinlichkeit
Beobachtungen am unteren Rand des Wertebereichs der Laufweite beginnen, beginnen die
Kurven fiir den Random Forest bei einer Hohe von mindestens 0.3. Dariiber hinaus begin-
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nen die meisten Kurven im Intervall zwischen 0.5 und 0.5 und nicht bei fast 7 wie in den
ICE-Plots fiir das multinomiale logistische Regressionsmodell. Diesbeziiglich unterscheiden
sich die beiden Modelle also stark voneinander.

Ein weiterer auffilliger Unterschied zwischen den beiden Modellen ist das Verhalten im
unteren Teil des Wertebereichs. Wahrend im multinomialen logistischen Regressionsmodell
die Wahrscheinlichkeit darauf Torhiter zu sein bereits unterhalb der Sprungstelle abnimmt,
bleibt sie fiir den Random Forest in diesem Bereich konstant. Dies kann so gedeutet werden,
dass der “niedrigste” Split, der fiir die Laufweite in allen Baumen gemacht wird, erst in etwa
bei der Sprungstelle beginnt. Der Zusatz “in etwa” ist wichtig, da durch das Bootstrap-
Sampling Bdume existieren, in denen der héchste Wert vor der Sprungstelle nicht vorkommt,
und daher nicht als Splitkriterium genommen werden kann. Dadurch bestimmt der jeweils
néachst hochste Punkt unterhalb der Sprungstelle den Splitpunkt in diesen Baumen.

Grundsétzlich ist jedoch zu sagen, dass der Random Forest die Sprungstelle als eine solche
modelliert, obwohl ein Split in einem Baum nicht von der Hohe einer metrischen Variable
abhéngt, sondern nur von ihrer Einordnung in den Wertebereich.

ICE Plot Multinomiales Logit Modell ICE Plot Multinomiales Logit Modell - Quantiles ICE Plot Multinomiales Logit Modell - zentriert
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Abbildung 37: ICE-Plots fiir die Wahrscheinlichkeit auf die Auflenverteidiger-Position
beziiglich der Zweikampfquote
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Dieses Verhalten konnte ein grofler Indikator dafiir sein, warum die Laufweite durch die
Variable Importance so wichtig eingestuft wurde. Mit dem die Wahrscheinlichkeit fiir einen
Torhiiter nach der Sprungstelle sinkt, steigt sie nattrlich fiir andere Klassen. Eine Variable,
die eine Gruppe nahezu “rein” absplitten kann, ist fiir jede Art der Modellierung auflerst
wichtig.

Abgesehen von der Laufweite ist auch die Zweikampfquote fir beide Modelle eine wichtige
Variable (vgl. Kapitel 5.4). Ein grofler Unterschied zwischen den beiden Modellierungen
kann anhand des ICE-Plots fiir die modellierte Wahrscheinlichkeit fiir die Aufenverteidiger-
Position in Abbildung 37 erkannt werden.

Die Wahrscheinlichkeitsvorhersage fiir Auflenverteidiger liegt fiir alle Beobachtungen im
multinomialen logistischen Regressionsmodell fir X zycikampfquote = 0 bei nahezu 0%, unab-
hiangig von der Auspriagung der Kovariablen. Fir den Random Forest ist die Spannweite
der Wahrscheinlichkeitsvorhersagen fiir die Auflenverteidiger-Position um einiges grofer,
wodurch eine klare Abhangigkeit zu den Kovariablen fiir diesen Punkt festgestellt werden
kann.

Auch der weitere Verlauf unterscheidet sich in den beiden Modellen. Wenn eine Kurve bei
einem Wert von exakt 0% beginnt, kann im zentrierten ICE-Plot kein negativer Wert fir
diese Kurve aufkommen, da die Wahrscheinlichkeit der Kurve nicht unter 0% fallen kann.
Wiéhrend also fiir das multinomiale logistische Regressionsmodell im zentrierten ICE-Plot
keine (oder nur minimale) Werte unter 0 vorkommen, tauchen im zentrierten ICE-Plot fir
den Random Forest sehr hohe negative Werte auf. Selbst an den Stellen, an denen der Partial
Dependence Plot des Random Forest einen Anstieg der mittleren Wahrscheinlichkeitsvorher-
sage fur die Auflenverteidiger-Position aufzeigt, existieren im zentrierten ICE-Plot hohe neg-
ative Werte und vor allem auch weiter sinkende Verlaufe. Dies impliziert an dieser Stelle eine
hohe Abhéangigkeit mit den Kovariablen, die die Wahrscheinlichkeitsvorhersage diktieren.

Eine hohe Kovariablenabhédngigkeit kann jedoch auch in den ICE-Plots fiir das multinomi-
ale logistische Regressionsmodell festgestellt werden. Wiirden Kovariablen tiberhaupt keinen
Einfluss auf die Priadiktion durch eine Variable haben, so wéren alle Kurven im ICE-Plot
identisch. Die Kurven besitzen der Natur des multinomialen logistischen Regressionsmod-
ells geschuldet eine &hnliche Form. Wie jedoch in den ICE-Plots in Abbildung 37 zu ent-
nehmen ist, bilden die Kurven alle Glockenkurven mit jeweils einem Maximum, an dem
die Wahrscheinlichkeitsvorhersage durch das multinomiale logistische Regressionsmodell am
hochsten ist. Diese Maxima der einzelnen Kurven liegen aber {iber eine grofie Spannweite
des Wertebereichs von X zyecikampfquote verteilt, was fiir eine hohe Ahéngigkeit von den Ko-
variablen spricht.

In Abbildung 38 ist im Gegensatz zu den voran gegangenen ICE-Plots mit der Anzahl an
Kopfballtoren eine Variable abgebildet, die laut der Variable Importance fiir beide Model-
lierungen eher unwichtig ist (vgl. Kapitel 5.4).

Wie in Abbildung 6 zu sehen ist, ist die Verteilung der Variable Xk tpaiitore sehr linkssteil.
Daher bietet es sich an den Effekt dieser Variable anhand der Quantile zu beurteilen, damit
eine Steigung des ICE-Plots nicht iiber- oder unterinterpretiert wird. Da die Innenverteidi-
ger-Position bereits bei den Regressionskoeffizienten in Tabelle 9 und im Partial Dependence
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Plot in Abbildung 33 fir die Anzahl an Kopfballtoren aufgefallen ist, wird diese Position fiir
die ICE-Plots verwendet.

Fiir das multinomiale logistische Regressionsmodell zeigt der linke ICE-Plot fiir die meis-
ten Beobachtungen einen sehr schnellen Anstieg der Wahrscheinlichkeitsvorhersage fiir einen
Innenverteidiger, wihrend der Quantils-ICE-Plot zwar einen stetigen, aber langsam wach-
senden Anstieg fiir die meisten Beobachtungen abbildet. Es lassen sich Kurven finden, die bei
niedrigen Werten von X gop fpaiitore NOCh eine sehr niedrige Wahrscheinlichkeitsvorhersage fiir
die Innenverteidiger-Position aufzeigen, fiir hohe Werte jedoch eine sehr hohe. Im zentrierten
ICE-Plot ist dies gut zu erkennen, da eine Kurve, die fiir hohe Werte von X g paiitore fast
den Wert 1 erreicht, eine sehr niedrige Wahrscheinlichkeit fiir niedrige Werte von X g fpatitore
und eine hohe Wahrscheinlichkeit fiir hohe Werte aufgewiesen hat.

Genau dies ist fiir den Random Forest nicht der Fall. Im Quantils-ICE-Plot ist zu erkennen,
dass die meisten Kurven zwar mit ansteigendem Wert von X g tanitore wachsen, jedoch nur
geringfiigig. Der zentrierte ICE-Plot zeigt auch, dass keine Kurve von ihrem Startwert um
mehr als 0.2 ansteigt.

ICE Plot Multinomiales Logit Modell ICE Plot Multinomiales Logit Modell - Quantiles ICE Plot Multinomiales Logit Modell - zentriert
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Abbildung 38: ICE-Plots fiir die Wahrscheinlichkeit auf die Innenverteidiger-Position
beziiglich der Kopfballtore
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Insgesamt zeigen diese Beispiele fiir die ICE-Plots und auch die Partial Dependence Plots,
dass die einzelnen Leistungsdaten innerhalb der Modelle dhnlich funktionieren (beide wach-
sen, beide fallen, beide zeigen intervallmafige An- und Abstiege, ... ). Bei genauerer Betra-
chtung weisen sie jedoch viele Unterschiede auf, wie genau die Variablen die Préadiktionen
beeinflussen. Obwohl die beiden Modelle wie in Kapitel 5.2 gezeigt eine dhnliche Modell-
glite aufweisen und sogar fiir die einzelnen Klassen dhnlich gut funktionieren, funktionieren
die Modelle intern also sehr verschieden. Anhand des Beispiels in Abbildung 29, in dem
dargestellt wurde, wie die beiden Modelle in einem Bereich funktionieren, fiir den sie nicht
trainiert wurden, kann vermutet werden, dass die grofiten Unterschiede, die in den Partial
Dependence Plots und den ICE-Plots gezeigt wurden, dadurch entstehen, dass unwahrschein-
liche Variablenkombinationen erzeugt werden. Im néchsten Abschnitt werden ALE-Plots fiir
den Vergleich der beiden Modelle verwendet, die genau gegen dieses Problem vorgehen sollen.

5.7 Accumulated Local Effect Plots

Genauso wie fiir die ICE-Plots sind fiir die ALE-Plots mit 9 verschiedenen Klassen, 11 ver-
schiedenen Variablen und 2 verschiedenen Modellen insgesamt 198 Plots entstanden, welche
alle in dieser Arbeit zu interpretieren zu viel ware. Daher wurden auch hier verschiedene
ALE-Plots fiir Variablen und Klassen ausgewéahlt, die bereits in den Kapiteln zuvor aufge-
fallen und daher von besonderem Interesse sind.
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Abbildung 39: ALE-Plots fiir die Wahrscheinlichkeit auf die Torhiter-Position beziiglich der
Laufweite

In Abbildung 39 sind die ALE-Plots fiir die Torhiter-Position im Bezug auf die Laufweite
dargestellt. In den ICE-Plots in den Abbildungen 35 und 36 war ein klarer Abwartstrend
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mit Sprungstelle zu sehen. Ein grofler Unterschied zu den ICE-Plots sollte beim betrachten
des ALE-Plots fiir das multinomiale logistische Regressionsmodell auffallen. Wahrend im
dazugehorigen ICE-Plot und auch im Partial Dependence Plot bereits im unteren Teil des
Wertebereichs von Xpqyfuweite €in Gefélle zu erkennen war, scheint der ALE-Plot in diesem
Bereich konstant.

Der Unterschied zwischen der Wahrscheinlichkeitsvorhersage fiir einen Torhiter im unteren
Bereich verglichen mit dem oberen Bereich von X4y fueite ist hinsichtlich des ALE-Plots fiir
den Random Forest viel niedriger als fiir das multinomiale logistische Regressionsmodell.
Dieser Effekt ist an der y-Achse leicht zu abzulesen. Im unteren Teil des Wertebereichs der
Laufweite wird fiir die Daten, deren wahrer Wert innerhalb dieses Bereichs liegen eine um
mehr als 0.7 hohere Wahrscheinlichkeit prédiktiert, als durchschnittlich fiir alle Beobach-
tungen, wahrend die Wahrscheinlichkeit im Random Forest fiir diesen Bereich nur um etwa

0.4 hoher ist.
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Abbildung 40: ALE-Plots fir die Wahrscheinlichkeit auf die Auflenverteidiger-Position
beziiglich der Zweikampfquote

In Abbildung 40 ist der Einfluss der Zweikampfquote auf die Wahrscheinlichkeit auf die
Auflenverteidiger-Position in ALE-Plots dargestellt. Diese zeigen fiir beide Modellierungen
sowohl verlaufsmafBige als auch von der Hohe der Abweichung der mittleren Pradiktion sehr
groBe Ahnlichkeiten. Der grofte Unterschied ist der Vergleich zwischen dem Niveau im un-
teren Wertebereich und dem oberen Wertebereich von X zycikampfquote- Im multinomialen lo-
gistischen Regressionsmodell hat sowohl der ICE-Plot als auch der Partial Dependence Plot
eine sehr niedrige Wahrscheinlichkeitsvorhersage von fast 0% fiir Beobachtungen mit einem
niedrigen Wert der Zweikampfquote und eine vergleichsweise hohe bis sehr hohe Wahrschein-
lichkeit iiber den restlichen Wertebereich aufgezeigt. Der ALE-Plot hingegen zeigt nur im mit-
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tleren Wertebereich der Zweikampfquote eine hohere Abweichung der mittleren Wahrschein-
lichkeitsvorhersage an, wiahrend er an den beiden Réandern des Wertebereichs sehr niedrige
Werte anzeigt.

Der Random Forest hingegen hat dieses Verhalten, dass nur im mittleren Wertebereich
der Zweikampfquote eine hohe Wahrscheinlichkeit auf die Auflenverteidiger-Position und
im unteren und oberen Teil des Wertebereichs eine niedrigere Wahrscheinlichkeit modelliert
wird, schon im ICE-Plot angedeutet. Der ICE-Plot zeigt jedoch im oberen Wertebereich der
Zweikampfquote eine hohere Wahrscheinlichkeitsvorhersage an als im unteren Wertebereich,
der ALE-Plot zeigt dies umgekehrt an.

Der Unterschied zwischen dem Effekt, der durch die ICE-Plots in Abbildung 37 angedeutet
wird, und dem Effekt, der durch die ALE-Plots in Abbildung 40 gezeigt wird, ist am deut-
lichsten an den einzelnen Kurven des ICE-Plots fiir die multinomiale logistische Regression
zu erkennen. Wahrend auf einem grofien Teil des Wertebereichs der Zweikampfquote Maxima
der einzelnen Kurven existieren, zeigt der ALE-Plot ganz klar nur im mittleren Teil des Wer-
tebereichs einen deutlichen Anstieg der Wahrscheinlichkeit auf die Auffenverteidiger-Position
an. Dies konnte dafiir sprechen, dass die vielen Maxima im restlichen Teil des Wertebereichs
durch Beobachtungen entstanden sind, die unwahrscheinliche Variablenkombinationen dort
gebildet haben.

Obwohl fast alle ALE-Plots sehr dhnliche Effekte aufweisen, existieren auch ALE-Plots, in
denen sich die beiden Modelle sehr stark voneinander unterscheiden.
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Abbildung 41: ALE-Plots fiir die Wahrscheinlichkeit auf die Offensive Mittelfeld-Position
beziiglich der Anzahl an Zweikdampfen

In Abbildung 41 sind die ALE-Plots fiir den Effekt der Anzahl an gefiihrten Zweikimpfen
auf die Wahrscheinlichkeitsvorhersage auf die Offensive Mittelfeld-Position in den beiden Mo-
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dellen abgebildet. Wahrend der ALE-Plot in beiden Modellen im unteren Wertebereich von
X zweikampfe leicht ansteigt, steigt er im multinomialen logistischen Regressionsmodell danach
stark an und féllt im oberen Wertebereich wieder stark ab. Im Random Forest sinkt der
Accumulated Local Effect im mittleren Wertebereich stark und steigt im oberen Wertebereich
wieder an.

An dieser Stelle sollte jedoch trotz dieses groflen Unterschieds auf die y-Achse hingewiesen
werden. Obwohl die Anzahl an gefiihrten Zweikimpfen in beiden Modellen eine eher wichtige
Variable ist, d&ndert sich die Wahrscheinlichkeitsvorhersage auf einen offensiven Mittelfeld-
spteler iber den gesamten Wertebereich kaum.

Auch bei den weiteren Fallen, in denen sich die ALE-Plots stark voneinander unterscheiden,
ist dies zu beobachten. Vor allem ist dies fiir die Torhiter auffillig, jedoch wurde dies-
beziiglich bereits in Kapitel 5.3 darauf hingewiesen, dass mehrere Variablen fiir die Torhiiter
ausschliellich aus 0en bestehen, weshalb diese Effekte nicht iiberinterpretiert werden sollten.

5.8 Erarbeitung der Topologie der Modelle

Die in Kapitel 4.2.2.5 vorgeschlagene Methode zur Erarbeitung der Topologie der Modelle
kann fiir alle Klassen gleichzeitig erfolgen. Fiir jede Richtung (Erhéhen und Verringern)
werden jedoch 2 verschiedene “Stéarken” der Datenmanipulation verwendet, wodurch fiir
11 Variablen, 2 Richtungen, 2 verschiedene Starken und die 2 Modelle insgesamt 88 Plots
entstehen.

Grundsétzlich soll diese Methode helfen nahe beeinander liegende Klassen zu ermitteln und
dartiber hinaus herauszufinden, beziiglich welcher Variable diese Nachbarschaft besteht. Dies
konnte zum Beispiel helfen folgende Problemstellungen zu losen:

1. Ein Spieler hat die letzten Jahre mit variierenden, aber immer passenden, Leistungs-
daten fiir seine Position als Auflenverteidiger in der Bundesliga gespielt. Leider hatte
er sich verletzt und ist zusétzlich aufgrund seines Alters nicht mehr in der Lage so
viel zu laufen, wie die Jahre zu vor. Auf welcher Position konnte ein Aufienverteidiger,
von dem davon ausgegangen wird, dass seine anderen Fahigkeiten (Passgenauigkeit,
Zweikampfquote, etc.) konstant bleiben, mit einer niedrigeren Laufleistung einge-
setzt werden?

2. Ein junger Spieler, der bisher die Position eines zentralen Mittelfeldspielers beklei-
det hat, trainiert in der Sommerpause viele Zweikdmpfe, wodurch seine Fahigkeit
Zweikdmpfe zu gewinnen (hdhere Zweikampfquote) steigt. Auf welcher Position
konnte er durch diese neuen Fahigkeiten flexibel einen verletzten Spieler ersetzen, wenn
davon ausgegangen wird, dass seine anderen Leistungen konstant bleiben?

Um die erste der beiden Fragen zu beantworten, muss der Chordgraph fir die Laufweite
angeschaut werden. In Abbildung 42 sind auf der linken Seite zwei Chordgraphen fiir eine
Verringerung der Laufweite und auf der rechten Seite fiir eine Erhohung der Laufweite fiir
das multinomiale logistische Regressionsmodell abgebildet. Die obere Zeile gibt dabei eine
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schwache Datenmanipulation (Anderung der Werte um 0.05-Quantile) und die untere Zeile
eine etwas stirkere Datenmanipulation (Anderung der Werte um 0.1-Quantile) an.
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Abbildung 42: Chordgraph fiir die Nachbarschaftsverhéltnisse beziiglich der Laufweite im
multinomialen logistischen Regressionsmodell

Fir die erste Frage sind vor allem die beiden linken Chordgraphen interessant. Ein Spiel-
er, der zuvor Auflenverteidiger war und auch diese Leistungsdaten passend fiir die Position
erbracht hat und weiter erbringen wird, kann nur eine geringe Laufweite fiir die neue Sai-
son aufs Spielfeld bringen. In dem linken oberen Chordgraphen, ist aufgefiihrt, dass ein Teil
der durch das Modell als Auflenverteidiger modellierten Beobachtungen bei Konstanthaltung
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der Kovariablen und Verringerung der Laufweite in die Klasse der Innenverteidiger wechseln.
Auch bei starkerer Verringerung der Laufweite, existieren aus der Klasse der Auflenvertei-
diger nur Wechsel in die Klasse der Innenverteidiger. Dies bedeutet, dass es moglich wére,
den Spieler auf der Position des Innenverteidigers auszuprobieren, da er dort gut in die

Bundesliga passen konnte.
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Abbildung 43: Chordgraph fiir die Nachbarschaftsverhéltnisse beziiglich der Laufweite im

Random Forest

Um zu tberpriifen, ob durch die Datenmanipulation ein Bereich erreicht wird, in dem sonst
keine Beobachtungen existieren, kann als Gegenprobe tiberpriift werden, ob auch Innen-
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verteidiger durch Erhéhen der Laufweite in die Klasse der Auflenverteidiger wechseln.
Diese Gegenprobe ist in den beiden rechten Chordgraphen in Abbildung 42 dargestellt. Dort
ist zu erkennen, dass es Beobachtungen gibt, die zunéchst der Klasse der Innenverteidiger
zugehoren und durch Datenmanipulation in die Klasse der Auflenverteidiger wechseln.

Hier sollte auffallen, dass dieses Verfahren fiir schlechte Modelle problematisch werden kann.
Angenommen die Punkte sind komplett zufillig im Raum verteilt, dann wiirde es zwar ein
Gebiet geben, indem Auflenverteidiger vor der Datenmanipulation durch das Modell prognos-
tiziert wird, jedoch konnte es passieren, dass in diesem Gebiet tiberhaupt keine Beobachtun-

gen fir die Auflenverteidiger-Position existieren (vgl. Modellierungsproblem aus Abbildung
29).

Der Random Forest kann genutzt werden, um dieses modellierte Nachbarschaftsverhéltnis
zu Uberprifen. In dem linken unteren Chordgraphen aus Abbildung 43 ist deutlich zu erken-
nen, dass auch der Random Forest einen Teil der als Aufenverteidiger prognostizierten
Beobachtungen bei Verringerung der Laufweite als Innenverteidiger prognostiziert. Auch
in der Gegenprobe zeigt der Chrodgraph auf, dass Beobachtungen von der Prognose als
Innenverteidiger durch Erhohen der Laufweite als Auflenverteidiger prognostiziert werden.

Wenn die beiden Modelle durch diese Chordgraphen ohne eine Fragestellung ndher miteinan-
der verglichen werden, so fallt sehr schnell das durch das multinomiale logistische Regres-
sionsmodell aufgezeigte Nachbarschaftsverhéltnis zwischen den Torhitern und Innenvertei-
digern auf, wahrend dieses in den Chordgraphen fiir den Random Forest iiberhaupt nicht
existiert. Dies konnte darauf hinweisen, dass durch die doch grundlegend verschiedene Ein-
teilung des Raumes durch die beiden Modelle Nachbarschaftsverhaltnisse aufgezeigt werden
konnten, die in Wahrheit nicht existieren, oder die nur durch die Beschaffenheit des Mo-
dells existieren. Aus diesem Grund ist diese Methode auch nur dafiir geeignet die Topologie
in einem Modell und nicht die Topologie der Daten zu bestimmen. Fiir ein perfekt klas-
sifizierendes Modell ware dies aquivalent, da die Einteilung des Raumes durch das Modell
auch approximativ der Einteilung des Raumes der Daten entspricht. Auch hier ist also zu
erkennen, dass diese Methode besser funktioniert, wenn das Modell die vorliegende Daten-
situation besser klassifiziert. Genauso ratsam ist es diese Nachbarschaftsverhéltnisse durch
grundlegend verschiedene, aber gut klassifizierende Modelle zu vergleichen.

Wird ein Nachbarschaftsverhéltnis von einem Modell erkannt, von einem anderen aber nicht,
so empfiehlt es sich die Daten dort genauer anzuschauen. Einerseits konnte dies aufgrund von
Interaktionseffekten vorkommen, die trotzdem durch Manipulieren einer einzelnen Variable
einen Effekt auf die Pradiktion ausiiben. Andererseits kann dies aber auch an der Natur
eines Modells liegen, das “grober” oder “feiner” die Daten einteilt und daher “Unreinheiten”
zu diesen Unterschieden fiihren.

Die zweite Frage kann ebenso durch die potentiellen Nachbarschaftsverhéltnisse beantwortet
werden. In Abbildung 44 sind die 4 Chordgraphen fiir die Nachbarschaftsverhéltnisse
beziiglich der Zweikampfquote im multinomialen logistischen Regressionsmodell abgebildet.
Fiir einen Spieler, dessen Zweikampfquote sich leicht erhoht und seine anderen Fahigkeiten
konstant bleiben, existiert ein modelliertes Gebiet fiir zentrale Mittelfeldspieler unterhalb
eines modellierten Gebietes fiir defensive Mittelfeldspieler. Bei ganz genauer Betrachtung
existieren auch noch sehr schwache Nachbarschaftsverhéltnisse zwischen den zentralen
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Mittelfeldspielern und den beziiglich der Zweikampfquote dartiber liegenden dufleren
Mittelfeldspielern und Aufenverteidigern. Bei der Gegenprobe durch das Verringern der
Zweikampfquote bestatigen sich jedoch nur die Nachbarschaftsverhéltnisse zu den defensiven
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Abbildung 44: Chordgraph fir die Nachbarschaftsverhaltnisse beziiglich der Zweikampfquote
im multinomialen logistischen Regressionsmodell
Dies bedeutet, dass es fiir den Spieler aus Fragestellung 2. moéglich sein konnte einen de-

fensiven Mittelfeldspieler oder einen dufSeren Mittelfeldspieler auf Bundesliganiveau zu er-
setzen. Das nicht-Bestétigen des Nachbarschaftsverhéltns der zentralen Mittelfeldspieler und
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der Auflenverteidiger kann so gedeutet werden, dass das Modell zwar 2 benachbarte Gebiete
modelliert, an dessen Grenze Beobachtungen im Gebiet der zentralen Mittelfeldspieler liegen,
jedoch auf der anderen Seite keine Beobachtungen auf der Seite der Aufienverteidiger. Dort
konnte also eine unmogliche oder unwahrscheinliche Datensituation vorliegen.

Um die beiden gefundenen Nachbarschaftsverhéltnisse zu bestatigen, kénnen wieder die

Chordgraphen fiir den Random Forest betrachtet werden
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Abbildung 45: Chordgraph fir die Nachbarschaftsverhaltnisse beziiglich der Zweikampfquote

im Random Forest

In Abbildung 45 wird das Nachbarschaftsverhéltnis im Random Forest beziiglich der
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Zweikampfquote zwischen der Pradiktion als zentraler Mittelfeldspieler und der Pradiktion
als defensiver Mittelfeldspieler durch beide Richtungen der Datenmanipulation bestatigt.
Ein Nachbarschaftsverhéltnis zwischen dem zentralen Mittelfeld und duferen Mittelfeld wird
nur gegenldufig angezeigt, sodass ein modelliertes Gebiet mit zentralen Mittelfeldspielern
oberhalb eines modellierten Gebietes mit dufleren Mittelfeldspielern liegt. Ein Nach-
barschaftsverhéltnis zwischen den zentralen Mittelfeldspielern und den AufSenverteidigern
wird, wie im Chordgraph fiir das multinomiale logistische Regressionsmodell, bei Erhohen
der Zweikampfquote in diegleiche Richtung angezeigt, jedoch wird auch dieses hier nicht
durch die Gegenprobe bestétigt.

Zusammengefasst ist zu sagen, dass der junge Spieler als guter Ersatz fiir einen defensiven
Mittelfeldspieler gelten kann. Das modellierte Gebiet fiir die dufieren Mittelfeldspieler konnte
durch Unreinheiten, Ausreifler oder Inseln entstanden sein, da dieses Nachbarschaftsverhalt-
nis durch die beiden Modelle sogar gegenlédufig modelliert wird. Da beide Modelle das “ein-
seitige” und sehr schwache Nachbarschaftsverhéltnis zu den Auffenverteidigern modellieren,
konnte dies entuell auch durch eine kleine Gruppe Ausreifler, die dort ein Gebiet suggerieren,
das nicht dem typischen zentralen Mittelfeldspieler entspricht, entstanden worden sein. Ein
Einsatz auf dieser Position konnte also funktionieren, ist jedoch mit Vorsicht zu raten.

Praktisch gesehen ergibt sich fiir diese Frage ein neuer Gedankengang: “Durch hartes Training
der Zweikampfquote erhoht sich nicht nur diese, sondern auch die Bereitschaft Zweikdmpfe
zu fithren!” (Theoretisch ausgedriickt: Durch das Erhohen einer Variable erhohen sich auch
andere). Das Messen der Nachbarschaftsverhdltnisse in der Modellierung wurde hier nur
beziiglich einzelner Variablen durchgefithrt. Existiert jedoch ein hohes Ahangigkeitsverhéltnis
zu anderen Variablen, so miissten diese gemeinsam erhoht werden. Dadurch wirden sich
ganz neue Nachbarschaftsverhéltnisse ergeben. Dies wird in dieser Arbeit hier nicht weiter
tiberpriift, eroffnet aber einen noch weiteren Anwendungsraum fiir diese Methode.
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6 Fazit

Das Ziel dieser Arbeit war es Zusammenhénge zwischen den Positionen der Bundesligaspieler
und ihrer Leistungsdaten mit verschiedenen Methoden zu erkennen und aufzuzeigen. Fiir die
Analysen wurde sowohl ein multinomiales logistisches Regressionsmodell als auch ein Ran-
dom Forest verwendet und anschlieBend mit Methoden aus dem Bereich des interpretierbaren
Machine Learnings verglichen.

Obwohl die beiden Modelle an sich sehr unterschiedlich aufgebaut sind, konnte vor allem
durch die Methode der Accumulated Local Effect Plots gezeigt werden, dass sie im Grunde
die Daten sehr ahnlich modellieren und sich nur geringfiigig voneinander unterscheiden. An-
hand dieser Methode konnten Effekte ausgearbeitet werden, die deutlich fiir eine bestimmte
Position sprechen, wie zum Beispiel eine niedrige Laufweite fiir einen Torhiter. Die Partial
Dependence Plots und die Individual Conditional Expectation Plots haben noch deutlichere
Unterschiede zwischen den beiden Modellen aufgezeigt. Im Gegensatz zu den Accumulat-
ed Local Effect Plots werden diese Methoden jedoch mit Datenmanipulationen erzeugt, die
haufig sehr unwahrscheinliche Datenkombinationen kreieren.

Des Weiteren wurden die Fehlklassifikationen der beiden Modelle betrachtet und entdeckt,
dass die meisten Fehlklassifikationen in Positionen geschehen, die auf dem Fufiballplatz
nebeneinander liegen. Beim Testen der Methode zum Erarbeiten der Topologie der Mo-
delle ist aufgefallen, dass haufig Positionen, die auch auf dem Fufiballfeld benachbart sind
auch durch die Modelle im Datenraum benachbart modelliert werden. Zusétzlich wurden
neue Fragestellungen formuliert, die mit dieser Methode beantwortet werden konnten. Auch
fiir diese Methode dhneln sich die beiden Modellierungen sehr.

Da zwar eindeutige Zusammenhange zwischen den Positionen und den Leistungsdaten ge-
funden wurden, diese aber nicht auf ihre Kausalitat getestet wurden, bleibt die Frage offen,
ob die Position die Leistungsdaten, die von einem Spieler auf dieser Position erzeugt werden,
beeinflusst, oder ob ein Spieler mit einer bestimmten Fahigkeit auf einer gewissen Position
eingesetzt wird. Dies konnte noch in einer weiterfiihrenden Analyse untersucht werden. Eine
weitere Moglichkeit wére es noch die aufgezeigten Zusammenhénge auf ihre Zeitlosigkeit zu
untersuchen. Dabei konnte iiberpriift werden, ob sich diese Effekte iiber die Jahre verédndern
oder konstant bleiben.

Alles in allem wurde in dieser Arbeit gezeigt, dass es eindeutige Zusammenhéinge zwischen
den Leistungsdaten der Bundesligaspieler und ihrer Positionen gibt, und dass diese mithilfe
von verschiedensten Modellen und Methoden ermittelt werden kénnen. Fiir diese Analysen
wurde nach subjektiven Kriterien eine Variablenselektion durchgefiihrt. Die Ergebnisse wéren
durch Hinzunahme neuer Leistungsdaten zwar komplexer zu interpretieren; je nach Interesse
konnen fir weitere Analysen jedoch Variablen hinzugefiigt oder weggelassen werden. Im
Gegensatz zu multinomialen logistischen Regressionsmodellen haben Random Forests keine
Probleme mit Multikollinearitat, wodurch vor allem fiir Random Forests eine Hinzunahme
von zusatzlichen Variablen fiir diese Analysen moglich wére.
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Anhang

Nicht ausgewahlte Variablen

’ Variable

\ Beschreibung

Alter

Generell wurde sich gegen demografische Variablen
entschieden, da Spieler nur an ihren Fahigkeiten
gemessen werden sollen

Figentore

Eigentore passieren einerseits viel zu selten und ander-
erseits geschehen diese oft durch Zufalle, die nicht die
Leistung eines Spielers abbilden

Schiisse

Die Anzahl der Schiisse ist hochstkorreliert mit der An-
zahl an Toren. Die Anzahl an Toren misst die Fahigkeit-
en eines Spielers besser als die Anzahl der Schiisse

Schussvorlagen

Die Anzahl der Schussvorlagen ist hochstkorreliert mit
der Anzahl an Torvorlagen. Die Anzahl an Torvorlagen
misst die Fahigkeiten eines Spielers besser als die Anzahl
der Schussvorlagen

Ballkontakte

Die Anzahl der Ballkontakte ist hochstkorreliert mit der
Anzahl der gespielten Péasse. Diese messen die Fahigkeit-
en eins Spielers besser

Angekommene Pésse

Die Anzahl der angekommenen Péasse misst die
Fahigkeiten eines Spielers am besten in Kombination
mit der Anzahl der gespielten Pésse, was der Passquote
entspricht, weshalb diese stattdessen aufgenommen
wurde

Fehlpasse Die Anzahl der Fehlpédsse misst die Féahigkeiten eines
Spielers am besten in Kombination mit der Anzahl der
gespielten Péasse, was der Passquote entspricht, weshalb
diese stattdessen aufgenommen wurde

Sprints Die Anzahl der Sprints ist hochstkorreliert mit der

Laufweite, welche die Féahigkeiten eines Spielers bess-
er aufnimmt (konstante Messung gegen Anzahl langer
oder kurzer Sprints)

Hochstgeschwindigkeit

Die Hochstgeschwindigkeit bildet nur eine einzelne Mo-
mentaufnahme in einem einzigen Spiel ab, was keine
konstante Leistungserfassung abbildet

Tore

Die Anzahl der Tore ist hochstkorreliert mit der Anzahl
der Tore mit dem Fuss. Die Tore mit dem Fuss wur-
den aufgenommen, da auch die Kopfballtore aufgenom-
men werden sollten und diese gemeinsam (abziiglich der
Elfmetertore - seltenes Ereignis) die Anzahl der Tore
angeben




Elfmetertore

Die Elfmetertore geben nicht wirklich die Féahigkeiten
eines Spielers an, da nicht jeder die Chance hat Elfme-
tertore zu schieflen

Verschossene Elfmeter

Da nicht jeder die Chance hat Elfmeter zu schieflen
hat auch nicht jeder die Chance einen Elfmeter zu ver-
schieflen

Gegentore

Diese Variable wurde nur fiir Torhiiter erhoben und ist
daher nicht représentativ fiir die Fahigkeiten der einzel-
nen Spieler

Gehaltene Bélle

Diese Variable wurde nur fiir Torhiiter erhoben und ist
daher nicht représentativ fiir die Fahigkeiten der einzel-
nen Spieler

Gehaltene Elfmeter

Diese Variable wurde nur fiir Torhiiter erhoben und ist
daher nicht représentativ fiir die Fahigkeiten der einzel-
nen Spieler

Tabelle 10: Nicht ausgewéhlte Variablen

Zusammengefasste Positionen

t-Tests — Konfidenzintervalle
Vergleich linker Verteidiger und rechter Verteidiger
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Abbildung 46: Vergleich zwischen linken und rechten Verteidigern




t-Tests — Konfidenzintervalle
Vergleich linkes Mittelfeld und rechtes Mittelfeld
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Abbildung 47: Vergleich zwischen linken und rechten Mittelfeldspielern
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Abbildung 48: Vergleich zwischen Linksauffen und Rechtsaufen



t-Tests — Konfidenzintervalle
Vergleich Hangende Spitze und Offensives Mittelfeld
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Abbildung 49: Vergleich zwischen hdngender Spitze und offensiven Mittelfeld
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Abbildung 52: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Torvorlagen
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Abbildung 55: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Anzahl
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Abbildung 56: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Kopfballtore
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Abbildung 57: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Laufweite
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Abbildung 58: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Anzahl

Passe



(a=005)

(a=005)

Wechsel

Inonvertsigiger

I saBused
ampfe’ (q = 0.1)

Wechsel it i Verrings
Nitstarmer

S

Inenyercigige

oy SeNEued

(b) Random Forest

(a) Multinomiales logistisches Regressionsmodell
Abbildung 59: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der Anzahl
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Abbildung 60: Chordgraphen fiir die erarbeiteten Nachbarschaften beziiglich der
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