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1. INTRODUCTION

1 Introduction

Nowadays, many people unwittingly take advantage of the advances in network
analysis in their daily lives. Many new technologies depend on it and companies use
it to make purchase recommendations based on previous purchases and offer more
relevant products to their customers. There are many other systems in our everyday
lives that can be adequately represented as networks, such as social networks, the
Internet or citation networks.

What each of these networks have in common is that they consists of a number
of nodes or vertices, that are connected by edges. Think of the internet and data
connections between computers or routers, or people in a social network and their
relationships.

An interesting characteristic that some networks feature is the natural division of
nodes into groups, clusters or communities that have different connection behavior
within groups than between groups. To come back to our example the communities
could be different groups of friends. One common way to describe such groups is
the strong definition of community, which states that the density, i.e the number
of the edges between nodes within a community is higher than between different
communities (see Radicchi et al., 2004).

Although most algorithms for detecting community structures are based on this
assumption, I will not limit this thesis to it and also allow groups where the between
connectivity exceeds the within connectivity.

One example of this property would be if clusters are defined by gender and edges
represent romantic relationships. Which means even-though all males make up one
community they have less romantic relationships between each other than to the
community of all females.

Finding communities in a network is an important task in network analysis because
they can differ strongly in their characteristics and therefore a consideration of the
whole system could lead to wrong conclusions. Often statements can only be made
about specific subgroups.

However, if you find yourself in the situation where a clustering of nodes in a network
needs to be done, it is crucial to know the performance of different community
detection algorithms depending on your network structure. In order to compare
different algorithms with each other, you have to test them on a network whose
structures are already known. On the basis of this ground truth one can then make
statements about the abilities of the models in finding the given clusters.

This thesis will present a model for the generation of networks with community
structure, the so-called stochastic block model (SBM). We will then compare dif-
ferent algorithms in terms of their detection accuracy and computation time on
networks simulated with this approach.
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2. PREREQUISITES & DEFINITIONS

2 Prerequisites & Definitions

This paragraph explains some basic principles that contribute to the understanding
of the simulation study and the workings of the algorithms.

2.1 Stochastic block model

Network structures are usually described via graphs. A graph (G) is a set of nodes,
also called vertices (V ), which are connected by edges (E). Throughout this thesis
an undirected and unweighted graph G = (V,E) consisting of n = |V | nodes and
m = |E| edges is considered. This means that the edges have no direction, i.e. no
fixed start and end point and each existing edge has the same weight of 1. A graph
can be represented by an adjacency matrix A: Aij = 1 if there exists an edge from
vertex i to j and Aij = 0 if not. For an undirected graph the adjacency matrix
is symmetric (Aij = Aji). Some algorithms can be extended to weighted graphs,
meaning Aij ∈ R instead of Aij ∈ {0, 1}. However, only the base case is considered,
where each edge is equally weighted. The degree d(i) =

∑
j Aij of vertex i is the

number of directly connected nodes (its neighbours) and can be calculated as the
sum of all edges that start from i.

The stochastic block model is a generative model for random graphs which usually
produces networks containing community structure. This means that each node has
a fixed community membership, which determines with which probability an edge
exists to other nodes. The model is defined by the number of vertices n, the number
of communities C, a probability vector α = (α1, . . . , αC) specifying the distribution
of nodes on the C communities and a symmetric matrix W ∈ RCxC with entries
in [0, 1] specifying the connectivity probabilities. An example how the adjacency
matrix of a SBM(n, α,W ) with

n = 300, α = (
1

3
,
1

3
,
1

3
), W =

0.12 0.01 0.01
0.01 0.12 0.01
0.01 0.01 0.12


can look like can be found in figure (1).

A graph G with community labels X is drawn under SBM(n, α,W ) if X is an n-
dimensional vector with i.i.d. components distributed under α and G is an graph
with n vertices, where vertices i and j are connected with probability WXi,Xj

in-
dependently of other pairs of vertices. The community sets, also referred as parti-
tioning, are defined by Kv(X) := {i ∈ n : Xi = v}, for v = 1, . . . , C (see Abbe,
2017).

The SBM under which the networks are drawn will be symmetric, which means α
is uniform and W takes the same value on the diagonal and the same value outside
the diagonal.
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2. PREREQUISITES & DEFINITIONS

Adjacency matrix of 300 vertices and three communities

Figure 1: A heat-map where each black pixel represents Aij = 1 in the adjacency
matrix of a SBM with a probability of an edge within or between the groups of 12%
or 1%, respectively. The term “Block Model” comes from the visual representation
of an adjacency matrix when nodes are grouped by class membership and dense
regions form blocks.

2.2 Modularity - a measure of community structure

Modularity is an objective function often used in community detection algorithms
to determine how strong the division of vertices into groups or communities is for a
given community assignment.

Modularity depends on following terms: eij denotes the fraction of edges connecting
a node in community i to a node in community j, therefore eii denotes the fraction
of edges within community i. If the fraction of all edges having at least one node
in community i is denoted by ai =

∑
j eij, then the expected value for eii would be

aiai = a2i if edges were distributed randomly and independently of class membership.
The modularity Q of a partitioning P with communities 1 to C is given by the sum
of all communities (C) of the observed edge fraction (eii) minus the expected edge
fraction at random distribution of the edges (a2i ).

Q(P ) =
C∑
i=1

(eii − a2i ) (1)

The value of modularity Q lies in the range [-1, 1] and is positive when the observed
number of edges within the communities is higher than the expected number under
random connections. In this case you can reasonably infer the existence of a latent
cluster structure, as stated by Li and Schuurmans (2011) and Newman (2004).
Therefore many algorithms try to maximize the modularity for a given network
to uncover the underlying cluster structure. Modularity is used by the fast and
greedy, the walktrap, the leading eigenvector and the louvain algorithm. All other
algorithms considered rely on different objective functions.
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3. COMMUNITY DETECTION ALGORITHMS

2.3 NMI - an accuracy measure for cluster-solutions

For each network drawn under SBM the real partitioning is compared to the par-
titioning results of the algorithms. The more the partitionings match, the better
the algorithms perform and the better they find the true underlying community
structure. To obtain an objective measure of the accuracy, the normalized mutual
information NMI, following the notation in Yang et al. (2016), is used. Where
P is the true partitioning with C classes as specified by the SBM and P̃ is the
partitioning with C̃ clusters detected by the algorithm. First we need to define a
confusion matrix N where element Nij is the number of nodes which are in the true
community i and in the predicted community j. Accordingly, the rows correspond
to the “real” communities and the columns to the “found” communities. The sum of
row i is denoted by Ni. and analogously N.j is the sum of the column j.

NMI(P, P̃ ) =
I(P, P̃ )

1
2

[
H(P ) +H(P̃ )

]

=
−
∑C

i=1

∑C̃
j=1Nij log(

NijN

Ni.N.j
)

1
2

[∑C
i=1Ni. log(

Ni.

N
) +

∑C̃
j=1N.j log(

N.j

N
)
] (2)

The mutual information I(P, P̃ ) measures the amount of information by which the
knowledge of the true classes increases when cluster membership is known. I(P, P̃ )
reaches its minimum of 0 if the clustering is random with respect to class membership
and it reaches its maximum if the clustering perfectly recreates the true classes -
but also if those clusters are further subdivided into smaller clusters (see Manning
et al., 2008). Because a partitioning with C = N has maximum mutual information,
but also maximum entropy H(P̃ ) = logN , the normalization by the denominator
1
2

[
H(P ) +H(P̃ )

]
ensures a low value of NMI(P, P̃ ) for partitionings where each

node forms a single cluster. The entropy H is a measure of uncertainty of a discrete
distribution P and can be calculated as

H(P ) = −
∑
x∈X

P(x) logP(x) (3)

where X is the set of possible values for the distribution. Additionally, the nor-
malization allows comparison of partitionings if the number of found clusters C̃ is
different from the true number of clusters C and it ensures NMI ∈ [0, 1].

3 Community Detection Algorithms

Because there are many different ways for detecting communities in networks several
approaches are introduced. All algorithms, but bm_bernoulli from blockmodels
are implemented in the igraph library in R (see Csardi and Nepusz, 2006).
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3. COMMUNITY DETECTION ALGORITHMS

Clustering algorithms can be categorised into different approaches. Hierarchical
clustering approaches try to impose a hierarchy of different partitioning solutions. A
distinction is made between agglomerative and divisive processes. In agglomerative,
also known as “bottom-up”, processes each object is initially in its own cluster and
two clusters are merged as you rise up the hierarchy. While with divisive, or “top-
down” approaches all objects are at first in one cluster and recursive splits are made
until each object is in its own cluster. In contrast to partitioning algorithms such as
k-means, not a single clustering solution is obtained, but a sequence of clusterings in
which you have to decide which partitioning best represents the community structure
in the network based on an objective function. So called model-based approaches
attempt to reconstruct the distribution under which the network formed in order to
group together the objects belonging to the same origin.

3.1 Fast and Greedy

The cluster_fast_greedy algorithm is an agglomerative hierarchical clustering
approach. At first each element forms it’s own cluster. Then the two cluster are
joined which yield the largest increase in the current value of modularity. Because
the nodes to merge are chosen in a locally optimal manner this algorithm is called
“greedy”. Once the optimal clustering is found further joining clusters will decrease
the modularity. After the optimal value is found the two clusters which result in
the smallest decrease of modularity are joined. Merging clusters is repeated until
all nodes are in one cluster. The clustering where the maximal value of modularity
was reached is then taken as final result (see Clauset et al., 2004). In this algorithm
not only the final partitioning result but the nodes to merge are chosen based on
modularity.

3.2 Walktrap

The cluster_walktrap algorithm is based on the idea that random walks on a graph
tend to get “trapped” into densely connected parts corresponding to communities and
was proposed by Pons and Latapy (2005). In a random walk, a walker “stands” on a
vertex and moves randomly and uniformly to an adjacent vertex. The probability to
transition from vertex i to vertex j is Pij =

Aij

d(i)
. Further P t

ij denotes the probability
to go from vertex i to j in t steps. When choosing the number of steps t one should
consider the density of the network and decrease t in dense networks and increase
it otherwise. However, it is empirically observed that best results are obtained with
3 ≤ t ≤ 8 (see Pons and Latapy, 2005). Two vertices of the same community tend to
“see” the distance to other vertices in the same way. Thus if i and j are in the same
community, the probabilities to reach any other vertex k will be similar or equal
for i and j (∀k, P t

ik ' P t
jk). With this property it is possible to define rij as the

euclidean distance between those probabilities normalized to the degree of a node k,
d(k), and then generalizing it to distances between sets of vertices (communities).
Therefore you get:

rij =

√√√√ n∑
k=1

(P t
ik − P t

jk)
2

d(k)
(4)
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3. COMMUNITY DETECTION ALGORITHMS

P t
Cj is the probability to walk from community C to vertex j in t steps and can be

calculated as the average probability to walk from a vertex in community C to j:

P t
Cj =

1

|C|
∑
i∈C

P t
ij (5)

Thus you can define the distance between two communities C1 and C2 as

rC1C2 =

√√√√ n∑
k=1

(P t
C1k
− P t

C2k
)2

d(k)
(6)

The clustering itself is an agglomerative approach where in every step k two commu-
nities are merged which lead to the smallest increase of the mean squared distance
σk between each vertex and its community (see Ward’s method, Ward (1963)) and
is calculated as follows:

σk =
1

n

∑
C∈Pk

∑
i∈C

r2iC (7)

where Pk denotes the partitioning in the k-th step. To choose the partitioning
which captures the community structure best, the modularity Q is maximized (see
equation (1)).

3.3 Leading eigenvector

cluster_leading_eigen is another algorithm which maximizes modularity of a
partitioning. Compared to the previous algorithms, it is a divisive approach using
eigenvalues and eigenvectors of a so called modularity matrix to detect possible splits
into two communities so the network has high modularity. The modularity matrix
B is B = A − P , where A is the adjacency matrix as defined in section (2). P
contains the probabilities Pij that an edge between vertices i and j exists given the
degree of these nodes. Now it is possible to rewrite the modularity Q as Newman
(2006) showed as

Q =
1

4m
sTBs (8)

Where m is the number of edged and s is a index vector with n elements

si =

{
+1 if vertex i belongs to group 1
−1 if vertex i belongs to group 2

(9)

It is possible to rewrite s as s =
∑

i aiui with ai = uTi s where ui is the normalized
eigenvector of the modularity matrix B. If s is inserted into equation (8) you get

Q =
1

4m

∑
i

a21λi (10)

where λi is the eigenvalue of B corresponding to the eigenvector ui and the eigenval-
ues are ordered according to their value with: λ1 ≥ λ2 ≥ · · · ≥ λn. Now maximizing
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3. COMMUNITY DETECTION ALGORITHMS

the modularity Q is equivalent to choosing a2i in a way that places most of the
weight in the sum (10) on the terms that correspond to the largest eigenvalues. The
network is then separated by calculating the eigenvector of the modularity matrix
for the largest positive eigenvalue and then dividing vertices into two communities
based on the sign of the corresponding element in the eigenvector:

si =

{
+1 if u(1)i ≥ 1

−1 if u(1)i < 1
(11)

If after some steps all elements in the eigenvector are of the same sign it means that
the network has no underlying community structure anymore and the algorithm
stops the division in case the modularity cannot be further increased (see Newman,
2006).

3.4 Label propagation

The cluster_label_prop algorithm follows the basic idea that each vertex gets the
label that most of its neighbors belong to. First of all, each node has its own label and
the labels are updated by majority vote in the neighborhood of the node, with ties
broken uniformly and randomly. Densely connected groups of nodes quickly reach
consensus on a unique label, as the labels propagate. At the end of the propagation
process, i.e. when the label of each node is equal to the most common label in its
neighborhood, nodes with the same labels are grouped together as a community (see
Raghavan et al., 2007).

Since the algorithm starts by giving each node its own label, the first iterations
lead to many small and dense pockets with the same label. These consensus groups
then gain impact and try to acquire more nodes. However, when a consensus group
reaches the border of another group, they begin to compete for members. If a
contested node has more edges to nodes from its current community than to the
competing one, it will keep its label. Otherwise the label of the competing group
will be adopted. This corresponds directly to the strong definition of communities
which was introduced in section (1).

Because there is no optimization criterion, but rather a stopping condition, different
solutions can be obtained for the same starting value. More precisely, since the
algorithm breaks the ties uniformly and randomly, a node can select a random
community early in the label propagation process when the possibilities of the ties
are high. This allows several community structures to be reached from the same
initial situation. Therefore multiple runs of the label propagation algorithm should
be computed.

3.5 Louvain

The cluster_louvain algorithm, which is also known as multilevel.community,
is an agglomerative, hierarchical approach proposed by Blondel et al. (2008). It is
characterized by being one of the fastest algorithms which are considered in this
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3. COMMUNITY DETECTION ALGORITHMS

thesis. The procedure is as follows: initially, each node is assigned to a community
on its own. In each step, a node is moved into the cluster, which increases modularity
the most, similar to cluster_fast_greedy. Every individual cluster found in this
way is combined into a single node and the process begins again with the merged
communities. This greedy approach is repeated for each node thereby formed until
no further improvement is possible in this step. Hence after each step the number
of vertices decreases in the recently merged network and the computing time for the
next step is decreased because fewer node combinations need to be considered. The
algorithm stops if no further gain in modularity is possible or if only a single node
is left.

3.6 Infomap

The cluster_infomap uses maps to describe the structure between nodes and edges
in networks that represent interactions among the subgraphs of a network. As
Rosvall and Bergstrom (2008) stated, “these local interactions induce a system-wide
flow of information that characterizes the behavior of the full system”. In order to
comprehend the network structure you need to comprehend the flow of information
in the network. Therefore, it is necessary to identify the modules that compose the
network by finding an optimally compressed description of how information flows in
the network. A group of nodes among which information flows quickly and easily can
be described as a single densely connected module or cluster. Thus, the description
of the information flow is a coding or compression problem and the objective function
used in this algorithm is the minimization of the expected description length of a
random walk, the so called map equation.

The core idea of the algorithm follows to a large extent the louvain method: neigh-
boring nodes are joined together to form modules, which are then joined together to
form the modules in the next step and so on. First, each node is assigned to its own
module. Each node is then moved in random sequential order to the neighboring
module, which leads to the largest decrease in the map equation. If no shift results
in a reduction of the map equation, the node remains in its original module. This
process is repeated each time in a new random order until no movement causes
a decrease of the map equation. In other words the network is rebuilt, with the
modules of the last level forming the nodes on the current level, and just like in
the previous step, the nodes are grouped into modules. This hierarchical rebuilding
of the network is repeated until the map equation cannot be further reduced (see
Rosvall and Bergstrom, 2008).

3.7 Variational EM

The bm_bernoulli is an model based clustering approach using a variational ex-
pectation maximization (V-EM) algorithm. It was implemented in the R package
blockmodels by Leger (2016) but the theoretical basis was established by Mari-
adassou et al. (2010). The so called membership matrix Z is defined as Ziq = 1 if
node i is a member of community q. This matrix is therefore a nxC matrix, where
Zi denotes the i-th row of matrix Z. In this approach the vertex i belongs to an

11
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unknown community {K1, . . . , KC}, thus to a unobserved or latent variable. A row
in Z follows a multinomial distribution,

Zi ∼M(1,α = (α1, . . . , αC)) (12)

where αq is the probability that vertex i belongs to class Kq. Given the class
memberships q and l, the edge between i and j, Aij is distributed as f(·, θql) where
f(·, θql) is a probability distribution known up to the parameter θql.

Aij|i ∈ q, j ∈ l ∼ f(θql) (13)

The bernoulli distribution is suitable for f(·, θql) where the probability πql corre-
sponds to θql.

πql =

{
p1 if q = l

p2 if q 6= l
(14)

Now the model is specified by the mixture proportions α and the connectivity matrix
θ = (θgl)q,l=1,...,C and the parameter of this model is denoted by γ = (α,θ). The
matrix θ is an estimator for the true connectivity matrix W . Because the edges are
independent given the classes Z it is possible to make the following transformation
based on Bayes’ theorem: logP(Z,A) = logP(Z) + logP(A|Z). It can be shown
that the log-likelihood for the edges A and the indicator variables Z follows from
equations (12) and (13):

logP(Z,A) =
∑
i

∑
q

Ziq logαq +
∑
i<j

∑
q,l

ZiqZjl log fql(Aij) (15)

As Mariadassou et al. (2010) showed the likelihood of the edge distribution can
be obtained by summing P(Z,A) over all possible Z’s: P(A) =

∑
Z P(Z,A). This

summation quickly becomes intractable since it involves Cn terms. Therefore a lower
bound for the log-likelihood of the edge distribution is proposed which can finally
be shown as

J(RA, γ) = −
∑
i

∑
q

τiq log τiq +
∑
i

∑
q

τiq logαq +
∑
i<j

∑
q,l

τiqτjl log fql(Aij) (16)

RA stands for some distribution on Z where logP(A; γ) reaches its maximum for
RA(Z) = P(Z|A). In the following the factored multinomial distribution with den-
sity h, probability vector τi = (τi1, . . . , τiC) and

∑
q τiq = 1 is considered for RA

RA(Z) =
∏
i

h(Zi, τi)

Accordingly if P(Z|A; γ) was solvable maximizing J(RA, γ) with respect to γ would
be equivalent to maximizing logP(A; γ). With this specification J(RA, γ) can be
solved and τi is regarded as a variational parameter which needs to be optimized
so that the best fit between RA(Z) and P(Z,A; γ) is achieved. Now that the model
specifications are set the estimation of the parameters is possible.
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4. SIMULATION STUDY

R
(n+1)
A = argmax

RA

J(RA, γ
(n))

γ(n+1) = argmax
γ

J(R
(n+1)
A , γ)

(17)

The variational EM approach consists of two steps which are repeated until the
estimates converge:

1. Pseudo E step: Maximization of J in regards to RA to obtain an estimate
for the parameter τ

2. M step: Maximization of J in regards to γ to obtain an estimate for α and
θ with α̂ = 1

n

∑
i τiq

Integrated Classification Likelihood (ICL)

The V-EM process is repeated for a various number of groups. In order to choose
the model mC with the optimal number of classes C the so called Integrated Clas-
sification Likelihood (ICL) criterion which was proposed by Biernacki et al. (2000)
is maximized

ICL(mC) = max
γ

logP(A, Z̃|γ,mC)−
1

2

pC log(n(n− 1))︸ ︷︷ ︸
penalizing θ

− (C − 1) log(n)︸ ︷︷ ︸
penalizing α

 (18)

where θ contains pC independent parameters and Z is replaced by its predicted
values Z̃. In the ICL criterion the probability for the observed edge and class dis-
tribution is maximized while equally penalizing the length of the parameter vectors
θ and α. The number of independent parameters in θ is pC relating to a maximum
number of (n(n − 1)) edges and relating to all n nodes the number of independent
parameters in α is C − 1. This is because αC must be chosen in a way that α sums
up to 1.

4 Simulation Study

4.1 Network generation

It is of interest how clear the separation of the clusters has to be in order to obtain
meaningful results from the algorithms. Therefore we define the probabilities to form
an edge between different clusters as µ, following the mixing parameter in Yang et al.
(2016). A low value of µ indicates a network with clear separation of communities,
with the extreme case µ = 0 meaning there are no connections between the clusters.
We will consider networks with different numbers of nodes (n=300, n=500 and
n=1500) and communities (C=3, C=5 and C=15). For each combination of n and
C networks with step wise increasing µ are simulated to observe how the accuracy
of the found partitionings changes.
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4. SIMULATION STUDY

In order to ensure the simulated networks resemble real world networks the density
d of a network, i.e. the proportion of observed edges of all possible ones, is set rather
low to an expected density of d = 0, 05 (see Melancon, 2006). A symmetric SBM
network with C communities, meaning 1

C
of nodes belongs to each community, with

an CxC connectivity matrix W1,

W1 =

1− µ µ
. . .

µ 1− µ


has the expected density d.

d =
1

C
(1− µ) + C − 1

C
µ =

1− µ+ (C − 1)µ

C
(19)

This equation can be explained intuitively because every node has the probability
1 − µ of connecting to nodes in its own community, thus to 1

C
of all nodes and a

probability µ of connecting to the remaining nodes, thus to C−1
C

of all nodes. How-
ever, to ensure a constant expected density of d = 5% we multiply each probability
in W1 by a density parameter π, with

π =
dC

(1− µ) + (C − 1)µ
(20)

This gives

W2 =

(1− µ)π µπ
. . .

µπ (1− µ)π


The probabilities for an edge connecting different communities changed to µπ. For
every value of µ in 0.03 steps between 0 and 0.75 multiple networks with otherwise
constant parameters n, C and d are simulated so the variance of the accuracy can
be estimated. For algorithms where a change in accuracy in higher µ ranges was to
be expected, µ values between [0, 1] were considered.

Note that when converting from µπ to µ it is always important to pay attention to
the number of communities, because the density parameter π is always dependent
on C (see equation (20)).

Since many algorithms use the definition that communities have a higher connec-
tivity within clusters than between clusters, it is expected that those algorithms fail
if the connectivity between clusters approaches or exceeds the connectivity within
clusters. The value of equality µπ = (1−µ)π is reached for µ = 0.5 or µπ = d = 0.05
(see figure (2)). This can be shown by the following transformations of the equations:

µ = 0.5⇒ µπ = 0.5π = 0.5
dC

0.5 + (C − 1)0.5
= 0.5

dC

0.5C
= d (21)

We therefore expect the algorithms to fail as µπ approaches d = 0.05. However,
algorithms which do not assume communities have a higher connectivity within
but rather just take the connectivities µπ and (1 − µ)π to be different might get

14



4. SIMULATION STUDY

reasonable results once the difference between (1 − µ)π (within connectivity) and
µπ (between connectivity) increases again.

In figure (2) the x-axis corresponds to the µπ values in simulated networks with
three communities (C = 3) and the y-axis shows the ratio between 1 − µ and µ.
Hence, for each µπ the factor can be seen by which 1− µ is greater or smaller than
µ. The exact values can be taken from table (1).

Figure 2: Ratio of within and between connectivity (1−µ
µ
) depending on µπ for

C = 3. Left: µ values in [0, 0.75]. Right: µ values in [0.15, 0.75] All points to the
left of the vertical red dashed lines correspond to the strong definition of community
(1− µ > µ).

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

0.03 0.004 32.3 0.27 0.032 2.7 0.51 0.051 0.9 0.75 0.064 0.33
0.06 0.008 15.6 0.30 0.035 2.3 0.54 0.053 0.8 0.78 0.066 0.28
0.09 0.012 10.1 0.33 0.037 2.0 0.57 0.054 0.7 0.81 0.067 0.23
0.12 0.016 7.3 0.36 0.040 1.7 0.60 0.056 0.6 0.84 0.068 0.19
0.15 0.020 5.6 0.39 0.042 1.5 0.63 0.058 0.5 0.87 0.070 0.14
0.18 0.023 4.5 0.42 0.044 1.3 0.66 0.060 0.5 0.90 0.071 0.11
0.21 0.026 3.7 0.45 0.047 1.2 0.69 0.061 0.4 0.93 0.072 0.07
0.24 0.029 3.1 0.48 0.049 1.0 0.72 0.063 0.3 0.96 0.073 0.04

Table 1: Table of all µ and corresponding µπ and 1−µ
µ

values for C = 3

15



4. SIMULATION STUDY

4.2 Results

4.2.1 Accuracy

Now that the simulation framework is established, the results of the different algo-
rithms can be compared. A property that can be observed for almost all algorithms
are that the more nodes there are, the longer the accuracy remains reasonable high
as shown in figures (4) and (5). In addition, it can be observed in all algorithms that
they perform best at very low µπ values and that the average NMI decreases when
the values approach µ = 1 − µ, which corresponds to µπ = 0.05. For values close
to µπ = 0.05, the algorithms fail completely and have an average NMI of 0. This
can be explained because once the probabilities for edges within and between com-
munities align, the algorithms have no indication of class membership. All except
the variational-EM and the walktrap algorithm stay at 0 NMI for values µπ > 0.05
even though the difference between µ and 1−µ increases again. This can be derived
directly from the strong definition of community on which the other algorithms are
based on.

cluster_fast_greedy

The clustering results obtained from the fast and greedy algorithm start at the
maximum value of NMI = 1 for networks with 3 or 5 true communities, however for
networks with 15 clusters the NMI only reaches approximately 0.90 for 1500 nodes
or 0.8 for 300 nodes. For networks with a between connectivity probability of more
than 0.045 the results are not any better than random class assignment would be
because the NMI drops to nearly 0.

cluster_walktrap

The walktrap algorithm provides consistently satisfactory results, since even for
C = 15 clusters high NMI values of nearly 1 are achieved, while at the same time
having the lowest standard deviation of the compared algorithms with values below
SD = 0.08. Another peculiarity is the small increase of NMI for the walktrap
algorithm for N = 1500 and C=3 at µπ ≈ 0.06 which corresponds to µ ≈ 0.7 (see
table (1)) . The accuracy stays at NMI ≈ 0.3 which is unfortunately not high
enough for reasonable results. One reason for this increase might be the definition
of communities via similar transition probabilities and not via the strong definition
that edges have to be more common within communities than between. Additionally,
this improvement can not be observed for different combinations of number of nodes
and communities, so you should not rely on the walktrap algorithm if you suspect
communities with lower within density than between.

cluster_leading_eigen

Detecting cluster structure in graphs based on eigenvalues is a reasonable approach
for networks with a low number of communities as you can see quite high NMI values
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for C = 3. However at C = 5 and especially C = 15 the maximal value of NMI is
not even reached for very densely connected communities with µπ approaching 0.

cluster_label_prop

The label propagation algorithm has only a very limited parameter set for which
the predicted class assignment is close to the true one. While the algorithms that
were already described crashed at µπ values of 0.04, the label propagation algorithm
shows this decrease already at µπ = 0.03, referring to the results with 3 clusters.
In figure (2) you can see that a value of µπ = 0.04 for C = 3 means that the
probability for an edge within a community is 1.5 times as high as the between
probability, whereas at µπ = 0.03 this factor is 3 . Therefore, a greater distinction
between these probabilities is needed compared to the other approaches in order to
obtain accurate results using the label propagation method.

cluster_louvain

The louvain method for detecting communities yields promising results as the NMI
is reasonably high for all considered number of communities. However the stan-
dard deviation of this algorithm is noticeably higher than of cluster_walktrap or
cluster_fast_greedy. Outstanding is, that the standard deviation also increases
for increasing n, which indicates a very sudden drop of the NMI for a higher number
of nodes compared to a lower n.

cluster_infomap

In terms of accuracy, The Infomap algorithm is on a similarly low level as the
cluster_label_prop. It is noteworthy that with C = 3 and n = 1500 the standard
deviation stays at 0, which means that the algorithm first matches the clusters
perfectly and once the threshold of µ = 0.15 or µπ = 0.02 is exceeded there is no
match at all. The same can be observed for the parameter combination C = 15,
n = 700 and µ = 0.09 or µπ = 0.03 (see table 3).

bm_bernoulli

The only model-based clustering which is considered throughout this paper shows
some interesting tendencies. It immediately catches the eye that this algorithm
increases again in NMI for networks with C = 3 as well as C = 5 and n = 500. This
can be explained by the fact that the model on which the V-EM is based on is very
similar to the SMB that generated the networks. Accordingly, cluster structures in
networks with three communities and µπ values exceeding 0.07 or µ values exceeding
0.87 and networks with 5 communities and µπ > 0.06 corresponding to µ > 0.9 can
be detected sufficiently well. Unfortunately this algorithm does not reach a NMI
of 1 for 3 true communities and therefore other algorithms should be favoured if
a low number of clusters is expected. The NMI for C=3 and C=5 seems to be
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symmetrical, but it is important not to assume the same behavior for 15 clusters,
because to get higher values for µπ, the µ values would have to exceed 1 given the
density stays at 5%. However, this would violate the condition that was set for the
density of the networks, namely that the density should be a maximum of 5 % to
resemble real networks.

Figure 3: Accuracy Plot 3 - Variational EM: Change of the mean value of NMI and
its standard deviation (SD) depending on between connectivity (µπ) for different
number of nodes. Each point corresponds to calculations on 10 different networks
which were simulated with the same parameters. All points to the left of the vertical
dashed line correspond to the strong definition of community (1 − µ > µ). Please
notice that the vertical axis for SD has different scale ranges and that networks with
n=300 and n=500 were considered due to limitations in computing power.
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Figure 4: Accuracy Plot 1 - Change of the mean value of NMI and its standard
deviation (SD) depending on between connectivity (µπ). Each point corresponds
to calculations on 50 different networks which were simulated with the same pa-
rameters. All points to the left of the vertical dashed line correspond to the strong
definition of community (1−µ > µ). Please notice that the vertical axis for SD has
different scale ranges.
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4. SIMULATION STUDY

Figure 5: Accuracy Plot 2 - Change of the mean value of NMI and its standard
deviation (SD) depending on between connectivity (µπ). Each point corresponds
to calculations on 50 different networks which were simulated with the same pa-
rameters. All points to the left of the vertical dashed line correspond to the strong
definition of community (1−µ > µ). Please notice that the vertical axis for SD has
different scale ranges.
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4.2.2 Computational effort

Figure 6: Runtime of different algorithms depending on between connectivity, num-
ber of communities and number of nodes. Each point represents the average runtime
for the corresponding algorithm on 10 trials. The default values were µ = 0.1, C = 3
and n = 300 and only one variable varied at a time.

When selecting the algorithm, attention should of course be paid to accuracy, but the
computation time must also be taken into account. The runtime has to be considered
especially if communities have to be found in very large or many networks. Figure
(6) shows the runtimes depending on the between-connectivity (µ), the number of
clusters (C) and nodes (n).

One observation is that for most of the algorithms the points corresponding to
different µ and C values in figure (6) overlap (plot left and middle). Therefore the
probability of edges between clusters (µ) and the number of clusters (C) do not seem
to have a general influence on the runtime. Only for the variational EM algorithm
bm_bernoulli a clear difference between the different µ values is observed. However
there is no apparent regularity in how changing µ corresponds to changing runtime.
For a network with µ = 0.3 the algorithm takes considerably longer than for the
other µ values. It seems plausible that at µ = 0.3, which corresponds to a value of
µπ = 0.035, the accuracy of the algorithm plummets (see figure (3)) because the V-
EM has considerable difficulty calculating the parameters, and therefore prolonging
the time needed for the estimators to converge.

Similar findings can be seen when changing the number of communities. Here the
V-EM algorithm again has a clear difference in computing time depending on the
number of clusters, whereas the other algorithms do not change very much. The
increasing length of parameters to be estimated with increasing number of clusters
probably causes the longer computation time. Similarly, one can expect the leading
eigenvector algorithm to require several steps more until the maximum modularity
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is found when the number of clusters increases and accordingly the eigenvalues must
be recalculated in each step.

As expected, increasing the number of nodes has the greatest influence on the com-
putation time of the parameters considered. The V-EM algorithm has the most
extreme time extension. Here the average calculation on a network with 1500 nodes
takes 1.7 million milliseconds (see figure (6)) which corresponds to about 29 minutes.
For very large networks, this algorithm is extraordinarily dependent on computation
power.

Moreover it is interesting that the Infomap algorithm takes almost the same amount
of calculation time regardless of the choice of parameters, as you can see by the points
overlapping in figure (6).

5 Conclusion

Heuristics are used in most of the evaluated algorithms in order to arrive at probable
statements or practicable solutions with limited knowledge and little time. For
example, the walktrap algorithm approximates the class memberships using short
random walks and provides very reliable results with very short calculation time.

The variational EM was the only algorithm which tries to estimate the model under
which the networks were generated and the only one which could handle networks
with higher between than within class probability, but the results for low µ val-
ues were considerably worse than with the algorithms using heuristic approaches.
However the estimated model might be used to determine the probabilities of form-
ing new edges in a link prediction scenario. Because not only the membership is
predicted but all the parameters as well. So depending on ones goals the high
computational effort can be justified.

Moreover, it can be observed that all algorithms that use modularity as a measure of
quality produce fairly accurate results. These are the fast and greedy, the walktrap,
the leading eigenvector and the louvain algorithm listed here. Accordingly, one
can assume that modularity is a useful criterion for judging the extent of cluster
structure in a network.

Finally, it can be said that the walktrap algorithm provides reliable results for highest
µ values while the computation time remains sufficiently short and is a good starting
point of a community detection analysis.
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A Appendix

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

0.03 0.007 32.33 0.27 0.037 2.70 0.51 0.050 0.96 0.75 0.058 0.33
0.06 0.013 15.67 0.3 0.039 2.33 0.54 0.052 0.85 0.78 0.058 0.28
0.09 0.018 10.11 0.33 0.041 2.03 0.57 0.053 0.75 0.81 0.059 0.23
0.12 0.022 7.33 0.36 0.043 1.78 0.6 0.054 0.67 0.84 0.060 0.19
0.15 0.026 5.67 0.39 0.045 1.56 0.63 0.054 0.59 0.87 0.060 0.15
0.18 0.029 4.56 0.42 0.046 1.38 0.66 0.055 0.52 0.9 0.061 0.11
0.21 0.032 3.76 0.45 0.048 1.22 0.69 0.056 0.45 0.93 0.061 0.08
0.24 0.035 3.17 0.48 0.049 1.08 0.72 0.057 0.39 0.96 0.062 0.04

Table 2: Table of all µ and corresponding µπ and 1−µ
µ

values for C = 5

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

µ µπ 1−µ
µ

0.03 0.016 32.33 0.27 0.045 2.70 0.51 0.050 0.96 0.75 0.052 0.33
0.06 0.025 15.67 0.3 0.046 2.33 0.54 0.050 0.85 0.78 0.053 0.28
0.09 0.031 10.11 0.33 0.047 2.03 0.57 0.051 0.75 0.81 0.053 0.23
0.12 0.035 7.33 0.36 0.048 1.78 0.6 0.051 0.67 0.84 0.053 0.19
0.15 0.038 5.67 0.39 0.048 1.56 0.63 0.051 0.59 0.87 0.053 0.15
0.18 0.040 4.56 0.42 0.049 1.38 0.66 0.052 0.52 0.9 0.053 0.11
0.21 0.042 3.76 0.45 0.049 1.22 0.69 0.052 0.45 0.93 0.053 0.08
0.24 0.044 3.17 0.48 0.050 1.08 0.72 0.052 0.39 0.96 0.053 0.04

Table 3: Table of all µ and corresponding µπ and 1−µ
µ

values for C = 15
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