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We interpret finite types as domains over nonflat inductive base types in order to bring out

the finitary core that seems to be inherent in the concept of totality. We prove a strong

version of the Kreisel density theorem by providing a total compact element as a witness, a

result that we cannot hope to have if we work with flat base types. To this end, we develop

tools that deal adequately with possibly inconsistent finite sets of information. The classical

density theorem is reestablished via a ‘finite density theorem,’ and corollaries are obtained,

among them Berger’s separation property.

1. Introduction

In the area of denotational semantics of functional programming, it is standard to view

data types as countably based Scott domains in the tradition that started with Scott’s

and Ershov’s independent work in the late sixties and early seventies. More particularly,

we may view these domains through their representations as Scott information systems,

where programs are representatives of typed terms x : ρ with denotations being ideals in

appropriate information systems, that is, consistent and deductively closed sets of tokens

a ∈ x; ideals are approximated by finite sets U ⊆ x, their so called formal neighbourhoods.

A crucial choice in our setting is to work with nonflat rather than flat domains for the

base types. These arise when we model base type partiality not as an extra pseudotoken,

but as an extra nullary pseudoconstructor, which participates in the formation of further

tokens, and therefore leads to varying degrees of partiality. For example, while the

flat natural numbers {⊥, 0, S0, SS0, . . .} feature just the bottom element for partiality, the

nonflat natural numbers (also called lazy natural numbers) {⊥, 0, S⊥, S0, SS⊥, SS0, . . .}
feature several partial elements, like ⊥, S⊥, SS⊥ and so on; elements that do not involve

⊥, like 0, S0 or SS0, are called total. A basic advantage of this feature compared to flat

base types is that we obtain injectivity and disjoint ranges for the constructors.

More generally, base-type nonflatness yields domains which are in a certain sense both

richer, in that they contain more tokens, and tidier, in that they are finitely branching.

Such domains seem to accommodate arguments that a flat setting cannot afford, and this

paper intends to give one nontrivial example of this kind: an explicitly finitary approach

to the Kreisel density theorem, a key result in the theory of higher-type computability.

Density was first stated and proved by Kreisel (1959), and in different terms by Kleene

(1959). Building on the work of Ershov (1975a,b, 1977), Berger (1990, 1993) generalised

and established density within domain theory, drawing as a corollary that it holds for the

hierarchy of the partial continuous functionals over all finite types, and thus recovering

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000026
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 25 Sep 2019 at 07:02:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000026
https://www.cambridge.org/core


B. A. Karádais 310

the Kleene–Kreisel continuous functionals as equivalence classes of the abstractly total

elements in the hierarchy. Schwichtenberg and collaborators have already carried Berger’s

argument from the top (abstract domains with totality) down to the bottom (concrete

Scott information systems induced by algebra constructors) numerous times in the past,

starting with Schwichtenberg (1996) and following up with Schwichtenberg (2007), Huber

(2010), Huber et al. (2010), Schwichtenberg et al. (2012). The present work is related to

these top-down approaches, but attacks the problem in the opposite, bottom-up manner:

we do not merely adapt previous domain-theoretic proofs to the setting of approximations,

but rather work our way up, from approximations to ideals.

Let us recall the content of the Kreisel density theorem. We work with finite types, that

is, with base types like N and B for naturals and booleans, respectively, and then with

arrow types above them. We capture the concept of termination by a totality predicate

G:† at base types ι, an ideal x is total if it contains a total token; at type ρ → σ, an ideal

f is total when it preserves totality, that is, when

∀
x:ρ

(Gρ(x) → Gσ(fx)),

where b ∈ fx for a token b ∈ Tokσ if and only if 〈U, b〉 ∈ f, for some formal

neighbourhood U ∈ Conρ with U ⊆ x. The density property for a type, the latter

being understood as a space governed by the Scott topology, alleviates the omnipresent

partiality by ensuring that every open set in the space nurtures total points, in other

words, that total points are dense in the space. We formulate this here by saying that ρ is

dense when

∀
U∈Conρ

∃
x:ρ

(
Gρ(x) ∧ U ⊆ x

)
. (D)

The Kreisel density theorem says that every type is dense.

Let us look a bit closer at the statement (D). We are given a neighbourhood U, morally

a compact element, comprising finite information, and we are supposed to come up with

an ideal x as a witness, which may in principle be an infinite set of tokens. It is reasonable

to suspect that the element of infinity in x must be inessential as far as an actual process

of ‘totalisation’ of U is concerned – whatever this process might be – and that there

is nothing inherently infinitary about it, since totalising U should depend on its finite

information, and not on the fact that the resulting ideal may be infinite. Can we then

devise a totalisation process which will feature an explicitly finitary core, that is,

can we provide a witness for density which will be obviously finitary?

We can easily see that in general, we cannot do this if we interpret our base types by flat

domains: At type N → N , consider the very simple compact given intuitively by {0 �→ ⊥};
extending it, say, to {0 �→ 0} is not making it total, since it cannot respond (with a total

value) to any total input different than 0; if we want to extend it to a total element,

† The letter ‘g’ – which probably derives from the English word general (for generally defined ), and perhaps is

influenced by the German word gesamt (complete, total, whole) – was used in this context already by Ershov

(1975a, 1977). We adopt this notation here to designate totality in order to avoid confusion with other terms

beginning with ‘t’ in our text.
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we must account for every possible total input except 0, which inevitably leads to an

infinite set, say to the set {0 �→ 0} ∪ {Sm0 �→ S0 | m > 0}. This totalisation process consists

of two steps, namely totalising the output on input zero from ⊥ to 0, and setting all other

outputs to be S0; nevertheless, the witness can only be presented as an infinite set. On

the other hand, if we had interpreted the natural numbers by their nonflat domain, then

we could have extended the compact {0 �→ ⊥} to the compact {0 �→ 0, S⊥ �→ S0}, which

would have sufficed, since the information S⊥ is enough to accommodate (later we will

say ‘accept’) all total numbers different than zero.

Our strategy can be summarised as follows. Step 1: define an appropriate notion of

‘total neighbourhood.’ Step 2: establish a ‘finite density theorem,’ that is, that every

neighbourhood extends to such a total neighbourhood. Step 3: show that a total

neighbourhood extends to a total ideal in a straightforward way.

We begin in Section 2 with a necessary preamble on domains over nonflat base types

represented by information systems. In Section 3, we prepare for Step 1. As we can already

see in the example that we gave above, one thing we have to do in order to ‘totalise’ a

neighbourhood is to appropriately extend the set of its inputs; this finite set is seldom

consistent, and in order to argue rigorously about it, we must first develop a general

understanding of such sets and their intricacies. This section delays the exposition of our

argument a bit, but, beside gathering necessary definitions and facts, it will hopefully

help familiarise the reader with these intricacies. Alternatively, the reader could skip to

the next section and come back when the need arises. In Section 4, we perform Steps 1

and 2: we define finite totality and prove finite density with Theorem 4.7; moreover, we

characterise finite totality in a noninductive way in Theorem 4.9. Section 5 is about Step

3: with Theorem 5.10, we show how to obtain the classical Kreisel density theorem from

the finite density theorem; in addition, we list some direct consequences, among them

Berger’s ‘separation property’ in Proposition 5.14. We end in Section 6 with comments on

the literature and future work.

2. Nonflat domains via coherent information systems

We concentrate on a type system supporting arrow types over inductive base types.‡ We

use ξ as a dummy-type variable. Write −→ρ → σ to mean ρ1 → · · · → ρr → σ for some

r � 0 associated to the right; in case r = 0, the vector is empty.

— For every vector
−→
ξ of length r, the expression

−→
ξ → ξ is a constructor type (of arity

r).

— If κ1, . . . , κk are constructor types for k > 0 and one of them nullary, then μξ(κ1, . . . , κk)

is a type. We think of such types as inductively defined base types or algebras, generated

by constructors Cl corresponding to κl , for l = 1, . . . , k.

— If ρ, σ are types, then ρ → σ is a type; these are the usual higher types.

‡ In this section, we omit proofs and details, for which the reader may consult Schwichtenberg et al. (2012,

Part 3) and Stoltenberg-Hansen et al. (1994, Part I). In relation to the former, in particular, note that we will

be working within the nonparametric and finitary fragment of the system.
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Note that constructor types only serve to build base types, and are not themselves admitted

as types. Examples of base types are

— the unit type U := μξ(ξ) with a single nullary constructor,

— the type of boolean values B := μξ(ξ, ξ), with constructors for the truth tt : B and the

falsity ff : B,

— the type of natural numbers N := μξ(ξ, ξ → ξ), with constructors for the zero 0 : N
and the successor S : N → N ,

— the type of (extended) derivations D := μξ(ξ, ξ, ξ → ξ, ξ → ξ → ξ), with constructors

for an axiom 0 : D, another axiom 1 : D, a one-premise rule S : D → D, and a

two-premise rule B : D → D → D (this algebra is simple yet nontrivial enough to

provide us with examples as we go along).

We will write ι to denote an arbitrary base type and ρ, σ to denote arbitrary types in

general.

A (Scott) information system (Scott 1982; Winskel and Larsen 1984) is a triple

(Tok,Con,�), where Tok is an inhabited countable set of tokens, Con is a collection

of finite sets of tokens, which we call consistent sets or (formal) neighbourhoods, and � is

a subset of Con × Tok, the entailment. These are subject to the axioms

{a} ∈ Con,

U ⊆ V ∧ V ∈ Con → U ∈ Con,

U ∈ Con ∧ a ∈ U → U � a,

U � V ∧ V � c → U � c,

U ∈ Con ∧ U � b → U ∪ {b} ∈ Con,

where U � V stands for U � b for all b ∈ V . From the latter follows vacuously that

U � � for all U, while � ∈ Con follows from the first two axioms. We may refer to the

fifth axiom as propagation (of consistency through entailment); note that this axiom may

be equivalently expressed as

U � V → U ∪ V ∈ Con. (1)

For finite sets of tokens Γ , which are not necessarily consistent, we write Fin, so

Con ⊆ Fin. An information system is called coherent when in addition to the above it

satisfies

∀
a,a′∈U

{a, a′} ∈ Con → U ∈ Con, (2)

for all U ∈ Fin. By the coherence and the second axiom above, it follows that the

consistency of a token set is equivalent to the consistency of its pairs. Drawing on this

property, we often write a � b for {a, b} ∈ Con, and even U � V for U ∪V ∈ Con (which

is also often written U ↑ V ). In the following, we work exclusively with coherent systems,

even if we do not mention it explicitly.

Given two coherent information systems ρ and σ, we form their function space ρ → σ:

define its tokens by 〈U, b〉 ∈ Tok if U ∈ Conρ and b ∈ Tokσ , its consistency by 〈U, b〉 �
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〈U ′, b′〉 if U �ρ U ′ implies b �σ b′, and its entailment by W � 〈U, b〉 if WU �σ b, where

b ∈ WU := ∃
U ′∈Conρ

(
〈U ′, b〉 ∈ W ∧ U �ρ U ′).

The last operation is called neighbourhood application. We will revisit it in some depth in

Section 3.3, where we will also show that it is monotone in both arguments, that is, that

U � U ′ implies WU � WU ′ and that W � W ′ implies WU � WU ′ for all appropriate

U,U ′,W ,W ′ (Lemma 3.8). For the proof of the following, see Schwichtenberg et al. (2012,

Chapter 6).

Fact 2.1. The function space of two coherent systems is itself a coherent information

system.

An ideal (or element) of an information system ρ is a possibly infinite token set x ⊆ Tok,

such that U ∈ Con for every U ⊆f x (consistency), and U � b for some U ⊆f x implies

b ∈ x (deductive closure). If x is an ideal of ρ, we write x : ρ or x ∈ Ideρ. Note that in a

generic setting built over flat base types, as for example, the one described in Stoltenberg-

Hansen et al. (1994), the empty set at every type ρ is an ideal, and plays the role of the

bottom element ⊥ρ.

By a (Scott–Ershov) domain, we mean here a countably based directed complete partial

order with a least element, which is additionally algebraic and bounded complete. A

domain is coherent (Plotkin 1978), if every set of compacts has a least upper bound

exactly when each of its pairs has a least upper bound. Write b ∈ U if and only if

U � b (in the generic flat-based setting, we have � = � = ⊥). The following fact is

directly based on the fundamental work of Scott (1982); for the proofs supporting our

particular formulation, see Stoltenberg-Hansen et al. (1994, Section 6.1) and Karádais

(2016, Theorem 8).

Fact 2.2 (Representation theorem). Let ρ = (Tokρ,Conρ,�ρ) be a coherent information

system. Then, (Ideρ,⊆,⊥ρ) is a coherent domain with compacts given by {U | U ∈ Conρ}.
Conversely, every coherent domain can be represented by a coherent information system.

An approximable mapping between two information systems ρ and σ is a relation

r ⊆ Conρ × Conσ that generalises entailment in the following sense: 〈�,�〉 ∈ r; if

〈U,V1〉, 〈U,V2〉 ∈ r, then V1 �σ V2 and 〈U,V1 ∪ V2〉 ∈ r; and if U �ρ U ′, 〈U ′, V ′〉 ∈ r,

and V ′ �σ V , then 〈U,V 〉 ∈ r. One can show (Scott 1982) that there is a bijective

correspondence between the approximable mappings from ρ to σ and the ideals of

the function space ρ → σ, and moreover establish the categorical equivalence between

domains with Scott continuous functions and information systems with approximable

mappings. The equivalence is preserved if we restrict ourselves to the coherent case on

both sides (Karádais 2016).

The Scott topology on Ideρ is given by the collection {∇U | U ∈ Conρ}, where ∇U is

the set {x : ρ | U ⊆ x} of all ideals above U. A set U ⊆ Ideρ of ideals is Scott open when

it is closed under supersets (Alexandrov condition) and for every x ∈ U , there is a U ⊆ x

such that U ∈ U (Scott condition). One can furthermore show that an ideal-mapping f

sending ideals from Ideρ to ideals in Ideσ is Scott continuous when it is monotone and
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satisfies the principle of finite support (also called approximation principle) for all x : ρ,

that is,

∀
b∈Tokσ

(b ∈ f(x) → ∃
U∈Conρ

(U ⊆ x ∧ b ∈ f(U))). (FS)

Finally, it can be shown (see, for example, Schwichtenberg et al. 2012, Section 6.1.3) that

the ideals Ideρ→σ and the Scott continuous ideal-mappings Ideρ → Ideσ are in a bijective

correspondence, a fact that justifies the nondiscriminating notation f : ρ → σ.

Now, we proceed to assign an information system to each type. Every higher type is

naturally assigned a function space, so it suffices to discuss the information systems for

base types, that is, for algebras. Let ι be an algebra, with at least one nullary constructor

if it is to be nontrivial. We add to it an extra nullary pseudoconstructor ∗ι (or just ∗) to

denote partiality (which we nevertheless agree to not let it appear in the algebra signature).

This is a departure from Schwichtenberg et al. (2012), where partiality is treated as a

special untyped symbol that is used by all possible algebras; for us, every algebra has its

own partiality symbol. We define Tokι, Conι, and �ι inductively.

— If C is an r-ary constructor and ai ∈ Tokι for i = 1, . . . , r, then Ca1 · · · ar ∈ Tokι.
§ For

its head constructor, write hd(Ca1 · · · ar) = C; for its ith component token write a(i),

that is, (Ca1 · · · ar)(i) = ai for i = 1, . . . , r.

— We have a �ι ∗ and ∗ �ι a for all a ∈ Tokι. Furthermore, if C is an r-ary constructor

and ai �ι bi for i = 1, . . . , r, then Ca1 · · · ar �ι Cb1 · · · br . Finally, we have U ∈ Conι if

a �ι a
′ for all a, a′ ∈ U.

— We have U �ι ∗ for all U ∈ Conι. Furthermore, if C is an r-ary constructor, every

Ui ∈ Conι is inhabited and Ui �ι bi for i = 1, . . . , r, then U �ι Cb1 · · · br for all

U ∈ Conι that are sufficient for C on U1, . . . , Ur , in the sense that for each i = 1, . . . , r

and each ai ∈ Ui there exists an a ∈ U such that hd(a) = C and a(i) = ai. Finally, if

U �ι b, then also U ∪ {∗} �ι b.

Here, we need to be cautious. The definition of Conι incorporates the coherence

property (2), so it follows that � �ι {∗}. This seems to undermine Fact 2.2, since

the empty set cannot be an ideal anymore. It is nevertheless straightforward to show that

the representation theorem still stands if we reinterpret the bottom ideals as follows:

⊥ι := {∗ι},
⊥ρ→σ := {〈U, b〉 | U ∈ Conρ ∧ b ∈ ⊥σ}.

It may be worth pointing out that while our situation diverges from the generic flat-based

setting and even from settings like the one of Schwichtenberg et al. (2012), in the same

time, it resonates the original Scott axioms (Scott 1982): there exists at least one trivial

token in every information system, in particular, one at every base type and several at

every higher type.

Concerning sufficiency, we note the following: (a) in case C is a proper constructor, U

is sufficient for C on U1, . . . , Ur if and only if U ∪ {∗} is, if and only if U \ {∗} is, and

§ Throughout the text, we adopt the polish notation for tokens for typographical convenience.
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(b) we trivially have U �ι CU1 · · ·Ur , whenever U is sufficient for C on U1, . . . , Ur; the

constructor application here is defined by

CU1 · · ·Ur := {Ca1 · · · ar | a1 ∈ U1, . . . , ar ∈ Ur},

which is consistent if and only if every Ui is consistent. Moreover, every neighbourhood U

that is nontrivial (meaning, {∗} ��ι U) is indeed equivalent to one of the form CU1 · · ·Ur:

if

U \ {∗} = {Ca11 · · · ar1, . . . , Ca1m · · · arm},
we gather all ith component tokens into a neighbourhood, the ith component neighbourhood

U(i) := {ai1, . . . , aim} of U, and let Ui := U(i) for every i = 1, . . . , r; then, we indeed have

U ∼ι CU1 · · ·Ur (where U ∼ V abbreviates U � V ∧ V � U).

The proof of the following is straightforward but tedious.

Fact 2.3. Let ι be an algebra given by constructors. The triple (Tokι,Conι,�ι) is a coherent

information system.

3. Finite sets

Recall that the first step in our strategy is to decide on a reasonable definition of ‘finite

totality,’ one that will already embody the totalisation mechanism for density on the one

hand, and that will be susceptible to a canonical extension to a total ideal on the other.

The nature of our study leads us naturally to define the concept by induction over types,

which is what we do in Section 4.1. Nevertheless, we will see in Theorem 4.9 that we can

arrive at the same concept in an explicit way in terms of ‘transitive elements’: elements

that witness local transitivity within a not necessarily transitive relation – in our case,

the consistency relation. To work with such sets of tokens, we need an operation akin

to application, defined using consistency rather than entailment. This is how we come to

spend some space discussing not necessarily consistent finite sets in some generality, while

we postpone the actual definition of total neighbourhoods until Section 4.

3.1. Entailment and consistency for finite sets

There is the trivial syntactical reason to look at finite sets in general and not just at

the consistent ones: the latter presuppose the former by definition – in particular, the

thematisation of finite sets is unavoidable in implementation endeavors like (Huber et al.

2010). But finite sets may play a natural and important role within purely semantical

arguments as well – to mention a naive example, think of the subtokens a1, . . . , ar of a

base-type token a = Ca1 · · · ar . In this subsection, we will hardly cover anything more

than what we will need later, with the exception of Lemma 3.2, which we included for the

sake of some points in Section 3.3.

As we already mentioned, we write Finρ instead of Pf(Tokρ), so Γ ∈ Finρ means that Γ

is a finite set of tokens, not necessarily consistent. If Θ = {〈Uj, bj〉 | j = 1, . . . , l} ∈ Finρ→σ ,

write L(Θ) for
⋃

j Uj ∈ Finρ (notice that this is a flattening), and R(Θ) for
⋃

j{bj} ∈ Finσ .
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Furthermore, if U ∈ Conρ and Δ ∈ Finσ , write 〈U,Δ〉 for {〈U, b〉 | b ∈ Δ} ∈ Finρ→σ (note

that 〈U,�σ〉 = �ρ→σ).

Lemma 3.1. Let Θ,Θ′ ∈ Finρ→σ . We have L(Θ ∪ Θ′) = L(Θ) ∪ L(Θ′) and R(Θ ∪
Θ′) = R(Θ) ∪ R(Θ′). Furthermore, if Θ ⊆ Θ′, then we have L(Θ) ⊆ L(Θ′) as well as

R(Θ) ⊆ R(Θ′).

A neighbourhood in Γ ∈ Finρ is a subset U ⊆ Γ , which happens to be consistent; write

U ∈ ConΓ . The empty set and the singletons of Γ are always in ConΓ . Say that Γ entails

Γ ′ (as a finite set), and write Γ �F
ρ Γ ′, when

∀
U ′∈ConΓ ′

∃
U∈ConΓ

U �ρ U ′.

This is a generalisation of the notion U �ρ U ′ for neighbourhoods. A simpler, but less

helpful generalisation is ‘Γ �ρ Γ ′ if and only if for every a′ ∈ Γ ′ there is some U ∈ ConΓ

such that U �ρ a′’; if Γ �F
ρ Γ ′, then also Γ �ρ Γ ′. Contrary to the case of consistent sets,

although Γ �F
ρ Γ ′ implies Γ �F

ρ a for all a ∈ Γ ′, the converse is not true in general. For

example, {B00, B11} �F
D B0∗ and {B00, B11} �F

D B∗1, but {B00, B11} ��F
D {B0∗, B∗1}.

Similarly, say that Γ and Γ ′ are consistent (as finite sets), and write Γ �F
ρ Γ ′, when

∀
U∈ConΓ

∀
U ′∈Con′

Γ

U �ρ U ′.

Again, this is a generalisation of consistency between neighbourhoods that proves more

useful for not necessarily consistent finite sets than the simpler notion ‘Γ �ρ Γ ′ if and

only if {a, a′} ∈ Conρ for all a ∈ Γ and a′ ∈ Γ ′’ (which we may nevertheless occasionally

use); if Γ �F
ρ Γ ′, then Γ �ρ Γ ′. Note that in the case of �F

ρ , we generally do not have

reflexivity; in fact, we trivially have Γ �F
ρ Γ if and only if Γ ∈ Conρ. An example of

consistency between inconsistent finite sets is {B0∗, B1∗} �F
D {B∗0, B∗1}.

Reflexivity of consistency is the only property that the triple (Finρ,�F
ρ ,�F

ρ ) lacks in

order to constitute a Scott information system.

Lemma 3.2. The entailment between finite sets is reflexive and transitive and the consist-

ency between finite sets is symmetric and propagates through entailment, that is,

1. ∀Γ∈FinΓ �F Γ ,

2. ∀Γ ,Δ,Θ∈Fin(Γ �F Δ ∧ Δ �F Θ → Γ �F Θ),

3. ∀Γ ,Δ∈Fin(Γ �F Δ → Δ �F Γ ),

4. ∀Γ ,Δ,Θ∈Fin(Γ �F Δ ∧ Δ �F Θ → Γ �F Θ).

Proof. We just show the propagation property. Let Γ ,Δ,Θ ∈ Fin be such that Γ �F Δ

and Δ �F Θ. Consider U ∈ ConΓ and W ∈ ConΘ; by the assumptions, there exists a

V ∈ ConΔ with V � W and U � V ; by propagation on Con (1), we get U � W .

3.2. Maximal and transitive neighbourhoods

Think of some finite set Γ of type ρ, and suppose that we wish to assign σ-values bi to

neighbourhoods Ui of ConΓ (for some i ∈ I) in a way that the finite set {〈Ui, bi〉 | i ∈ I}
at type ρ → σ will be consistent. Some reflection show that it suffices to pair the ‘maximal’
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neighbourhoods of Γ with the given values of σ, but we can actually do better than that:

we can relax the requirement of maximality by requiring instead that we assign the given

arbitrary values already to those neighbourhoods which are, so to speak, maximal enough

or ‘almost maximal,’ in the sense that they are below exactly one maximal in Γ ; these are

exactly the ‘transitive neighbourhoods’ in Γ .

Call U ∈ ConΓ a maximal neighbourhood in Γ , and write U ∈ Conmax
Γ , when it is

maximal with respect to the entailment relation, that is, when

∀
U ′∈ConΓ

(U ′ �ρ U → U �ρ U ′).

Call U ∈ ConΓ (consistency) transitive in Γ , and write U ∈ Conctr
Γ , when it satisfies the

property

∀
U1 ,U2∈ConΓ

(U1 �ρ U �ρ U2 → U1 �ρ U2).

We can reformulate this by introducing the notation Ũ for the consistency closure of U,

that is, for the set {a ∈ Tokρ | U �ρ a} (it is clear that, while it encompasses the deductive

closure, the consistency closure of a neighbourhood is not in general an ideal, because

consistency may fail); then U is transitive in Γ when Ũ ∩ Γ ∈ Conρ.

More generally, call U ∈ Conρ transitive for Γ or just Γ -transitive (in ρ), and write

U ∈ Conctr
ρ|Γ , if, again, U1 �ρ U �ρ U2 implies U1 �ρ U2 for all U1, U2 ∈ ConΓ ; obviously,

Conctr
Γ ⊆ Conctr

ρ|Γ .

It is clear that every maximal in a finite set is also transitive in it. It is also immediate that

consistency between neighbourhoods, restricted to Conctr
Γ (but not to Conctr

ρ|Γ !), becomes

an equivalence relation. Still trivially, but importantly, we have the following.

Lemma 3.3 (Upward closedness of transitivity). Let ρ be a type and Γ ∈ Finρ. For any

U,U ′ ∈ Conρ, if U ∈ Conctr
ρ|Γ and U ′ �ρ U, then U ′ ∈ Conctr

ρ|Γ .

Proof. Let U1, U2 ∈ ConΓ be such that U1 �ρ U ′ �ρ U2. By propagation (1), we have

U1 �ρ U �ρ U2, so U1 �ρ U2.

It is often handy to check for extremality (that is, maximality or transitivity) on the

level of tokens.

Lemma 3.4 (Extremality through tokens). Let ρ be an arbitrary type, Γ ∈ Finρ, and

U ∈ ConΓ .

1. We have U ∈ Conmax
Γ if and only if U �ρ a implies U �ρ a for a ∈ Γ .

2. We have U ∈ Conctr
ρ|Γ if and only if a1 �ρ U �ρ a2 implies a1 �ρ a2 for a1, a2 ∈ Γ .

Proof. For 1. From left to right, assume that U is maximal, and let a ∈ Γ be such that

U �ρ a. Then, U ∪ {a} �ρ U, and by the maximality of U, we get U ∼ρ U ∪ {a}, which

gives us U �ρ a. For the other way around, let U ′ ∈ ConΓ be such that U ′ �ρ U; then

U �ρ U ′, and by the assumption we get that U �ρ U ′, so U is indeed maximal.

For 2. From left to right, assume that U is transitive for Γ , and let a1, a2 ∈ Γ be such

that U �ρ ai for both i. Then, U �ρ {ai}, and by the transitivity of U we get a1 �ρ a2. For
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the other way around, let U1, U2 ∈ ConΓ be such that U �ρ Ui, for both i and ai ∈ Ui;

then a1 �ρ a2 by the assumption, so U1 �ρ U2, and U is indeed Γ -transitive.

The lemma makes the significance of extremality in a finite set quite apparent. In

particular, it is good to know that two maximals in a finite set are either equivalent or

inconsistent (a fact that we can put even more bluntly like this: if U is maximal and

deductively closed in Γ , then for each a ∈ Γ , we have either a ∈ U or a ��ρ U).

Lemma 3.5. Let ρ be any type. For all Γ ∈ Finρ and U ∈ Conmax
Γ , if U ′ ∈ Conρ is such

that U ′ �ρ U, then U ′ ∈ Conmax
Γ∪U ′ .

Proof. Let a ∈ Γ ∪ U ′ be such that a �ρ U ′; since U ′ �ρ U, we have a �ρ U. In case

a �∈ Γ , we have a ∈ U ′; in case a ∈ Γ , we have U �ρ a by Lemma 3.4 (1); in both the

cases, it follows that U ′ �ρ a, so U ′ is maximal in Γ ∪ U ′ by Lemma 3.4 (1).

Lemma 3.6 (Maximal extensions). Let ρ be a type and Γ ∈ Finρ.

1. For any U ∈ ConΓ , we have U ∈ Conctr
Γ if and only if there is exactly one Û ∈ Conmax

Γ ,

up to equientailment, such that Û �ρ U.

2. For any U ∈ Conρ, we have U ∈ Conctr
ρ|Γ if and only if, whenever there exist U0 ∈ ConΓ

with U �ρ U0, there exists a Û ∈ Conmax
Γ such that U �ρ U0 implies Û �ρ U0 for all

U0 ∈ ConΓ .

Proof. For 1, from left to right, assume that U ∈ Conctr
Γ and let U1, U2 ∈ Conmax

Γ be

such that Ui �ρ U for both i = 1, 2. By the propagation of consistency (1), we have

U1 �ρ U �ρ U2; by the assumption, we have U1 �ρ U2; by the maximality of U1 and U2,

it follows from Lemma 3.4 (1) that U1 ∼ρ U2.

For the other direction, assume that U is such that any two maximal neighbourhoods

in Γ that entail it are equivalent, and let U1, U2 ∈ ConΓ be such that U1 �ρ U �ρ U2.

Then, for any two Um
1 , U

m
2 ∈ Conmax

Γ , with Um
i �ρ U ∪ Ui, by the assumption, we must

have Um
1 ∼ρ Um

2 ; it follows that U1 �ρ U2, by the propagation of consistency.

For 2, let U ∈ Conρ. Assume that U ∈ Conctr
ρ|Γ and U �ρ Ui for some Ui ∈ ConΓ ,

where i > 0. Gather all these Ui in the neighbourhood U0 :=
⋃

i Ui; we have of course

U0 ∈ ConΓ . Then, there is at least one maximal Û ∈ Conmax
Γ such that Û �ρ U0 �ρ Ui for

all i.

Conversely, assume that U satisfies

∃
U0∈ConΓ

U �ρ U0 → ∃
Û∈Conmax

Γ

∀
U0∈ConΓ

(U �ρ U0 → Û �ρ U0),

and let U1, U2 ∈ ConΓ be such that U1 �ρ U �ρ U2. From the assumption, we get a

maximal Û ∈ Conmax
Γ with Û �ρ Ui for each i, so U1 �ρ U2.

We will say the maximal extension of U in Γ , if U ∈ Conctr
Γ , for the unique (up

to equivalence) maximal neighbourhood entailing U; this we denote by Û, as in the

statement of the above Lemma. But note that in the case of transitive neighbourhoods

outside Γ uniqueness is not guaranteed: an example with two maximals at type D is

provided by the finite set Γ = {S∗, S0, S1} and the neighbourhood U = {SS∗}.
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3.3. Upper and middle application

The notion of application fx of some higher-type term f to some input term x, both

appropriately typed, is interpreted as ‘the information that we hold on x suffices to draw

the information fx on the output, given the information that we have on f.’ In Section 2,

in the definition of neighbourhood application, we saw that when we bring this notion

down to the finite level it is entailment that we read into ‘suffices,’ but for our purposes, it

will come in handy to consider a different version of application between neighbourhoods,

where we replace entailment by consistency. As will become clear in the results below,

starting already with Lemma 3.10, this kind of application is justified by the existence

and use of transitive neighbourhoods.

Let Θ ∈ Finρ→σ and U ∈ Conρ. The (upper) application Θ · U gathers all values

b ∈ Tokσ whose arguments Ub fall under U:

b ∈ Θ · U := ∃
Ub∈Conρ

(
〈Ub, b〉 ∈ Θ ∧ U �ρ Ub

)
.

Note that this trivially generalises the neighbourhood application of Section 2; from now

on, we will always write W ·U instead of WU. The middle application Θ ·U is defined by

b ∈ Θ · U := ∃
Ub∈Conρ

(
〈Ub, b〉 ∈ Θ ∧ U �ρ Ub

)
.

It follows immediately from the definition that the middle application yields at least as

much information as the upper one does, namely Θ · U ⊆ Θ · U.

In the case of a consistent left argument, we can make the following easy observations.

Lemma 3.7. Let ρ, σ be arbitrary types, W ∈ Conρ→σ , U ∈ Conρ and b ∈ Tokσ .

1. We have W �ρ→σ 〈U, b〉 if and only if W · U �σ b.

2. We have W �ρ→σ 〈U, b〉 if and only if W · U �σ b.

Note that in Lemma 3.7 (2), the finite set W · U may not be consistent, but we still did

not write W · U �F
σ b; here, we are just saying that every pair {bW , b} will be consistent,

for bW ∈ W · U.

Lemma 3.8 (Application). Let ρ, σ be arbitrary types.

1. Application is consistently defined, that is, if W ∈ Conρ→σ and U ∈ Conρ, then

W · U ∈ Conσ .

2. Application is monotone in the right argument, in particular, if Θ ∈ Finρ→σ and

U,U ′ ∈ Conρ, with U �ρ U ′, then Θ · U ′ ⊆ Θ · U.

3. Application is monotone in the left argument, that is, if Θ,Θ′ ∈ Finρ→σ with Θ �F
ρ→σ

Θ′ and U ∈ Conρ, then Θ · U �F
σ Θ′ · U.

Proof. For 1, let W ∈ Conρ→σ and U ∈ Conρ, and consider b1, b2 ∈ W · U. By the

definition, there must exist 〈U1, b1〉, 〈U2, b2〉 ∈ W , such that U �ρ U1 ∪ U2; it follows that

U1 �ρ U2, so the consistency of W ensures that b1 �σ b2.

For 2, let Θ ∈ Finρ→σ and U,U ′ ∈ Conρ, and assume that U �ρ U ′. Consider a b ∈ V ;

by the definition, there exists a Ub ∈ L(Θ) with 〈Ub, b〉 ∈ Θ and U ′ �ρ Ub; the assumption

immediately gives U �ρ Ub, so b ∈ Θ · U as well.
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For 3, let Θ,Θ′ ∈ Conρ→σ and U ∈ Conρ, and assume that Θ �F
ρ→σ Θ′. Consider a

V ′ ∈ Con
Θ′·U; for each b′ ∈ V ′, there is a Ub′ ∈ Conρ such that 〈Ub′ , b′〉 ∈ Θ′ and U �ρ Ub′ ;

the set W ′ := {〈Ub′ , b′〉 ∈ Θ | b′ ∈ V ′ ∧ U �ρ Ub′ } is consistent in Θ′. By the assumption,

there exists some W ∈ ConΘ such that W �ρ→σ W ′. Since for each 〈Ub′ , b′〉 ∈ W ′, we

have W ·Ub′ �σ b′, by 2, we get W ·U �σ W ·Ub′ , hence, W ·U �σ b′, that is, W ·U �σ V ′

and since W · U ∈ Con
Θ·U , we are done.

The following gives us conservative extensions of a neighbourhood by way of extending

its set of arguments.

Lemma 3.9. Let W ∈ Conρ→σ and Γ ∈ Finρ such that L(W ) ⊆ Γ . Then,

W ∼ρ→σ

⋃
U∈ConΓ

〈U,W · U〉.

Proof. From left to right, let U ∈ ConΓ and b ∈ W · U. There exists a Ub ∈ ConL(Θ)

with 〈Ub, b〉 ∈ W and U �ρ Ub. Then, 〈Ub, b〉 �ρ→σ 〈U, b〉. The other way around is

obvious, since W ⊆
⋃

U∈ConΓ
〈U,W · U〉.¶

Turning our attention to middle application, the first thing we want to know is how it

fares compared to Lemma 3.8.

Lemma 3.10 (Middle application). Let ρ, σ be arbitrary types.

1. Middle application is consistently defined for transitive right arguments, that is, if

W ∈ Conρ→σ and U ∈ Conctr
ρ|L(W ), then W · U ∈ Conσ .

2. Middle application is antimonotone in the right argument, in particular, if Θ ∈ Finρ→σ

and U,U ′ ∈ Conρ with U �ρ U ′, then Θ · U ⊆ Θ · U ′.

3. Middle application between neighbourhoods is monotone in the left argument for

transitive right arguments, that is, if W,W ′ ∈ Conρ→σ are such that W �ρ→σ W ′ and

U ∈ Conctr
ρ|L(W )∪L(W ′), then W · U �σ W ′ · U.

Proof. To show 1, let U ∈ Conctr
ρ|L(W ) and b1, b2 ∈ W · U. Then, there exist U1, U2 with

〈Ui, bi〉 ∈ W and Ui �ρ U. The transitivity of U implies U1 �ρ U2, and the consistency of

W ensures that b1 �σ b2.

For 2, assume U and U ′ such that U �ρ U ′, and let b ∈ Θ · U. There is some Ub such

that 〈Ub, b〉 ∈ Θ and Ub �ρ U. By propagation (1), we get Ub �ρ U ′, so b ∈ Θ · U ′.

For 3. By 1, the assumption that U ∈ Conctr
ρ|L(W )∪L(W ′) ensures that the result of both

middle applications is a neighbourhood (in general, if Γ ⊆ Γ ′, then Conctr
ρ|Γ ′ ⊆ Conctr

ρ|Γ ). Let

b′ ∈ W ′ ·U. By the definition of middle application, there exists a 〈U ′, b′〉 ∈ W ′, such that

U ′ �ρ U. Since W �ρ→σ W ′, there is a subneighbourhood {〈Ui, bi〉 | i = 1, . . . , m} ⊆ W ,

such that for all i = 1, . . . , m, we have U ′ �ρ Ui and {bi | i = 1, . . . , m} �σ b′; by propagation,

it follows that U �ρ Ui for all i. This means that bi ∈ W · U for all i, so W · U �σ b′, and

we are done.

¶ The proof in fact shows that the equientailment here is linear (U entails b linearly when {a} � b for some

a ∈ U, see, Karádais (2018)).
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Lemma 3.11. Let Θ ∈ Finρ→σ .

1. For all U,U ′ ∈ Conctr
L(Θ), if U �ρ U ′, then Θ · U = Θ · U ′.

2. For all U ∈ Conctr
L(Θ), we have Θ · U = Θ · Û.

3. For all U ∈ Conmax
L(Θ) and U ′ ∈ Conρ, if U �ρ U ′, then Θ · U ⊆ Θ · U ′.

Proof. For the first statement, assume that U �ρ U ′ and let b ∈ R(Θ). We have b ∈ Θ ·U
if and only if there is some Ub with 〈Ub, b〉 ∈ Θ and U �ρ Ub. Since U is transitive in

L(Θ), we get U ′ �ρ Ub by the assumption, so b ∈ Θ · U ′. The converse is similar.

For the second statement, let U ∈ Conctr
L(Θ). By the definition of middle application, if

b ∈ Θ ·U, then there is some Ub with 〈Ub, b〉 ∈ Θ, such that Ub �ρ U; since U is transitive,

by the maximality of its maximal extension, it follows that Û �ρ Ub, so the definition of

application gives us b ∈ Θ · Û. For the other way around, if b ∈ Θ · Û, then there is a Ub

with 〈Ub, b〉 ∈ Θ, such that Û �ρ Ub; then U �ρ Ub by propagation (1), so b ∈ Θ · U, by

the definition of middle application.

For the third statement, let U be maximal in L(Θ) and U ′ some neighbourhood with

U �ρ U ′. For every b ∈ Θ · U, by the definition of middle application, there is some

Ub with 〈Ub, b〉 ∈ Θ, such that U �ρ Ub, which by maximality means that U �ρ Ub; by

propagation, we get U ′ �ρ Ub, so b ∈ Θ · U ′, and we are done.

We close the section with a hint on how extremality evolves over types.

Lemma 3.12. Let Θ ∈ Finρ→σ and W ∈ ConΘ . We have W ∈ Conctr
Θ if one of the

following holds.

1. For all U ∈ Conctr
L(Θ), we have W · U ∈ Conctr

Θ·U .

2. For all U ∈ Conmax
L(Θ), we have W · U ∈ Conctr

Θ·U .

Proof. For the first criterion, let 〈Ui, bi〉 ∈ Θ be such that 〈Ui, bi〉 �ρ→σ W for i = 1, 2,

and assume that U1 �ρ U2. Consider a U ∈ Conctr
L(Θ) with U �ρ U1 ∪ U2; then bi ∈ Θ · U

for each i. From 〈Ui, bi〉 �ρ→σ W , by Lemma 3.10 (1), we get bi �σ W · U for both i, so

by the assumption, we get b1 �σ b2.

To get the second criterion, it suffices to show that

∀
U∈Conmax

L(Θ)

W · U ∈ Conctr
Θ·U → ∀

U∈Conctr
L(Θ)

W · U ∈ Conctr
Θ·U.

Assume that W is such that W · U ∈ Conctr
Θ·U , for all U ∈ Conmax

L(Θ), and let U ∈ Conctr
L(Θ).

Consider the maximal extension Û of U. On the one hand, we have Û ∈ Conmax
L(Θ), so

W · Û ∈ Conctr
Θ·Û by the assumption. On the other hand, we have Û ∈ Conctr

L(Θ) with

Û �ρ U, so Θ · Û = Θ · U and W · Û = W · U, by Lemma 3.11 (1). It follows that

W · U ∈ Conctr
Θ·U , so we can apply the previous criterion and we are done.

4. Totality of neighbourhoods

In this section, we take the first two steps of the strategy that we outlined in Section 1. A

total object of type ρ → σ is represented by a possibly infinite token set that (a) is an ideal,

that is, consistent and deductively closed, (b) admits all totals of type ρ as arguments – a
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property we think of as ‘omniception,’ for lack of a less pompous synonym for admission

(or acceptance) of all, that would be as grammatically smooth – and (c) responds to every

total argument with a total value at type σ. To bring the notion down to the finite level,

we dispose of half of the demand (a), namely, that the set of tokens be deductively closed,

and we reinterpret ‘admittance’ and ‘response’ in (b) and (c) in terms of consistency rather

than entailment. The first move, which is clearly dictated by the demand of finiteness, in

some sense causes the reaction of the second move: what we lose by denying deductive

closure, we have to regain with the wider and more tolerant scope of consistency.

4.1. Finite density

At type ρ, a side extension of a neighbourhood U will be any neighbourhood U ′ that

is consistent with U. We give a name to this rather mundane notion just to point to its

intended use: trivially, if U ′ is a side extension of U, then U ′ ∪ U is an extension of U,

and this is exactly how we will work towards finding total extensions of neighbourhoods.

Lemma 4.1. Let ρ and σ be types. For every W ∈ Conρ→σ and for every map-

ping V �→ V ′ of neighbourhoods V ∈ Conσ to side extensions thereof, the finite set⋃
U∈Conctr

L(W )
〈U, (W · U)′〉 is a side extension of W .

Proof. To show the consistency of the finite set, let 〈Ui, bi〉 be such that Ui ∈ Conctr
L(W )

and bi ∈ (W · Ui)
′, for i = 1, 2. If U1 �ρ U2, then W · U1 = W · U2 by Lemma 3.11 (1),

hence, (W · U1)
′ = (W · U2)

′, and b1 �σ b2.

To show the side extension, let 〈U, b〉 ∈ W and 〈U ′, b′〉 be such that U ′ ∈ Conctr
L(W ) and

b′ ∈ (W ·U)′. If U �ρ U ′, then by the definition of middle application, we have b ∈ W ·U.

But W · U �σ (W · U)′ by assumption, so b �σ b′.

As we mentioned in Section 1, a total token at a base type ι is a token p ∈ Tokι which

consists exclusively of proper constructors; write p ∈ Tokg
ι . We have Cp1 · · · pr ∈ Tokg

ι

if and only if C is a proper constructor of arity r and pi ∈ Tokg
ι for all i = 1, . . . , r. So,

SB∗0 �∈ Tokg
D but SB10 ∈ Tokg

D . Define total neighbourhoods inductively over types

U ∈ Cong
ι := ∃

p∈Tokg
ι

U �ι p,

W ∈ Cong
ρ→σ := ∀

P∈Cong
ρ

W · P ∈ Cong
σ.

Examples of total neighbourhoods are {B0∗, B∗1} and {B0S0} at type D, and the

neighbourhood {〈{0}〉, 0, 〈{S∗}, S0〉} at type N → N , which we saw in Section 1. A

type 2 example would be the neighbourhood

X = {〈{〈{tt}, 0〉}, 0〉, 〈{〈{tt}, S∗〉}, S0〉}

at type (B → N) → N: Let T be a total neighbourhood at type B → N; for the total

singleton {tt} of type B, we get T · {tt} �N Sm0 for some m � 0, so we either have

T · {tt} �N 0 or T · {tt} �N S∗, which by Lemma 3.7 (2) means either T �B→N 〈{tt}, 0〉
or T �B→N 〈{tt}, S∗〉; in the first case, we get X · T = {0} and in the second case,

X · T = {S0}, both of which are total neighbourhoods at type N , as we wanted.
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The arguments of a higher-type total neighbourhood form a finite set that can accept

(in the sense of middle application) every total neighbourhood of the source type, in a

way that ensures their safe (that is, consistency-respecting) allotment to an appropriate

value. Define weakly omniceptive finite sets explicitly by

Γ ∈ Finwo
ρ := ∀

P∈Cong
ρ

∃
UP ∈Conctr

Γ

P �ρ UP .

At a type ρ → σ, call Θ a (strongly) omniceptive finite set, and write Θ ∈ Fino
ρ→σ , if

Θ ∈ Finwo
ρ→σ ∧ ∀

U∈Conmax
L(Θ)

(U ∈ Cong
ρ ∧ Θ · U ∈ Fino

σ ∧ 〈U,Θ · U〉 ⊆ Θ),

which intuitively says that, beyond weak omniception, Θ must meet certain requirements

of finite totality, preservation of omniception and closure under middle application for

each of its left maximals. By convention, we set Fino
ι := Finwo

ι for arbitrary base types.

In the following, we always use the term ‘omniceptive’ (without a qualifier) to mean

‘strongly omniceptive’ (which for base types is the same as ‘weakly omniceptive’). A

further convention that we will often employ in subsequent arguments is to use lower

case ‘g,’ ‘wo,’ and ‘o’ as superscripts of terms: for example, we may write ‘Ug ’ for a

neighbourhood that is to belong to Cong and possibly relates to a previously discussed

U, or ‘Γo’ for a finite set that is to belong to Fino and possibly relates to a previously

introduced Γ .

Call a type ρ finitely dense if every neighbourhood U at ρ has a total side extension Ug ,

and finitely omniceptive if every finite set Γ has an omniceptive extension Γo. Moreover,

call it finitely total-transitive if every total neighbourhood U is transitive (in ρ). The latter

just means that U1 �ρ U �ρ U2 implies U1 �ρ U2 for all U1, U2 ∈ Conρ, and we write

U ∈ Conctr
ρ . Here is a lemma to set the intuition straight.

Lemma 4.2 (Compactness of transitivity). Let ρ be a type. A neighbourhood is transitive

in ρ if and only if it is transitive for every finite set of ρ.

Proof. For the less trivial direction, let U ∈ Conρ be such that U ∈ Conctr
ρ|Γ for every

Γ ∈ Finρ, and let U1, U2 ∈ Conρ be such that U1 �ρ U �ρ U2. Set Γ := U1 ∪ U ∪ U2;

then, we have U1 �ρ U2 by Γ -transitivity.

To start off the main argument, we need some elementary definitions and observations

concerning base types. The size ‖a‖ of a base-type token a ∈ Tokι counts the proper

constructors of the token: ‖∗‖ = 0 and ‖Ca1 · · · ar‖ = 1 + ‖a1‖ + · · · + ‖ar‖. It is

an easy induction to show that {a} �ι b implies ‖a‖ � ‖b‖ for all tokens a, b. The

supremum or eigentoken sup(U) of a base-type neighbourhood U ∈ Conι is defined by

sup(�ι) = ∗ι, sup({a}) = a and sup({a1, . . . , am}) = supt(· · · supt(a1, a2) · · · , am) for m > 1,

where supt(a, ∗) = a and supt(Ca1 · · · ar, Cb1 · · · br) = Csupt(a1, b1) · · · supt(ar, br) (we do

not need to define the auxiliary mapping supt on inconsistent pairs). Again, an easy

induction shows that U ∼ι {sup(U)} for all U ∈ Conι; in particular, we can represent

every total neighbourhood P ∈ Cong
ι by its total eigentoken sup(P ) ∈ Tokg

ι .

Proposition 4.3. Every base type is finitely total-transitive, finitely dense and finitely

omniceptive.
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Proof. Let ι be any base type with a distinguished nullary constructor 0. For the

transitivity of total neighbourhoods, let P ∈ Cong
ι and U1, U2 ∈ Conι be such that

Ui �ι P for each i. Then, P �ι Ui, for both i = 1, 2, since, as is easy to see, total tokens

are maximal at base types, so U1 �ι U2.

We turn to finite density by first considering tokens: the trivial token ∗ is consistent with

0, and if p1, . . . , pr are total tokens consistent with a1, . . . , ar, respectively, then Cp1 · · · pr is

a total token consistent with Ca1 · · · ar , for an r-ary constructor C . Finally, if U ∈ Conι,

and p is a total token consistent to sup(U), then the neighbourhood {p} is obviously a

total neighbourhood consistent with (above, even) U.

Before we turn to the finite omniception, we need some auxiliary facts. First, we claim

that

∀
a∈Tokι

∀
p∈Tokg

ι

(‖a‖ > ‖p‖ → a ��ι p). (3)

Indeed, let p be a total token and a an arbitrary token. In case, p consists of a single

nullary constructor, then ‖p‖ = 1 and there have to exist a constructor C with arity r > 0

and further tokens a1, . . . , ar such that a = Ca1 · · · ar (with ‖ai‖ > 0 for at least some i); we

have a ��ι p by the definition of consistency. In case, p = Cp1 · · · pr for some total tokens

p1, . . . , pr , then a will either start with a different (nonnullary) head constructor than C , in

which case we are done, or there must exist a1, . . . , ar such that a = Ca1 · · · ar; from ‖a‖ >

‖p‖ it follows that
∑

i ‖ai‖ >
∑

i ‖pi‖, so there must exist at least some i with ‖ai‖ > ‖pi‖;

by the induction hypothesis, we know that this means that ai ��ι pi, therefore, a ��ι p.

Now, for a fixed total token p ∈ Tokg
ι and a fixed natural number n, let Up,n stand for the

finite set {a ∈ Tokι | a �ι p ∧ ‖a‖ � n}; this is a neighbourhood thanks to the transitivity

of the total p. Note that for every p, we have Up,0 = {∗ι}, and also, due to (3), for all

n � ‖p‖, we have Up,n = Up,‖p‖. Now, either p consists of a single nullary constructor or

not; in case it does, then Up,1 = {∗ι, p}, while if p = Cp1 · · · pr for a constructor C with arity

r > 0 and total tokens p1, . . . , pr , then, we claim that the component neighbourhoods satisfy

r

∀
i=1

Up,n(i) = Upi,n−1. (4)

Indeed, fix an i. From left to right, assume that ai ∈ Up,n(i); this means that there exists

an a ∈ Up,n such that a(i) = ai; by the definition of Up,n, we know that a �ι p, which

implies that ai �ι pi; we also know that ‖a‖ � n, so ‖ai‖ � ‖a‖ − 1 � n − 1, therefore,

ai ∈ Upi,n−1. For the other way around, assume that ai ∈ Upi,n−1, that is, that ai �ι pi and

‖ai‖ � n − 1; consider the token a := C
−→∗ ai

−→∗ (which has ai as its ith component token

and stars everywhere else); it obviously satisfies a �ι p, and since ‖ai‖ � n − 1, it also

satisfies ‖a‖ � n, therefore, a ∈ Up,n; it follows that a(i) = ai ∈ Up,n(i).

Finally, we claim that the following holds for a fixed n:

∀
a∈Tokι

∀
p∈Tokg

ι

(‖a‖ = n � ‖p‖ ∧ a �ι U
p,n → Up,n �ι a). (5)

Indeed, let p be some total token and a an arbitrary one, such that ‖a‖ = n � ‖p‖ and

a �ι U
p,n. In case n = 0, we necessarily have a = ∗ι ∈ Up,0. In case n > 0, then for some

constructor C of the algebra ι with arity r there exist total tokens p1, . . . , pr such that

p = Cp1 · · · pr , and since C
−→∗ ∈ Up,n and a �ι U

p,n, there exist tokens a1, . . . , ar such that
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a = Ca1 · · · ar; for every i = 1, . . . , r, since a �ι U
p,n, we have ai �ι U

p,n(i), which by (4)

means that ai �ι U
pi,n−1(i), while from the assumption that ‖a‖ = n, we get ‖ai‖ � n − 1;

the induction hypothesis yields Upi,n−1 �ι ai for every i; so, we get

Up,n ∼ι CUp,n(1) · · ·Up,n(r)
(4)
= CUp1 ,n−1 · · ·Upr,n−1 �ι Ca1 · · · ar = a,

and we are done.

Now for the finite omniception. If Γ is trivial (that is, if it carries no proper

information), then set Γo := {∗}. If not, let m := max{‖sup(U)‖ | U ∈ ConΓ }, and

set Γo := {a ∈ Tokι | ‖a‖ � m}. Consider a total neighbourhood P and let p := sup(P ).

In case ‖p‖ � m, we have p ∈ Γo, so it suffices to set UP := {p}. In case ‖p‖ > m, we

set UP := Up,m; by the construction of Γo, we have Up,m ∈ ConΓo , and we also have

that Up,m is transitive in Γo: for any two tokens b1, b2 ∈ Γo with b1 �ι U
p,m �ι b2, since

‖bi‖ � m < ‖p‖ for both i, we get ∈ Up,m �ι bi from (5), so b1 �ι b2.

Proposition 4.4 (Finite total-transitivity). Let ρ and σ be finitely total-transitive types. If

ρ is finitely dense, then ρ → σ is finitely total-transitive.

Proof. Let T ∈ Cong
ρ→σ and W1,W2 ∈ Conρ→σ , with W1 �ρ→σ T �ρ→σ W2. Consider

pairs 〈Ui, bi〉 ∈ Wi, i = 1, 2, and assume that U1 �ρ U2. By the finite density at ρ, there

exists a P ∈ Cong
ρ, such that P �ρ U1 ∪U2. By the assumptions at ρ and Lemma 3.10 (1),

we get b1 �σ T · P �σ b2. But T · P is total, so the assumption at σ gives b1 �σ b2.

Proposition 4.5 (Finite density). Let ρ and σ be types. If ρ is finitely omniceptive and σ

finitely dense and finitely total-transitive, then ρ → σ is finitely dense.

Proof. Let W ∈ Conρ→σ be any neighbourhood. By finite omniception at ρ, we get a

Γ ∈ Fino
ρ with L(W ) ⊆ Γ . Consider the neighbourhood Wo :=

⋃
U∈ConΓ

〈U,W · U〉; by

Lemma 3.9, we have W ∼ρ→σ Wo. Now set

Wg :=
⋃

U∈Conctr
L(Wo )

〈U, (Wo · U)g〉,

with the help of density at σ; note that L(Wg) = L(Wo) = Γ . This is a side extension of

Wo (therefore of W as well) by Lemma 4.1.

To show that it is total, let P ∈ Cong
ρ. Since L(Wg) is omniceptive (in fact, that it is

weakly omniceptive is enough), there is some UP ∈ Conctr
Γ such that P �ρ UP . We have

〈UP , (Wo · UP )g〉 ⊆ Wg by construction, and Wg · P = (Wo · UP )g , since, by transitivity

of total neighbourhoods at σ, the value Wo · P is independent from the choice of UP .

Proposition 4.6 (Finite omniception). Let ρ and σ be finitely total-transitive types. If ρ is

finitely dense and σ finitely omniceptive, then ρ → σ is finitely omniceptive.

Proof. Let Θ ∈ Finρ→σ be any finite set. Extend it as follows:

Θo := Θ ∪
⋃

U∈Conmax
L(Θ)

〈Ug, (Θ · U)o〉,

with the use of finite density at ρ and finite omniception at σ.
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If we show that this is weakly omniceptive, then it will be omniceptive immediately by

construction (based on Lemma 3.5). Let T ∈ Cong
ρ→σ . For every U ∈ Conmax

L(Θ), we have

T · Ug ∈ Cong
σ , and since (Θ · U)o is omniceptive, there will be some VT ·Ug ∈ Conctr

(Θ·U)o ,

such that T · Ug �σ VT ·Ug

(
). Fix these side extensions and set

WT :=
⋃

U∈Conmax
L(Θo )

〈Ug, VT ·Ug 〉.

We have WT ⊆ Θo by construction. Moreover, we have T �ρ→σ WT : let 〈U, b〉 ∈ T and

〈U ′, b′〉 ∈ WT be such that U �ρ U ′; we have b ∈ T ·U ′ and b′ ∈ VT ·U ′
, so b �σ b′ by (
).

Since T is total, WT is a neighbourhood by transitivity of total neighbourhoods, which

we get for ρ → σ by Proposition 4.4. Finally, it is transitive in Θo by Lemma 3.12 (2),

since for every U ∈ Conmax
L(Θ), we have by construction WT · U = VT ·U , which is transitive

in Θ · U by omniception.

Theorem 4.7. Every type is finitely omniceptive, finitely total-transitive, and, in particular,

finitely dense.

Proof. We get this by mutual induction over types from Propositions 4.3–4.6.

4.2. Totality of transitive neighbourhoods

There is plenty of evidence to suggest that total neighbourhoods at ρ are to Conρ what

transitive neighbourhoods in Γ are to ConΓ . For one, Theorem 4.7 shows that total

neighbourhoods are transitive. Furthermore, an immediate corollary of total transitivity is

that consistency, restricted to the total neighbourhoods, becomes an equivalence relation,

that is,

∀
P1 ,P2 ,P3∈Cong

ρ

(
P1 �ρ P2 �ρ P3 → P1 �ρ P3

)
.

Here, are further examples of using total transitivity, which include some more evidence

to this effect.

Lemma 4.8. Let ρ and σ be types. Let Θ ∈ Finρ→σ , P , P ′ ∈ Cong
ρ, and U,U ′ ∈ Conρ.

1. For every UP ∈ ConL(Θ) with P �ρ UP , we have Θ · P ⊆ Θ · UP . Moreover, we have

Θ · P = Θ · UP whenever UP ∈ Conmax
L(Θ).

2. If P �ρ P ′, then Θ · P = Θ · P ′.

3. If U ∈ Cong
ρ and U ′ �ρ U, then U ′ ∈ Cong

ρ.

4. If T ∈ Cong
ρ→σ and U ∈ Conctr

L(T ), then T · U ∈ Cong
σ .

Proof. For 1, let b ∈ Θ · P . Then, by the definition of middle application, there is

some U with 〈U, b〉 ∈ Θ, such that U �ρ P . From U �ρ P �ρ UP , we get U �ρ UP by

Theorem 4.7, so the definition of middle application yields that b ∈ Θ ·UP . Moreover, if UP

is actually maximal in L(Θ), then, by Lemma 3.11 (3), we immediately get Θ ·UP ⊆ Θ ·P .

For 2, assume that P �ρ P ′ and let b ∈ Θ · P . By the definition of middle application,

there is some U with 〈U, b〉 ∈ Θ, such that U �ρ P . By Theorem 4.7 and the assumption,

we have U �ρ P ′, so b ∈ Θ · P ′.
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For 3. At a base type ι if U ∈ Cong
ι , then there exists a total token p such that U �ι p. The

transitivity of entailment yields what we need. At a higher type ρ → σ, let W ∈ Cong
ρ→σ

and W ′ �ρ→σ W . Let further P ∈ Cong
ρ. By Theorem 4.7, P is transitive for L(W ), so by

the left monotonicity of middle application on transitive arguments (Lemma 3.10 (3)), we

have W ′ · P �σ W · P , and by the totality of W, we get W · P ∈ Cong
σ , so the induction

hypothesis at σ finishes the job.

For 4. By Theorem 4.7 there exists some PU ∈ Cong
ρ with PU �ρ U. By 1, we have

T · PU ⊆ T · U, where T · U is consistent by Lemma 3.10 (1). It follows by 3 that

T · U ∈ Cong
σ .

Note in particular that Lemma 4.8 (3) is analogous to Lemma 3.3 (both of them actually

anticipate Lemma 5.2).

We now show that the correspondence between transitivity and finite totality is complete.

Theorem 4.9 (Explicit finite totality). At every type, a neighbourhood is total if and only

if it is transitive.

Proof by induction over types. The rightward direction we have of course from The-

orem 4.7. For the other direction, we have to show that, at each type, every transitive

neighbourhood must be total.

At a base type ι, assume that U ∈ Conctr
ι . Obviously, we have U �∼ι {∗}, so there will be

a constructor C and tokens a1, . . . , ar ∈ Tokι such that U ∼ι {Ca1 · · · ar} (its supremum).

By Lemma 3.4 (2), since U is transitive, for any two tokens b1, b2 ∈ Tokι, we will have

b1 �ι U �ι b2 imply b1 �ι b2. Then, for i = 1, . . . , r, we have

b1i �ι ai �ι b2i ⇒ Ca1 · · · b1i · · · ar �ι U �ι Ca1 · · · b2i · · · ar
ctr⇒ Ca1 · · · b1i · · · ar �ι Ca1 · · · b2i · · · ar
⇒ b1i �ι b2i,

for any b1i, b2i ∈ Tokι, which by induction hypothesis yields ai ∈ Tokg
ι . It follows that

Ca1 · · · ar itself is a total token, so U is a total neighbourhood.

At type ρ → σ, assume that W ∈ Conctr
ρ→σ , and let P ∈ Cong

ρ. For any b1, b2 ∈ Tokσ, we

have

b1 �σ W · P �σ b2 ⇔ 〈P , b1〉 �ρ→σ W �ρ→σ 〈P , b2〉
ctr⇒ 〈P , b1〉 �ρ→σ 〈P , b2〉
⇒ b1 �σ b2,

which means that W · P is transitive in σ, so by the induction hypothesis at σ, we get

W · P ∈ Cong
σ , and by the definition of finite totality, we have W ∈ Cong

ρ→σ , as we

wanted.

The theorem indicates that our notion of finite totality is a robust one. In the next

section, we will see how we can connect it to the traditional notion of totality for ideals.

Interestingly, we will see that its equivalence to transitivity is peculiar to the finitary level:

in Proposition 5.12, the respective correspondence for ideals is shown to be tilted.
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5. Elevating totality to ideals

The last step in our strategy is to find a canonical extension of a total neighbourhood to a

total ideal. The natural candidate would be the deductive closure of a neighbourhood, but

again, closure under entailment is too strict for our purposes, since it presents recurring

technical difficulties stemming from the fact that the application of ideals is an ‘upper’

one, while we have defined finite totality in terms of middle application. Instead, based

on the transitivity of total neighbourhoods, using closure under consistency proves to be a

more natural choice.

5.1. Density

The notion of continuity that we employ in our setting implies that if we are given an

estimate V on a value f(x), then we can find an adequate estimate UV on the argument

x of f; let us highlight this elementary fact since we will need it later on.

Lemma 5.1 (Finite support). Let f : ρ → σ and x : ρ. For every V ∈ Conσ with V ⊆ f(x),

there exists a UV ∈ Conρ such that UV ⊆ x and 〈UV , V 〉 ⊆ f.

Proof. From (FS) it follows directly that if b ∈ f(x), then there exists a Ub ⊆ x such

that 〈Ub, b〉 ∈ f due to the deductive closure of f. Assuming then that V is such that

V ⊆ f(x), for UV :=
⋃

b∈V Ub, we indeed have UV ⊆ x, and also 〈UV , V 〉 ⊆ f by the

deductive closure of f.

An ideal x : ρ is a total ideal, for which we write Gρ(x) or x ∈ Gρ, if it conforms to the

following inductive clauses:

Gι(x) := ∃
P∈Cong

ι

P ⊆ x ,

Gρ→σ(f) := ∀
x:ρ

(Gρ(x) → Gσ(fx)) .

Note that the base-type definition is equivalent to demanding the existence of a p ∈ Tokg
ι

such that p ∈ x. Totality of ideals is upwards closed.

Lemma 5.2 (Extension lemma). At type ρ, if x, y : ρ are such that Gρ(x) and x ⊆ y, then

Gρ(y).

Proof. At a base type ι, let Gι(x) and y : ι be two ideals with x ⊆ y. Then, there is

a total token p ∈ Tokg
ι , such that p ∈ x, so also p ∈ y. At a higher type ρ → σ, let

Gρ→σ(f), g : ρ → σ, and assume that f ⊆ g. We want to show that g is also total, so

consider an arbitrary x with Gρ(x). By the totality of f, we have that Gσ(fx), and since

it is straightforward to see that fx ⊆ gx, we get Gσ(gx) by the induction hypothesis

at σ.

The main argument starts with the following obvious observation.

Lemma 5.3. At every type, if a neighbourhood is transitive, then its consistency closure

is an ideal (and the converse holds as well).
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Proof. Let ρ be a type and U ∈ Conctr
ρ . By transitivity, every two tokens in the

consistency closure of U will be consistent, and the consistency closure is already

deductively closed: U ′ ⊆ Ũ means U �ρ U ′ by definition, so if U ′ �ρ a, then propagation

yields U �ρ a, hence, a ∈ Ũ as well. The converse is also direct to show.

By Theorem 4.9, an immediate consequence of this lemma is that the consistency closure

of a total neighbourhood is an ideal, so it suffices to show that, for a given P ∈ Cong
ρ, we

must have Gρ(P̃ ). Consider the following statements for an arbitrary type ρ.

∀
Γ∈Fino

ρ

∀
x∈Gρ

∃
Ux∈Conctr

Γ

Ux �ρ x, (O)

∀
U,U ′∈Conρ

∀
x∈Gρ

(U ′ ��ρ U �ρ x → ∃
U0∈Conρ

(U �ρ U0 ⊆ x ∧ U ′ ��ρ U0)), (W)

∀
P∈Cong

ρ

P̃ ∈ Gρ, (C)

∀
U∈Conρ

∃
x∈Gρ

U ⊆ x. (D)

The first one is an expression of infinitary omniception, as it states that an omniceptive

finite set accepts each total ideal by being consistent with it with one of its transitive

neighbourhoods. The second expresses inconsistency preserving witnessing of the consist-

ency between a total ideal and a neighbourhood; the claimed witness is stronger than the

neighbourhood itself, since it lies below both the total ideal and the neighbourhood, and

in a sense to be made clearer after Lemma 5.8 below, it provides the missing feature from

omniception that we need to achieve totality on the level of ideals. The third one is the

crux of our strategy, as it says that the consistency closure of a total neighbourhood is a

total ideal, and the fourth one, of course, is density.

Proposition 5.4 (Conditional density). Let ρ be a type. If (C) holds in ρ, then also (D)

holds in ρ.

Proof. Let U be any neighbourhood at type ρ. By Theorem 4.7, there exists a total

neighbourhood PU such that U �ρ PU . Then, U ⊆ P̃ U by definition, whereas P̃ U ∈ Gρ

by (C). We set x := P̃ U and we are done.

Lemma 5.5. Every base type satisfies (O), (W), (C) and (D).

Proof. Let ι be some base type. To show (O), consider an omniceptive finite set Γ and

a total ideal x. By the totality of x, there is some P ∈ Cong
ι such that P ⊆ x, and by the

omniception of Γ there is some UP ∈ Conctr
Γ such that UP �ι P . Set Ux := UP . Then,

for every U ⊆ x, we have Ux �ι P �ι U, which implies Ux �ι U by the total transitivity

of ι (Proposition 4.3), so Ux �ι x.‖

‖ Notice that, here, we only needed weak omniception from Γ . Furthermore, observe that in the flat setting

this argument would fail due to the requirement of finiteness of Γ .
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B. A. Karádais 330

To show (W), let U and U ′ be neighbourhoods and x be a total ideal, such that

U ′ ��ι U �ι x. By the totality of x, there exists a total neighbourhood P such that P ⊆ x.

We have of course P �ι U, which, since total tokens are maximal at base types, implies

that P �ι U. This in turn implies that U ⊆ x by the deductive closure of x, so we may set

U0 := U, which trivially meets the stated requirements.

To show (C), let P be some total neighbourhood. Then, there is some total token

p ∈ Tokι with P � p; a fortiori we have P �ι p, so p ∈ P̃ by the definition of consistency

closure. Since by Lemma 5.3, the set P̃ is an ideal, we conclude that it is in fact total.

Finally, that every base type is dense, we get from Proposition 5.4, since (C) already

holds.

Proposition 5.6 (Omniception). Let ρ and σ be types. If (C) holds in ρ and (O) holds in

σ, then (O) holds in ρ → σ.

Proof. Let Θ ∈ Fino
ρ→σ and f ∈ Gρ→σ . By the finite omniception of Θ, we know that

each U ∈ Conmax
L(Θ) is a total neighbourhood, so by (C) at ρ, we have Ũ ∈ Gρ. By the

totality of f, we have that f(Ũ) ∈ Gσ , so there will be some Vf(˜U) ∈ Conctr
Θ·U such that

Vf(˜U) �σ f(Ũ), because Θ ·U is omniceptive by the finite omniception of Θ and (O) at σ.

Based on these, we may set

Wf :=
⋃

U∈Conmax
L(Θ)

〈U,V f(˜U)〉.

We have Wf ∈ Conctr
Θ by Lemma 3.12 (2). Furthermore, let 〈U0, b0〉 ∈ W and 〈U, b〉 ∈ f

be such that U �ρ U0; then U ⊆ Ũ0 (remember that U0 is a total neighbourhood) and

consequently, U ⊆ Ũ0 by the propagation of consistency; by the monotonicity of f, we

get f(U) ⊆ f(Ũ0), so since b ∈ f(U) it must also be b ∈ f(Ũ0); but f(Ũ0) �σ V f(˜U0) and

b0 ∈ Vf(˜U0), so b �σ b0, as we wanted.

Proposition 5.7 (Witnessing). Let ρ and σ be types. If (D) holds in ρ and (W) holds in σ,

then (W) holds in ρ → σ.

Proof. Let f ∈ Gρ→σ and W,W ′ ∈ Conρ→σ be such that W ′ ��ρ→σ W �ρ→σ f. For

i = 1, . . . , m, let U ′
i ∈ ConL(W ′) and Ui ∈ ConL(W ) run through all witnessing pairs of

inconsistency between W ′ and W , that is, cover all the cases where

U ′
i �ρ Ui ∧ W ′ · U ′

i ��σ W · Ui.

By (D) at ρ, for each i there exists an xi ∈ Gρ such that U ′
i ∪Ui ⊆ xi. By the consistency of

(upper) application, for every such xi, we have W ·Ui �σ f(xi), and by (W) at σ there exists

some Vi0 ∈ Conσ such that W ·Ui �σ Vi0 ⊆ f(xi) and W ′ ·U ′
i ��σ Vi0. By Lemma 5.1, there

exists some UVi0
⊆ xi for every i such that 〈UVi0

, Vi0〉 ⊆ f. Letting Ui0 := UVi0
∪ U ′

i ∪ Ui,

by the deductive closure of f, it follows that 〈Ui0, Vi0〉 ⊆ f. Since by the hypotheses at σ,

for every i, we have

〈Ui,W · Ui〉 �ρ→σ 〈Ui0, Vi0〉 ⊆ f ∧ 〈U ′
i ,W

′ · U ′
i〉 ��ρ→σ 〈Ui0, Vi0〉,
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it follows that

W �ρ→σ

m⋃
i=1

〈Ui0, Vi0〉 ⊆ f ∧ W ′ ��ρ→σ

m⋃
i=1

〈Ui0, Vi0〉,

so, we may set W0 :=
⋃m

i=1〈Ui0, Vi0〉 and we are done.

We may generalise the property (W) to account for inconsistency preserving witnesses

of the consistencies between a total ideal and neighbourhoods in a finite set.

Lemma 5.8. At a type ρ, the statement (W) is equivalent to the following: Let Γ ∈ Finρ

and x ∈ Gρ; for all U ∈ ConΓ with U �ρ x, there exists a neighbourhood NU,Γ ,x ∈ Conρ

such that

U �ρ NU,Γ ,x ⊆ x ∧ ∀
U ′∈ConΓ

(U ′ ��ρ U → U ′ ��ρ NU,Γ ,x). (W’)

Proof. Let Γ be a finite set, U some neighbourhood of Γ and x a total ideal. Assume

that (W) holds, and furthermore that U1, . . . , Um ∈ ConΓ are all neighbourhoods in Γ such

that Ui ��ρ U for i = 1, . . . , m. Then, for each such i there is a neighbourhood U0i ∈ Conρ

such that Ui ��ρ U0i and U �ρ U0i ⊆ x. Setting NU,Γ ,x :=
⋃m

i=1 U0i, we are done. In the

other way around, let U and U ′ be two neighbourhoods and x a total ideal, such that

U ′ ��ρ U �ρ x, and assume that (W’) holds for all finite sets Γ , neighbourhoods U ⊆ Γ

and total ideals x. Setting U0 := NU,U∪U ′ ,x, we are done.

So, if Γ accepts a total ideal x at all, even if with a nontransitive neighbourhood U, then

it could be safely side extended to include a common part NU,Γ ,x of U and x; enriched in

this way Γ would now accept x in the strong sense of inclusion. This is exactly what we

need to exploit by taking the consistency closure of a higher-type total neighbourhood,

provided its list of arguments is omniceptive. But let us get to the details without further

ado.

Proposition 5.9 (Closure). Let ρ and σ be types. If (O) and (W) hold in ρ and (C) holds

in σ, then (C) holds in ρ → σ.

Proof. Let T ∈ Cong
ρ→σ and x ∈ Gρ. We show that T̃ (x) ∈ Gσ . Based on Lemma 3.9,

we may assume that L(T ) ∈ Fino
ρ without harming generality. By (O) at ρ, there exists a

Ux ∈ Conctr
L(T ) such that Ux �ρ x. By Lemma 4.8 (4), we have T · Ux ∈ Cong

σ , and by (C)

at σ, we have ˜T · Ux ∈ Gσ . So, in order to show that T̃ (x) ∈ Gσ , it suffices to show that˜T · Ux ⊆ T̃ (x) and invoke Lemma 5.2.

Let then b ∈ Tokσ be such that b ∈ ˜T · Ux. This means that b �σ T ·Ux. By Lemma 3.7

(2), we have 〈Ux, b〉 �ρ→σ T . By (W) at ρ and Lemma 5.8, there exists a neighbourhood

Ux
0 := NUx,L(T ),x ∈ Conρ such that

Ux �ρ Ux
0 ⊆ x ∧ ∀

U ′∈ConL(T )

(U ′ ��ρ Ux → U ′ ��ρ Ux
0 );

we have 〈Ux
0 , b〉 �ρ→σ T , because for every 〈U ′, b′〉 ∈ T with U ′ �ρ Ux

0 it has to be

U ′ �ρ Ux from the above, therefore, b �σ b′ follows by 〈Ux, b〉 �ρ→σ T . We have found

a Ub := Ux
0 ∈ Conρ such that 〈Ub, b〉 �ρ→σ T and Ub ⊆ x; but this means by definition

that b ∈ T̃ (x), and we are done.
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Theorem 5.10 (Density). Every type satisfies (O), (W) and (C), and in particular, every

type is dense.

Proof. It follows by a mutual induction over types by Lemma 5.5 and Propositions 5.4,

5.6, 5.7 and 5.9.

As a closing remark, we should note that the witness that we provide is actually the

maximal total extension of a given neighbourhood, in the sense that if, for a type ρ,

U ∈ Conρ is some neighbourhood, Ug ∈ Cong
ρ is the witness provided by Theorem 4.7,

and x ∈ Gρ is such that U ⊆ x, then x ⊆ Ũg .

5.2. Nontotality of transitive ideals

In the same way as we did with finite totality and transitivity in Theorem 4.9, we would

like to know if we can connect totality and transitivity on the level of ideals, and possibly

obtain an explicit characterisation of totality in terms of consistency. We show that this

is not possible.

In Berger (1999, 2002), an element x is defined to be almost maximal when y1 ⊇ x ⊆ y2

implies y1 � y2 for all y1 and y2. At the same time, we call x transitive if y1 � x � y2

implies y1 � y2 for all y1, y2. We also extend the bar notation for the deductive closure to

ideals, in particular, we write x ∪ y to mean the set {a | ∃U⊆x∪y U � a}. We immediately

see the following.

Lemma 5.11. At every type, an ideal is almost maximal if and only if it is transitive.

Proof. That transitivity implies almost maximality is clear. To see the converse, let x be

almost maximal and y1 � x � y2. Then, x ⊆ yi ∪ x for each i and we get y1 ∪ x � y2 ∪ x

by almost maximality, which yields y1 � y2.

It is well known that in hierarchies over flat base types there exist functionals that

are maximal – and therefore, by the above lemma, transitive – but not total, typical

examples being various second-order minimization operators (Stoltenberg-Hansen et al.

1994, Example 8.3.2, Exercise 8.5.14). In the nonflat setting, we have counterexamples

already at inductive base types, as we will see immediately. For the following, we express

the transitivity of x through tokens, similarly to Lemma 3.4.

Proposition 5.12 (Total-transitivity). At any type, total ideals are transitive. Conversely,

there exist types with transitive ideals that are not total.

Proof. At a base type ι, let a1, a2 be tokens and x a total ideal, such that a1 �ι x �ι a2.

There exists a total neighbourhood P with P ⊆ x, so the assumption yields a1 �ι P �ι a2,

which implies a1 �ι a2 by the finite total transitivity of ι (Proposition 4.3).

At a higher type ρ → σ, let 〈U1, b1〉, 〈U2, b2〉 be tokens and f be a total ideal, such that

〈U1, b1〉 �ρ→σ f �ρ→σ 〈U2, b2〉. Assume furthermore that U1 �ρ U2. By Theorem 5.10,

there exists a total ideal x : ρ such that U1 ∪ U2 ⊆ x. Since f is itself total, the ideal

f(x) : σ must also be total, and by the induction hypothesis at σ it must also be transitive.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000026
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 25 Sep 2019 at 07:02:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000026
https://www.cambridge.org/core


Nonflatness and totality 333

Now, applying all terms of the assumption to x, we obtain b1 �σ f(x) �σ b2, which then

yields b1 �σ b2.

For the converse, consider the ideal ∞ = {Sm∗ | m � 0} of type N .

5.3. Noncontinuity of totalisation

The witness for density that we have provided in Section 5.1 is a mapping of the sort

tot : Conρ → ρ.†† It is easy to see that this is not a ‘continuous’ mapping – that is, it

does not extend to an ideal of type ρ → ρ – since it can not be expected to preserve

consistency: consider the neighbourhoods {S∗} and {SS∗} at type N; these are consistent

with each other, but

tot({S∗}) � S0 ��N SS0 ∈ tot({SS∗}) .
This counterexample is general enough to convince us that this shortcoming is not

particular to our witness.

Lemma 5.13. There is no consistency-preserving mapping t : ConN → N such that

U ⊆ t(U) and t(U) ∈ GN for all U ∈ ConN .

Proof. If such a mapping existed, we would have t(U1) �N t(U2) for any two

neighbourhoods U1, U2 ⊆ ∞. Fixing such a U1 with t(U1) = {Sn0} for some n and

setting U2 := {Sn+1∗}, we get t(U1) ��N t(U1), a contradiction.

5.4. Separation

One of Berger’s key insights in Berger (1990), which permeates all subsequent approaches

that our work is based upon (including our own) was that the notion of totality can

be clarified if density is viewed together with an accompanying notion of ‘separation’:

intuitively, a type ρ is considered to feature the separation property, if any two open sets

of conflicting information can be told apart by a total ‘predicate’ of type ρ → B. His

argument proceeded by mutual induction for both properties of density and separation

over all finite types. What we did instead in our mutual inductive arguments above was

in effect to replace the notion of ‘separation of neighbourhoods by infinite total ideals’ by

notions of ‘acceptance of total ideals by finite sets.’ In our exposition, separation follows

as a simple corollary of density.

Following Schwichtenberg et al. (2012), and assuming the presence of the booleans in

the type system, call a type ρ separating if

∀
U,U ′∈Conρ

(U ��ρ U ′ → ∃
f∈Gρ→B

〈U, tt〉 ∈ f � 〈U ′, ff〉),

and finitely separating if

∀
U,U ′∈Conρ

(U ��ρ U ′ → ∃
T∈Con

g

ρ→B

〈U, tt〉 �ρ→B T �ρ→B 〈U ′, ff〉).

†† Such mixed typings of terms appear often and naturally in considerations within information systems, and

should be accounted for in a theory of partial computable functionals together with their approximations as

in Huber et al. (2010).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000026
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 25 Sep 2019 at 07:02:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000026
https://www.cambridge.org/core


B. A. Karádais 334

Proposition 5.14 (Separation). Every type is finitely separating, and consequently

separating.

Proof. If U and U ′ are inconsistent a ρ, then the finite set {〈U, tt〉, 〈U ′, ff〉} is a

neighbourhood at ρ → B, and by Theorem 4.7, there will exist some T ∈ Cong
ρ→B which

side extends it. Consequently, by Theorem 5.10, the total ideal T̃ will extend it.

6. Notes

We gave a new, bottom-up proof of the Kreisel density theorem for finite types interpreted

over nonflat inductive base types given as algebras by constructors. We introduced a notion

of totality for neighbourhoods and proved a finite density theorem, which states that, given

a neighbourhood, one may first totalise it in an explicitly finitary way to obtain a total

neighbourhood. Kreisel density is obtained by extending this total neighbourhood to a

total ideal by means of consistency; the resulting ideal, though generated by a compact

element, is the maximal totalisation of the given neighbourhood. Here, we gather notes

on the above, on related literature, and on future work.

The density theorem in the literature. As already pointed out Section 1, the density problem

was addressed for the first time by Kreisel (1959) and also Kleene (1959). In his Ph.D.

thesis (Berger 1990), he recast and solved the density problem within domain theory,

generalising results of Ershov (1975b, 1977) and paralleling work of Normann (1989)

– see Berger (1993) and Stoltenberg-Hansen et al. (1994) for an account in English. A

proof which does not thematise separation is given by Normann (1999), while a modern

approach from a viewpoint of an all-encompassing theory of higher-type computability

can be found in the recent volume by Longley and Normann (2015). The density

theorem is a fundamental result with several deep and far-reaching applications, like the

choice theorem (Kreisel 1959; Berger 1993; Schwichtenberg 1996), Kreisel’s representation

theorem (Kreisel 1959; Normann 1981, 1997), a generalised Kreisel–Lacombe–Shoenfield

theorem (Berger 1993), Normann’s theorem (Normann 2000a,b; Plotkin 1999), and

Escardó’s theory of exhaustive search (Escardó 2007, 2008), as well as extensions and

generalisations, for example, to dependent and universe domains (Berger 1999b), to

Scott’s equilogical spaces (Bauer and Birkedal 2000), or even to an account of totality

independently of density (Normann 1996) – see also, Berger (1999, 2002), Normann (1999,

2008). It would be natural to seek among these studies for ones that would benefit from

the possibility of explicitly finitary totalisation. Existence of such cases would further

justify the extension of the results presented here to richer type systems, starting with the

one adopted in Schwichtenberg et al. (2012), and possibly moving on to the type systems

covered in Berger (1999b).

Related work. The problem of finding a proof of density theorem ‘by compacts’ occurred

to the author back in the early 2011, and, since then, tackling it has primarily provided an

incentive to develop the theory of nonflat information systems for semantics (see, Karádais

2018, for examples of collateral results). A partial result in the direction of finite witnesses
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for density was presented in Karádais (2013), where, in contrast to the present approach,

it was shown that one may first prove a version of finite separation at every type and

then use this as a lemma to prove density (a version of our Proposition 5.7 also appears

there); that approach provided a satisfactory finitary explanation of separation but not of

totalisation. Meanwhile, an alternative bottom-up approach to the density theorem, which

grew independently but turned out to be similar in spirit to ours, was carried out by

Rinaldi (2014). Rinaldi offers a nonflat semantics that is topological rather than domain-

theoretic: he uses certain formal topologies (Sambin 1987), for which he proves that

they are equivalent to unary information systems; these are information systems where in

addition neighbourhoods always have eigentokens, that is, for every U ∈ Con, there exists

some a ∈ Tok such that U ∼ {a}. In our setting this is true of base types, but not of higher

types. To adapt Rinaldi’s semantics in a way that clearly matches broader categories of

information systems than just the unary ones, and look at a formal-topological proof of

density by compacts anew, would not only be instructive, but it could also provide a more

succinct and elegant proof.

Towards a common study of totality and cototality. Recently, ‘cototal ideals,’ that is, total

ideals together with infinities like ∞ at type N , have been used to model stream-like

objects at base types arising from initial algebras, offering an alternative to versions of

semantics simultaneously based on initial algebras and final coalgebras (Rutten 2000;

Hancock et al. 2009; Ghani et al. 2009); for this line of work, rooted in Berger (2009,

2011) and Berger and Seisenberger (2012), see Berger et al. (2011, 2016), Schwichtenberg

et al. (2012), Miyamoto et al. (2013) and Miyamoto and Schwichtenberg (2015). In view of

the mismatch between transitivity and totality in a nonflat setting, which we described in

Section 5.2, it looks like a refinement is possible, where totality should feature an increased

degree of finiteness and should be studied hand in hand with an appropriate notion of

cototality: beside more or less obvious differences of the two at base types (based on the

proof of Lemma 5.13, for example, one could expect continuous ‘cototalisations’ to exist),

their interplay at higher types remains terra incognita at the time of this writing.

I thank Matthias Hofer for the feedback, Davide Rinaldi for the stimulating exchange

of information, Parménides Garcı́a Cornejo and Kenji Miyamoto for hearing me out,

Apostolos Damialis for his advice on the notation and Dirk-André Deckert for all the

backup. Special thanks to the referees for their substantial feedback: they shook me out

of some misconceptions, posed insightful questions and helped make the text a little more

readable.
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