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Abstract. Large uncertainties exist in estimated rates and the

extent of soil erosion by surface runoff on a global scale. This

limits our understanding of the global impact that soil erosion

might have on agriculture and climate. The Revised Univer-

sal Soil Loss Equation (RUSLE) model is, due to its simple

structure and empirical basis, a frequently used tool in esti-

mating average annual soil erosion rates at regional to global

scales. However, large spatial-scale applications often rely

on coarse data input, which is not compatible with the local

scale on which the model is parameterized. Our study aims at

providing the first steps in improving the global applicability

of the RUSLE model in order to derive more accurate global

soil erosion rates.

We adjusted the topographical and rainfall erosivity fac-

tors of the RUSLE model and compared the resulting erosion

rates to extensive empirical databases from the USA and Eu-

rope. By scaling the slope according to the fractal method

to adjust the topographical factor, we managed to improve

the topographical detail in a coarse resolution global digital

elevation model.

Applying the linear multiple regression method to adjust

rainfall erosivity for various climate zones resulted in values

that compared well to high resolution erosivity data for dif-

ferent regions. However, this method needs to be extended to

tropical climates, for which erosivity is biased due to the lack

of high resolution erosivity data.

After applying the adjusted and the unadjusted versions of

the RUSLE model on a global scale we find that the adjusted

version shows a global higher mean erosion rate and more

variability in the erosion rates. Comparison to empirical data

sets of the USA and Europe shows that the adjusted RUSLE

model is able to decrease the very high erosion rates in hilly

regions that are observed in the unadjusted RUSLE model re-

sults. Although there are still some regional differences with

the empirical databases, the results indicate that the methods

used here seem to be a promising tool in improving the appli-

cability of the RUSLE model at coarse resolution on a global

scale.

1 Introduction

For the last centuries to millennia soil erosion by surface

runoff has been accelerated globally due to human activi-

ties such as deforestation and agricultural practices (Bork

and Lang, 2003). Accelerated soil erosion is a process that

triggers land degradation in the form of nutrient loss, a de-

crease in the effective root depth, water imbalance in the

root zone and finally also productivity reduction (Yang et

al., 2003). It is widely recognized that soil erosion has been

a major threat to sustainable agriculture and food produc-

tion across the globe since the start of agricultural activities

(UNCCD, 2012; Walling, 2009). These effects of soil erosion

are currently exacerbated by the global population growth

and climatic changes. Organizations such as the United Na-

tions Convention to Combat Desertification (UNCCD) try to

address this problem by stating a new goal for Rio +20 of

zero land degradation (UNCCD, 2012).

Another aspect underpinning the relevance of soil erosion

on the global scale is the effect of erosion on global nu-

trient cycles. Recently, the biogeochemical components of

Earth system models (ESMs) became increasingly impor-
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tant in predicting the global future climate (Thornton et al.,

2007; Goll et al., 2012). Not only the global carbon cycle but

also other nutrient cycles such as the nitrogen and phospho-

rous cycles cannot be neglected in ESMs anymore (Goll et

al., 2012; Gruber and Galloway, 2008; Reich and Hungate,

2006). Soil erosion may have a significant impact on these

biogeochemical cycles through lateral fluxes of sediment,

but the impact on the global scale is still largely unknown.

For example, Quinton et al. (2010) showed that erosion can

significantly alter the nutrient and carbon cycling and result

in lateral fluxes of nutrients that are similar in magnitude

as fluxes induced by fertilizer application and crop removal.

Regnier et al. (2013) looked at the effect of human-induced

lateral fluxes of carbon from land to ocean and concluded

that human perturbations, which include soil erosion, may

have enhanced the carbon export from soils to inland waters.

In general, the effect of soil erosion on the global carbon

cycle has received considerable attention after the pioneering

work of Stallard (1998), who proposed that global soil ero-

sion can result in sequestration of carbon by soils. After his

work, the effect of soil erosion on the carbon cycle has been

studied extensively, but there remains a large uncertainty in

the effect of soil erosion on the carbon cycle. For example,

several recent global assessments of the influence of soil ero-

sion on the carbon cycle indicate a large uncertainty with a

range from a source of 0.37–1 Pg C year−1 to a net uptake or

sink of 0.56–1 Pg C year−1 (Van Oost et al., 2007). Thus, in

order to better constrain the global carbon budget and to iden-

tify optimal management strategies for land use, it is essential

to have accurate estimates of soil erosion and its variability

on a global scale.

Currently, there exists a large uncertainty in the global soil

erosion rates as can be seen from recent studies that show

rates between 20 and 200 Pg year−1 (Doetterl et al., 2012).

This indicates that modelling soil erosion on a global scale is

still a difficult task due to the very high spatial and temporal

variability of soil erosion. Different approaches were previ-

ously applied to estimate soil erosion on a large or global

scale. Most of these approaches are based on extrapolated

data from agricultural plots, sediment yield or extrapolated

river sediment estimates (Milliman and Syvitski, 1992; Stal-

lard, 1998; Lal, 2003; Hooke, 2000; Pimentel et al.,1995;

Wilkinson and McElroy, 2007).

An alternative approach is based on the use of soil ero-

sion models, in order to be able to predict soil erosion rates

for the past and future. One of the most applied models to

estimate soil erosion on a large spatial scale is the semi-

empirical/process-based Revised Universal Soil Loss Equa-

tion (RUSLE) model (Renard et al., 1997). This model stems

from the original Universal Soil Loss Equation (USLE)

model developed by the USDA (US Department of Agri-

culture), which is based on a large set of experiments on

soil loss due to water erosion from agricultural plots in the

USA. These experiments covered a large variety of agricul-

tural practices, soil types and climatic conditions, making it

a potentially suitable tool on a regional to global scale. The

RUSLE model predicts the average annual soil erosion rates

by rainfall and is formulated as a product of a rainfall ero-

sivity factor (R), a slope steepness factor (S), a slope length

factor (L), a soil erodibility factor (K), a land cover factor

(C) and a support practice factor (P ). The RUSLE model

was first applied on a global scale by Yang et al. (2003) and

Ito (2007) for estimating the global soil erosion potential.

Various limitations were observed when applying this model

on global scale. Firstly, the model is originally developed to

be applicable on the agricultural plot scale. This makes the

model incompatible with the coarse spatial scale of global

data sets on soil-erosion-influencing factors such as precipi-

tation, elevation, land use and soil characteristics. Secondly,

the RUSLE and USLE models were parameterized for envi-

ronmental conditions of the USA and are thus not directly

applicable to other areas in the world. Thirdly, only sheet

and rill erosion are considered. Finally, the RUSLE model

does not contain sediment deposition and sediment transport

terms, which are closely linked to soil erosion.

However, the RUSLE model is to our knowledge one of

the few erosion models that has the potential to be applied on

a global scale due to its simple structure and empirical basis.

Therefore, it is of key importance to address the abovemen-

tioned limitations first.

To address the first two limitations, Van Oost et al. (2007)

presented in their work a modified version of the USLE

model for application on agricultural areas on global scale.

They based their model on large-scale experimental soil ero-

sion data from the USA (National Resource Inventory, NRI,

database; USDA, 2000) and Europe by deriving reference

factors for soil erosion on agricultural land and for certain

USLE parameters. They also introduced a procedure to scale

slope, which is an important parameter in the topographical

factors S and L of the USLE/RUSLE model. In this scaling

procedure slope was scaled from the GTOPO30 1 km reso-

lution digital elevation model (USGS, 1996) to the coarser

resolution of the erosion model. This method was based on

high resolution OS (Ordnance Survey; 10 m resolution) and

SRTM (Shuttle Radar Topography Mission) data on eleva-

tion (90 m resolution, International Centre for Tropical Agri-

culture, CIAT) for England and Wales.

Doetterl et al. (2012) showed that together with the S fac-

tor, the rainfall erosivity or R factor explain up to 75 % of

the erosion variability across agricultural areas at the large

watershed scale. These factors represent the triggers for soil

erosion by providing energy for soil to erode. They can also

be seen as the natural components of the RUSLE model, as

they include very little or no modification by human activi-

ties (Angulo-Martínez et al., 2009) apart from indirect effects

on precipitation and extreme events due to anthropogenic

climate change. In this way they represent the natural en-

vironmental constraints to soil erosion that are important to

capture before the effect of human activities on soil erosion

through land use change can be investigated.
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Previous studies on global soil erosion calculated the

global R factor based on the total annual precipitation (Re-

nard and Freimund, 1994). This method is different from

the method presented in the original RUSLE model (Re-

nard et al., 1997), which is mainly based on 30 min precip-

itation intensity. The reason for the method of Renard and

Freimund (1994) is the lack of high resolution precipitation

intensity on a global scale. However, high resolution precip-

itation intensity is an important explaining parameter of the

R factor and therefore the applicability of the method of Re-

nard and Freimund (1994) is limited.

The overall objective of our study is to extend the appli-

cability of the RUSLE model to a coarse resolution at global

scale, in order to make the model compatible with ESMs.

This would enable future studies on the effects of soil ero-

sion for the past, current and future climate. To this end, we

develop generally applicable methods that improve the esti-

mation of slope and climatic factors from coarse resolution

global data sets. These methods should not only be appli-

cable across agricultural areas as in the studies of Van Oost

et al. (2007) and Doetterl et al. (2012) but also across non-

agricultural areas. We adjust the S factor to the coarse res-

olution of the global scale based on the scaling of slope ac-

cording to the fractal method. The adjustment of the R factor

to the global scale is based on globally applicable regression

equations. We derived these regression equations for differ-

ent climate zones based on parameters for precipitation, ele-

vation and the simple precipitation intensity. This approach is

validated using several high resolution data sets on the R fac-

tor. Finally, the effects of these adjustments to both factors on

global soil erosion rates are investigated separately and tested

against independent estimates of soil erosion from high res-

olution and high precision data sets of Europe and the USA.

2 Adjustment of the topographical factor

2.1 Scaling slope according to the fractal method

The topographical factors of RUSLE are the slope steepness

factor (S) and a slope length factor (L). The S factor is gener-

ally computed by the continuous function of Nearing (1997):

S = 1.5+
17

1+ e(2.3−6.1∗sinθ)
. (1)

And the L factor is computed according to Renard et

al. (1997):

L=

(
l

22.13

)m
, (2)

where

m=
F

1+F
and F =

(sinθ/0.0896)(
3× (sinθ)0.8+ 0.56

) , (3)

in which θ is the slope and l is the slope length in metres.

As seen in Eqs. (1)–(3), slope is a crucial parameter and

thus an accurate estimation is essential in deriving accurate

estimates of the L and S factors and soil erosion rates. For

an accurate estimation of the slope, input elevation data from

digital elevation models (DEMs) should capture the detailed

spatial variability in elevation. However, global DEMs are of-

ten too coarse to capture the detailed topography because of

the surface smoothening effect. To account for this problem

it is assumed that topography is fractal. Following Klinken-

berg and Goodchild (1992) and Zhang et al. (1999), slope

can be expressed as a function of the spatial scale by apply-

ing the variogram equation. The variogram equation is used

to approximate the fractal dimension of topography and is

expressed as follows:(
Zp −Zq

)2
= kd4−2D

pq , (4)

so that

|Zp −Zq |

dpq
= αd1−D

pq , (5)

where Zp and Zq are the elevations at points p and q, dpq is

the distance between p and q, k is a constant, α = k0.5, and

D is the fractal dimension. Because the left side of Eq. (5)

represents the slope, it can be assumed that the slope (θ) is

related to the spatial scale or the grid size (d) in

θ = αd1−D. (6)

This result implies that by calculating the fractal properties

(D and α) Eq. (6) can be used to calculate slope at any spec-

ified d . The local fractal dimension (D) describes the rough-

ness of the topography while the local value of α is related

to the concept of lacunarity, which is a measure of the size of

“gaps” (valleys and plains) in the topography (Zhang et al.,

2002). To estimate the spatial variations ofD and α, Zhang et

al. (1999) proposed to relate these parameters to the standard

deviation of elevation. Hereby it is assumed that the standard

deviation of elevation does not change much with the DEM

resolution. D is then calculated as a function of the standard

deviation (σ ) in a 3 pixel× 3 pixel moving window, as pro-

posed by Zhang et al. (1999):

D = 1.13589+ 0.08452lnσ. (7)

To estimate α we used the modified approach by Pradhan et

al. (2006). They derived α directly from the steepest slope

in a 3 pixel× 3 pixel moving window, called αsteepest in the

following. Having obtained αsteepest and D from a grid at a

given resolution, the scaled slope (θscaled) for a target grid

resolution (dscaled) is obtained by

θscaled = αsteepestd
1−D
scaled. (8)

Pradhan et al. (2006) also showed that in their case study the

ideal target resolution for downscaling slope was 150 m. This
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is due to the breakdown of the unifractal concept at very fine

scales, which was shown to happen at a scale of 50 m. Alto-

gether, this fractal method shows that a high resolution slope

can be obtained from a low resolution DEM as is needed by

the RUSLE model.

2.2 Application of the fractal method on global scale

In this study, we investigate the performance of the fractal

method on a global scale using different global DEMs as a

starting point. The target resolution of downscaling is put to

150 m (about 5 arcsec) according to Pradhan et al. (2006). It

should be noted that the spatial scale on which the original

RUSLE and USLE models are operating is usually between

10 and 100 m, which indicates that the 150 m target resolu-

tion may be still too coarse for a correct representation of

slope. The DEMs that are used here are given in Table 1.

As reported in previous studies (Zhang et al., 1999; Chang

and Tsai, 1991; Zhang and Montgomery, 1994), the aver-

age slope decreases with decreasing DEM resolution. This

confirms the expectation of loss of detail in topography at

lower DEM resolutions. A large difference is found between

the unscaled global average slope from the 5 arcmin and the

30 arcsec DEMs, which is in the order of 0.017 m m−1 or

74 % (Table 2). After applying the fractal method, the scaled

slopes at 150 m target resolution from all DEMs increased

significantly compared to the unscaled slopes (Fig. 1). How-

ever, there is still a difference of about 0.05 m m−1 or

8.5 % between the scaled slopes from the 5 arcmin and the

30 arcsec DEMs (Table 2). This difference can be attributed

to several factors. One factor could be the underlying as-

sumption that the standard deviation of elevation (σ ) is inde-

pendent of the DEM resolution. Although σ does not change

much when considering different resolutions, there is still

a general decrease in mean global σ when going from the

5 arcmin to the 30 arcsec DEM (Table 2). Due to the depen-

dence of the fractal dimension (D) on σ (Zhang et al., 1999),

a decrease of σ leads to a decrease in D and therefore an in-

crease in the scaled slope. Other factors that could play a role

here are the dependence of αsteepest on the steepest slope, and

the breakdown of the fractal method at certain scales and in

certain environments. Zhang et al. (1999) mentioned that the

scaling properties of slope are affected in very coarse reso-

lution DEMs if σ changes considerably. On the other hand,

Pradhan et al. (2006) mentioned the breakdown of the fractal

method at very fine scales. This can indicate that the 150 m

target resolution is not appropriate for some topographically

complex regions in the world or, as addressed by Zhang et

al. (1999), the DEMs used in this study are too coarse to scale

down the slope to 150 m accurately for these regions.

After applying the fractal method on a 30 arcsec resolu-

tion DEM, the scaled slope shows a clear increase in detail,

while the unscaled slope shows a strong smoothening effect

(Fig. 2a, b). It is found that, after scaling, the slope values

range from 0 to 85◦ and are less than 2◦ in 80 % of the area.

Figure 1. Global average unscaled slope estimated from different

coarse resolution digital elevation models (DEMs) as function of

their resolution (blue), and global average scaled slope from the

same DEMs as function of their resolution (red).

In contrast, all slope values are less than 45◦ and range be-

tween 0 and 2◦ in 89 % of this area when slope is computed

directly from the 30 arcsec DEM.

The scaled slope from the 30 arcsec DEM will be used

in this study to estimate the global soil erosion rates by the

RUSLE model.

3 Adjustment of the rainfall erosivity factor

3.1 The approach by Renard and Freimund (1994)

Rainfall erosivity (R factor) is described by Hudson (1971)

and Wischmeier and Smith (1978) as the result of the transfer

of kinetic energy of raindrops to the soil surface. This causes

a detachment of soil and the downslope transport of the soil

particles, depending on the amount of energy, rainfall inten-

sity, soil type and cover, topography and management (Da

Silva, 2004). The original method of calculating erosivity is

described by Wischmeier and Smith (1978) and Renard et

al. (1997) as

R =
1

n
×

n∑
j=1

mj∑
k=1

(EI30)k, (9)

where n is the number of years of records, mj is the number

of storms of a given year j , and EI30 is the rainfall erosivity

index of a storm k. The event’s rainfall erosivity index EI30

(MJ mm ha−1 h−1) is defined as

EI30 = I30×

m∑
r=1

ervr, (10)

where er and vr are, respectively, the unit rainfall energy

(MJ ha−1 mm−1) and the rainfall depth (mm) during a time

period r , and I30 is the maximum rainfall intensity during a
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Table 1. List of data sets used in this study.

Category Data set Source Spatial

resolution

Temporal period Variables

DEM GTOPO elevation

model

USGS (1996), Gesch et

al. (1999)

30 arcsec elevation

ETOPO1 elevation

model

Amante and Eakins

(2009)

1 arcmin elevation

ETOPO2 elevation

model

US Department

of Commerce and

NOAA (2001)

2 arcmin elevation

ETOPO5 Elevation

Model

National Geophysical

Data Center/

NESDIS/NOAA (1995)

5 arcmin elevation

Climate GPCC 0.5◦

data set

Schneider et al. (2011) 0.5◦ Years 1989–2010 total yearly

precipitation

GPCC 0.25◦

data set

Meyer-Christoffer et al.

(2011)

0.25◦ years 1951–2000 total yearly

precipitation

GHCNDEX data set CLIMDEX; Donat et

al. (2013)

2.5◦ years 1951–present simple precipitation

intensity index (SDII)

Köppen–Geiger

data set

Peel et al. (2007) 5 arcmin Köppen–Geiger

climate classifications

Soil Global Soil Data set for

use in Earth System

Models (GSCE)

Shangguan et al. (2014) 30 arcsec sand, silt and clay

fractions, organic

matter %, gravel %

Harmonized World Soil

Database (HWSD)

version 1.2

Nachtergaele et

al. (2009)

30 arcsec volcanic soils

Land cover GIMMS data set ISLSCP II; Tucker et

al. (2005), Hall et

al. (2006)

0.25◦ year 2002 normalized differ-

ence vegetation index

(NDVI)

Land use MODIS data set ISLSCP II; Friedl et

al. (2010), Hall et

al. (2006)

0.25◦ year 2002 land use fractions

Table 2. Fractal parameters and the resulting mean global slopes before and after applying the fractal method on the different DEMs.

Increase of slope means the increase of the average global slope of a DEM after applying the fractal method; difference after scaling=
θscaled(DEM)−θscaled(GTOPO30)

θscaled(GTOPO30)
× 100; difference before scaling =

θ(DEM)−θ(GTOPO30)

θ(GTOPO30)
× 100.

DEM Resolution Standard deviation Mean D Mean θ θscaled Increase Difference Difference

of elevation αsteepest of θ after scaling before scaling

arcmin m m m−1 m m−1 % % %

GTOPO30 0.5 570 1.32 0.99 0.023 0.059 61 0 0

ETOPO1 1 530 1.35 1.08 0.016 0.057 71.9 −3.4 −30.4

ETOPO2 2 549 1.37 1.17 0.011 0.055 80 −6.8 −52.2

ETOPO5 5 562 1.42 1.25 0.006 0.054 88.9 −8.5 −73.9
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Figure 2. (a) A global map of the scaled slope derived from the 30 arcsec DEM using a target resolution of 150 m. (b) A global map showing

the difference between the unscaled and scaled slopes (in degrees), where blue colours show an underestimation by the unscaled slope when

compared to the scaled slope and reddish colours show and overestimation.

time period of 30 min (mm h−1). The unit rainfall energy, er,

is calculated for each time period as

er = 0.29×
(

1− 0.72× e−0.05×ir
)
, (11)

where ir is the rainfall intensity during the time period

(mm h−1).

The information needed to calculate the R factor accord-

ing to the method of Wischmeier and Smith (1978) is dif-

ficult to obtain on a large spatial scale or in remote areas.

Therefore, different studies have been done on deriving re-

gression equations for the R factor (Angulo-Martinez et al.,

2009; Meusburger et al., 2012; Goovaerts, 1999; Diodato and

Bellocchi, 2010). Most of these studies, however, concen-

trate on a specific area and can therefore not be implemented

on the global scale. Studies on global soil erosion estima-

tion by the RUSLE model or a modified version of it (Doet-

terl et al., 2012; Van Oost et al., 2007; Montgomery, 2007;

Yang et al., 2003) have all used the method of Renard and

Freimund (1994). Renard and Freimund (1994) related the

R factor to the total annual precipitation based on erosivity

data available for 155 stations in the USA, shown in the fol-

lowing equations:

R = 0.0483×P 1.61, P ≤ 850 mm

R = 587.8− 1.219×P + 0.004105×P 2, P>850 mm.
(12)

To test how this method performs globally, we calcu-

lated the R factor according to the method of Renard and

Freimund (1994) (Eq. 12) first. Here we used the 0.25◦ reso-

lution annual precipitation data from the Global Precipitation

Climatology Centre (GPCC) product (Table 1). Then, we se-

lected three regions to validate the resulting R values and

their variability: the USA (EPA, 2001), Switzerland (Meus-

burger et al., 2012), and the Ebro Basin in Spain (Angulo-

Martinez et al., 2009). For these regions, high resolution ero-

Geosci. Model Dev., 8, 2893–2913, 2015 www.geosci-model-dev.net/8/2893/2015/



V. Naipal et al.: Improving the global applicability of the RUSLE model 2899

(a  ) (b  ) 

(c  1 ) 
(c  2) 

Figure 3. Spatial difference plots showing the difference between the high resolution R values and R values calculated with the method

of Renard and Freimund (1994) for (a) the USA, (b) Switzerland and (c) the Ebro Basin in Spain; in panels (a) and (b) the blue colours

show an underestimation of the calculated R factor when compared to the high resolution R values, while the red colours show an over-

estimation; the Ebro Basin serves here as an independent validation set and it has two graphs: (c1) a spatial plot of erosivity according

to Renard and Freimund (1994) and (c2) the high resolution R values from Angulo-Martinez et al. (2009) (all values in the graphs are in

MJ mm ha−1 h−1 year−1).

sivity data are available from pluviographic data of local me-

teorological stations across the whole region.

Figure 3 shows that the R values computed with the Re-

nard and Freimund (1994) method strongly overestimate R

when compared to the high resolution R data of the se-

lected regions. For the USA the R factor of Renard and

Freimund (1994) shows an overall overestimation for the

western USA and for a large part of the eastern USA when

compared to the high resolution R factor (Table 7, Fig. 3a).

In particular, a strong overestimation is seen for the north-

west coast of the USA. This region is known to have com-

plex rainfall patterns due to the presence of mountains and

high local precipitation intensities with frequent snow fall

(Cooper, 2011). It should be noted that the USA is not the

best suited case study for testing the R values computed with

the Renard and Freimund (1994) method, as this method is

based on climate data from stations in the USA. The avail-

able high resolution or observed data on the R factor from

Switzerland and the Ebro Basin are better suited for an inde-

pendent validation.

For Switzerland, which has a complex precipitation vari-

ability influenced by the relief of the Alps (Meusburger et al.,

2012), the R factor of Renard and Freimund (1994) shows

a strong overall overestimation when compared to the high

resolution R values (Table 7, Fig. 3b). For the Ebro Basin,

located in Spain, the observed R data were available for the

period 1997–2006 from Angulo-Martinez et al. (2009). Also

here the method of Renard and Freimund (1994) overesti-

mates the R factor and is not able to reproduce the high spa-

tial variability of the R data (Table 7, Fig. 3c).

3.2 The linear multiple regression approach using

environmental factors

To better represent the R factor on a global scale, the R es-

timation was based on the updated Köppen–Geiger climate

classification (Table 3, Fig. 4). The Köppen–Geiger climate

classification is a global climate classification and is based

on the vegetation distribution connected to annual cycles of

precipitation and temperature (Lohmann et al., 1993). The

reason for this approach is that this classification system in-

cludes annual cycles of precipitation and is thus indirectly

related to precipitation intensity. Based on this, it is possible

to derive regression equations for the R factor that are appli-

cable for each individual climate zone of the classification.

This provides a basis to calculate the R factor with coarse

resolution data on a global scale.
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Table 3. Description of Köppen climate symbols and defining criteria (from Peel et al., 2007).

First Second Third Description Criteria∗

A Tropical Tcold ≥ 18

f – rainforest Pdry ≥ 60

m – monsoon Not (Af) & Pdry ≥ 100–MAP/25

w – savannah Not (Af) & Pdry < 100–MAP/25

B Arid MAP < 10×Pthreshold

W – desert MAP < 5×Pthreshold

S – steppe MAP≥ 5×Pthreshold

h – hot MAT≥ 18

k – cold MAT < 18

C Temperate Thot >10 & 0 < Tcold < 18

s – dry summer Psdry < 40 & Psdry <Pwwet/3

w – dry winter Pwdry <Pswet/10

f – without dry season Not (Cs) or (Cw)

a – hot summer Thot≥ 22

b – warm summer Not (a) & Tmon10≥ 4

c – cold summer Not (a or b) & 1≤ Tmon10 < 4

D Cold Thot > 10 & Tcold≤ 0

s – dry summer Psdry < 40 & Psdry <Pwwet/3

w – dry winter Pwdry <Pswet/10

f – without dry season Not (Ds) or (Dw)

a – hot summer Thot≥ 22

a – warm summer Not (a) & Tmon10≥ 4

c – cold summer Not (a, b or d)

d – very cold winter Not (a or b) & Tcold≤−38

E Polar Thot < 10

T – tundra Thot > 0

F – frost Thot <−0

∗ MAP: mean annual precipitation, MAT: mean annual temperature, Thot: temperature of the hottest month, Tcold:

temperature of the coldest month, Tmon10: number of months where the temperature is above 10, Pdry: precipitation of the

driest month, Psdry: precipitation of the driest month in summer, Pwdry: precipitation of the driest month in winter, Pswet:

precipitation of the wettest month in summer, Pwwet: precipitation of the wettest month in winter, Pthreshold: varies

according to the following rules (if 70 % of MAP occurs in winter then Pthreshold = 2×MAT, if 70 % of MAP occurs in

summer then Pthreshold = 2×MAT+ 28, otherwise Pthreshold = 2×MAT+ 14). Summer (winter) is defined as the warmer

(cooler) 6-month period of AMJJAS (ONDJFM).

As a basis for deriving the regression equations for the

R factor we used high resolution R maps of the USA from

the EPA (2001). The USA covers most of the world’s climate

zones and is also the largest region with available high reso-

lution R data. Linear multiple regression was used to adjust

R:

log(Ri)= β0+

n∑
j=1

βij × log
(
Xij

)
+ εi,

for i = 1,2, . . .,n, (13)

where X is the independent explanatory variable, j is the

number of explanatory variables, β is a constant and ε is the

residual.

The regression operates on one or more of the follow-

ing parameters (Xj ): total annual precipitation (GPCC 0.25◦

product), mean elevation (ETOPO 5 DEM), and the simple

precipitation intensity index, SDII. It should be mentioned

that the SDII was only available on a very coarse resolution

of 2.5◦ for certain regions on Earth, such as parts of Europe

and the USA. The SDII is calculated as the daily precipi-

tation amount on wet days (≥ 1 mm) in a certain time pe-

riod divided by the number of wet days in that period. Pre-

vious studies that performed regression of R showed that

precipitation and elevation were in most cases the only ex-

planatory variables (Meusburger et al., 2012; Mikhailova et

al., 1997; Goovaerts, 1999; Diodato and Bellocchi, 2010;

Angulo-Martinez et al., 2009). Here, we added to the regres-

sion the SDII as it is a simple representation of precipitation

intensity, which is an important explaining variable of the

R factor. The precipitation and SDII data sets were rescaled

to a 5 arcmin resolution (corresponding to 0.0833◦) to match

the Köppen–Geiger climate classification data that was avail-

able at the resolution of 6 arcmin (corresponding to 0.1◦).
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Figure 4. The Köppen–Geiger climate classification global map at a resolution of 5 arcmin (Peel et al., 2007).

Table 4. Linear multiple regression equations for different climate zones, relating high resolution R factor from the USA with one or more

significant parameters: annual total mean precipitation, P (mm), mean elevation, z (m), and the simple precipitation intensity index, SDII

(mm day−1).

Climate Explaining Regression function – optimal R2 Residual

zone parameters standard error

BWk P, SDII R = 0.809×P 0.957
+ 0.000189×SDII6.285

BSh P, SDII logR =−7.72+ 1.595× logP + 2.068× logSDII 0.97 0.22

BSk P, SDII, Z logR = 0.0793+ 0.887× logP + 1.892× logSDII− 0.429× logZ 0.89 0.35

Csb P R = 98.35+ 0.000355×P 1.987 0.16

Cfa P, SDII, Z logR = 0.524+ 0.462× logP + 1.97× logSDII− 0.106× logZ 0.89 0.11

Cfb P, SDII logR = 4.853+ 0.676× logP + 3.34× logSDII 0.97 0.21

Dsa Z, SDII logR = 8.602− 0.963× logSDII− 0.247× logZ 0.51 0.05

Dsb P logR = 2.166+ 0.494× logP 0.45 0.25

Dsc SDII logR = 6.236− 0.869× logSDII 0.51 0.02

Dwa P logR =−0.572+ 1.238× logP 0.99 0.02

Dwb P, SDII logR =−1.7+ 0.788× logP + 1.824× logSDII 0.98 0.02

Dfa P, SDII logR =−1.99+ 0.737× logP + 2.033× logSDII 0.9 0.16

Dfb P, SDII, Z logR =−0.5+ 0.266× logP + 3.1× logSDII− 0.131× logZ 0.89 0.32

Dfc SDII logR =−1.259+ 3.862× logSDII 0.91 0.23

ET P logR =−3.945+ 1.54× logP 0.14 0.42

EF+EFH P logR = 16.39− 1.286× logP 0.6 0.13

ETH P, SDII logR = 21.44+ 1.293× logP − 10.579× logSDII 0.52 0.53

Furthermore, high resolution erosivity data from Switzer-

land (Meusburger et al., 2012) and annual precipitation from

the GPCC 0.5◦ product were used to derive the regression

equations for the R factor for the polar (E) climate zones.

These climate zones are not present in the USA. For the rest

of the climate zones that are not present in the USA it was

difficult to obtain high resolution erosivity data. Therefore,

we maintained the method of Renard and Freimund (1994)

for those climate zones to calculate erosivity. Also, we kept

the R factor of the Renard and Freimund (1994) method if

no clear improvement of the R factor was found when us-

ing the new regression equations for a specific climate zone.

Here, we mainly used the r2 combined with the residual

standard error to evaluate if the new regression equations
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Table 5. Linear multiple regression equations for different climate zones for regions that have no data on the simple precipitation intensity

index, SDII (mm day−1). The regression equations relate high resolution erosivity from the USA to the annual total mean precipitation, P

(mm), and/or the mean elevation, z (m).

Climate Optimal regression function R2 Residual

zone (when SDII is not available) standard error

BWk Method Renard and Freimund (1994)

BSh logR =−8.164+ 2.455× logP 0.86 0.5

BSk logR = 5.52+ 1.33× logP − 0.977× logZ 0.76 0.52

Cfa logR = 3.378+ 0.852× logP − 0.191× logZ 0.57 0.23

Cfb logR = 5.267+ 0.839× logP − 0.635× logZ 0.81 0.5

Dsa logR = 7.49− 0.0512× logP − 0.272× logZ 0.48 0.06

Dsc logR = 4.416− 0.0594× logP 0.015 0.03

Dwb logR = 1.882+ 0.819× logP 0.81 0.08

Dfa logR =−2.396+ 1.5× logP 0.65 0.29

Dfb logR = 1.96+ 1.084× logP − 0.34× logZ 0.74 0.48

Dfc logR =−3.263+ 1.576× logP 0.56 0.49

ETH logR =−10.66+ 2.43× logP 0.4 0.59

Table 6. Mean high resolution R values (MJ mm ha−1 h−1 year−1) from the USA and Switzerland and mean modelled R values with

uncertainty range for each addressed climate zone.

Climate Observed Renard and Freimund Adjusted Adjusted

method method method

R mean R mean R mean uncertainty range

BWk 284 533 291 158–495

BSh 2168 1356 2207 1723–2828

BSk 876 884 885 749–1046

Csb 192 1136 192 133–292

Cfa 5550 5607 5437 4830–6123

Cfb 1984 5359 1971 1431–2715

Dsa 172 445 171 86–340

Dsb 175 896 168 151–187

Dsc 115 374 115 91–145

Dwa 1549 1444 1551 1280–1879

Dwb 1220 1418 1214 1057–1395

Dfa 2572 2983 2582 2346–2843

Dfb 1101 1798 1124 922–1371

Dfc 483 701 483 423–552

ET 1352 6257 1249 23–68 088

EF+EFH 1468 5469 1450 16–132 001

ETH 945 5580 832 0–6 314 918

showed a clear improvement in the R factor. The Renard and

Freimund (1994) R factors where kept for the hot arid cli-

mate zone (BWh) and the temperate climate zone with a hot

summer (Csa) in the USA. These are just two climate zones

out of the 17 evaluated ones, which show that the Renard and

Freimund method performs as good as or slightly better than

the regression method. All data sets for deriving the R factor

are described in Table 1.

3.3 Application of the linear multiple regression

method on a global scale

Tables 4 and 5 show the resulting regression equations for

climate zones for which we found initially a low correlation

between the R values calculated by the method of Renard

and Freimund (1994) and the high resolution R values from

the EPA (2001) and Meusburger et al. (2012). Figure 5 shows

for each addressed climate zone how the method of Renard

and Freimund (1994) and the new regression equations com-

pare to the high resolutionR of the USA. For the cold climate

Geosci. Model Dev., 8, 2893–2913, 2015 www.geosci-model-dev.net/8/2893/2015/
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Figure 5.

www.geosci-model-dev.net/8/2893/2015/ Geosci. Model Dev., 8, 2893–2913, 2015



2904 V. Naipal et al.: Improving the global applicability of the RUSLE model

Figure 5. Comparison of high resolution R factor data and predicted R values from (1) the Renard and Freimund (1994) method and (2) the

new regression equations, for various climate zones; the red line is the 1-to-1 line and does not appear in some graphs because predicted

R values are overestimated.

zones with a dry summer (Ds), the new regression equations

show only a slight improvement as compared to the method

of Renard and Freimund (1994). Also for the polar climate

zones (E) the new regression equations still show a signifi-

cant bias. However, they perform much better compared to

the method of Renard and Freimund (1994). For most of the

addressed climate zones the SDII explains a large part of the

variability in the R factor. The elevation plays a smaller role

here. Elevation can be an important explaining variable in re-

gions with a high elevation variability, which then affects the

precipitation intensity.

From Tables 4 and 6 it can be concluded that the R factor

in climate zones without a dry season (f) can be easily ex-

plained by the total annual precipitation and the SDII. Dry

climate zones, especially dry summer climate zones, showed

a weaker correlation. This is most likely due to the fact that

Geosci. Model Dev., 8, 2893–2913, 2015 www.geosci-model-dev.net/8/2893/2015/
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(a  ) (b  ) 

(c  1) 
(c  2) 

Figure 6. Spatial difference plots showing the difference between the high resolution R values and R values calculated with the new regres-

sion equations for (a) the USA, (b) Switzerland and (c) the Ebro Basin in Spain; in panels (a) and (b) the blue colours show an underestimation

of the calculated R values when compared to the high resolution R values, while the red colours show an overestimation; the Ebro Basin

serves here as an independent validation set and it has two graphs: (c1) a spatial plot of theR factor according to the new regression equations,

and (c2) the high resolution R values from Angulo-Martinez et al. (2009) (all values in the graphs are in MJ mm ha−1 h−1 year−1).

the SDII is too coarse to explain the variability in the low

precipitation intensity in the summer. It is also interesting to

see that even though the SDII was derived from a very coarse

resolution data set, it turned out to be still important for de-

riving more accurate R values.

We also show for each addressed climate zone a compari-

son of the newly computed average R factor with the average

high resolution R factor, and the uncertainty range (Table 6).

The uncertainty range was computed by taking into account

the standard deviation of each of the parameters in the re-

gression equations. As mentioned before, the polar climate

zones showed the largest uncertainty range. The new regres-

sion equations significantly improved the R values and spa-

tial variability in the western USA and lead to an average

R factor that was closer to the data mean (Table 7, Fig. 6a).

Although the new regression equations show a bias for the

polar climate zones (the minimum and maximum R values

are not captured), the resulting mean R values for Switzer-

land show a strong improvement (Table 7, Fig. 6b).

Furthermore, the variability in the estimatedR factor com-

pares well with the variability of the high resolution R fac-

tor. It should be noted that Switzerland is not an independent

case study for the polar climate zones, as the high resolu-

tion R values from this case study were used in our regres-

sion analysis. However, the Ebro Basin case study confirms

the strong improvement for the polar climate zones (Fig. 6c).

As the high resolution R values of the USA and Switzer-

land were used to derive the regression equations, the third

case study, the Ebro Basin in Spain, provided an important

independent validation. For the Ebro Basin, the new regres-

sion equations not only improve the overall mean but also

capture the minimum R values better. This resulted in an im-

proved representation of the R variability (Table 7, Fig. 6c).

In Fig. 6c, however, there is a clear pattern separation in the

newly computed R values, which is due to the fact that the

SDII data are not available for part of the Ebro Basin. As

mentioned before, SDII is an important explaining parameter

in the regression equations for most of the addressed climate

zones.

Figure 7a shows the global patterns of the estimatedR fac-

tor from the method of Renard and Freimund (1994) and the

new regression equations. Figure 7b shows a difference plot

between the estimated R factor with the method of Renard

and Freimund (1994) and theR factor estimated with the new

regression equations. The new regression equations signifi-

cantly reduced the R values in most regions. However, the

tropical regions still show unrealistic high R values (max-

imum R values go up to 1× 105 MJ mm ha−1 h−1 year−1).

This is because the R factor was not adjusted for the tropi-

cal climate zones due to the lack of high resolution R data.
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Figure 7. (a) Global distribution of the new modelled R values according to the new regression equations; and (b) a difference map between

R values calculated according to the method of Renard and Freimund (1994) and the new modelled R values (MJ mm ha−1 h−1 year−1),

where blue colours indicate lower R values by Renard and Freimund (1994) compared to the new modelled R values, while reddish colours

indicate higher R values; map resolution is 5 arcmin.

Oliveira et al. (2013) found for the R factor in Brazil that

the maximum R values for the tropical climate zones reach

22 452 MJ mm ha−1 h−1 year−1. We find R values in Brazil

that exceed this maximum R value found by Oliveira et

al. (2013).

Finally, it should be noted that the purpose of the adjust-

ing methods for the S and R factors in this study is to cap-

ture more accurately the large-scale mean erosion rates rather

than the extremes. Therefore, even though the new regres-

sion equations are still not accurate enough for certain cli-

mate zones, it is important that the average R factor is rep-

resented well. The approach for adjusting the R factor also

showed that although there is no high temporal resolution

precipitation intensity data available on a global scale, the

R factor can still be represented well for most climate zones

on a large spatial scale. This can be done by using other pa-

rameters, such as elevation, and especially one representative

of precipitation intensity, such as the SDII. The SDII played

an important role here as it improved the estimation of the

R factor significantly, even though data was only available at

a very low resolution as compared to the other data sets of

precipitation, elevation and climate zone classification.

4 Global application of the adjusted RUSLE model

4.1 Computation of the soil erodibility and land

cover factors

In the following we demonstrate the consequences of the new

parameterizations of the S and R factors for global soil ero-

sion rates. First, we compute the other individual RUSLE

factors, soil erodibility (K) and crop cover (C). Estimations

of the K factor were based on soil data from the gridded

30 arcsec Global Soil Data set for use in Earth System Mod-

Geosci. Model Dev., 8, 2893–2913, 2015 www.geosci-model-dev.net/8/2893/2015/
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els (GSCE). GSCE is based on the Harmonized World Soil

database (HWSD) and various other regional and national

soil databases (Shangguan et al., 2014). We used the method

of Torri et al. (1997) to estimate the K factor, and gave vol-

canic soils a K factor of 0.08 t ha h ha−1 MJ−1 mm−1. This

is because these soil types are usually very vulnerable to soil

erosion, and the observedK values are beyond the range pre-

dicted by the method of Torri et al. (1997) (Van der Knijff

et al., 1999). To account for the effect of stoniness on soil

erosion we used a combination of the methods by Cerdan et

al. (2010) and Doetterl et al. (2012), who based their meth-

ods on the original method of Poesen et al. (1994). For non-

agricultural areas we used the method of Cerdan et al. (2010),

where they reduced the total erosion by 30 % for areas with

a gravel percentage larger or equal to 30 %. For agricul-

tural and grassland areas we used the method of Doetterl et

al. (2012), where erosion was reduced by 80 % in areas where

the gravel percentage exceeded 12 %.

We calculated the C factor according to the method of De

Jong et al. (1998), using 0.25◦ normalized difference vegeta-

tion index (NDVI) and land use data for the year 2002. An

important limitation of this method is the fact that in win-

ter the C factor is estimated too high (Van der Knijff et al.,

1999). This is because the method does not include the ef-

fects of mulch, decaying biomass and other surface cover re-

ducing soil erosion. To prevent the C factor from being too

high, maximum C values for forest and grassland of 0.01 and

0.05 for pasture were used. Doetterl et al. (2012) showed that

the slope length (L) and support practice (P ) factors do not

contribute significantly to the variation in soil erosion at the

continental scale to global scale, when compared to the con-

tribution of the other RUSLE factors (S, R and C). However,

this does not mean that their influence on erosion should be

ignored completely. They may play an important role in local

variation of erosion rates. In our erosion calculations we do

not include these factors because we have too little or no data

of these factors on a global scale. Including them in the cal-

culations would only add an additional large uncertainty to

the erosion rates. This would make it more difficult to judge

the improvements we made to the S and R factors.

4.2 Computation of global soil erosion rates and

comparison to empirical databases

We applied the RUSLE model with the settings mentioned in

the previous paragraph at a 5 arcmin resolution on a global

scale for the present time period (see time resolutions of data

sets in Table 1). We calculated global soil erosion rates with

four different versions of the RUSLE model: (a) the unad-

justed RUSLE, (b) RUSLE with only an adjusted S factor,

(c) RUSLE with only an adjusted R factor, and (d) the ad-

justed RUSLE (all adjustments included).

We found a global average soil erosion rate for the ad-

justed RUSLE of 6.5 t ha−1 year−1 (Fig. 8a). When includ-

ing the uncertainty arising from applying the linear multiple
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Figure 8. (a) Global yearly averaged erosion rates according to the fully adjusted RUSLE model; (b) a difference map between the fully

adjusted and unadjusted RUSLE model; (c) a difference map between the adjusted S-RUSLE model and the unadjusted RUSLE model; (d) a

difference map between the adjusted R-RUSLE model and the unadjusted RUSLE model. In panels (b), (c) and (d) the reddish colours show

an overestimation of the adjusted RUSLE model and yellow to bluish colours show an underestimation (resolution of all maps is 5 arcmin

and all units are in t ha−1 year−1).

regression method, the mean global soil erosion rate differs

between 5.3 and 15 t ha−1 year−1. Furthermore, the RUSLE

version with only an adjusted S factor shows the highest av-

erage global soil erosion rate, while the lowest rate is found

for the RUSLE version with only the adjusted R factor (Ta-

ble 8). Figure 8c shows the difference between the erosion

rates of the S-adjusted RUSLE and the unadjusted RUSLE

versions. The erosion rates are in general increased here and

mostly pronounced in mountainous regions. This feature is

“dampened” when adjusting the R factor. The difference be-

tween the R-adjusted RUSLE and unadjusted RUSLE ver-

sions (Fig. 8d) shows that the erosion rates are overall de-

creased in regions where the adjustments are made. When

the erosion rates of the unadjusted RUSLE model are sub-

tracted from the fully adjusted RUSLE model (Fig. 8b), we

find that erosion rates are slightly decreased in areas where

the R factor is adjusted. However, for the tropics an increase

in erosion rates is found in the fully adjusted RUSLE due to

the lack of adjusting the R factor there. This indicates that

these two factors balance each other, and that it is important

to have a correct representation of all the RUSLE factors on

a global scale in order to predict reliable erosion rates.

In this study the K and C factors are not tested and ad-

justed for a coarse resolution at global scale and thus val-

idation with existing empirical databases on soil erosion is

not fully justified. However, to test if the global erosion rates

are in an acceptable range, they are compared to erosion es-

timates from the NRI database for the USA and erosion es-

timates from the study of Cerdan et al. (2010) for Europe.

These are to our knowledge the only large-scale high resolu-

tion empirical databases on soil erosion.

The NRI database contains USLE erosion estimates for the

year 1997, which are available at the Hydrologic Unit Code 4

(HUC4) watershed level. We aggregated the resulting erosion

rates from the adjusted and unadjusted RUSLE models to the

HUC4 watershed level. The results show that the average

erosion rates from the adjusted RUSLE model come closer

to that of the NRI database (Table 9, Fig. 9a). However, the

maximum average HUC4 soil erosion rate from the adjusted

RUSLE is somewhat higher compared to the NRI database.

From these results we can conclude that the erosion rates of
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Table 8. Comparison of the global erosion rates (t ha−1 year−1) and percentiles between different versions of the RUSLE model.

Mean 25th percentile 50th percentile 75th percentile 90th percentile

RUSLE unadjusted 4.5 0.2 0.7 2.4 7.5

RUSLE adjusted with S 9.8 0.3 1.0 3.8 13.5

RUSLE adjusted with R 3.2 0.1 0.5 1.7 5.7

RUSLE adjusted with S and R 6.5 0.1 0.7 2.7 9.6

Table 9. Statistics of the observed and modelled erosion rates from the unadjusted and adjusted versions of the RUSLE for the USA and

Europe (t ha−1 year−1).

Region Source Observations Adjusted RUSLE Unadjusted RUSLE

Range Mean Standard Range Mean Standard Range Mean Standard

deviation deviation deviation

Europe (aggregation Cerdan et 0.1–2.6 0.9 0.7 0.1–7 2.3 2.1 0–14 2.8 3.6

country level) al. (2010)

no small countries

USA NRI 0–11 1.6 2.1 0.2–13 1.6 1.9 0–14 1.4 1.8

(aggregation database

HUC4 level)

the adjusted RUSLE fall in the range of observed values but

that there are still some local overestimations. Some of these

overestimations can be found in the south-west of the USA

where the adjusted RUSLE shows a slightly worse perfor-

mance compared to the unadjusted RUSLE. The R factor in

this region was not changed as it was already estimated well

by the method of Renard and Freimund (1994), however, the

S factor increased due to the hilly terrain. Without adjusting

the other RUSLE factors (K and C), this resulted in an over-

all increase in soil erosion rates. This indicates that the other

RUSLE factors may play an important role in this region.

Furthermore, we see that along the west coast of the USA

the erosion values are not much improved with the adjusted

RUSLE model. This is mainly because some climate zones

such as the temperate climate zone with a dry and warm sum-

mer (Csb) prevail in this region, for which the R factor is still

difficult to estimate in a correct way (Table 4).

For Europe, Cerdan et al. (2010) used an extensive

database of measured erosion rates on plots under natural

rainfall. They extrapolated measured erosion rates to all of

Europe (European Union area) and adjusted them with a to-

pographic correction. This correction was based on the L and

S factors of the RUSLE model. They also applied a correc-

tion to account for soil stoniness. For comparison, the soil

erosion rates from Cerdan et al. (2010) and the RUSLE esti-

mates in our study are aggregated at country level. The per-

formance of the adjusted RUSLE model was not as good for

Europe as compared to the USA. This is not surprising as

the RUSLE model is based on soil erosion data of the USA.

However, also on the European scale the adjusted RUSLE

model performed better than the unadjusted RUSLE model

(Table 9, Fig. 9b). In particular, the large erosion rates in

the south of Europe as observed in the results of the unad-

justed RUSLE model are less extreme in the adjusted RUSLE

model. Still, the overall average erosion rate for Europe is

overestimated by approximately 2 times (Table 9).

The biases in erosion rates as seen for the south-west of the

USA and southern Europe can be attributed to several fac-

tors. As mentioned before, the other RUSLE factors (K and

C) and the way they interact with the R and S factors are not

adjusted to the coarse resolution at global scale. We found

no clear signal for the land cover types with which the ad-

justed RUSLE performs better or worse. In general, we can

see that the adjusted RUSLE model still overestimates ero-

sion rates for most land cover types. A short analysis for Eu-

rope showed that the largest biases are found for shrubs and

the lowest for grassland. However, a more explicit analysis

is needed to find out how we can improve the contribution of

land cover and land use to erosion rates in the RUSLE model.

Explicitly including the interaction between the C and R fac-

tor on a monthly timescale could be crucial. This is very im-

portant for example in areas with agriculture and areas with a

strong seasonal character. Another aspect related to improv-

ing the C factor is looking at the location of land use in a

certain grid cell. If the land use in a grid cell is located on

steep slopes, the resulting erosion in that grid cell would be

higher than when it was located in the flatter areas. In this

study, however, only mean fractions of land cover and the

NDVI are used for each grid cell. This can lead to possible

biases in the resulting erosion rates.

Furthermore, land management is not accounted for in this

study, which could introduce an important systematic bias in
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Figure 9. (Top) Difference plots between soil erosion estimates from the NRI database for the USA and estimates of (a) the unadjusted

RUSLE model, and of (b) the adjusted RUSLE model, all aggregated at HUC4 watershed level. (Bottom) Difference plots between soil

erosion estimates from the database of Cerdan et al. (2010) for Europe and estimates of (c) the unadjusted RUSLE model and of (d) the

adjusted RUSLE model, all aggregated at country level. Reddish colours represent an overestimation (t ha−1 year−1) while the bluish colours

represent and underestimation (t ha−1 year−1) compared to the erosion values from the databases.

the soil erosion rates especially for agricultural areas. Land

management is represented by the P factor in the original

USLE; however, it is partly also incorporated in the C factor

for agricultural land use through plant residues, cover crops

and tillage. A limitation of the NDVI approach to estimate

the C factor lies therefore in the inability to estimate this

land management effect. Applying this method also limits

the interaction between the R and C factors on a monthly

to seasonal scale, because this interaction is partly based on

land management.

Furthermore, uncertainties in the coarse resolution land

cover/land use, soil and precipitation data sets that are not ac-

counted for can lead to the model biases. Also, better adjust-

ment of the R factor for climate zones such as the polar cli-

mates could help improve the overall results. Some biases in

the erosion rates can also be attributed to the fact that stepped

relief, where flat plateaus are separated by steep slopes, is

not well captured by the 150 m target resolution used in the

fractal method to scale slope. In this way erosion would be

overestimated in these areas. Finally, errors and limitations

in the observational data sets can also contribute to the dif-

ferences between model and observations. The study of Cer-

dan et al. (2010) on Europe, for example, used extrapolation

of local erosion data to larger areas, which could introduce

some biases. Also, the underlying studies on measured ero-

sion rates used different erosion measuring techniques that

can be linked to different observational errors.

5 Conclusions

In this study we introduced specific methods to adjust the to-

pographical and rainfall erosivity factors to improve the ap-

plication of the RUSLE model on global scale, using coarse

resolution input data.

Our results show that the fractal method by Zhang et

al. (1999) and Pradhan et al. (2006) can be applied on coarse

resolution DEMs to improve the resulting slope. Although

the slope representation improved after applying this method,

the results still show a slight dependence on the original grid

resolution. This is attributable to several factors such as the

underlying assumption that the standard deviation of eleva-
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tion (σ ) is independent of the DEM resolution and to the

breakdown of the fractal method at certain scales.

We compared the rainfall erosivity calculated by the

method of Renard and Freimund (1994) to available high

resolution or observed erosivity data of the USA, Switzer-

land and the Ebro Basin. We find that this method results in

overall significant biases in erosivity. Therefore, we imple-

mented a linear multiple regression method to adjust erosiv-

ity for climate zones of the Köppen–Geiger climate classifi-

cation system in the USA. Using precipitation, elevation and

the simple precipitation intensity index as explaining param-

eters, the resulting adjusted erosivity compares much better

to the observed erosivity data for the USA, Switzerland and

the Ebro Basin. Not only are the mean values improved but

also the spatial variability in erosivity. It was surprising to

notice that using the rather coarse resolution simple precipi-

tation intensity index in the regression analysis made it possi-

ble to explain much of the variability in erosivity. This, once

more, underpins the importance of precipitation intensity in

erosivity estimation.

After calculating the newly adjusted erosivity on a global

scale, it is apparent that the tropical climate zones, for which

erosivity was not adjusted, show strong overestimations in

some areas. This shows that adjusting erosivity for the tropi-

cal climate zones should be the next step. The challenge is to

find enough reliable long-term and high resolution erosivity

data for those regions.

To investigate how the adjusted topographical and rain-

fall erosivity factors affect the global soil erosion rates, we

applied the adjusted RUSLE model on a global scale. We

found an average global soil erosion rate of 6.5 t ha−1 year−1.

It is, however, difficult to provide accurate uncertainty esti-

mates to these global erosion rates and to provide a good

validation with observations. This is due to lack of high res-

olution data on other individual RUSLE factors such as the

land cover, soil erodibility, slope length and support practice.

These RUSLE factors are therefore not adjusted for applica-

tion at coarse resolution on a global scale. We argue that it

is important to focus on adjusting the other RUSLE factors

for an improved application of the RUSLE model on global

scale. The next step would be to better capture the anthro-

pogenic contribution to global soil erosion. This can be done

by adjusting first of all the land cover factor to a coarse reso-

lution application and focusing on the interaction of this fac-

tor with rainfall erosivity on a monthly to seasonal basis. This

is important because the land cover factor has strong interac-

tions with the rainfall erosivity factor and includes the effect

of human activities on erosion through agricultural activities

and land management.

To test if the soil erosion rates from the adjusted RUSLE

model are in a realistic range, we compared the results to the

USLE erosion estimates for the USA from the NRI database

and the erosion estimates for Europe from the study of Cer-

dan et al. (2010). The adjusted RUSLE soil erosion rates,

which we aggregated to the watershed level, show a better

comparison with the NRI USLE estimates than the unad-

justed RUSLE erosion rates. For Europe, the comparison of

the adjusted RUSLE soil erosion rates to the study of Cer-

dan et al. (2010) were not as good as for the USA. This is

not surprising due to the fact that the parameterizations of

the RUSLE model are based on soil erosion data of the USA.

However, also for Europe, the adjusted RUSLE model per-

forms better than the unadjusted RUSLE model.

We find overestimations by the adjusted RUSLE model for

hilly regions along the west coast of the USA and for south-

ern of Europe. We argue that, besides the reasons mentioned

before, these biases are due to the fact that the topographical

detail may not be enough in some regions to capture the true

variability in soil erosion effects by topography. Also, erosiv-

ity could not be adjusted for some climate zones that are not

present in the USA or Switzerland and needs to be further

improved for climate zones such as the polar climate zones.

We conclude that even though there is still much improve-

ment possible in the RUSLE model with respect to topogra-

phy and erosivity, the methods proposed in this study seem

to be promising tools for improving the global applicability

of the model. A globally applicable version of the RUSLE

model, together with data on environmental factors from

ESMs, can be a basis for future studies on accurate soil ero-

sion rates for past, current and future scenarios.
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