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Abstract

Abstract

One of the main problems in financial machine learning are based on the low signal
to noise ratio. In other applications well performing algorithms mistake noise for
signal which leads to poor results. This thesis tries to deal with these problems
by applying CUSUM filter and labelling observations with triple-barrier method.
Another key characteristic of financial time series is their dependency structure.
Sample weights are introduced to deal with this issue. Thus, observations are
weighted regarding their return attribution and dependency structure. For
modelling financial patterns the ensemble methods bagging and random forest
are considered in this thesis as well as logistic regression.
In the empirical analysis the DAX between April 1993 and December 2018
is investigated. 14 different features are used to examine the DAX pattern
structure. To assess the influence of the features, research is done by measuring
feature importance with and without sample weights. Overall, the momentum
variables are ranked comparatively high for predicting DAX movements. For
backtesting, the combinatorial purged cross-validation is considered as scenario
based methodology. For this application, four different models are used with and
without sample weights: Logistic regression, bagged logistic regression, bagged
trees and random forest. On this occasion, random forest and bagged trees with
sample weights yield the best results with respect to the classification measures
ROC-AUC and F1. Furthermore, a superior sharpe ratio and maximal drawdown
are observed.

Keywords: CUSUM filter, triple-barrier method, stock price predicting, sample
weights, bagging, random forest, logistic regression, combinatorial purged cross-
validation.

i



Table of Contents

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

2 Data Preparation and Preprocessing 2

2.1 Stationarity and Fractional Differentiation . . . . . . . . . . . . . . . . 2

2.2 CUSUM Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Labelling Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Sample Weights and Overlapping Outcomes . . . . . . . . . . . . . . . 12

2.5 Bet Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Machine Learning Applications in Finance 19

3.1 Sources of Errors in Machine Learning Algorithms . . . . . . . . . . . . 19

3.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Cross-Validation and Tuning . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Backtesting 34

4.1 Backtest Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Walk Forward Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Combinatorial Purged Cross-Validation Method . . . . . . . . . . . . . 39

ii



Table of Contents

5 Empirical Analysis 45

5.1 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Selected Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Backtesting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Summary and Outlook 65

A Appendix 67

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Electronic Appendix 77

C References 79

iii



List of Figures

List of Figures

2.1 Weights evolution as a function of d (López De Prado 2018, p.78) . . . 4

2.2 Applied CUSUM filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Triple-Barrier Method (López De Prado 2018, p.47) . . . . . . . . . . . 10

2.4 Example of concurrent label computing . . . . . . . . . . . . . . . . . . 14

2.5 Histogram of average uniqueness values . . . . . . . . . . . . . . . . . . 15

2.6 Transformation to bet sizes . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Example of random forest . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Train/test splits in a 5-fold scheme . . . . . . . . . . . . . . . . . . . . 29

3.4 Embargo of post-train observations (López De Prado 2018, p.108) . . . 32

3.5 A schematic of the tuning process . . . . . . . . . . . . . . . . . . . . . 33

4.1 Maximum drawdown applied to DAX price series . . . . . . . . . . . . 36

5.1 Price series DAX/REXP . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Log-return series DAX/REXP . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Histogram DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Filtered DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Sample weight distribution . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Fractional differentiated series . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 MDI feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.9 MDA feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.10 SFI feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.11 Explained variance, PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.12 Model procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.13 All features: Sharpe ratio, maximum drawdown . . . . . . . . . . . . . 60

iv



List of Figures

5.14 All features: ROC-AUC, F1 . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15 PCA: Sharpe ratio, maximum drawdown . . . . . . . . . . . . . . . . . 61

5.16 PCA: ROC-AUC, F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.17 Selected features: Sharpe ratio, maximum drawdown . . . . . . . . . . 63

5.18 Selected features: ROC-AUC, F1 . . . . . . . . . . . . . . . . . . . . . 63

A.1 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Histogram REXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3 Test statistic for different d values . . . . . . . . . . . . . . . . . . . . . 70

A.4 DAX portfolio weights, all features . . . . . . . . . . . . . . . . . . . . 71

A.5 Cumulative performance, all features . . . . . . . . . . . . . . . . . . . 72

A.6 DAX portfolio weights, PCA . . . . . . . . . . . . . . . . . . . . . . . . 73

A.7 Cumulative performance, PCA . . . . . . . . . . . . . . . . . . . . . . . 74

A.8 DAX portfolio weights, best features . . . . . . . . . . . . . . . . . . . 75

A.9 Cumulative performance, best features . . . . . . . . . . . . . . . . . . 76

v



List of Tables

List of Tables

2.1 Meta-labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Generated paths for ϕ(5, 2) = 4 . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Generated paths for ϕ(5, 2) = 4, Assignment of testing groups . . . . . 40

5.1 Summary of DAX log-returns . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Barrier hits converted to labels . . . . . . . . . . . . . . . . . . . . . . 48

5.3 ADF statistics results for fractional differentiation of DAX time series . 50

5.4 Summary of tuning parameters . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Selected features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



Notation

Notation

a Parameter in the binomial coefficient
B Backshift operator
B Number of bootstrap samples
b Bet size
C Regularization parameter in logistic regression
ct Number of concurrent labels at time t
d Real value fractional differentiation parameter
e Embargo time
f() Deterministic function for generating outputs
G() CDF of standard gumbel distribution
h Threshold parameter for CUSUM filter
I(.) Impurity function
J() Penalty function in logistic regression
K Number of folds in cross-validation
k Number of test datasets in the CPCV framework
L(.) Arbitrary loss function
l Vertical barrier time span
M Number of rectangles
N Number of partitions in the CPCV framework
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Introduction

1 Introduction

Machine Learning methods have improved modelling in various aspects by anticipating
non-linear effects in data. Whereas machine learning algorithms succeeded in many
applications, predicting stock movements is quite challenging. Although these sophis-
ticated models have been used in hedge funds for decades, its records in quantitative
finance are mixed. As stated by Asmundsson (2018), the Eurekahedge AI Hedge Fund
Index tracks the returns of 13 hedge funds which considers machine learning in their
models. The Eurakhedge benchmark was not able to beat the market in the last five
years since this index has gained 7% per year, whereas the S&P 500 returned 13%
annually. Therefore, investing in financial markets by using machine learning methods
does not guarantee outstanding success.

Applying machine learning methods to financial data has to be done under the consider-
ation of the specific differences between stock return data and other datasets. Financial
time series exhibits special characteristics, like heteroskedasticity, low signal-to-noise
ratio and non-normality of the returns. A standard approach would be to apply an
ARMA model to an integer differentiated time series to deal with the possible occurrence
of serial correlation. However, the performance of this model is far away of satisfying.
Models which can deal with non-linear data might improve modelling the behaviour of
financial time series. But as explained above, although machine learning models can
lead to impressive results, this does not necessary hold for financial time series.

As described by López De Prado (2018), low signal-to-noise ratio leads to false discoveries
if machine learning algorithms are misused. Applying a sophisticated machine learning
model like “Xgboost” or some deep learning method to a log-return time series of an
arbitrary stock will almost surely fail because the algorithm will confuse statistical fluke
with patterns. Therefore, the special characteristics of financial data have to be kept
in mind. For instance, filtering financial data can enhance necessary signals to apply
machine learning to stock data more successfully.

This work investigates the potential benefit of data preparing methods as stated by López
De Prado (2018). In contrast to applying machine learning methods to high frequency
data, this thesis examines different data treatment, modelling and backtesting methods
on daily index data. Investigations in this field can lead to a deeper understanding of
market movements and as a result to smarter investment decisions.
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2 Data Preparation and Preprocessing

2.1 Stationarity and Fractional Differentiation

One important step in working with time series is to make them stationary. A time series
is defined as strictly stationary if for every V and T the distribution of {Z1, . . . , ZT}
and {Z1+V , . . . , ZT+V } are the same. This means that the probability distribution of a
sequence of T observations does not depend on their time origin. Hence, all aspects of
its behaviour are unchanged by shifts in time. This is a rather strong assumption and
in most cases weak stationarity is satisfactory for time series modelling. A time series
{Z1, . . . , Zn} is weakly stationary if the conditions

• E[Zt] = µ for all t,

• Var[Zt] = σ2 for all t and

• Cov(Zt, Zs) = %(|t− v|) for all t and v and some function %()

hold, whereas %() represents the autocovariance function. Thus, the mean and the
positive finite variance does not depend on t. Moreover, the covariance depends on
the lag between two time points, but not on the timepoint t itself. This is called weak
stationary since the conditions concern only mean, variance and covariance and not
other distributional characteristics such as skewness and kurtosis. One advantage of
stationary time series is that it can be modelled with relatively few parameters. For
instance, the mean can be modelled by taking the average Z because it does not change
in time, whereas in non-stationary cases for each timepoint another mean has to be
estimated (Ruppert & Matteson 2015).

Hence, stationarity can help to find a parsimonious model. For mapping an unknown
observation to a collection of known labelled observations, supervised algorithms require
stationary features to infer a label from observed examples. Therefore, in financial
statistics it is a popular approach to make a price series stationary by computing
its returns or log-returns. However, as stated by López De Prado (2018), returns
have no memory and are not correlated with the original price series. In contrast
to returns, price series have memory because every value is dependent upon a long
history of previous levels. To reach stationarity for further statistical analysis, a popular

2
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approach is to use integer differentiation which cuts off the memory of the series. Hence,
important patterns get lost to get stationarity. One method to preserve memory and
get stationarity is called fractional differentiating. Consider the binomial series for a
real number d, (1 + z)d = ∑∞

a=0

(
d
a

)
za. By incorporating the backshift operator B into

the binomial series the fractional model

(1− B)d =
∞∑
a=0

(
d

a

)
(−B)a =

∞∑
a=0

∏a−1
i=0 (d− i)

a! (−B)a

=
∞∑
a=0

(−B)a
a−1∏
i=0

d− i
a− i

= 1− dB + d(d− 1)
2! B2 − d(d− 1)(d− 2)

3! B3 + . . .

is derived. As stated by Hosking (1981), fractional differentiation is a tool to express
the long memory in a time series data by weighting previous values with a certain factor.
Considering parameterisation of the weights with

ω = {1,−d, d(d− 1)
2! ,

d(d− 1)(d− 2)
3! , . . . , (−1)a

∏a−1
i=0 (d− i)

a! }

if they are applied to the real values Z = Zt, Zt−1, Zt−2, Zt−3, . . . , Zt−a, . . ., long memory
can then be expressed through

Z̃t =
∞∑
a=0

= ωaZt−a.

Considering parameter d, the weights ω are crucial for understanding the concept of
long memory. As mentioned before, d controls the amount of differentiation within the
fractional differentiation method. An integer differentiation leads to ∏a−1

i=0
d−i
a! = 0,∀a >

d, hence memory is cancelled beyond a point greater than d (López De Prado 2018).

For example, considering d = 1, a common approach to derive log-price returns, results
in ω = 1,−1, 0, . . . , 0. Figure 2.1 shows the weights for different d inputs.

3
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Figure 2.1: Weights evolution as a function of d (López De Prado 2018, p.78)

The first weight ω0 equals to one by definition. The other weights can be generated
iteratively as

ωa = −ωa−1
d− a+ 1

a
.

Observing | ωa
ωa−1
| = |d−a+1

d
| < 1, the weights converge asymptotically towards zero, if

a > d and ωa−1 6= 0. For a positive d and a < d + 1, d−a+1
a
≥ 0 holds and makes

the initial weights alternate in sign. An even Int[d] results in lim
a→∞

ωa = 0−. On the
other side lim

a→∞
ωa = 0+ if Int[d] is odd. Hence, memory disappears with increasing a.

However, the alternation of weight signs is necessary to make {Z̃t}t=1,...,T stationary
(López De Prado 2018).

In practice there is a limited number of observations {Zt}t=1,...,T so that fractional
differentiation cannot be computed on an infinite series of weights. A method to
estimate the weights is called Fixed-Width Window Fracdiff (FFD). The main idea is
to drop weights after a weight falls below a pre-defined absolute threshold T . This is
equivalent for finding the first l? such that |ωl?| ≥ T and |ωl?+1| ≤ T , setting a new
variable ω̃a

4
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ω̃a =

ωa if a ≤ l?

0 if a > l?

and Z̃t = ∑l?

a=0 = ω̃aZt−a for t = T − l? + 1, . . . , T.

The advantage of this method is to consider the same vector across all estimates of
{Z̃t}t=l?,...,T . Hence, the negative drift which is caused by the convergence behaviour is
avoided becaue no {Z̃t} is computed by a greater window of values. Performing the
FFD method with a real value parameter d usually leads to a reduced differentiated
dataset because every value is for example computed by its 90 lagged values. For this
reason, the first 90 values can not be used for the later analysis.

As mentioned before, there is a trade-off between memory and stationarity. The
minimum parameter d? is used to achieve stationarity and also to preserve as much
memory as possible. A natural procedure would be to compute an Augmented Dickey-
Fuller statistic on a pre-defined amount of parameters d and consider the value d? which
crosses the 95% confidence value of an Augmented Dickey-Fuller Test (ADF test).

As described by Ruppert & Matteson (2015), the ADF test is an extension of the
Dickey-Fuller test, which concludes whether a time series processes an unit root and is
consequently not stationary. The Augmented Dickey-Fuller test is based on an autore-
gressive model, at which the number of lags can be conducted by Akaike information
criterion.

However, as suggested by López De Prado (2018), in the empirical analysis the formula

∆Zt = Π0 + Π1Zt−1 + δ∆Zt−1 + εt

is sufficient to test for stationarity. ∆ represents a first difference operator such
Zt = Zt − Zt−1. As described by Alexander (2001), the test statistic results from

Λ = Π̂√
Var[Π̂]

where the hypothesis are defined by H0 : Π = 1 and H1 : Π < 1. Based on MacKinnon
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(2010), the 0.01, 0.05 and 0.1 quantiles of the limit distribution Λ are −3.43,−2.86 and
−2.57, respectively.

2.2 CUSUM Filter

The following section covers a filtering method for financial data. Therefore, the main
characteristics of the CUSUM filter methodology are explained. Furthermore, the filter
is applied to a DAX time series.

Sampling relevant observations for features is one important task before applying
machine learning methods to financial data. To achieve this objective, event-based
sampling is performed. A not negligible number of traders at the financial markets are
chartist who base their trading strategies on price charts. When chart trader notice an
upward (downward) trend in financial market, they evaluate it as a sign to take a long
(short) position in order to benefit from a trend. One concept to filter relevant examples
is the CUSUM filter. Introduced by Page (1954) the filter was usually considered for
quality-control methods, though it can also be used for financial time series. In general,
it measures if a mean value shifts away from a target value. Hence, people working in
quality-control gets an early alarm when quality shifts down or upwards. In financial
markets CUSUM filter is based on the rationale that it is more likely for a stock to
move up (down) further if the stock previously moved up (down) (Lam & Yam 1997).

As mentioned before, the CUSUM procedure is designed to detect a shift in the mean
value of a measured quantitiy away from a target value. More precisely, the filter always
samples an observation if a pre-defined threshold is activated. This is defined by

St ≥ h⇔ ∃τ ∈ [1, t]
∣∣∣∣∣∣
t∑

i=τ
(Zi − Ei−1[Zt]) ≥ h.

The threshold is determined through the parameter h. Hence, the symmetric CUSUM
filter can be defined by cumulative sums of IID observations {Zt}t=1,...,T

S+
t = max{0, S+

t−1 + Zt − Et−1[Zt]}, S+
0 = 0

S−t = min{0, S−t−1 + Zt − Et−1[Zt]}, S−0 = 0
St = max{S+

t ,−S−t }.

6
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According to the cumulative sums, the filter recognizes upward and downward trends in
the observed series. Hence, bars are only sampled if and only if St ≥ h and after sampling
a bar, St is reset. For all CUSUM filter applications in this thesis Et−1[Zt] = Zt−1 is
assumed (López De Prado 2018).

Figure 2.2 illustrates the filtering of observations with a DAX log-return time series
between January 2002 and January 2003. In this figure the sampled observations are
marked by red points. As expected, the CUSUM filter samples observations more
frequently if their deviation to the mean of the time series is relatively high, since the
threshold is exceeded more often. Therefore, it is easy to observe that values around
the mean are less often sampled than the spikes in the series.

Figure 2.2: Applied CUSUM filter

Once the CUSUM filter is applied, machine learning algorithms can determine whether
the occurrence of such events constitutes actionable intelligence. Finally, the choice of
h is arbitrary. López De Prado (2018) specifies some choices for h. For the empirical
analyis h equals to twice the standard deviation of the DAX log-returns.

7
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2.3 Labelling Financial Data

2.3.1 Triple-Barrier Method

In this chapter the triple-barrier method is explained and the main characteristics of
this labelling methodology are demonstrated. Additionally, other methods for labelling
are briefly described in order to compare them with the triple-barrier method.
To apply machine learning methods, data has to be in an adequate form to receive
information from it. Bars can be roughly classified as rows in a data table:

x1,1 x1,2 · x1,p

x2,1 x2,2 · x2,p
... ... ... ...

xT,1 xT,2 · xT,p



The standard bars in financial literature are time bars. This data mostly contains an
open, low, high and close price. Hence, one column in X can contain the log-returns of
the daily close prices. Other features can be added through feature engineering. Once a
matrix X with relevant features is produced out of an unstructural dataset, supervised
learning algorithms require the row of X associated with labels or values y. Since in
this thesis the algorithm should learn to buy or sell a certain asset, returns has to be
classified according to this principle. An often used methodology in the investment
literature to classify returns is the fixed-time horizon method. For instance, a CUSUM
filter can sample a feature matrix X with I rows, {Xi}i=1,...,I drawn from some bars
with index t = 1, . . . , T , where I ≤ T . Then every row Xi can be associated with a
label yi by

yi =


−1, if Rnet

ti,0,ti,0+l < −κ

0, if |Rnet
ti,0,ti,0+l| ≤ κ

1, if Rnet
ti,0,ti,0+l > κ

where the net return Rnet
ti,0,ti,0+l over a bar horizon l is defined by

Rnet
ti,0,ti,0+l =

Pti,0+l

Pti,0
− 1.

8
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Pt represents the price at time t, whereas parameter κ within the fixed-time horizon
method represents a pre-defined threshold value. Although this methodology is very
popular in the investment literature, it reveals a main weakness. The same threshold
is applied regardless of the observed volatility. Since one of the main characteristics
of financial data are volatility clusters, it undersamples observations in low volatility
periods and oversamples observations in periods with high volatility (López De Prado
2018).

In this thesis the thresholds should be set dynamically. In order to compute dynamic
thresholds, volatility can be modelled by an exponentially weighted moving standard
deviation:

σ2
T (EWMA) = λσ2

T−1 + (1− λ)r2
T−1.

The EWMA model captures the dynamic characterisitcs of volatility by applying
weighting factors such that the influence of older timepoints decreases exponentially,
but never reaches zero. The upper equation holds, if the returns mean is assumed as
zero. The smoothing parameter λ controls the decay of the series. A higher λ indicates
slower decay while a lower λ indicates faster decay. In the data analysis of this thesis a
span of 20 was applied to this formula. The decay parameter λ results from this span
by

λ = 2
span + 1 , for span ≥ 1.

Hence, this approach leads to dynamic volatility estimates which can be used for the
triple-barrier method (Zangari 1996).

Now the labelling methodology triple-barrier method is explained. The name of the
triple-barrier method is based on the procedure to label observations according to the
first barrier touched out of three barriers. The vertical barrier is pre-defined by the
number of past bars since the position was taken. The two horizontal barriers represent
the trading orders stop-loss limit and profit-taking. The distance between the individual
positions and these barriers results directly from the EWMA approach. Hence, these
distances are dynamic. If the upper barrier is touched first the observation is labelled
as 1 and if the lower barrier is hit first the observation is labelled as -1. Furthermore, if

9
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neither of these two barriers is touched, the vertical barrier is broken. Then based on
personal preference, the observation is labelled 0 or it will labelled based on the returns
sign. In this thesis the observation is labelled as the return sign which causes a binary
classification problem. The triple-barrier method is illustrated in Figure 2.3:

Figure 2.3: Triple-Barrier Method (López De Prado 2018, p.47)

In this graphic the vertical barrier is touched first and the observation is labelled as 1.
Since the triple-barrier method is path dependent, the entire path spanning [ti,0, ti,0+l]
has to be explored, where l defines the vertical barrier. In the following [ti,1] represents
the time of the first barrier hit and the return associated with this label is denoted by
Rnet
ti,0,ti,1

(López De Prado 2018). As a part of this application, it may happen that labels
overlap. Methods dealing with these characteristics will be explained in subsequent
chapters.

2.3.2 Meta-Labelling

Before describing a solution to deal with dependent labels, the meta-labelling concept
is expounded. While setting a profit-taking and a stop-loss barrier, the triple-barrier
method implies a side methodology by learning to buy or sell an asset. This approach
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is applied to a dataset and some learning algorithm concludes whether to buy or sell an
asset. However, an investor is also interested in the amount of money he or she should
risk in such a bet. Meta-labelling provides a solution for this issue. By learning the side
of an asset, feasible labels are yi ∈ {−1, 1}. Now the algorithm should learn whether to
take the bet (yi = 1) or to pass it (yi = 0). Hence, yi ∈ {0, 1} are appropriate outcomes
in order to compute a probability to derive the size of a bet, when the side of the bet
has already been determined by a primary model (López De Prado 2018).

To describe the effect of meta-labelling, explaining the properties of binary classifier
outcomes is helpful. The confusion matrix A.1 illustrates the classification of binary
outcomes. This error matrix divides observations into two groups of items. The
observations in the left rectangle are called the positives, which exhibit a certain
condition and the other group is called negatives which does not exhibit this condition.
A binary classifier (bordered blue) tries to predict the obseervations class by their features.
The true positives (TP) are correctly predicted positives whereas false positives (FP)
are misclassified as positives. As stated in subsection 4.1.3, precision measures how
many positive classified examples are really positive while recall is the share of true
positives among the positives. Hence, recall does not contain any information about
false positives while precision does not include information about false negatives. For
this reason neither precision nor recall provides a complete evaluation of a performance
algorithm. The combination of precision and recall about the harmonic mean is called
the F1-score (see subsection 4.1.3). The value range of the F1-score is between one and
zero. One means that the classifier predicts all items correctly, such that recall and
precision equals to one. In general, achieving high precision and recall simultaneously
is desired, but this is difficult since increasing the true positives usually comes at a cost
of increasing the false negative area (Zhou 2012).

Considering the structure of the F1-measure, meta-labelling can help to increase this
classification score. According to López De Prado (2018), the first step is to fit a
primary model such that high recall is achieved, even if the precision is not particularly
high. Afterwards a secondary model is fitted to correct for the low precision. For
this purpose, meta-labelling is applied to the positive predicted by the primary model.
Hence, meta-labelling increases the F1-score by filtering out the false positives, whereas
the primary model has already identified most of the positive observations. Overall
meta-labelling is, as previously mentioned, a tool to learn the size of the bet. Therefore,
the secondary machine learning algorithm should learn to recognize whether to take
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the bet or to pass. The “confidence” of the bet is then determined by the prediction
probability. Thus, the investor should take a bet if a high probability is predicted for
the model outcome and otherwise pass. In general, the classification problem shifts
from yi ∈ {−1, 1} (sell, buy) to yi ∈ {0, 1} (take bet, pass bet). “Take bet” means
that the investor either buys or sells the observed asset. To perform this shift, the
primary model has to predict the side of the model {−1, 1}, then the predicted labels
are compared with the true labels. If the prediction was correct y?i is labelled as one,
otherwise as zero. The following matrix gives an example about this procedure:

yi ŷi
prim

1 1
-1 -1
1 -1
-1 1

⇒

y?i

1
1
0
0

Table 2.1: Meta-labelling

Overall, applying meta-labelling leads to a two stage modelling framework. First the
primary model has to be fitted on the training data and predict the side on training
and test data. Then the whole data receives new labels with respect to meta-labelling.
Afterwards, the secondary model is fitted on the training data in order to learn the
patterns between features and labels. After this procedure, the secondary model predicts
the labels on the features of the test data. Both the predictions of the primary model
and the predictions of the secondary model are compared with the true values and their
performance is derived with measures explained above and stated in subsection 4.1.3.

2.4 Sample Weights and Overlapping Outcomes

The previous chapter presented the triple-barrier method as a new methodology to
label financial observations to provide a useful approach for quantitative investment
strategies.
However, the triple-barrier method leads to overlapping outcomes, whenever yi and yj
depend on a common return. Consider yi was a function of price bars that occurred
over an interval [ti,0, ti,1], whereby ti,1 > tj,0 and i < j. Thus, yi and yj will both depend
on a common return Rnet

tj,0,min{ti,1,tj,1} over the interval [tj,0, tj,1]. In the context of the
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triple-barrier method there are three possible occurrences that a label yi = f([ti,0, ti,1])
overlaps with another label yj:

1. tj,0 ≤ ti,0 ≤ tj,1

2. tj,0 ≤ ti,1 ≤ tj,1

3. ti,0 ≤ tj,0 ≤ tj,1 ≤ ti,1

As in most financial time series, these outcomes are not independent. Nonetheless, most
machine learning literature is based on independent and identically distributed data.
An exception are deep learning methods like convolutional neural networks. Hence,
applying machine learning algorithms to IID data leads to better models and more
realistic results (López De Prado 2018).

The following content is about explaining methods which tackle the problem of non-IID
labels. As stated previously, two labels yi and yj are concurrent at t when both are
function of a common return Rnet

t−1,t. A general measure of overlapping can be derived
for every label yi by calculating the number of concurrent labels for each yi. For this
approach the number of labels that are common for a given return Rnet

t−1,t are computed.
For each time point t = 1, . . . , T a binary array {1t,i}i=1,...,I is formed where 1t,i ∈ {0, 1}.
The binary variable equals to one if and only if [ti,0, ti,1] overlaps with [t − 1, t] and
1t,i = 0 otherwise. The time intervals {[ti,0, ti,1]} are not equal since they are created by
the triple-barrier method. After calculating the binary array {1t,i}i=1,...,I , the number
of labels concurrent at time point t are computed by ct = ∑I

i=1 1t,i (López De Prado
2018).

The example in Figure 2.4 describes this approach more precisely. The events origin
and its duration is visualized through the barrier matrix. Every row can be assigned to
one label yi. Also each label has its own binary array in order to compute the number
of concurrent labels at time point t.
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Figure 2.4: Example of concurrent label computing

The equation ct = ∑I
i=1 1t,i is important to calculate the average uniqueness of a label.

The average uniqueness is defined by the label’s uniqueness (non-overlap) over its
lifespan. Then the uniqueness of a label i at time t is

ut,i = 1t,ic−1
t .

Furthermore, the average uniqueness is defined by

ui = (
T∑
i=1

ut,i)(
T∑
t=1

1t,i)−1.

The average uniqueness is helpful to determine the dependency of the labels and can
be used to reduce the undue influence of outcomes that contain redundant information.
In general, the {ui}i=1,...,I needs information that happens in future time. However,
this is not problematic since the average uniqueness is not considered as a feature for
predictive modelling. Finally, the average uniqueness allows to apply a uniqueness
score to a prospective label which is useful for ensemble methods like random forest or
bagging (López De Prado 2018).

Figure 2.5 gives an overview of uniqueness values computed on daily DAX data after
applying the CUSUM filter method to it. It can be seen that most values vary around
0.18.
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Figure 2.5: Histogram of average uniqueness values

After explaining the computation of average uniqueness, the purpose of considering
this computation for bagging classifiers is decribed in the following. To clarify this
step, bagging is briefly described. Bagging is an ensemble method which tries to reduce
the variance of a model by averaging model outcomes by using, for example, several
decision trees. These decision trees are used on a bootstrapped version of the recent
dataset to reduce the overall variance. By using a bootstrapped version of a dataset
the probability to draw a certain observation i after I draws is

P[i ∈ bootstrap sample] = 1− (1− 1
I

)I

≈ 1− exp(−1)
= 0.632.

Note that the above equation is true if the sample size grows. This leads to limI→∞(1−
1
I
)I = 1 − exp(−1). Hence, the expected number of unique observations amounts to

0.632 (Hastie et al. 2009).

However, this is not true if the dataset includes overlapping outcomes. Consider ξ ≤ I

as the number of non-overlapping outcomes in the dataset. Then the equation above
changes to
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P[i ∈ bootstrap sample] = 1− (1− 1
ξ

)I

≤ 1− (1− 1
I

)I
ξ
I

≈ 1− exp(−ξ
I

)

≤ 1− exp(−1).

Hence, the expected number of sampled unique observations are lower than in the
non-overlapping case if ξ < I (López De Prado 2018).
Considering bagging as a classifier on observations with I−1∑I

i=1 ui << 1 leads to an
increasing probability of observations to be redundant to each other. Additionally, the
observations are similar to the out-of-bag observations. Solving the first issue with
I−1∑I

i=1 ui << 1 can be performed by sampling only a fraction of the observations which
is predefined by utilizing the average uniqueness. Instead of drawing I observations,
only I? = I−1∑I

i=1 ui are considered. Therefore, the in-bag observations are sampled
according to their average uniqueness such that they are not sampled at a frequency
higher than their uniqueness (López De Prado 2018).
As mentioned previously, computing average uniqueness on a dataset is a tool to
make bootstrap samples more independent and identically distributed. Furthermore,
observations can be weighted by their return attribution. Obviously, higher absolute
returns should have a higher weight in the fitting procedure of machine learning methods,
because higher absolute returns have a bigger impact on the prospective portfolio return.
Additionally, the uniqueness of label impacts the weight of a label since drawing unique
values is preferred. The following equations provide an idea of weighting observation
returns with respect to their absolute amount over their lifespan.

w̃i =
∣∣∣∣∣∣
ti,1∑
t=ti,0

rt−1

ct

∣∣∣∣∣∣

wi = w̃iI

 I∑
j=1

w̃j

−1
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These weights are scaled up to the number of filtered observations ∑I
i=1 wi = I for

computational reasons. Thus, the method weights an observation according to its
absolute return that is attributed uniquely to it (López De Prado 2018).

In the following, the main points of this chapter are briefly summarized. Average
uniqueness can be utilized to draw an appropriate sample size within a bagging classifier.
Moreover, this methodology makes the samples more IID which is useful for applying
machine learning methods to it. Another part of affecting sample weights is the return
attribution approach, which gives higher absolute returns more impact in the fitting
process.

2.5 Bet Sizing

After applying machine learning methods to a financial dataset, probabilities can be
derived for each value in the dataset. The obvious question regarding investing leads to
appropriate bet sizing or portfolio weights. A machine learning algorithm may achieve
superior performance measures, but without adequate bet sizing the investment strategy
will lose money. The following content is about mapping probabilities to bet sizes.

Let p(y) be a certain probability that the event y takes place, Y = {−1, . . . , 0, . . . , 1}
various labels associated with bet sizes and y ∈ Y the predicted label. For each
label i = 1, . . . , ||Y || a probability pi is estimated, with ∑||Y ||i=1 pi = 1. To test the null
hypothesis H0 : p̃ = 1

||Y || , a test statistic

ζ =
p̃− 1

||Y ||√
p̃(1− p̃)

∼ Φ,

with ζ ∈ [0,∞) can be considered, whereas Φ represents the standard normal distribution.
p̃ is defined by the largest probability p̃ = maxi{pi}. Hence, the bet size can be calculated
with b = y(2Φ(ζ)− 1), where b ∈ [−1, 1] and Φ(.) represents the cumulative distribution
function (López De Prado 2018).

This approach can be illustrated by the example of meta-labelling yi ∈ {0, 1}. Then,
the null hypothesis equals to H0 : p̃ = 1

2 . For every label in the test data the model
predicts two probability values. If p(y = 0) > p(y = 1), p̃ equals to p(y = 0) and if
p(y = 0) < p(y = 1), p̃ equals to p(y = 1). Considering p̃ = p(y = 1), the test statistic
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ζ gets larger with a larger value of p̃. Consequently, this results in a larger bet size, as
illustrated in Figure 2.6 for y = 1.

Figure 2.6: Transformation to bet sizes

Considering y = 0 (p(y = 0) > p(y = 1)), the probability value of p(y = 0) has no
impact on the bet size. This is in line with the meta-labelling approach since predicting
y = 0 suggests not to bet. However, as stated in subsection 2.3.1, the side of the
primary model must be included in this application. For this reason, the bet size b is
multiplicated with either 1 (buy) or -1 (sell). Hence, the y-axis of Figure 2.6 switches
its values range from [0, 1] to [0,−1] in the sell case. As described in subsection 2.3.1,
every label and consequently every bet is associated with a holding period spanning
from the time it originated to the time the first barrier is touched. To consider the
applications overlapping characteristic, all sizes across all bets still active at a given
point in time are averaged. This reduces some of the excess turnover. As it is still likely
that small trades will be triggered with every prediction, the bets are discretized as
visualized in Figure 2.3.1. For this reason, the bet size is adjusted with b? = round[ b

d
]d,

where d ∈ [0, 1] (López De Prado 2018).

The upper approach leads to bet sizes of b = 0. Since this thesis focuses on an investing
approach, the bet sizes are treated as portfolio weights. According to subsection 2.3.1,
the bet sizes with b = 0 are adjusted such that the portfolio remains unchanged. Thus,
the previous portfolio value is assigned to the bet sizes with b = 0.
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3 Machine Learning Applications in Finance

3.1 Sources of Errors in Machine Learning Algorithms

In this section the machine learning algorithms used in the empirical analysis are
explained. Before describing the learning algorithms more precisely, the bias-variance
decomposition will be clarified and investigated.

Considering training observations {xt}t=1,...,T and real valued labels {yt}t=1,...,T , a func-
tion Y = f(x) + ε is assumed, where E[ε] = 0 and Var[ε] = σ2

ε holds. Target of the
later illustrated learning algorithms is to find a function f̂(x) which fits f(x) as well as
possible. Therefore, the prediction error of the fitted function f̂(x) should be minimal
(Hastie et al. 2009).

An expression of the prediction error to a new input x0 can be derived by the usage of
the mean squared error to obtain the variance-bias decomposition. This results in the
variance-bias decomposition as stated by Hyndman (2015) (cf. proof in A.1)

E[(y − f̂(x0))2] = σ2
ε + E[f̂(x0)− f(x0)]2 + (E[f̂(x0)]− E[f̂(x0)])2

= σ2
ε + Bias2(f̂(x0)) + Var[f̂(x0)]

= Irreducible Error + Bias2 + Variance

According to Manning et al. (2009), the upper equation can be transferred to a
classification problem, although it is suited for regression problems. To summarize, the
mean squared error of a new observation consists of the irreducible error, the squared
bias and the variance. The noise term σ2

ε represents the variance of the target around
the true mean f(x0) and cannot be explained by any model. In addition, the bias is
defined by the amount of difference between the average of the estimates and the true
mean. When the bias is high, the algorithm has failed to recognize important patterns,
hence the model is underfitted. As a last point the variance of the estimator f̂(x0) is
defined by the expected squared deviation around its mean. When the variance is high,
the algorithm has mistaken noise for signal, instead of learning the general patterns in
the training data. This phenomenon is called overfitting. As a consequence the model
produces wildly different outputs for minimal changes in the training set (López De
Prado 2018).
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3.2 Logistic Regression

Facing a binary target variable considering logistic regression is a popular model choice
to fit a model. For the model approach T observations of the form of yt, xt,1, . . . , xT,p, t =
1, . . . , T where yt ∈ {0, 1} are considered. The main goal of the binary regression is to
model the features impact on the conditional probability

πt = P(yt = 1|xt,1, . . . , xt,p) = E[yt|xt,1, . . . , xt,p]

for the occurrence of the target variable yt given the features xt,1, . . . , xt,p. One model
assumption is to assume conditional independence of the target variable. For this
reason, the maximum likelihood can be calculated as a product. As mentioned before,
this can be a real issue in the DAX time series because the yt are not independent. To
receive a binary output the outcome of the linear predictor

ηt = θ0 + θ1xt,1 + · · ·+ θpxt,p

with parameters (θ0, θ1, . . . , θp) has to be in the interval [0, 1] (Fahrmeir et al. 2009).

Hence, a transformation function for ηt is required. The sigmoid function
φ(η) = 1

1+exp(−η) = πt maps η to the required range. Maximizing the loglikelihood∑T
t=1 ytlog(φ(ηi)) + (1 − yt)log(1 − φ(ηi)) leads to the desired θ values. As stated by

Raschka & Mirjalili (2017), this can be also expressed by minimizing a penalty function

J(θ) =
[

T∑
t=1

yt(−log(φ(ηi))) + (1− yt)(−log(1− φ(ηi)))
]

+ 1
2C ||θ||

2.

One opportunity to find a good bias-variance trade-off consists of reducing model
complexity by regularization. Penalizing to high θ values is a useful tool to deal with
collinearity and overfitting. In the upper equation L2 loss is represented by ||θ||2. This
can be replaced by L1 loss ||θ||, considering absolute loss instead of squared loss. C
represents the regularization strength in the equation. A decreasing of C leads to a
higher regularization overall. In contrast to decision trees, the logistic regression is in
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general not suited to constitute non-linear patterns between features and the target
variable.

3.3 Classification Trees

Classification trees are a popular tool to detect patterns in a dataset. Introduced by
Breiman et al. (1984), a CART (classification and regression tree) constructs binary
splits top-down. The associated split points are created by a pre-defined split criterion
which is applied to the feature space X . According to Hastie et al. (2009), for a label
yt ∈ {0, 1} with corresponding p features xt = xt,1, . . . , xt,p for t = 1, . . . , T the model
output can be computed by

f(x) =
M∑
m=1

Ôm(x)χRm(x).

Thus, the tree divides the feature space X into M rectangles Rm ∈ X , where Ôm(x) is
a predicted numerical response, class label or class distribution output. In addition,
χRm(x) represents the indicator funtion.
To receive an optimal split, a greedy algorithm called “exhausted search” is used. This
procedure searches the best splitting feature and its corresponding optimal split point
by minimizing a split criterion to divide the dataset into two half-spaces for a split
point v and a feature j

R1(j, v) = {X|Xj ≤ v} and R2(j, v) = {X|Xj > v}.

These half-spaces are divided repeatedly into half-spaces until, for instance, only a
pre-defined amount of observations is left in a half-space. In the case of classification
trees, the algorithm tries to separate the feature space X , such that homogeneous
half-spaces are created (James et al. 2013).
For finding the split points, the resulting half-spaces are compared with the original
dataset by an impurity measure I(R). Consider R as a parent node with two child
nodes R1 and R2. If impurity can be quantified in each half-space, potential splits in a
node R can be evaluated by
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I(R)− |R1|
|R|
I(R1)− |R2|

|R|
I(R2),

whereas |R| represents the number of datapoints in node R (James et al. 2013). The
splitting criteria I(R) for classification trees can be one of the following:

Missclassification Error : 1− p̂mq

Gini Index :
Q∑
q=1

p̂mq(1− p̂mq)

Entropy : −
Q∑
q=1

p̂mqlog(p̂mq)

p̂mq corresponds to the relative frequency of category q in the response node m

p̂mq = 1/Tm
∑

xt∈Rm
χq(yt),

whereas Tm = #{xt ∈ Rm} (Hastie et al. 2009).
In general, these three impurity measures are quite similar. However, the entropy
and gini index criterion are more sensitive to changes in the node probabilities p. In
the data analysis part the entropy measure is considered to split decision trees. In
the case of two classes (yt ∈ {0, 1}) the formula for entropy can expressed through
−∑2

q=1 p̂mqlog p̂mq = −p log(p)− (1− p)log(1− p), where p repressent the fraction of
one class and the basis for log is equal to the number of classes in yt (Hastie et al.
2009).

As mentioned previously, the exhaustive search algorithm tries to separate the respective
dataset into two homogeneous datasets. This coincides with the entropy feature because
the entropy measure is constructed in a way that it has a maximum at p = 0.5. This
represents a half-space with maximum heterogeneity where half of the observations
belongs to one class and the other half to the other class. In this case the algorithm
would if possible choose another split point. Another advantage of decision trees is
their interpretability. In contrast to other machine learning methods, like boosting or
support vector machine, the decision tree fitting procedure can be understood with
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the help of its visualization. In Figure 3.1 an example of a decision tree is illustrated.
The nodes are represented by boxes. A box with a majority of positive labelled classes
(yt = 1) is blue, whereas the opposite case is red. The nodes with a darker blue contain
a greater majority with positive labelled classes than the boxes with a ligher blue. For
this reason, the darker boxes has also a lower entropy. Furthermore, according to López
De Prado (2018), labels are balanced regarding their relative frequency to prevent that
trees or logistic regression misclassify minority classes.

Figure 3.1: Example of a decision tree

3.4 Bagging

The following content is about ensemble methods used in the empirical analysis. The
first model explained is the bootstrap aggregation (bagging) classifier, introduced by
Breiman (1996). In general, decision trees suffer from high variance. This means, by
adding or removing an observation the tree structure can change rapidly. In contrast, low
variance methods like linear regression yield rather similar results if applied repeatedly
to distinct datasets. Utilizing bootstrap aggregation on a statistical learning method
can reduce the variance of the considered model (James et al. 2013).
Consider, for instance, independent observations X1, X2, . . . , XB (each with variance

23



Machine Learning Applications in Finance

σ2) and compute the average of the observations X. Then the variance of the average is
given by σ2/B. Hence, the variance of X can be reduced by adding further independent
observations. Thus, one possibility would be to take as many trainings sets as possible,
build a separate training model for each training set and average the resulting predictions.
However, this is not practical because multiple training sets are in general not available.
As an alternative, bootstrapping can be applied to one dataset to generate B different
sets of observations. With the use of bootstrapping, an arbitrary model is applied to
each of those training sets to receive f̂ ?,1(x), . . . , f̂ ?,B(x) different models. Hence, the
predictions of these models are averaged:

f̂bag(x) = 1
B

B∑
i=1

f̂ ?,i(x).

In classification tasks a majority vote of the B classifiers leads to the predicted class
(James et al. 2013).
As mentioned, bagging’s main advantage is the forecasts variance reduction. Consider
f̂ ?,i(x) as one prediction of B estimators used in the bagging application and σ2 and ρ as
the average single variance and the average correlation of an estimator respectively. In
the lower equation, σi,j = Cov(f̂ ?,i(x), f̂ ?,j(x)) represents the covariance of predictions
and ρ = Corr(f̂ ?,i(x), f̂ ?,j(x)) the correlation. Then the variance of the predictions can
be derived as:

Var
[

1
B

B∑
i=1

f̂ ?,i(x)
]

= 1
B2

(
B∑
i=1

Var(f̂ ?,i(x)) +
B∑
i=1

B∑
i 6=j=1

σi,j

)

= 1
B2

(
Bσ2 +

B∑
i=1

B∑
i 6=j=1

σi,j√
σ2
√
σ2
σ2
)

= 1
B2

Bσ2 +
B∑
i=1

B∑
i 6=j=1︸ ︷︷ ︸

B(B−1)
summands

ρσ2
)

= 1
B2 (Bσ2 +B(B − 1)ρσ2) = σ2

B
(1 + (B − 1)ρ)

= ρσ2 + 1− ρ
B

σ2

Therefore, the effectiveness of bagging depends on the correlation among their forecasts
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ρ, since ρ→ 1⇒ Var[ 1
B

∑B
i=1 f̂

?,i(x)]→ σ2. Thus, as already mentioned in subsection
2.4, producing samples independent samples is very important for bagging. In the worst
case applying bagging is useless regarding the final predictor’s variance. Setting the
maximal fraction of samples according to the average uniqueness of a label reduces the
correlation among the estimators and subsequently lowers the variance of the forecasts.
If, for example, each observation at t is labelled according to the return between t

and t+ 100, only 1% of the observations should be sampled per bagged estimator in
order to make the drawn samples more independent. For this purpose, the number of
observations drawn in the bootstrap approach is reduced to the mean average uniqueness
of the labels I? (López De Prado 2018).

Overall, bagging is a decent method to reduce the variance of a weak learner like trees.
However, it is not a classifier which reduces the bias of an already weak classifier.

3.5 Random Forest

3.5.1 Model Description

As introduced by Breiman (2001), random forest application shares similarities with
the previously mentioned ensemble model bagging. In general, decision trees are perfect
for bagging and random forests because they can identify complex patterns in a dataset
and have low bias if grown sufficiently deep. Random forest is similar to bagging since
the method builds a large collection of de-correlated trees and then average them. For
this purpose, bootstrapping the considered feature matrix X is required to reduce the
variance of fitted decision trees. An average variance of B IID random variables is given
by 1

B
σ2. As mentioned in subsection 3.4, this formula changes for identically distributed

but not independet data to

σ2
(
ρ+ 1− ρ

B

)
.

The core difference between bagging and random forest is the way of sampling columns
of the feature matrix X. In bagging all features are used for each decision tree classifier.
In contrast to bagging, random forests consider only a fraction of features to build
the trees. Thus, the variance of the prediction is reduced by reducing the correlations
between the trees (Hastie et al. 2009). According to subsection 2.4, the random forest
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is slightly modified. In contrast to sampling observations equal to the number of rows
in the dataset, the number of observations equals to the the mean average uniqueness
of the labels I?.

The Algorithm 1, as stated by Hastie et al. (2009), describes the random forest formally:

Algorithm 1 Random Forest for Classification
1. For i = 1, . . . B

(a) Draw a bootstrap sample of size I? from the training data

(b) Grow a random forest tree to the bootstrapped data, by recursively repeating
the following steps for each terminal node of the tree, until the minimum
node size or the maximum depth is reached.

(i) Select √p variables at random from the p variables
(ii) Pick the best variable/split-point among the √p
(iii) Split the node into two daughter nodes

2. Output the ensemble of trees

To make a new prediction at a new point x:
Classification: Let Ôi(x) be the class prediction of the i-th random forest tree. Then
ÔB

RF(x) = majority vote{Ôi(x)}B1

As illustrated in Figure 3.2, the trees are different from each other with respect to
the selected features. A new observation x0 would be pass through all trees and the
majority vote would assign the final label to it.
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Figure 3.2: Example of random forest

3.5.2 Feature Importance

In general, ensemble methods are a powerful tool to find patterns in datasets. However,
the algorithms learn without directing the process to the user (Black Box!). Random
forests deliver not only good results in predictive modelling, their special characteristic
of modelling provides also the possibility to measure feature importance. According
to Breiman (2001), feature importance can be measured by permuting a feature and
subsequently calculating the increase in the model’s predictions. In the following content
three different feature importance methods are described. They mainly differ regarding
their dealing with substitutional effects, applying the feature importance approach to in
sample data or out of sample data and if the method can be used uniquely to tree-based
classifier. Substitution effects take place when estimated importance of one feature is
reduced by the presence of another feature. As stated by López De Prado (2018), it is
an analogy to multicollinearity.

• Mean Decrease Impurity

As stated by Louppe et al. (2013), mean decrease impurity (MDI) is a fast in sample
method specific for tree-based classifier. As described earlier in this section, building a
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decision tree by splitting variables is based on the entropy in the potential tree nodes.
The split point is selected such that the impurity in the subsets is decreased. Hence, for
buliding a decision tree the overall impurity decrease assigned to each feature can be
derived. Facing a forest of trees, these values can be averaged over all trees and ranked
accordingly. Additionally, effects are masked if some features are systematically ignored
by the decision tree in favour of others. This is prevented by setting the maximum
features drawn to one. Consequently, each feature is given a chance to be splitted.
Furthermore, MDI does not address substitution effects in the presence of correlated
features. Thus, the importance of two identically features will be halved (López De
Prado 2018).

• Mean Decrease Accuracy

Mean decrease accuracy (MDA) is a permutation-based feature importance measure
introduced by Breiman (2001). Out of sample observations in random forests can be used
to measure the prediction strength of each feature. To examine feature importance, the
classifier is fitted on features X first. Then it derives its performance scores (accuracy,
log-loss, ROC-AUC). After this procedure, only one feature at once, i.e. each column
of X, is permuted to derive the performance of the classifier. The decrease in, for
example, accuracy as a result of the permutation can be used to derive the feature
importance. One key difference to MDI is that feature importance is based on out of
sample observations, so it measures the predictive power of features. In addition, this
method can be applied to all classifiers, not only to tree-based classifiers. Applying this
procedure to logistic regression would only require a proper cross-validation method.
In addition to these characteristics, MDA is vulnerable to substitution effects in the
presence of correlated features. Considering two identical features, discarding one will
not change the predition, even if the feature is critical for predicting (López De Prado
2018).

• Single Feature Importance

The so far introduced feature importance tools suffer both from substitution effects in
the data. This could lead to false conclusions when the model must be understood,
improved or simplified. Single feature importance (SFI) deals with this problem in
a way, that the out of sample score is computed for each feature in isolation. Hence,

28



Machine Learning Applications in Finance

no substitution effects take place, since only one feature is taken into consideration
at a time. On the other hand, the main limitation of SFI is its incapacity to measure
dependeny structure between two or more features. For example, feature A may be
only useful in connection with feature B, even if feature A is not beneficial alone (López
De Prado 2018).

3.6 Cross-Validation and Tuning

3.6.1 Cross-Validation in Finance

Cross-validation (CV) is a widely used statistical methodology. Its purpose is to
estimate directly the expected extra-sample error Err = E[L(Y, f̂(X))]. This is the
average generalization error, when f̂(x) is applied to an independent test sample. This
methodology can be transferred to the classification case (Hastie et al. 2009).

Cross-validation splits observations drawn from an IID process into two datasets: A
training set and a test set. For obvious reasons every observation should belong to one
dataset, such that no leakage is present. One popular approach is the k-fold CV. With
this approach the dataset is divided into k parts, where one part represents the test
and the other parts the trainig dataset. A machine learning algorithm is applied to the
train partitions and tested on the test partition. Figure 3.3 illustrates the idea of this
methodology for k = 5.

Figure 3.3: Train/test splits in a 5-fold scheme
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The splitting process is described in algorithm 2:

Algorithm 2 Cross-Validation
1. Dataset is partitioned into k subsets

2. For i = 1, . . . , k

(a) Machine Learning algorithm is trained on all subsets excluding i
(b) Fitted algorithm is tested on i

After applying this methodology, K different performance measures are received. In the
regression case this could be K mean squared error estimates while in the classification
case other measures like F1 could be chosen. Hence, the final prediction error can be
estimated by

CV(f̂) = 1
T

T∑
i=1

L(yt, f̂−K(xi)),

where f̂−K(xi) is the fitted function on all partitions excluding the part K (Hastie et
al. 2009).

3.6.1.1 Purging

K-fold CV can be very useful in the presence of IID data, but in financial applications
observations cannot be assumed to be drawn from an IID process. To be independent,
training and test data must be independent. However, especially labelling with the
triple-barrier method provides overlapping labels. In general, identical information in
the training and test set causes leakage. Hence, with

• Serial correlation, i.e. Xt ≈ Xt+1 and

• Overlapping labels, i.e. Yt ≈ Yt+1

in the dataset, information is leaked by placing label t and label t + 1 in different
sets. For instance, a classifier trained on (Xt, Yt) is asked to predict E[Yt+1|Xt+1].
Consequently, the classifier is more likely to achieve Yt+1 = E[Yt+1|Xt+1] even if X is an
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irrelevant feature. In order to prevent the classifier to profit from leakage, overfitting in
the machine learning algorithm should be avoided. During bagging and random forest,
this can be performed by early stopping the decision tree base estimator. A solution
to reduce leakage is called purging. This approach purges all observations from the
training data whose labels are concurrent (cf. subsection 2.4) with those labels included
in the test set. As stated in subsection 2.4, two labels Yi and Yj are concurrent, if they
share at least one common return. Therefore, to purge the training set appropriately,
the different overlapping schemes has to be kept in mind. Whenever one of the three
cases defined in subsection 2.4 occurs, the respective observations have to be removed
from the training dataset (López De Prado 2018).

3.6.1.2 Embargo

Another solution to deal with leakage is called embargo. In this approach an embargo
is imposed after every test set. Considering ti,1 < tj,0, training labels Yi = f([ti,0, ti,1])
contain information which was available at testing time tj,0. Hence, the training set
prior the test set does not need to be affected. The embargo time e can be implemented
by setting Yi = f([tj,0, tj,1 + e]) before purging. As recommended by López De Prado
(2018), a value of e = 0.01T is used in this thesis for imposing embargo. Figure 3.4
illustrates the embargo approach.
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Figure 3.4: Embargo of post-train observations (López De Prado 2018, p.108)

Afterwards, a purged K-fold CV can be derived by purging and imposing embargoing
whenever a dataset is splitted into training and test data. Hence, the main pitfall called
leakage is reduced/prevented.

3.6.2 Hyperparameter Tuning

In this section hyperparameter tuning is briefly introduced. The so called hyperparame-
ters in machine learning applications are not determined by the usual fitting procedure,
but rather pre-defined prior the fitting process. By contrast, for example, the model
parameters θi are optimized in a linear model yt = xtpθ during fitting. Most of the
machine learning algorithms have hyperparameters like pre-defined maximum depth
for trees. The goal is to optimize these hyperparameters with respect to the estimated
prediction error by cross-validation. Hence, tuning can be important to control the
capacity of the model regarding overfitting or underfitting. Since overfitting in terms of
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noise learning is a major issue in analysing financial data, tuning is an important part
of controlling the capacity of the prospective model.

One approach to utilize tuning is grid search. At grid search a pre-defined parameter
set has to be provided. For example, an optimal choice for decision trees’ maximum
depth is desired. A provided parameter set can look like

• max depth {2, 3, 4, 5, 6}

• min weight fraction leaf {0.05, 0.1, 0.15},

where “min weight fraction leaf” represents the minimum fraction of observation in a
leaf. With the grid search methodology every combination of the upper hyperparameters
is evaluated. This can be done by using purged K-fold cross-validation. Thus, the
training set is, for example, partitioned into three parts, where one part is the new test
set and the other two is the respective training set. After applying every combination to
each training set and evaluating the fitted model on the respective test set, the favourite
model is determined by the best result. For classification purposes the performance
measure might be either ROC-AUC, Recall or F1-measure as described in subsection
4.1.3. Afterwards, the best hyperparameter combination is considered for fitting to
the whole training set (López De Prado 2018). The previously mentioned procedure is
visualized in Figure 3.5.

Figure 3.5: A schematic of the tuning process
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4 Backtesting

4.1 Backtest Statistics

To evaluate a potential investment stratgey, several backtest measures can be computed.

4.1.1 Sharpe Ratio

Introduced as a measure for the performance for mutual funds by Sharpe (1966), the
Sharpe ratio

SR = µ

σ

is one of the most popular backtest measures. The purpose of the Sharpe ratio is to
examine the performance of an investment by adjusting it for its risk. Therefore, the
mean µ and standard deviation σ has to be estimated. Thus, the true parameters are
not certainly known. For this reason, the returns {rt}t=1,...,T are assumed to be IID
gaussian with mean µ and variance σ2. For incorporating the excess return as described
by Sharpe (1994), the ex-ante Sharpe ratio is defined by

SR = µ− rf
σ

,

where rf represents the risk-free rate. This equation incorporates a benchmark to
the measure. As mentioned above, the mean µ and standard deviation σ has to be
estimated. This can be done by the sample mean

µ̂ = 1
T

T∑
i=1

rt

and the sample variance

σ̂2 = 1
T

T∑
i=1

(rt − µ̂)2.
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This leads to the estimator of the Sharpe ratio

ŜR = µ̂− rf
σ̂

.

To annualize this measure, ŜR is typically multiplied by
√
a, which represents the

average number of returns per year (Lo 2002). Since the true values of Sharpe ratio are
unknown, its calculations may be subject of estimation errors (López De Prado 2018).

4.1.2 Maximum Drawdown

As stated by Hamelink & Hoesli (2004), the maximum drawdown can be described by
considering a Price P (t) and a overall maximum of all prices Pmax(t)

Pmax(t) = maxt̃≤tP (t̃)

up to the time point t. Hence, the maximum drawdown (MaxDD) can be derived by

MaxDD(t?) = maxt≤t?{P (t)/Pmax(t)− 1}.

The MaxDD measures the stability of an asset or portfolio. It computes the loss, when
the asset was bought at a local maximum and sold at the next local minimum. In
general, this performance measure can be used to evaluate the risk of an investigated
asset. In contrast to volatility, it provides a purly downside measuring value, whereas
volatility is also affected by stock earnings (Hamelink & Hoesli 2004).

For this reason, MaxDD is introduced as additional measure to the backtest analysis.
Figure 4.1 shows the DAX price series with the maximum drawdown marked as red
line.
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Figure 4.1: Maximum drawdown applied to DAX price series

4.1.3 Classification Scores

Classification scores are used to derive the performance of a machine learning algorithm.
In general, it measures the ability of a model to identify labels by its associated features.
For a better understanding of several classification scores, the confusion matrix is
provided below:

True
positivepos′

pos

False
positive

neg

False
negativeneg′

total Pos

True
negative

Neg

predicted
value

true value

A good classifier has a high number of true positives and true negatives.
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4.1.3.1 Area under the Receiver Operating Characterisitcs Curve

Another popular measure is the area under the receiver operating characteristics curve
(ROC-curve). To compute the ROC-curve the true positive rate

tp-rate = TP
Pos

as well as the false positive rate

fp-rate = FP
Neg

are required. Then, the ROC-curve of a classifier is obtained by plotting the false
positive rate against the true positive rate with different threshold values to classify the
predictions. Hence, a higher area under the curve (AUC) suggests a better classifier.
Computing the classifier by the tp-rate and the fp-rate penalizes classifier which simply
predicts one class for each feature row. The ROC-AUC measure provides per definition
a value within the range [0.5, 1]. Thus, a classifier which may have a high accuracy by
predicting always the majority class will have a ROC-AUC of 0.5, whereas the perfect
classifier receives a value of 1 (Fawcett 2006).

4.1.3.2 F1 Measure

As described by Zhou (2012), F1 is computed by

F1 =
Recall−1 + Precision−1

2

−1

.

F1 measure calculates the harmonic mean of precision or recall. Precision is defined by

Precision = TP

TP + FP
,

and measures how many classified positives are really postitive. It is equivalent to the
true-postive rate defined above. Furthermore, recall is computed by
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Recall = TP

TP + FN
.

Recall evaluates the classifier prediction by computing the fraction of really positives
towards the positive classified. For evaluating the models in the empirical analysis both
performance measures, ROC-AUC and F1 are computed to capture the capacity of the
models (Zhou 2012). Then the classifier’s quality is interpreted by considering the four
possible outcomes:

1. High ROC-AUC and high F1: The classifier performs very good independently of
the selected threshold.

2. High ROC-AUC and low F1: The model produces overall bad results. However,
by setting an appropriate threshold, the model can achieve a decent score.

3. Low ROC-AUC and high F1: The classifier currently delivers good results, though
for many other threshold values, the classifier performs badly.

4. Low ROC-AUC and low F1: The model delivers poor results and even changing
the threshold does not lead to better results.

4.2 Walk Forward Method

The most common backtest methodology in literature is the walk forward (WF) approach.
A main characteristic of WF is that each strategy decision is based on observations
that predates the decision. Typically, the dataset is divided into a training and hold
out set, where observations of the hold out set join the training set after prediction.
There are two main advantages of WF:

• WF shows exactly how a certain strategy would have behaved in the past, es-
pecially in the more turbulent market phases. Hence, WF has a clear historical
interpretation.

• As stated by López De Prado (2018), using a WF window guarantees an out-of-
sample testing set (no leakage), if the dataset gets purged properly.
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WF is an intuitive approach. However, the main disadvantage of WF are listed below:

• As stated by Bailey and López de Prado (2014), only a single scenario is tested
which can be easily overfitted.

• WF is not necessarily representative for future performance, results can be biased
by the sequence of datapoints.

• Initial decisions are made on a smaller portion of the total sample. However, it
is not valid for a rolling window, but a rolling window reduces the number of
training observations used for predicting the test sample. Considering a strategy
with a warm-up period leads to a shorter backtest path. Moreover, the strategy
makes half of its decisions on an average amount of datapoints.

As can be seen, although WF has a clear historical interpretation, the approach has
several disadvantages in particular providing only one backtest path (López De Prado
2018). Hence, only one Sharpe ratio, maximum drawdown, F1 and ROC-AUC can
be computed. The impacts of these characteristics are clarified after describing the
combinatorial purged cross-validation method.

4.3 Combinatorial Purged Cross-Validation Method

In this section a new backtest method namely the combinatorial purged cross-validation
method (CPCV) is explained. Moreover, its differences to the walk forward method and
the k-fold cross-validation are examined. In the CPCV approach the user predefines the
expected number of backtest paths ϕ. Furthermore, a certain number of combinations
of training/test sets have to be generated to build these paths, while purging training
and embargoing training sets.

In the first step of the CPCV method, a certain number of splits are generated. For
this approach T observations are partitioned into N groups without shuffling. There
are N − 1 groups of size bT/Nc, whereas the Nth group is of size T − bT/Nc(N − 1)
and b.c represents the floor function. Determing k as the number of testing sets out of
N , the number of possible training/testing splits is given by

(
N

N − k

)
=
∏k−1
i=0 (N − i)

k! .
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For instance, a possible choice of N = 5 and k = 2 results in
(

5
3

)
= 10 different number

of splits. The different combinations indexed as S1, . . . , S10 are illustrated through the
Table 4.1. Test partitions are marked with a cross, whereas train parts are not marked.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
G1 × × × × 4
G2 × × × × 4
G3 × × × × 4
G4 × × × × 4
G5 × × × × 4

Table 4.1: Generated paths for ϕ(5, 2) = 4

The total number of test partitions is calculated as k
(

N
N−k

)
. Since each group N belongs

to the same number of training and test sets, a total number of paths ϕ(N, k) can be
backtested:

ϕ(N, k) = k

N

(
N

N − k

)
=
∏k−1
i=1 (N − i)
(k − 1)! .

The assignment of each tested group of the previously described example is shown in
Table 4.2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
G1 1 2 3 4 4
G2 1 2 3 4 4
G3 1 2 3 4 4
G4 1 2 3 4 4
G5 1 2 3 4 4

Table 4.2: Generated paths for ϕ(5, 2) = 4, Assignment of testing groups

Hence, the first backtest path is built of the predictions from (G1, S1), (G2, S1), (G3,
S2), (G4, S3) and (G5, S4), whereas the second is built from (G1, S2), (G2, S5), (G3,
S5), (G4, S6) and (G5, S7), and so on. In this example a total number of four backtest
paths are generated, by training a classifier on a portion ι = 1− k/N of the data for
each combination. Even if it is possible to create portions ι < 1

2 , it is not recommended
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to consider a higher fraction of test data towards training data. Therefore, in practice
k ≤ N/2 is assumed. This assumption leads to several characteristics of the CPCV
approach. Thereby, the portion of data considered in the training set ι increases with
N → T , but decreases with k → N/2, whereas the number of paths ϕ(N, k) increases
with N → T and with k → N/2. Hence, the number of paths can be maximized by
setting N = T and k = N/2 = T/2. However, this can only be executed at the expense
of training the classifiers on only half of the data for each combination ι = 1/2 (López
De Prado 2018).

As stated by López De Prado (2018), an easy rule of thumb is to determine k = 2
in order to partition the data into N = ϕ + 1 groups, where ϕ is the number of
targeted paths. In general, the case k = 2 will generate ϕ(N, 2) = N − 1 paths, which
is particularly interesting because the classifier will train on a large portion of data
ι = 1− 2/N and almost as many backtest paths as the number of groups N − 1 are
generated. In the limit N = T one observation could be assigned to one group and
ϕ(T, 2) could be created. Then the classifier is trained on a portion of ι = 1− 2/T of
the data per combination.

According to López De Prado (2018), the combinatorial purged cross-validation can be
summarized as described in Algorithm 3:
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Algorithm 3 The Combinatorial Purged Cross-Validation Backtest Algorithm
1. Partition T observations into N groups without shuffling such, that N − 1 groups

are of size bT/Nc, whereas the Nth group is of size T − bT/Nc(N − 1) and b.c
represents the floor function.

2. Compute all possible training/test splits, where for each split N − k groups
constitute training set and k groups constitute the testing set.

3. Apply purging to any pair of labels (yi, yj), where yi belongs to the training set
and yj belongs to the test set. An embargo should be considered if testing samples
predate some training samples.

4. Fit a pre-defined classifier on the (N−k)
(

N
N−k

)
training sets and produce forecasts

on the respective k
(

N
N−k

)
test sets.

5. Compute the ϕ(N, k) backtest paths. Calculate the Sharpe ratio or any other
backtest measure like maximal drawdown, area under the curve and F1, from
each path and derive the empirical distribution of each backtest measure.

To examine the advantages of the CPCV algorithm over walking forward (WF) or
k-fold CV, the variance of both approaches are investigated. Considering a set of S
independent backtests associated with a certain strategy class. These elements of the
set are called trials and a Sharpe ratio ŜRs with s = 1, . . . ,S can be estimated on every
trial. To compute the expected maximum E[max{ŜRs}s=1,...,S ] of these Sharpe ratios,
an investigation of the expected maximum of IID random variables xs ∼ Φ, s = 1, . . . ,S
is helpful. When Φ represents the standard normal distribution the expected maximum
of xs can be approximated as

E[max{xs}s=1,...,S ] ≈ (1− γ)Φ−1
[
1− 1
S

]
+ γΦ−1

[
1− 1
S
e−1

]
≤
√

2log(S),

where γ ≈ 0.5772 is the Euler-Mascheroni constant and S >> 1 (compare proof in A.1).
In addition, the inverse of the CDF of Φ represents Φ[.]−1 and the derivation of the
upper bound

√
2log(S) is described by Embrechts et al. (1997). Hence, with increasing

S, it is expected to find a higher expected maximum E[max{xs}s=1,...,S ].
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Furthermore, it is assumed that the underlying instrument behaves like a martingale.
The martingale exposes E[{ŜRs}s=1,...,S ] = 0 and Var[ŜRs] > 0, whereas ŜRs

Var[ŜRs]
∼ Φ is

supposed. Hence, the expected maximum Sharpe ratio can be derived by

E[max{ŜRs}s=1,...,S ] = E[max{xi}i=1,...,I ]
√
Var[ŜRs].

Although the true Sharpe ratio is zero, it is expected to find one trial with a Sharpe
ratio equal to the just noted equation (Bailey & Lopez de Prado 2014). This equation
is crucial for understanding. As stated by López De Prado (2018), researcher will select
the backtest with the maximum estimated Sharpe ratio, even if the true Sharpe ratio is
zero. Hence, it is necessary to note the number of trials S in walk-forward backtesting.
The Sharpe ratio calculated out of WF exhibits a high variance Var[ŜRs] because a
large portion of the decisions are based on a small portion of the dataset. This can be
reduced by including a warm-up period, but this will reduce the length of the backtest
and therefore increases the variance (López De Prado 2018).

In contrast to WF, CV backtest exhibits a lower variance, since each classifier is trained
on an equal portion of the whole dataset. Moreover, the backtest path is longer which
reduces the variance. However, WF and CV still estimate Sharpe ratio from a single
path for a trial. Thus, the estimate ŜRs may be high volatile. As opposed to WF
and CV, CPCV derives its Sharpe ratios from a large number of paths, with mean
E[{̂SRs,j}j=1,...,ϕ] = µs and variance Var[ŜRs] = σ2

s . Therefore, the variance of the
CPCV paths sample mean can be calculated by

Var[µs] = ϕ−2(ϕσ2
s + ϕ(ϕ− 1)σ2

sρs) = ϕ−1σ2
s(1 + (ϕ− 1)ρs).

Referring to this equation, ρs represents the average off-diagonal correlation among
{̂SRs,j}j=1,...,ϕ, whereas σ2

s serves as variance of the Sharpe ratios across paths for
strategy s. In general, CPCV has the same goal as bootstrapping: Reducing variance.
Hence, ρs < 1 implies that the variance of the sample mean is lower than the variance
of the sample

σ2
s

ϕ
≤ Var[µs] < σ2

s .
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A decreasing correlation between the paths leads to a lower CPCV variance. In the
limit CPCV will report the true Sharpe ratio E[{ŜRs}] = 0 with zero variance because
limϕ→∞Var[µs] = 0. However, this cannot be achieved, since ϕ has an upper bound
ϕ ≤ ϕ[T, T2 ]. In general, the high number of paths leads to a more confident estimate
of the true Sharpe ratio and leads to fewer false discoveries in contrast to WF and CV
(López De Prado 2018).
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5 Empirical Analysis

5.1 Descriptive Analysis

The following section provides a descriptive overview of the DAX and the REXP, as
well as the return structure of the DAX series after applying the CUSUM filter on it.
The DAX index contains the 30 biggest and most liquid companies of the German
stock market, whereas the REXP is a performance index for German government bonds.
For the data analysis the time period between April 1992 and December 2018 was
investigated and daily data is used to perform the data analysis. Hence, the dot-com
crash 2000-2002 and the subprime crisis 2007-2008 are included in the investigated
dataset. The dot-com crash, for instance, causes the DAX to lose almost all of its
earnings of 1992. However, the REXP exhibits a nearly linear trend from 1992 to 2018.
This is visible in Figure 5.1 (plotted on Log-scale).

Figure 5.1: Price series DAX/REXP

Overall, the REXP seems more stable, especially in the financial crisis. This can be
also investigated in the log-returns of the time series, displayed in Figure 5.2, which is
based on a sample size of T = 6753 observations. Furthermore, typical characteristics
like volatility cluster and other stylized facts can be observed. Table 5.1 confirms this
statement with some relevant statistics of percentage log-returns. Both series have
a positive mean, whereas the DAX log-returns has a far higher standard deviation
than the REXP log-returns. The REXP log-returns are left skewed while the DAX
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log-returns are slightly right skewed. The kurtosis conveys that both series have a sharp
peak around the mean and especially the DAX log-return series has heavy tails.

Figure 5.2: Log-return series DAX/REXP

Index Median Mean Std.Dev. Min Max Skew Kurt
DAX 0.079 0.027 1.408 -8.875 10.798 11.83 447.66
REXP 0.024 0.020 0.214 -1.894 1.935 27.40 524.81

Table 5.1: Summary of DAX log-returns

In Figure 5.3 the DAX log-return series is plotted against a gaussian distribution. The
compared distribution is computed by gaussian random variables with the same mean
and variance as the DAX log-returns. As mentioned previously, both time series (REXP
distribution visible in Figure A.2) have heavy tails and have a sharp peak around their
mean. In addition, the correlation between the two time series is -0.105.
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Figure 5.3: Histogram DAX

As stated by López De Prado (2018), a machine learning algorithm wants to learn from
relevant examples. As explained in subsection 2.2, the symmetric CUSUM filter is a
helpful tool to achieve this objective. By setting the parameter h to two times the
standard deviation of the log-returns h = 2 × σDAX Log-returns = 0.028, the symmetric
CUSUM filter is applied to the DAX time series. Figure 5.4 illustrates the resulting
distribution.

Figure 5.4: Filtered DAX

The original unimodal distribution changes to a bimodal distribution. This result
is expected since applying CUSUM filter deletes values under the threshold h. As

47



Empirical Analysis

mentioned in subsection 2.2, a big disadvantage of this method is the rather arbitrary
choice of the threshold h.

Before the modelling part, the labels must be computed. For this purpose, the triple-
barrier method, described in subsection 2.3.1, is applied to the filtered dataset. As a
vertical barrier 60 days equivalent to ≈ 42 trading days are selected for the expiration
limit. Since potential losses and gains are equally weighted, the horizontal barriers are
constructed to be symmetric. These bandwidths depend on the estimated volatility. As
stated in subsection 2.3.1, the volatility is estimated by an exponential moving average
method with a span of 20. To get a binary classification problem, a hit at the vertical
barrier is labelled as the sign of the return. Overall, this procedure yields the number
of class labels shown in Table 5.2.

upp low vert

# Hits 507 351 272
⇒ Positive Label Negative Label

645 485

Table 5.2: Barrier hits converted to labels

Hence, positive labels form the majority of the observations with a share of 57.1%.
Another important step to improve modelling is applying sample weights to the obser-
vations. As described in subsection 2.4, the sample weights are computed by using their
absolute amount and their uniqueness. Consequently, for bagging and random forest
more indpendent bootstrap samples are considered. For the filtered time series used
in further applications, the computation of sample weights yields a positive skewed
distribution (cf. Figure 5.5). The median weight equals to 0.86, whereas the mean value
equals to 1. Furthermore, the largest weights represent enormous turbulent dates with
respect to the financial markets.
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Figure 5.5: Sample weight distribution

The maximum weighted observation is represented by the 11 September 2001. This day
represents the loss in the DAX caused by the terrorist attacks in New York. In addition,
this observation is also the most negative return in the series. Thus, this observation is
weighted with a value of 5.4, which is about 5 times higher than an average weighted
value in the sample weight vector. In the right graphic of Figure 5.5 the sample weights
are sorted by size and their cumulative sum is shown. As illustrated in the figure,
around 35% of the data represents about 60% of the overall sample weights. Comparing
this with equally weighted observations leads to the conclusion that introducing sample
weights can lead to a heavy impact in terms of modelling.
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5.2 Selected Features

In the following content the engineered features for the data analysis are described
and their correlation is computed. All features are built from the DAX price series.
Furthermore, a Principal Component Analysis (PCA) was performed on the data. One
possible feature is the fractional differentiated price series. As explained in subsection 2.1,
this approach can lead to a good feature for predicting financial observations. To utilize
this approach several values between 0 and 1 are considered for the fractionalization
parameter d. Then the Fixed-Width Window Fracdiff method is used to compute the
fractional differentiated series. This procedure is printed in Table 5.3.

d 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
ADF stat -1.70 -1.83 -2.02 -2.29 -2.59 -2.99 -3.39 -4.02 -4.62
p-value 0.43 0.36 0.28 0.18 0.09 0.04 0.01 0.00 0.00

Table 5.3: ADF statistics results for fractional differentiation of DAX time series

For considering α = 0.05, the value d = 0.35 is suggested, which is illustrated in A.3.
Supposing this value for fractional differentiating leads to the time series displayed in
Figure 5.6.

Figure 5.6: Fractional differentiated series

Overall, the mean of the time series in Figure 5.6 varies over time and consequently
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weak stationarity is questionable. The fractionalized differentiated series is only one
feature of many used in this thesis. A list of features engineered for the analysis is
presented below. These are similar to those selected by Bao et al. (2017). Instead of
the filtered dataset all features are computed using the original DAX price series or
log-returns. Then the filtered events are considered for the final feature matrix.

1. Rolling mean

• 5-day Moving average (roll_mean_5)

• 10-day Moving average (roll_mean_10)

2. Rolling exponential weighted mean (EWM)

• 10-day EWM (roll_mean_ewm_10)

• 20-day EWM (roll_mean_ewm_20)

3. Rolling volatility

• 5-day Moving standard deviation (roll_vola_5)

• 10-day Moving standard deviation (roll_vola_10)

4. Momentum feature

• Percent price change of four business weeks (momentum_20)

• Percent price change of six business weeks (momentum_30)

5. Autocorrelation

• 20-day autocorrelation (lag = 1) (roll_auto_corr_1)

• 20-day autocorrelation (lag = 3) (roll_auto_corr_3)

6. Differentiation features

• Log-Returns (log_rets)

• Log-Return shift1 (log_rets_1)

• Log-Return shift3 (log_rets_3)

• Fracd series (frac_diff_feat)
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To receive information about the correlations between the seperate features, the spear-
man correlation coefficient is computed between each pair of feature. Figure 5.7 indicates
strong correlation between the moving average features and the momentum feaures.
High correlations can be a problem in modelling in terms of multicollinearity. In the
case of perfect multicollinearity, the moment matrix has not full rank. Hence, the
inverse of the moment matrix can not be computed. As explained in subsection 3.2, the
logistic regression alleviates this problem by imposing a size constrain on the coefficients.
Furthermore, applying principal component analysis to the dataset solves this issue.

Figure 5.7: Correlation matrix

Before choosing a model for these features, the feature importance is measured by the
three methods described in subsection 3.5.2 with a random forest. As stated by López
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De Prado (2018): “Backtesting while researching is like Drinking and Driving. Do
not research under the influence of a backtest.” Therefore, before a certain strategy is
selected, research must be finished. Since every method has advantages and disadvan-
tages, all three methods are considered to measure feature importance. Furthermore,
every method will be performed with and without sample weights in order to conduct
backtesting afterwards.

5.2.1 MDI

Figure 5.8: MDI feature importance

As stated in subsection 3.5.2, feature importance measured by mean decrease impurity
(MDI) is based on the entropy in the potential split points. By computing several trees
with bootstrapped samples, a certain value can be assigned to each feature by counting
the number of split points in the trees. In Figure 5.8 the feature importance based on
MDI is plotted with (right graphic) and without (left graphic) sample weights. The
horizontal lines are the standard deviations of the means, whereas the dotted vertical
line represents the feature importance value if all features are weighted equally, so 1/14.
Hence, this line separates features whose importance exceeds what would be expected
from undistinguishable features. Without incorporating sample weights, the rolling
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volatility features, momentum features and the fractional differentiated DAX are ranked
above the dotted red line. In contrast to this result, by incorporating sample weights,
the log-returns and the rolling average features are identified as important, whereas
rolling volatility and the fractional differentiated series are ranked very low.

5.2.2 MDA

Figure 5.9: MDA feature importance

By using MDA as feature importance tool, the figure is different in terms of the x-axis.
In Figure 5.9 the out of sample improvement of the feature regarding the performance
measure is denoted by the x-axis. It measures the percentage change of the ROC-AUC
measure when the repective feature is not permuted in contrast to the permuted case.
For instance, the log_rets feature leads to an average improvement of 5.5% in contrast
to the case when log_rets is permuted in the case with sample weights. It is also visible
that all ranked features have a high standard deviation. The best features considering
no sample weights are the fracdiff series, log return change of the last three trading
days, the percent price change of two business weeks and the 5-day moving standard
deviation. Incorporating sample weights delivers again different results. Log-return is
ranked as the best predictive feature and the 20-day EWM as second best. In both
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applications the 5-day rolling standard deviation and the percent price change of two
business weeks are ranked relatively high. Furthermore, all features in both approaches
crosses the null value on the x-axis except for the three best ranked features respectively.

5.2.3 SFI

Figure 5.10: SFI feature importance

Figure 5.10 exhibits the respective feature importances resulting from the single feature
importance approach. Single feature importance measures the influence of a feature
independent of the others. Without incorporating sample weights, all features reach
with a ROC-AUC around 0.5 rather similar results. This means that a feature alone has
no predictive power. Considering sample weights leads to different results. Log-returns
are ranked again as the best feature. Other high ranked features are the rolling mean
features. They reach a better score than without sample weights. Only considering
Figure 5.10 would lead to the conclusion that incorporating sample weights features
have some predictive power. However, this holds not for the case without sample
weights.

One simulation run will include PCA applied to the features. For this reason, the PCA
is first applied to the filtered data. As described by Alexander (2001), PCA reduces
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the dimension of the feature matrix X by orthogonalizing the variables. Thus, the
feature matrix gets diagonal. PCA has several advantages. It is an efficient way to deal
with the multicollinearity problem. After applying PCA, efficient parameter estimation
is possible, even if the feature matrix implies strong correlated features. Since there
are strong estimated correlations between the rolling mean features, PCA might be
a good transformation for receiving better model outcomes. As stated by López De
Prado (2018), re-scaling the feature matrix X is an important step before applying
PCA. The first principal component is dominated by the high variance of some features
without re-scaling. No deeper relationship between features would be revealed. Thus,
the feature matrix gets standardized before PCA. As an illustration, PCA is applied
on the filtered feature matrix. Figure 5.11 shows the cumulative sum of the explained
variance per number of components.

Figure 5.11: Explained variance, PCA

In the simulations the principal components are selected such that 95% of the variance
is explained. Figure 5.11 shows that four principal components are enough to reach
this target.
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5.3 Backtesting Results

In the following section the backtesting results of four different models

• Logistic Regression (LogR)

• Bagged Logistic Regression (B_LogR)

• Bagged Decision Trees (B_Trees)

• Random Forest (RF)

are considered with different base number of features introduced in the former section.
Overall, the models are applied to the filtered data with all features, the respective
principal components, and a determined collection based on the results of the feature
importance plots. The models are evaluated based on performance measures ROC-AUC,
F1, Sharpe ratio and maximum drawdown. Since the CPCV algorithm is used for
backtesting, instead of a single result a distribution of results is provided. In this thesis
ϕ = 30 backtest paths are generated. Therefore, considering the rule of thumb given
by López De Prado (2018), determining k = 2 results to N = ϕ + 1 = 31 partitions.
Sampling two partitions out of 31 without replacement leads to overall 465 different
combinations of training and test partitions. As stated in subsection 4.3, in each of this
465 combinations a pre-defined model is fitted on the 29 training partitions and predicts
the observations of the other two partitions. Out of this predictions, 30 backtest paths
are created.

For modelling a two-stage framework as explained in subsection 2.3.2 is employed. As
stated by López De Prado (2018), the primary model tries to achieve a high recall.
Thus, most positives are identified by the primary model. For this purpose, the primary
model is tuned on the respective training data in order to achieve a high recall. After
the side of the model has been determined by the primary model, meta-labelling is
applied and the so far feasible labels transform from {−1, 1} to {0, 1}. In addition,
the side feature provided by the primary model is considered for further modelling.
In the next step, the secondary model is tuned by the F1 score to filter out the false
positives. The secondary model gives a suggestion whether to adjust the portfolio (1)
or not (0). Adjusting the portfolio means that the secondary model suggests to acting
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or passing based on the given features and the side prediction from the primary model.
The overall procedure is roughly summarized in Figure 5.12.

Figure 5.12: Model procedure

For tuning both the primary and the secondary model, one parameter set is provided
respectively. Only the logistic regression and the decision tree is tuned. As suggested
by López De Prado (2018) 1000 trees are considered for random forest and bagging.
This ensures that the final majority vote is based on a lot of results provided by the
respective decision trees.

Model Logistic Regression Decision Tree
Parameter • Penalty: [L1, L2] • Tree depth: [3, 4, 5, 6]

• Regl. str. [0.01,0.1, 1] • Min.weight.frc. [0.05, 0.075, 0.1]

Table 5.4: Summary of tuning parameters

To prevent overfitting a rather strong regularization parameter set is provided. Regl.
str. represents the regularization strength in the logistic regression which is useful in the
case of collinear features and to prevent overfitting. These weights are evaluated with
both L1 and L2 loss. Overfitting of decision trees is controlled by the maximum depth
of the trees. A tree with many nodes is likely to overfit financial data. In addition,
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Min.weight.frc. represents the minimum weighted fraction of all input samples required
in a leaf node. For instance, if the parameter equals to 0.05, at least 0.05% of the input
samples must be in a leaf node, otherwise the leaf node is not created.

In the following, the investing strategy is briefly discussed. After receiving prediction
probabilities of the model environment, these outcomes must be converted to bet sizes.
The bet size is calculated as described in subsection 2.5. The computed bet sizes are
used as portfolio weights for the DAX index. Since the DAX has a bigger maximum
drawdown and a higher standard deviation as the REXP, only a very confident model
should lead to higher portfolio weights. However, the DAX index has also a higher
mean. For this reason, the DAX weight in the portfolio increases with the probability
size of the model outcome. Considering the overall invested wealth Ψi at time point i,
the following equation expresses this strategy

Ψi = bDAX
i Ψi + (1− bDAX

i )Ψi = ΨDAX
i + ΨREXP

i

In the following subsections the models are backtested with all features, features selected
by a PCA and a pre-defined selection of features. Sharpe ratio, maximum drawdown,
ROC-AUC and F1 are computed on 30 backtest paths. The resulting performance
distributions are visualized with boxplots. An single REXP portfolio has a yearly
Sharpe ratio of 1.1 and a maximum drawdown of 0.05, whereas a 100% DAX portfolio
has a maximum drawdown of 0.72 and a Sharpe ratio of 0.45. Short selling is not
allowed and the respective negative bets are set to Null.
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5.3.1 All Features

Figure 5.13: All features: Sharpe ratio, maximum drawdown

Figure 5.14: All features: ROC-AUC, F1

Figure 5.14 shows rather poor results for the application where all features are considered.
According to the ROC-AUC, the classification power of all models is weak, though
the F1 measure is larger, when applying sample weights. The logistic regression has a
high median F1 measure. However, the median of the ROC-AUC is near 0.5. When
applying sample weights, logistic regression, random forest and bagged trees lead to
better results compared to bagged logistic regression with respect to the F1 measure.
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The performance regarding the Sharpe ratio is also relatively weak. Without sample
weights, bagged trees exhibit the worst results regarding maximum drawdown and
Sharpe ratio.

In Figure A.4 the DAX portfolio weights are illustrated. Therefore, the backtest paths
were bootstrapped to generate a 95% confidence interval. Figure A.4 shows very small
DAX weights. Without considering sample weights, the logistic regression and the
bagged logistic regression have more stable DAX weights. This means that the model
rejects to change the portfolio. On the contrary, bagged trees and random forest have
more unstable portfolio weights, and in general higher DAX weights. In Figure A.5 the
cumulative performance of the respective models is compared with an investment in
the DAX and the REXP respectively. In all models, the portfolio investment is highly
correlated with the REXP because the DAX weights are very low. In Figure A.5 bagged
trees yield the best results, when incorporating sample weights.

5.3.2 Principal Component Analysis

Figure 5.15: PCA: Sharpe ratio, maximum drawdown
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Figure 5.16: PCA: ROC-AUC, F1

In the application features are transformed by PCA. As illustrated in Figure 5.16,
incorporating sample weights in bagged trees and random forest leads to better model
performance results compared to logistic regression and bagged logistic regression. When
considering sample weights, random forest and bagged trees have a median ROC-AUC
around 0.6, which is high for stock price predicting. Regarding the F1 measure, random
forest and bagged trees expose high values compared with bagged logistic regression.
Without sample weights the model results are rather weak, although logistic regression
and bagged logistic regression exhibit better ROC-AUC values. By including sample
weights, random forest and bagged trees lead to better results regarding Sharpe ratio
compared to logistic regression and bagged logistic regression. In the case of no sample
weights these models score badly in comparison with logistic regression and bagged
logistic regression. In Figure 5.15 the maximum drawdown results of the respective
models are illustrated. Most models have outliers regarding this statistic. Without
sample weights the random forest has the highest median maximum drawdown. In
Figure A.6 the DAX portfolio weights are plotted. Again, the model predictions lead to
very low DAX portfolio weights. The cumulative performance of the respective portfolio
against DAX and REXP is illustrated in Figure A.7. Bagged trees lead to the best
results in comparison with the other models.
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5.3.3 Best Features

Figure 5.17: Selected features: Sharpe ratio, maximum drawdown

Figure 5.18: Selected features: ROC-AUC, F1

Using the insights of the research, modelling might improve by considering the best
features. In Table 5.5 the selected features are listed.

In Figure 5.18 the results of the models regarding ROC-AUC and F1 measure are
illustrated. Bagged trees and random forest exhibit superior model performance when
incorporating sample weights. This can be observed regarding all four backtest measures.
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Without sample weights With sample weights
features • frac_diff_feat • log_rets

• momentum_20 • momentum_20
• roll_vola_5 • roll_mean_10
• log_ret_3 • roll_mean_ewm_20

Table 5.5: Selected features

Without incorporating sample weights, the model results are rather weak. Furthermore,
the logistic regression and the bagged logistic regression fail to identify patterns in the
dataset. This might be caused by the collinearity of the selected features. In Figure
A.8 the DAX portfolio weights are plotted. In contrast to the low portfolio weights
regarding logistic regression and bagged logistic regression, random forest and bagged
trees exhibit comparatively high DAX weights. The weights in these two cases vary
a lot and are rather jagged. This behaviour exposes a downside of the meta-labelling
approach. Since the varying portfolio weights is accompanied with high transaction
costs. In Figure A.9, the cumulative performance is visible. By considering sample
weights, bagged trees and random forest exhibit a very good performance. These two
portfolios achieve a higher return than the only DAX portfolio. Furthermore, the risk
in these two portfolios seems relatively low in comparison with the DAX index.

In general, including sample weights leads on average to far better model results,
especially with random forest and bagged trees. Bagged logistic regression exhibits
often worse results than applying the logistic regression alone. Applying PCA and
including sample weights in random forest and bagged trees results in solid results.
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6 Summary and Outlook

Predicting financial time series needs a completely different framework compared to
“usual” machine learning tasks like loan predicting. An algorithm which perfectly
predicts car images, could probably fail to predict stock movements. The framework in
this thesis considers the specific characteristics of financial time series. The triple-barrier
method incorporates the heteroskedasticity of time series by labelling observations in
consideration of volatility movements. Another point to deal with is the low signal
to noise ratio which is a special characteristic of financial time series. CUSUM filter
offers an opportunity to deal with this issue by providing an event-based sampling
methodology, though the selection of the threshold parameter is arbitrary. Another
point of financial machine learning is the dependency between the observations. Most
of non-financial machine learning researcher assume that the observations are drawn by
an IID process. This is not valid for financial machine learning. Most labels overlap,
and therefore it cannot be assured which features caused a certain outcome. Sampling
weights by their absolute amount of return and their uniqueness tackles this problem.

In this thesis the upper preprocessing steps were considered to provide a dynamic
investing strategy. Four models with and without sample weights were applied the
the DAX dataset. Meta-labelling was applied to increase the F1-measure and learn
the size of the model. To convert probabilities to bets or rather portfolio weights, a
bet sizing approach as stated by López De Prado (2018) was applied. These bets in
range of [0, 1] were considered as portfolio weights for the DAX time series, whereas
the remaining part is invested in the REXP time series. Before considering the CPCV
algorithm to start backtesting, feature importance measures were calculated on the
filtered dataset. Three measures with different advantages were calculated with and
without sample weights. By incorporating sample weights, the features incorporating
the rolling mean and the last returns were ranked as superior features to predict the
patterns in the DAX time series. Without consideration of sample weights, the fractional
differentiated time series was ranked high. After evaluating feature importance, the
CPCV algorithm was considered for backtesting the methods. 30 paths were generated
to confront the models with different scenarios. In general, the models were evaluated
with different feature constellation and with the performance measures ROC-AUC,
F1, Sharpe ratio and maximum drawdown. First, all features were considered for
backtesting. In this application all models performed rather poorly. PCA improved the
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model results, especially regarding bagged trees and random forest, when sample weights
were considered. Keeping only the “best” features regarding their feature importance
leads to superior results. Random forest and bagged trees exhibit high Sharpe ratios
and low maximum drawdowns, when incorporating sample weights. Logistic regression
and bagged logistic regression were mostly not able to detect predictive patterns in the
dataset.

This thesis mainly considered DAX time bars. However, as explained by López De
Prado (2018), time bars have rather poor statistical properties like autocorrelation and
non-normality. As stated by Mandelbrot & Taylor (1967), so called tick bars exhibits
desirable statistical properties. Furthermore, volume or dollar bars could be considered
for the same reasons as tick bars. Achieving returns closer to the IID assumptions
could be useful because many models require these assumptions (López De Prado 2018).
In further applications other models as neural networks or boosting could be tested.
However, these models must be used carefully, otherwise they mistake noise for signal.
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A Appendix

A.1 Proofs

• Mean-squared error decomposition

E[(y − f̂)2] = E[(y − f + f − f̂)]
= E[(y − f)2 + (f − f̂)2 + 2(y − f)(f − f̂)]
= σ2 + E[(f̂ − f)2] + 2E[(y − f)(f − f̂)]

Note that f = f(x0) and f̂ = f̂(x0) are abbreviated. The second term can be simplified
by means of following expressions:

E[(f̂ − f)2] = E[(f̂ − E[f̂ ] + E[f̂ ]− f)2]
= E[(f̂ − E[f̂ ])2] + (E[f̂ ]− f)2 + 2E[(f̂ − E[f̂ ])(E[f̂ ]− f)]
= Var[f̂ ] + Bias2[f̂ ] + 2E[(f̂ − E[f̂ ])(E[f̂ ]− f)]

These equations leads to the upper results since E[(y−f)(f−f̂)] and E[(f̂−E[f̂ ])(E[f̂ ]−
f)] equals to zero

E[(f̂ − E[f̂ ])(E[f̂ ]− f)] = E
[
f̂E[f̂ ]− E[f̂ ]E[f̂ ]− f̂f + E[f̂ ]f

]
= E[f̂ ]E[f̂ ]− E[f̂ ]E[f̂ ]− E[f̂ ]f + E[f̂ ]f
= 0
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E[(y − f)(f − f̂)] = E[yf − f 2 − yf̂ + ff̂ ]
= f 2 − f 2 − E[yf̂ ] + fE[f̂ ]
= −E[(f + ε)f̂ ] + fE[f̂ ]
= −E[ff̂ ]− E[εf̂ ] + fE[f̂ ]
= 0

The last equation E[εf̂ ] equals to zero, because ε and f̂ are independent since ε on the
new data point x0 is independent of the other data points which were used to create f̂
(Hyndman 2015).

• Maximum value

In this proof a derivation for a sample maximum maxs = max{zs} should be derived, as
stated by Bailey et al. (2014). Supposing a sample of s = 1, . . . ,S IID random variables
and zs ∼ Φ, whereas Φ is the CDF of the standard normal distribution. Applying the
Fisher-Tippett-Gnedenko theorem to the gaussian distribution leads to

limS→∞P[maxS − α
β

≤ x] = G(x),

whereas G(x) = exp(−exp(−x)) represents the CDF of the Standard Gumbel distribu-
tion. Furthermore, the normalizing constants β and α are defined by: α = Φ−1[1− 1

S ],
β = Φ−1[1− 1

S exp(−1)]− α. Φ−1 corresponds to the inverse of the standard Normal’s
CDF (Embrechts et al. 1997). In addition, the limits of a normalized maxima are
defined by

limS→∞E[maxS − α
β

] = γ,

where γ represents the Euler-Mascheroni constant. Thus, for a sufficient large S the
expected maximum of a standard normal distribution can be expressed by

≈ α + βγ = (1− γ)Φ−1[1− 1
S ] + γΦ−1[1− 1

S exp(−1)] (Bailey et al. 2014).
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A.2 Figures

Figure A.1: Confusion matrix

Figure A.2: Histogram REXP
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Figure A.3: Test statistic for different d values
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• All features

Figure A.4: DAX portfolio weights, all features
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Figure A.5: Cumulative performance, all features
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• PCA

Figure A.6: DAX portfolio weights, PCA
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Figure A.7: Cumulative performance, PCA
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• Best features

Figure A.8: DAX portfolio weights, best features
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Figure A.9: Cumulative performance, best features
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B Electronic Appendix

The electronic appendix consists of the classes folder, Simulations folder, snippets.py
script and the document folder.

• Classes folder

– Preprocessing_class: Contains the code of the preprocessing class. Thus,
the computation of the sample weights and the fracdiff series are included

– CPCV_backtest_algorithm: Creates a CPCV object which is used for the
backtesting

• Simulations folder

– Comprises three folders, all_feats, pca and best_feats. All of the three
consists of a python script and the results as PKL data respectively

– graphic_script: Produces the graphics out of the PKL data

– descriptive_analysis: Includes the code to create all graphics in the thesis
with the exception of the figures in subsection 5.3

• Snippets: Contains several support functions to enable the two main classes
working

• Document folder

– Masterthesis: The thesis as PDF document

– Image folder: Comprises all images illustrated in the thesis

– Data folder: Contains DAX data (retrieved April 6, 2019, from
https://stooq.com/q/d/?s=^dax) and REXP data (retrieved May 22,
2019, from https://www.ariva.de/rex_performance-index/historische_
kurse?boerse_id=12&month=&clean_split=1&clean_split=0&clean_
payout=0&clean_bezug=1&clean_bezug=0; missing data at Au-
gust 26, 2013 & March 12, 2013 replaced with data from https:
//www.finanzen.net/zinsen/historisch/rex-performance-index, retrieved May
22, 2019)
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The simulations and figures were computed with Python 3.7.0 (Van Rossum & Drake
2011) and Spyder 3.3.4. (Raybaut & Cordoba 2009). The considered packages are listed
below with the respective version number and source.

• Cython 0.29.4 (Behnel et al. 2011)

• matplotlib 2.2.3 (Hunter 2007)

• multiprocess 0.70.7 (McKerns et al. 2012)

• numba 0.39.0 (Lam et al. 2015)

• numpy 1.15.4 (Walt et al. 2011)

• Pandas 0.23.4 (McKinney 2010)

• scikit-learn 0.19.2 (Pedregosa et al. 2011)

• scipy 1.1.0 (Jones et al. 2001)

• seaborn 0.9.0 (Waskom et al. 2014)

• statsmodels 0.9.0 (Seabold & Perktold 2010)

• tqdm 4.26 (Costa-Luis 2019)
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