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Abstract

This paper explores inequalities in IQ and economic preferences between children
from high and low socio-economic status (SES) families. We document that children
from high SES families are more intelligent, patient and altruistic, as well as less
risk-seeking. To understand the underlying causes and mechanisms, we propose a
framework of how parental investments as well as maternal IQ and economic prefer-
ences influence a child’s IQQ and preferences. Within this framework, we allow SES
to influence both the level of parental time and parenting style investments, as well
as the productivity of the investment process. Our results indicate that disparities
in the level of parental investments hold substantial importance for SES gaps in eco-
nomic preferences and, to a lesser extent, [Q. In light of the importance of I1QQ and
preferences for behaviors and outcomes, our findings offer an explanation for social
immobility.
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1 Introduction

Both economic theory and empirical evidence have established a robust link between I1Q and
economic preferences and many important outcomes in life. More intelligent individuals
achieve higher levels of education, income, occupational status, job performance and better
health outcomes (Heckman and Vytlacil, 2001; Schmidt and Hunter, 2004; Strenze, 2007;
Hanushek and Woessmann, 2008; Almlund et al., 2011). Similarly, more patient individuals
are less likely to be involved in crime (Akerlund et al., 2016), have higher educational
attainment, occupational success, income and wealth (Ventura, 2003; Eckel, Johnson, and
Montmarquette, 2005; DellaVigna and Paserman, 2005; Golsteyn, Gronqvist, and Lindahl,
2014; Cadena and Keys, 2015; Dohmen et al., 2018) and better health outcomes (Fuchs,
1982; Kirby, Petry, and Bickel, 1999; Bickel, Odum, and Madden, 1999; Kirby and Petry,
2004; Chabris et al., 2008; Golsteyn, Gronqvist, and Lindahl, 2014; Cadena and Keys,
2015). Risk preferences predict labor market and health outcomes, investing and addictive
behaviors, as well as migration decisions (Barsky et al., 1997; Hong, Kubik, and Stein, 2004;
Bonin et al., 2007; Anderson and Mellor, 2008; Kimball, Sahm, and Shapiro, 2008; Jaeger
et al., 2010; Dohmen et al., 2011; Dohmen and Falk, 2011; von Gaudecker, van Soest, and
Wengstrom, 2011; Becker et al., 2012; Dawson and Henley, 2015; Hsieh, Parker, and van
Praag, 2017). Finally, social preferences are associated with cooperative behavior in various
domains of life, including the work place, donating, repayment of loans or management of
common pool resources (Karlan, 2005; Dohmen et al., 2009; Rustagi, Engel, and Kosfeld,
2010; Carpenter and Seki, 2011; Becker et al., 2012; Burks et al., 2016; Deming, 2017).

Table Al in the appendix provides a comprehensive summary of the empirical evidence.!

IQ and preferences are not only associated with key outcomes in adulthood, but also
in childhood and adolescence. In particular, higher 1Q is positively associated with suc-
cess in school (Reynolds, Temple, and Ou, 2010; Almlund et al., 2011) and impatience is
linked to drinking and smoking, a higher body mass index, a lower propensity to save and
worse education outcomes (Castillo et al., 2011; Sutter et al., 2013; Castillo, Jordan, and
Petrie, 2015). Like adults, more risk-taking children and adolescents are more likely to be
overweight or obese (Sutter et al., 2013). Importantly, these associations tend to persist,
as measures of IQ) and economic preferences in childhood or adolescence have also been
shown to predict adult outcomes (Strenze, 2007; Borghans, ter Weel, and Weinberg, 2008;
Golsteyn, Grongvist, and Lindahl, 2014).2

'For more extensive evidence on IQ and outcomes, we refer the reader to several meta-analyses and
overview articles (Schmidt and Hunter, 2004; Strenze, 2007; Almlund et al., 2011).

2Related literature in psychology on childhood temperament documents (i) that childhood temperament
predicts functioning in childhood, (ii) the existence of some continuity in IQ and temperament development



Differences in preferences also determine outcomes at the societal level. For instance,
aggregate patience relates to the level of economic development of countries and regions,
risk preferences predict labor protection policies and social preferences are associated with
the frequency of armed conflicts (Hiibner and Vannoorenberghe, 2015; Dohmen et al., 2018;
Falk et al., 2018). The relevance of IQQ and preferences at the individual and aggregate level
calls for a better understanding of their origins. In particular, if systematic differences in
IQ and preferences emerge during childhood and are linked to the family environment, this
may provide further evidence for inequality being founded early in life, with important

implications for persistence of inequality and social immobility.

This paper contributes to the understanding of the origins of inequality by documenting
a systematic and strong relation between a family’s socio-economic status (SES) and a
child’s economic preferences and 1Q. Establishing such a relationship is challenging, as it
requires comprehensive information concerning a household’s socio-economic environment,
as well as precise measures of the offspring’s preferences and 1Q. We have collected such
data for 435 parents and their children. They contain parent surveys on the household
environment, including detailed measures of SES, maternal preferences and 1Q, parenting
styles and time investments. They also comprise results from high-quality 1Q tests and
incentivized, experimentally-elicited measures of patience, risk-taking and altruism for the
children. All measurements were elicited twice under identical conditions, but with several
months in between. Moreover, SES was part of the sampling scheme, such that families can
be naturally classified into high and low SES families, depending on the level of parental
education and household income. In presenting our results, we first use this classification
to document early gaps in the children’s IQ and preferences. Subsequently, in line with
some of the recent literature (Cunha and Heckman, 2007; Cobb-Clark, Salamanca, and
Zhu, 2016; Doepke and Zilibotti, 2017), we propose and estimate a framework in which

SES can influence both the level of investments and their overall productivity.

Our main finding is that gaps in time, risk and social preferences as well as 1Q open
up early in life and are strongly related to a child’s socio-economic environment. Children
from families with higher SES are significantly more patient and altruistic, less likely to be
risk-seeking and they score higher on IQ tests. The SES gaps are sizable. They amount to
around 0.65 of a standard deviation in IQ and range between 0.21 and 0.35 of a standard
deviation in preferences by mid-elementary school age. These gaps compare to about half of

the black-white achievement gaps in the US and are larger than the estimated effects of most

from early childhood to early adulthood and (iii) that early childhood differences in temperament are
systematically related to a broad range of adult outcomes (Caspi, 2000; Caspi et al., 2003; Moffitt et al.,
2011).



intervention programs. The overall pattern of results suggests that childhood circumstances
cumulate as low parental education and low parental income tend to reinforce each other
if both are present in a single family. Our findings indicate that the SES gaps are mostly
driven by differences in maternal characteristics and by SES-related disparities in the level
of parental investments, while SES-related differences in the productivity of the investment

process are largely irrelevant.

We move beyond existing work in at least three respects. First, this is the only pa-
per to date that consistently relates precise measures of socio-economic disparities in the
household environment to key economic preferences in children.? The reason is a prior lack
of data combining incentivized measures of children’s economic preferences with detailed
information on their family environment.* Given the considerable importance of prefer-
ences in economic theory and empirical work, the literature on the relationship between a
child’s economic preferences and its household environment is surprisingly scarce. For time
preferences, the study by Delaney and Doyle (2012) comes closest to analyzing this rela-
tionship. They use parental answers to questions concerning psychological concepts such as
hyperactivity, impulsivity and persistence of three year-old children and show that children
from families with higher SES are less impulsive. Concerning risk preferences, Alan et al.
(2017) study the intergenerational transmission of risk attitudes, using maternal and pater-
nal years of education as control variables. Regarding social preferences, Bauer, Chytilova,
and Pertold-Gebicka (2014) is the only closely-related study.® Similar to us, they find a

positive relationship between parental education and altruism in primary school children.5

Second, what sets our paper apart from existing studies is that we study time prefer-
ences, risk preferences, social preferences and IQ) in the same sample of children and in one
coherent framework. This is important, as no economic decision involves only one prefer-
ence or cognitive aspect. For example, addictive behaviors such as smoking, drinking or

gambling involve risk considerations, but also a trade-off between immediate and delayed

3While research on the relation between SES and children’s economic preferences remains in its infancy,
the effect of SES on children’s overall IQ is well established (see Bradley and Corwyn, 2002, for a summary
of the literature).

4For a discussion see also Falk and Kosse (2016), who use breastfeeding duration as a proxy to explore
the relation between early-life circumstance and preferences.

®Benenson, Pascoe, and Radmore (2007) also present evidence that higher SES is associated with higher
levels of altruism. However, in their study, SES is only measured at the school level, using the fraction
of children who receive a free lunch. Angerer et al. (2015a) use children’s statements about their parents’
profession to deduce measures of parental income and education. They find a marginally significant,
positive effect of higher paternal education on children’s donations to a charity.

6In addition, psychological literature exists focusing on the relation of more broadly-defined concepts,
such as socio-emotional behavior, cognitive development and family adversity (see, e.g., Obradovié et al.,
2010; Burchinal et al., 2000, and the references therein). This work follows a different tradition and the
measures are usually not incentivized.



utility (Ida and Goto, 2009; Sutter et al., 2013). In this respect, our approach offers a more
holistic view of SES-related disparities in child characteristics that matter for economic

decision-making.

Third, above and beyond studying SES as a “black box”, we provide a simple, static
framework to study how the family environment differs by SES and why these differences
translate into differences in children’s time preferences, risk preferences, altruism and 1Q.
Within this framework, we capture several aspects of developmental inputs, such as parent-
ing style investments, parental time investments and the IQ and preferences of the child’s
mother. We allow SES to affect both the level of parental investments and the produc-
tivity of the investment process. In addition to a direct intergenerational transmission of
IQ and economic preferences from mothers to children, we find that socio-economic dif-
ferences in child 1Q and preferences are mostly due to differences in parental inputs, i.e.,
the parenting style and time investments, and not due to differences in productivity. Our
model estimates can be used to study the extent to which the SES gap in IQQ and economic
preferences would be reduced in the presence of policies that target economic resources or

parental investments, respectively.

The remainder of the paper is organized as follows. First, we describe the composition
of our sample, the data collection process, our definition of SES and our measures of
economic preferences and 1Q. Section 3 provides descriptive evidence on gaps in IQ and
preferences between children from high and low SES households. Section 4 presents and
estimates a framework of how maternal 1Q) and preferences, household income, parental
education and investments interact to form a child’s preferences and 1Q. In the final section,

we discuss the implications of our findings and conclude.

2 Data

This section introduces the data and describes our measures of IQQ and preferences. We first
report how the families were recruited and interviewed, as well as how we classified them
in terms of SES. We then provide a detailed description of the incentivized experiments
and 1Q tests.



2.1 Sampling and data collection

Our sample comprises 435 children and their mothers.” The families were recruited using
official registry data comprising more than 95% of the addresses of families living in Bonn
and Cologne (Germany) who had children aged 7-9. Offers to take part in the study were
sent by mail to all families with children born between September 2003 and August 2004
and one-third of families with children born between September 2002 and August 2003.
12.5% (N=1874) of the contacted families agreed to participate.® Since our main focus
is on SES-related disparities in child 1Q and preferences, we distinguished between two
groups of families. First, we invited all low-income, low parental education or single parent
families to obtain a large sample of socio-economically disadvantaged children. A family
was categorized as “low income” if its household equivalence income was lower than the 30th
percentile of the German income distribution, and as “low education” if neither parent has
obtained a university entrance certificate. Second, we invited a randomly-chosen subgroup

of 150 families who did not meet any of the above criteria.

All 435 children and their mothers took part in two consecutive interviews, with a
time interval of 16 months.” These interviews took place in their respective hometown in
centrally-located apartments that where rented and equipped for the purpose of this study.
The data collections were conducted by trained university students (mostly graduates) of
psychology or education science and lasted about one hour.!® During the interviews and
experiments, the interviewer, the mother and the child were in the same room. However, a
standardized seating plan ensured that the mother and child did not have eye contact and

could not communicate otherwise.

During the interviews, the children participated in a sequence of seven experiments,
two intelligence tests (one on fluid and one on crystallized 1Q) and answered a brief ques-

tionnaire. While the children participated in the experiments, their mothers filled out a

"During the interviews, 96% of the children were accompanied by their biological mother, 2% by their
biological father, 3 children by a step or foster parent and one child by the new partner of a biological
parent. We do not have unambiguous information on the accompanying person for about 1% of the children.
Throughout the paper, we will use the term “mother” for the adult accompanying the child.

8The parents answered a short screening questionnaire about the socio-economic characteristics of the
household, consented to let their children participate in the study and (if selected) to let them take part in
a one-year mentoring program. In our analysis, we exclude the subgroup of selected children. An additional
requirement was that the families speak (at least some) German at home, to ensure that both the children
and their mothers understood the questionnaire items and experimental instructions, which were phrased
in German.

9At the time of the first data collection, the children were on average 7.8 years old. At the time of the
second data collection, the children were on average 9.1 years old.

10 A1l mothers received a flat payment of 35 Euros in the first data collection and 45 Euros in the second
data collection to cover travel expenses and incentivize participation.



comprehensive questionnaire. First, they provided general information about the child,
such as name, age, gender and the number of older and younger siblings. Second, they
answered a battery of questions related to the socio-economic background of the family.
Third, they were asked to provide information on the childhood environment, including
measures of parenting style, parent-child activities, an assessment of how satisfied the par-
ents were with their child’s development, as well as some information about the children’s
fathers. Finally, the mother answered a battery of questions regarding her own economic
preferences and completed an 1Q test. Maternal economic preferences were elicited using
the questionnaire measures validated by Falk et al. (2016) and maternal 1Q was measured
by a short version of the Standard Progressive Matrices Plus test (SPM Plus).!!

Families in this study are not necessarily representative of the German population. All
families live in the same part of the country, study participation was voluntary and SES
was part of the sampling scheme. In particular, they may differ systematically in terms
of maternal intelligence and maternal economic preferences. To investigate non-random
selection, we compare our sample along several dimensions to the German Socio-Economic
Panel (SOEP), a representative sample of households in Germany. Note that a substantial
part of the questionnaire answered by the mothers matched the SOEP questionnaire. When
compared to the SOEP, our sample indeed comprises a moderately higher share of high
SES households, as well as more intelligent, altruistic and risk-taking mothers (see table
B1).

We are interested in assessing effect sizes that are interpretable in terms of population
standard deviations. Thus, we proceed as follows. First, we construct inverse probability
weights (IPWs) that account for systematic differences in SES, maternal 1Q, and maternal
preferences between our sample and the representative SOEP data (for details, see Section
B.1.1). We then use these weights, to estimate the moments of the population distribution.
Last, we standardize our measures of child 1QQ and economic preferences using these mo-
ments. In addition, we draw on the aforementioned weights to evaluate the robustness of
our results with respect to self-selection. Moreover, we construct a second set of weights,
which allows us to assess and correct for potential non-random attrition (attrition is 16.2%,

see Section B.1.2 for a description of the weighting scheme).

2.2 Socio-economic status

Common classifications of SES rely on income or education (see, e.g., Ganzeboom, De Graaf,

and Treiman (1992)). In line with this literature and our initial sampling scheme, we clas-

"For a detailed description of the maternal preference and IQ measures, see Section B.2.
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sify a family as “low SES” if either one or both of the following conditions are met: (i)
the parents are low-educated, i.e., neither parent has obtained a university entrance certifi-
cate; or (ii) net equivalence household income lies below the 30th percentile of the German

income distribution.'? All other families are classified as “high SES”.

Later, we also use parental education and household income as continuous measures
of a child’s socio-economic background. For education, we construct a measure comprising
the overall number of years of education averaged over mothers and fathers, i.e., including
vocational training and university education. For income, we use net monthly household
equivalence income, computed in line with standard OECD and EUROSTAT procedures
(see Hagenaars, De Vos, and Zaidi, 1994)."* Our income measure thus accounts for both
the number of individuals living in a household and economies of scale that arise as the

household size increases.

Education is a measure of human capital and thus a primary means to generate income.
As a result, our data display a strong correlation (p = 0.57) between parental education
and family income. 45% of the children with low-educated parents experience both low

parental education and low family income as two forms of socio-economic disadvantage.

2.3 Description of experiments and IQ tests

In the following, we explain the experiments to measure patience, risk-taking and altruism
in children, before we present the IQ tests. To assess preferences, we relied on a combination
of established and newly-developed measurement tools, which were carefully pre-tested and
adapted to the children’s age range. All experiments were incentivized using toys and a
small amount of money. For this purpose, we introduced an experimental currency called
“stars”. After the interview, children could exchange the number of paper stars that they
had collected in the experiments for toys (see the picture in figure Al). A reward with
the monetary equivalent of 4 Euro was guaranteed. Each star collected in the experiments
increased the value of the reward by 0.15 Euro. For comparison, note that the mean
amount of pocket money in our sample was about 1.5 Euro per week. In order to minimize
“in-experiment wealth effects”, all earned stars were put in separate paper bags after each

experiment, such that the children could not see their accumulated “wealth”. We used

12The monthly net household equivalence income threshold of 1,065 Euro is calculated based on repre-
sentative household data (SOEP, 2010). It closely aligns with the official poverty line (e.g., 1,033 Euro in
2015).

13Net monthly household equivalence income is computed by dividing total monthly nominal household
income (after taxes, but including all transfers) by a factor that takes the household’s size and composition
into account. The factor takes on the value 1 for a single-person household. For each additional person
aged 14 years or older 0.5 is added, while for each person younger than 14 years 0.3 is added.

7



standardized control questions to verify that all participating children had understood the

instructions.'*

At both data collections, the interviews, experimental procedures and tests were iden-
tical and administered in the same fixed order. For each child and variable we thus obtain
two measures, which we aggregate using equal weights. Hence, our measures are an as-
sessment of the child’s economic preferences in mid-childhood, which is considered as a
single development stage in much of developmental psychology (e.g., Inhelder and Piaget,
1958; Berger, 2011).'> This procedure reduces random measurement error, which tends to
be larger in measures of economic preferences, based on a single experiment, than is the
case, e.g., for multi-item survey measures of personality traits, for details see Section B.3.16
Experimentally-elicited preference measures bear several important advantages: they are
constructed from revealed preferences in well-defined and controlled contexts. This gives
them a readily-interpretable metric, likely reduces non-random measurement error and

allows for a straightforward comparison across individuals.

2.3.1 Time preferences: piggy bank experiment

Our measure of patience is the number of saved coins in a piggy bank. We developed the
piggy bank experiment as an age-adapted version of the common time preference elicitation
paradigm for adults, which involves trade-offs between smaller but sooner available amounts
of money and larger but delayed amounts of money. Children were endowed with seven 20
cent coins. They could choose how many coins to put in a piggy bank and how many to
take immediately. The amount put in the piggy bank was doubled and sent to the children
via postal mail one week after the interview. To ensure that the children were certain to
receive the money, we explicitly addressed the letter to the children themselves, wrote the
address on the envelope and put the saved amount of money in the envelope while the

children were watching. We also handed out contact details for questions or requests.

14Tess than 1% of the observations had to be excluded because the children did not fully understand the
experimental protocol.

15 All results remain qualitatively the same when we conduct our analyses separately for each of the two
data collections.

16For economic preferences, test-retest correlations are in the range of 0.1-0.5 (see Chuang and Schechter,
2015), while for personality traits they are as high as 0.6-0.8 (see Roberts and DelVecchio, 2000). We
analyze and discuss the test-retest properties of our measures in Section B.3. We then show that test-
retest properties of the experimental measures in our sample of preschool children are in line with the
test-retest properties of the same (age-adapted) measures in a sample of young adults. Moreover, the
correlations do not vary systematically by socio-economic status. Hence, in empirical models of SES, with
preferences as dependent variables, measurement error is likely captured by the error term.



The number of coins put into the piggy bank is our measure of the child’s patience,
where a higher number implies a higher degree of patience.!” The average number of coins

put into the piggy banks was 5.12, with a standard deviation of 1.62.

2.3.2 Risk preferences: coin-flipping experiment

To elicit an overall measure of risk-taking as well as measures of risk neutrality, risk aversion
and risk seeking, the children made two choices. Situation A assessed risk aversion. Here,
the children could choose between a safe option with a lower expected return and a risky
option with a higher expected return. Situation B identified risk seeking. In this situation,
the children could choose between a safe option with a higher expected return and a risky

option with a lower expected return.

During the experiments, the interviewer presented two coins in each of the two situ-
ations. In situation A, one of the coins had three stars printed on each side. The other
coin had seven stars on one side and zero on the other. Children chose which coin should
be tossed. The interviewer explained that choosing the coin with three stars on each side
implied winning three stars for certain. However, choosing the other coin implied that the
outcome (seven or zero stars) was determined by chance, with both outcomes being equally
likely. The safe amount (three stars) was also “determined” by a coin toss to reduce the
likelihood that children did not choose the risky option only for entertainment or game
value. After children had made their decision, but before actually tossing the chosen coin,
the interviewer presented two more coins in another color (situation B). Now, one coin had
four stars on each side, while the other coin again had zero stars on one side and seven on
the other. Children made their second decision and the interviewer tossed the two chosen
coins. The order in which the two variations of the game (situation A versus situation B)
were played was randomized. The coin-flipping experiments is thus a simple, vivid way
to assess risk preferences. It is easier to understand than, e.g., a choice list representation
commonly used for adults (see, e.g., Holt and Laury, 2002; Dohmen et al., 2010; Charness,
Gneezy, and Imas, 2013).

Our main measure of risk-taking is the number of risky choices (zero to four) over the
two data collection points in both situations. On average, the number of risky choices is
1.68, with a standard deviation of 1.18.

1Tn a recent methodological contribution on how to measure children’s time preferences, Angerer et al.
(2015b) compare a choice list measure and a “single choice time-investment-exercise” that is very similar
to our piggy bank experiment. The authors show that both measures yield similar aggregate results and
substantially correlate within subjects.



In later analyses, we also investigate whether children operate in the risk-averse, risk-
neutral, or risk-seeking domain. Children are categorized as risk-averse if they chose the
safe option in situation A and situation B (in at least one of the data collection points).
Children are categorized as risk-seeking if they chose the risky option in both situations
(in at least one of the data collection points). The remaining children, including those who
alternated between risk-averse and risk-seeking choices, are categorized as risk-neutral.®

The corresponding shares are displayed in figure A2.

2.3.3 Altruism: three dictator game experiments

Our measure of altruism reflects behavior in three dictator game experiments: one binary
choice game and two continuous dictator games with different receivers. In the binary
choice game, each child had to decide between two possible allocations of two stars between
him- /herself and another unknown child of similar age from the same city (following the
experimental protocols by Fehr, Bernhard, and Rockenbach (2008) and Fehr, Riitzler, and
Sutter (2013)). In one allocation, (2,0), the decision-maker received two stars, while the
other child received zero stars. In the alternative allocation, (1,1), both the decision-maker
and the recipient received one star each. Both possible allocations were demonstrated
to the children and the interviewers checked whether the children had fully understood
the implications of each allocation. We also ran two continuous dictator games. In both
versions of the game, the interviewers showed the children two paper bags, one belonging
to the interviewed child and the other belonging to another child, the receiver. Between
games, we varied the receiver. In one game, the receiver is a child living in a nearby city. In
the other game, the child lives in an African country. Children knew that the African child
does not live together with his parents since they are either “ill or dead”. In both versions,
children were endowed with 6 stars. After the children had distributed the stars between
the two bags, the interviewer checked that they had understood how many stars they and
the other child would receive. If the children did not understand the resulting allocation,
the rules were explained again and the children could alter their decision. We cooperated
with three charity organizations (one in Cologne, Bonn and Togo (SOS Children’s Village),

respectively) to ensure that the allocation decisions were implemented as described.!?

I8Note that our data do not allow a closer view on different degrees of risk aversion in the risk-averse
domain.

90ur agreement with the charity organizations ensured that the receiving children benefited from the
monetary equivalents of the distributed stars in form of toys. This was also communicated to the decision-
makers.

10



The joint measure of altruism is the average share of stars that a child gave away in
all six dictator game experiments (three experiments in each of the two data collections).

The average share of stars given away is 0.351, with a standard deviation of 0.125.

2.3.4 Intelligence (1Q)

Our measure of IQQ combines information on crystallized and fluid intelligence. Fluid 1Q
measures the part of overall IQ that refers to general logical reasoning in new situations,
intellectual capacity or processing speed. Crystallized IQ is the part of overall IQ that
broadly refers to knowledge that has been acquired in life, such as vocabulary. Following

the work of Cattell (1971), these two basic components form general intelligence or simply
(overall) 1Q.

We rely on IQ tests that are commonly used for children. First, we measured fluid
IQ using the matrices test of the HAWIK IV, which is the German version of the well-
established Wechsler IQ) test for children (Petermann and Petermann, 2010). Children
were presented up to 35 blocks or rows of pictures featuring different colors and forms. In
every block or row, one cell was missing. Children had to choose which of five pictures best
fit into the missing cell. Second, we measured crystallized IQ using the German translation
of the commonly-used Peabody Picture Vocabulary Test Revised (PPVT-R) (Dunn and
Dunn, 2007).2° For each item, the interviewer read out one word and showed the child
four pictures. Children had to decide which picture best fit the word. For both fluid and
crystallized 1Q, we separately standardize the average score over both data collections. Our

joint measure of 1Q) is the standardized sum of both subtests.

3 SES gaps in child IQ and economic preferences

In this section, we document differences in I(Q) and economic preferences between elementary
school children who grow up in high and low SES families. Our aim is to uncover the
importance of SES as an indicator of early disparities in a child’s environment, before we

turn to the underlying causes and mechanisms.

The gaps in IQ and economic preferences among children from high and low SES house-

holds are displayed in figure 1. The horizontal bars represent coefficients of regressions of

29Due to time constraints, we had to restrict the test to fourteen items. We chose those fourteen items
that had the largest discriminatory power in the SOEP pretest data of the mother and child questionnaires
“MukillIb” and “Mukilllc”, which were based on a 61-item version of the PPVT-R test (see, e.g., Bartling
et al., 2010).
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IQ and economic preferences on a dummy variable that equals one for high and zero for low
SES households. The figure shows that all our measures of child IQ and economic prefer-
ences vary systematically by SES. In particular, children in high SES families have a higher
IQ (p < 0.01), are more patient (p < 0.05), less risk-taking (p < 0.1) and more altruistic
(p < 0.05) than children from families with low SES (see table A2 for the corresponding
regression results).?! The differences by SES are sizable. High SES children have a 65%
of a standard deviation higher 1Q, are 35% of a standard deviation more patient, 23% of
a standard deviation less risk-taking and 21% of a standard deviation more altruistic than

their low SES counterparts.

High-to-Low SES Gaps

(z-scores)

0 1 2 3 4 5 .6 a7 .8

Intelligence (1Q)

Patience

Lower
risk-taking

Altruism

Figure 1: The figure displays gaps in IQ and economic preferences between elementary school
children from high and low SES families. The horizontal bars represent coefficients of a dummy
variable that equals 1 for high and 0 for low SES households in regressions of IQ or preferences
on this SES dummy (OLS for IQ and altruism, Tobit for patience and risk-taking). Error bars
show bootstrapped SE (1,000 bootstrap replications).

21For comparison, in table A2 we report three different estimates of standard errors (SE). The different
estimates are very similar, but bootstrapped SEs are slightly more conservative than OLS or White SEs.
Therefore, we report p-values based on bootstrapped SE for all regressions in this study.
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These effect sizes are substantial when compared to racial gaps, or the impact of most
childhood interventions. Regarding patience and 1Q, the SES gaps exceed half the size
of the black-white achievement test gap in the US (Jencks and Phillips, 1998; Carneiro,
Heckman, and Masterov, 2005; Hanushek, 2010). Moreover, the gaps are larger than most
of the standardized effect sizes reported for early child care or school-based interventions.
In a meta-analysis, Duncan and Magnuson (2013) find a weighted average impact of early
child care programs on cognitive and achievement outcomes of 21%, and McEwan (2015)
reports average effect sizes of less than 15% of a standard deviation in school achievement

for a large number of primary school interventions.??

The above-reported gaps in child IQ and preferences are important in light of the lit-
erature showing that differences in these characteristics translate into child behaviors and
outcomes. Previous studies have documented that children’s 1Q, patience, risk-taking and
prosocial behavior predict success at school (Reynolds, Temple, and Ou, 2010; Almlund
et al., 2011; Castillo et al., 2011; Castillo, Jordan, and Petrie, 2015; Almas et al., 2016),
while impatience and a high willingness to take risks predict negative health outcomes and
risky behaviors, such as smoking or drinking alcohol (Sutter et al., 2013). Importantly,
measures of 1Q and economic preferences as measured in childhood have also been shown
to predict adult outcomes (Strenze, 2007; Borghans, ter Weel, and Weinberg, 2008; Gol-
steyn, Grongvist, and Lindahl, 2014). Thus, our key result that gaps in 1Q) and economic
preferences by SES emerge early has wide-ranging implications for important outcomes in
childhood, adolescence and adulthood alike.

The results displayed in figure 1 unveil that SES is associated with certain prefer-
ence and 1Q profiles in children. For example, children from low SES backgrounds are, on
average, less patient and more risk-taking; they are less altruistic and less intelligent, et
cetera.?? SES thus evokes the simultaneous determination of “risk factors” which favor so-
cial immobility and marginalisation. For example, individuals who are both less intelligent
and less patient are likely to obtain lower levels of education. Table A3 shows how prefer-
ence profiles relate to important teenage life-outcomes in our data. It displays correlation
coefficients between our child preference and IQQ measures and teenage life-outcomes from
follow-up surveys, collected four to five years after the first data collection (for details on
the teenage data see Section B.5). The results indicate that those profiles that prevail in
high SES families (high IQ, high patience, low risk-taking, high altruism) translate into

22Some high-quality early childhood education programs such as the Perry Preschool or Abecedarian
programs show much larger effects, at least in the short run (see Duncan and Magnuson (2013) and
Heckman, Pinto, and Savelyev (2013)).

23These findings also suggest that SES drives part of the observed preference correlations displayed in
table B3. For a discussion of the correlation pattern see Section B.4.
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more educational success, more social participation, and less juvenile offending during ado-
lescence.?* These results also hold conditioning on parental SES (compare panels B and C
in table A3).

In the appendix, we show that the high-to-low SES gaps displayed in figure 1 are
robust to various alternative specifications. First, we use two different sets of weights in
the underlying regressions of figure 1, to make our sample comparable to the German
population of families and correct for selective sample attrition. Our results remain very
similar when we apply the corresponding weighting schemes (see Section B.1). Second,
we add control variables that account for potential SES-related differences in perceptions
of the experimental procedures (see Section B.6) and validation of incentives (see Section
B.7). Here, we show that our results are unaffected by procedural perceptions, potential
in-experimental wealth effects or differential perceptions of the incentives used. Third,
we vary the definition of parental education. Our results remain the same whether we
rely on measures of maternal education, paternal education or both, suggesting a large
degree of assortative mating among spouses with similar educational degrees (see Section
B.8). Fourth, we show that the differences in IQ and economic preferences by SES do not
significantly differ for boys and girls (see table A4). Last, in table B7 we show that our
findings do not change when we account for single parenthood. For a detailed discussion

see Section B.9.

Alternatively to using the sum of risky choices as a measure of risk preferences, our
data allow classifying behavior in a more fine-grained way. Figure A2 displays the shares of
risk-averse, risk-neutral and risk-seeking children by SES. Overall, 44% of the elementary
school children in our sample are classified as risk-averse, 32% as risk-neutral and 24%
as risk-seeking (compare Slovic (1966) and Falk and Kosse (2016) for similar results).
Regarding differences in children’s risk preferences by SES, high and low SES children are
about equally likely to be risk-averse (43.3% vs. 44.4%, p = 0.814, see table A5). However,
a higher share of high SES children are risk-neutral (36.1% vs. 28.2%, p < 0.1), whereas a
higher share of low SES children are risk-seeking (20.6% vs. 27.4%, p < 0.1). Hence, our
finding that low SES children are significantly more risk-taking than children from high
SES families does not originate from high SES children being more risk-averse, but rather

from low SES children being more risk-seeking as opposed to risk-neutral.?

24For recent evidence on the relation of skills/personality and political or social participation see Hufe
and Peichl (2016) and Holbein (2017).

25Gimilarly, using breastfeeding duration as a measure of favorable conditions within a child’s family,
Falk and Kosse (2016) find that children who are breastfed for a shorter period of time are more prone to
take risks during preschool age.

14



Components of the High-to-Low SES Gap
(compared to high SES, z-scores)
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Figure 2: The figure displays gaps in IQ and economic preferences between elementary school
children from different socio-economic backgrounds. The horizontal bars represent coefficients
of three dummy variables in regressions of IQ or preferences on the three dummies (OLS for
IQ and altruism, Tobit for patience and risk-taking). The first dummy variable equals 1 for a
parental background that is characterized by low education but an income above the low SES
threshold and 0 otherwise. The second dummy variable equals 1 for a parental background that is
characterized by low income but a level of parental education exceeding the low SES threshold and
0 otherwise. The third dummy variable equals 1 if both low SES criteria are met (low income and
low parental education) and 0 otherwise. The displayed coefficients indicate differences between
each respective low SES subgroup and the baseline category of high SES (neither low parental
education nor low income). Error bars show bootstrapped SE (1,000 bootstrap replications).
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The results on SES gaps presented thus far rely on a definition of SES that classifies
households as low SES if they meet at least one of two criteria (low household income
and low parental education). This reflects our sampling scheme. Nonetheless, to better
understand which components of low SES matter, we also decompose the overall gap into
the parts that are explained by low education and/or low income, respectively. We repeat
the analysis shown in figure 1, but now sub-divide the low SES category into (i) low parental
education only, (ii) low parental income only and (iii) both low parental education and low
parental income. The gaps between children from these three groups and those from high
SES families are presented in figure 2. It shows that children from high SES families score
higher on IQ tests, are more patient, less risk-taking and more altruistic than children from
low SES families regardless of whether we use low income only, low education only or a
combination of both. Moreover, if both low income and low parental education are present
in a single family, the SES gaps in IQ), patience and altruism are largest, suggesting that

low income and low parental education are “risk factors” that reinforce each other.

Table A6 complements the analysis shown in figure 2 by using income and education as
continuous variables. We regress IQQ and economic preferences on average years of parental
education, household income and their interaction. The results largely confirm the pattern
shown in figure 2. More education and income are related to higher I1Q, patience and
altruism as well as less risk-taking of children. The effect is most pronounced for IQ and
on a similar level for time, risk and social preferences. The interaction effects are usually
relatively small compared to the main effects (except for patience) which indicates that the
low SES effect is pronounced for children from families that have low levels of education

and low income.

4 SES and the development of preferences and IQ: a

conceptual framework

In the previous section, we have shown that parental SES is a powerful predictor of a child’s
IQ and economic preferences. In this section, we present and estimate a framework, inspired
by the model of Becker and Tomes (1986) as well as the technology of skill formation (Cunha
and Heckman, 2007; Cunha, Heckman, and Schennach, 2010), concerning how maternal 1Q
and preferences, household income, education and parental investments affect a child’s
IQ and preferences. Given the cross-sectional nature of our data, we cannot estimate a
fully dynamic model in which children’s IQ) and preferences are a function of last period’s

levels, and in which parents adapt their investments over time. Instead, we present a static
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framework and approach potential endogeneity by collecting measures on the parental
assessment of their children’s development. Relying on this approach, we approximate the
process of a child’s IQ and preference development until mid-childhood. In this respect,
our framework can be thought of as an application of Becker and Tomes (1986) for one
particular period of childhood, where initial endowments are captured by maternal IQ and

preferences.

4.1 The formation of child IQ and preferences

We model the formation of a child’s IQ and preferences as a function of maternal IQ and
preferences and parental investments. Moreover, we allow the productivity of this process

to vary across high and low SES families.

Child development is represented by a four-dimensional vector of 1Q, patience, lower
degrees of risk-taking and altruism denoted by P; = (P', PP, PR PA). In line with the
literature on the technology of skill formation (Cunha, Heckman, and Schennach, 2010),
we assume that 1Q and preferences are formed according to a production function with
Constant Elasticity of Substitution (CES), which we write as:

1
4 £ {7
Pl =gl M” + 7. 15° + 41771 e e {I1Q, P, R, A}, (1)

where vf € [0,1] are production shares, such that Zj 75 =1. ¢' € [-00,1] is an elasticity
parameter and ¢ = 1/(1 — ¢°) represents the elasticity of substitution in the inputs that
generate 1Q) and preferences. Moreover, e reflects unobserved random shocks. Factor
inputs are as follows: M* denotes the maternal characteristic that corresponds to P*, I°
is a positive parenting style and I7 denotes time investments. M’ enters the production
function to capture the direct transmission of IQ) and preferences, which can take place
socially or genetically. Our data do not allow to distinguish between social, genetic, or
other factors in the direct transmission of IQ and preferences through M*. However, as an
example, one may imagine that if a mother acts very altruistically, the child likely imitates

that behavior.?6

IIggs in equation (1) denotes a factor-neutral SES-specific productivity parameter. It
captures productivity differences that arise if, for example, the same amount of inputs yields

a larger amount of output in high rather than low SES families (in which case, Ilggs > 1).

26For descriptive evidence on an intergenerational transmission of preferences, see Kosse and Pfeiffer
(2012, 2013) for evidence on patience, Dohmen et al. (2012) and Alan et al. (2017) for risk-taking and
Kosse et al. (2019) for social preferences.
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Such productivity differences may arise, for example, if a certain level of investment by a
highly-educated or affluent mother is more productive than the same investment by a less

educated or poor mother.

Note that all parameters of the above function may differ across preferences and 1Q).
Thus, for each characteristic P’ the substitutability of inputs may vary freely from perfect
complements (¢ — —o0) to perfect substitutes (¢° — 1). Along the same lines, the
production shares () and the factor-neutral productivity parameter may vary freely across

characteristics.

The above production function focuses on parenting style, parental time investments
and maternal characteristics as key inputs. Other factors, such as material wealth, the
abundance of consumer products, or the quality of housing are not explicitly modeled
and may only enter via these factors or via Ilsgs. The focus on parental time and style
investments is motivated by a large literature in psychology which puts interactions with
caregivers at the forefront of child development (e.g., Bowlby, 2008; Eisenberg, Spinrad,
and Knafo-Noam, 2015; Rogoff, 1990; Skinner, 1953).2” Yet other determinants of child
IQ and preferences are likely captured in M. Examples are the genetic disposition of the
mother with respect to any of the characteristics ¢, or her role model behavior. The focus
of the above equation is thus the relationship between parental SES, parental investments,
and child IQ or preferences. Additional information on the different components of M
would be required to capture how, e.g., social, genetic, and other factors (differentially)

affect both SES and the productivity parameter Ilggs.

4.2 Parental investment and the determinants of SES

Recent empirical studies (Cunha and Heckman, 2007; Heckman, 2008; Heckman and Mosso,
2014; Doyle et al., 2017) stress the importance of parental investments in children. Such
investments can take various forms, as any parent-child interaction represents some kind of
“investment” into the child’s human capital. We think of parental investments along two
dimensions: parenting styles and parental time investments. First, the type of parental in-
teractions such as the tone and attitude by which parents approach their children is termed
“parenting style” (denoted by S), reflecting the quality of parent-child interactions. Doepke
and Zilibotti (2017) present a theoretical model in which they argue that parenting style
depends on the socio-economic environment in which a family lives and that parenting style

may affect children’s preferences. Moreover, Burton, Phipps, and Curtis (2002) show that

2"For evidence on the role of role models and interaction for the development of prosociality, see Kosse
et al. (2019).
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both socio-economic factors and parenting style are important determinants of child be-
havior. Second, we focus on time-intensive high-quality parent-child interactions (denoted
by T), termed “time investments”. Time investments capture the so-called “quality time”
that children spend with their parents (Price, 2008; Guryan, Hurst, and Kearney, 2008).

Investments are a natural candidate of how SES translates into differences in 1Q and
preferences. In order to capture this mechanism, we specify a simple investment system to
approximate the underlying structural model of parental investment decisions. According
to this model, parental investments are determined by household characteristics, maternal

characteristics as well as SES:
M =60+ 05 M + 68LsSES; + R X + € m e {S, T}, (2)

where M?* denotes a vector of maternal IQ and preferences, SES comprises education and
income as measures of socio-economic status and X is a vector of household characteristics.
el with m € {S, T} are error terms, which may correlate across investment equations. In
addition, as discussed in the next section, €/* may correlate with 7;%, i.e., as parents react

to shocks in the development of their children.

By specifying equations (1) and (2) of the above framework, we allow SES to affect
a child’s 1Q and preferences through two main channels. First, parental education and
household income can have a direct effect on the level of parental investments (level effect).
For example, more educated parents tend to spend more quality time with their children
(see, e.g., Guryan, Hurst, and Kearney, 2008). Similarly, high-income families may find it
easier to comfort and reward their children (in particular if rewards are costly) rather than
punishing them (Weinberg, 2001). They also have the resources available to replace their
time for more basic tasks such as house cleaning, gardening, or driving kids to school, freeing
up time for more high-value interactions with children (see, e.g., Doepke and Zilibotti,
2019). Second, the effect of parental investments may differ by SES if education or material
resources interact with the amount and quality of parental investments. This productivity
effect is captured by Ilggs in equation (1). Mothers in turn can use their IQ and preferences

to produce education and household income. Section B.10 describes this relationship.
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4.3 Estimation strategy
4.3.1 Parenting style and time investments

This section explains how we measure parenting style and time investments (for further
details, see Section B.11.1).2% First, we elicit parenting practices (M) through several
questionnaire items that can be grouped in a measure of parental warmth (comprising praise
and emotional warmth), a measure of parental interest and monitoring, and a measure of
parental psychological and behavioral control (punishment). Parenting style does not follow
a natural metric and is assumed to be latent, but known to the mothers. We thus employ
a measurement model with a flexible distributional factor structure in form of a mixture
distribution to extract latent parenting style, where a higher value reflects warm and child-
oriented parenting but also a high degree of monitoring, while a lower value is associated
with a higher degree of punishment (for details, see Section B.13). Second, in addition to
parenting style, we account for parental time investments. Parental time investment can
be thought of as the quantity of parental interactions and it is measured in terms of the
share of total time that parents and children spend together on highly interactive activities
(talking /discussing, having a meal together, playing outside, board games, reading to the
child, playing an instrument together). Using the share of time devoted to highly interactive
activities allows us to hold the maternal time budget for non-work related activities fix,
which might itself be a function of other familial contexts, such as the number of children

or the number of available caregivers.?® For details, see Section B.11.1.

4.3.2 Production function

Aside from precise measures of parenting styles and time investments, our data are charac-
terized by two exceptional features, which we exploit in our empirical specification of the
model. First, they contain very precise measures of preferences and IQ for both mothers
and children. All preference measures of children are interpretable in terms of decision-
making behavior in incentivized experiments (Section B.2 provides details on our measures
of maternal 1Q) and preferences). Second, stratified sampling of our data by education and
income allows for a clear distinction between high and low SES families. In line with the
sampling scheme, we define a low SES group (SES = 0) and a high SES group (SES = 1),

as in the first part of this paper (for details, see Section 2.2). We use this definition in our

280ur analysis relies on the assumption that maternal responses about inputs proxy parental investments
more generally. In Section B.12, we discuss the related literature and use SOEP data to verify this claim.

29This approach is in line with the findings reported in Hsin and Felfe (2014), i.e., that high SES mothers
tend to substitute highly interactive activities for detrimental activities.
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model to investigate whether there are productivity differences in the formation of prefer-
ences and 1Q across high and low SES families. We then use our estimates to investigate
how the SES gap documented in figure 1 would change in response to policies aiming to

raise household income, parental education or parental investments.

In order to empirically estimate equation (1), we take the natural logarithm to obtain:

In (P!) = In(TTgg) + % In [y MY 7 157 T 4 (3)
for all ¢ € {IQ, P,R, A}. To ensure that our measures of maternal 1Q), preferences and
time investments are non-negative, we follow Cunha, Heckman, and Schennach (2010)
and assume that each measure in our data represents the natural logarithm of the original
(standard normalized) characteristic entering equation (1). Along the same lines, we assume
that our measures of parenting styles are proxies of the natural logarithm of the underlying
parenting factor. IT§nq denotes a factor-neutral productivity parameter, which we assume
to equal unity for low SES families and which may vary freely for high SES families. I15zq
thus captures any productivity differences across socio-economic status that are not due to

level differences in investments or maternal 1QQ and economic preferences.

4.3.3 Investment endogeneity

Estimates of the above production function are biased if the parental investments, parent-
ing style and quality time respond to unobserved developmental shocks. This endogeneity
may arise if parents compensate or reinforce recent shocks to their child’s development that
are unobserved to the researcher but observable to the parents.>® Cunha, Heckman, and
Schennach (2010) model the unobserved heterogeneity as latent variables, while Attanasio
et al. (2015) employ a control function approach. Due to the small size of our sample
and because we focus on two different types of parental investments, we follow a different
strategy.3! Specifically, we assume that the error terms in equations (1) and (2) are addi-
tively separable in a part that captures the parental reaction to shocks and an idiosyncratic

random shock:

n, = 7§O‘i+5f (4)

m m . m
€' = oo+ v,

30For a discussion, see Cunha, Heckman, and Schennach (2010) and Attanasio et al. (2015).
31By sampling design, our sample is very homogenous in age and place of residence, such that contextual
variation cannot be used as exclusion restriction.
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where 7! ~ N(0,02°) and € ~ N(0,s2™). Moreover, all idiosyncratic random shocks are
assumed independent across equations and orthogonal to «;. Under these assumptions, the
error terms across investment and technology equations are only related due to differences in
parental perceptions about their children’s development. In our parent survey we collected
measures of a;, which we use according to equations (4) to deal with potential endogeneity

issues (see Section B.11.2 for details).

4.4 Results: model estimates

Figure 3 displays kernel density plots of the logarithm of the estimated parenting style
as well as time investments to illustrate differences between high and low SES families.
For both dimensions of parental investments, we find large and significant differences by

parental SES, with a larger difference for time investments than for parenting style.

Figure 3: Parental Investments by Socio-economic Status
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Table 1 displays the results of the parental investment system (equation (2)). Account-
ing for potential endogeneity of investments in terms of satisfaction with child development,
both a positive parenting style and parental time investments are significantly related with
SES. However, the respective channels through which SES affects either investment differ
markedly: while parenting style is almost exclusively related to household income, parental
time investments are more strongly predicted by parental education. We can only speculate
about the mechanisms behind these findings. For example, one could plausibly argue that
a higher level of household resources facilitates a positive parenting style if resources enable
parents to reward rather than punish their children (see Weinberg, 2001, for a model along
these lines). In addition, a higher household income likely reduces parental stress, which
may increase parental warmth and reduce (unfair) punishments. On the other hand, a

higher level of education may be associated with increased knowledge about the benefits
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of close interactions with the child in terms of their positive effects on child human capital
development. Single parenthood proves largely unimportant for parental investments in

our data (for a discussion, see Sections B.9 and B.12).

Table 1: The relationship between SES and parental investments

Parental Investments

Style Time Style Time
SES
High SES 0.224** (0.091)  0.646*** (0.095)
Parental education 0.018  (0.019)  0.117*** (0.018)
Log HH income 0.311***(0.118)  0.178  (0.111)
Satisfaction child devt.
O 0.130*** (0.034) 0.014  (0.031) 0.127***(0.033) 0.013  (0.030)
Observations 435 435 435 435

Notes: Standard errors (in parentheses) are bootstrapped using 1,000 bootstrap replications. Further control vari-
ables comprise maternal preferences and 1Q, child age, the overall number of children in the household and an indicator
of single parenthood. The coefficient for single parenthood is small and insignificant in all specifications (coef/p.val:
0.0955/0.335, 0.004,/0.968, 0.135/0.200, 0.001/0.990). Significance at * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 2 reports the estimates of the CES production function. The table presents the
estimated coefficients for inputs, the productivity parameter [1ggg, the elasticity parameter
¢ from equation (1) and the elasticity of substitution in the inputs that generate child 1Q
and preferences. Several important features of child development stand out. First, we find
that maternal characteristics are important for the development of child characteristics.
This indicates that mothers transmit their own preferences and 1Q to their children either
genetically or through serving as a role model (Dohmen et al., 2012; Alan et al., 2017) or
both. Second, both a positive parenting style and time inputs matter for child development.
Third, the productive efficiency of the developmental process does not substantially vary
by the socio-economic status of the parents, as Ilggg is close to one in all models. This
finding is key, as it suggests that the socio-economic differences in child 1Q and preferences
documented in the first part of the paper are mostly due to differences in inputs. In other
words, if low SES families were to provide the same inputs in terms of maternal IQ and
preferences, parenting styles and time investments, they would “produce” children with
similar preferences and 1(QQ as high SES families. In fact, after accounting for investments
and maternal preferences, low SES families are slightly more efficient when it comes to
the production of lower risk-taking, patience and altruism. This finding also suggests
that our model does not leave out other important inputs, related to unmodeled factors
such as the availability of consumer products or the quality of housing. If at all, these
factors seem to “tilt” our results towards smaller gaps for low SES children through Ilggg.

Fourth, the elasticity of substitution in inputs is larger than one for the development
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of 1Q, and slightly larger than (but close to) one for economic preferences. This result
has important implications for policy, as it suggests that a policy that raises only one
type of input (e.g., maternal time inputs) would be effective even if all other inputs were
kept unaltered. Although our model is arguably much simpler, our findings regarding the
elasticity of substitution in inputs for IQ are in line with those reported in Cunha, Heckman,
and Schennach (2010) given that our developmental stage lies between the ones that they

investigate.

Table 2: Production function estimates

1Q Patience Lower risk- Altruism
taking

SES productivity

Hsgs 1.082 0.860 0.733 1 0.893
(0.108) (0.101) (0.097) (0.096)

Inputs

Mt 0.429*** 0.349*** 0.255%** 0.344***
(0.052) (0.056) (0.054) (0.052)

Style 0.271%** 0.285%** 0.306*** 0.329***
(0.047) (0.054) (0.057) (0.053)

Time 0.301%** 0.367*** 0.439*** 0.327***
(0.047) (0.053) (0.049) (0.048)

Satisfaction with child development

Yo 0.984 0.985 0.987 0.990
(0.008) (0.012) (0.078) (0.009)

Elasticity

10) 0.338* 0.253 0.046 0.155
(0.178) (0.286) (0.195) (0.193)

€ 1.511 1.340 1.049 1.183
(0.414) (0.491) (0.219) (0.197)

Observations 435 435 435 435

Notes: ¢ = 1/(1 — ¢Z) represents the elasticity of substitution in the inputs that generate IQ and preferences. The reported
SE (in parentheses) were bootstrapped using 1,000 bootstrap replications. *** indicates statistical significant difference from
zero at the 1 % level, ** indicates statistical significant difference from zero at the 5 % level, * indicates statistical significant
difference from zero at the 10 % level. T indicates statistical significant difference from one at the 1 % level.

It is difficult to interpret the size of the estimated coefficients given the non-linear
setup of the model, which ensures that the degree to which different parental investments
map into child outcomes depends on the estimated elasticity. Therefore, we present average
marginal effects in table 3 to illustrate the average effect of a one standard deviation increase
in inputs on child IQ and preferences. We find that the biological or social heritability of

maternal characteristics is largest for 1QQ and smallest for risk preferences. This result is in
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Table 3: Production function (average marginal effects)

Marginal effects 1Q Patience Lower risk- Altruism
taking

AME 0.585*** 0.442%** 0.374*** 0.554***
(0.084) (0.099) (0.069) (0.114)

AMEs¢y1e 0.313*** 0.343*** 0.445*** 0.424***
(0.074) (0.090) (0.093) (0.069)

AMETime 0.367*** 0.464*** 0.449*** 0.436***
(0.072) (0.120) (0.107) (0.085)

Observations 435 435 435 435

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap replications. Significance
stars at * p < 0.1, ** p < 0.05, *** p < 0.01.

line with findings from a large body of literature on the heritability of IQ, which documents
that 1Q is strongly transmitted from parents to children (Black, Devereux, and Salvanes,
2009). Time and style investments are of similar importance for IQ and altruism. However,
regarding time and risk preferences, time investments are relatively more important than

style investments.3?

Our results are robust with respect to alternative model specifications. We start out by
investigating if single parenthood is sufficiently accounted for. First, to capture potential
direct effects of lone motherhood we include a single parenting indicator variable as an addi-
tional covariate to equation (3). Then, to assess potential heterogeneities in the production
process, we also restrict our sample to two-parent families. The corresponding results are
displayed in table B8 and discussed in Section B.9. The estimated effect sizes hardly change
when single parenthood enters as a control variable and even when we restrict the sample to
two-parent households, our results remain largely unaltered, except for a slight increase in
the importance of parenting styles. These results are in line with a literature showing that
single parenthood is far more detrimental for child outcomes in the US (McLanahan, 2009)
than in Germany (Francesconi, Jenkins, and Siedler, 2010; Woessmann, 2015). We proceed
our robustness analysis by loosening the assumption that only one respective maternal
trait may affect child IQ and preferences. Yet, by including other maternal characteristics
into the model, we find no evidence of direct effects (see table B14 of Section B.15) nor
differences in productivity among high and low 1QQ mothers (see table B15). Hence, high
IQ mothers do not seem to have an easier time producing child preferences than low-I1Q
mothers in our data. Last, we investigate how the aggregation of parenting styles and

time investments affects our results. As for parenting styles, alternative ways to aggregate

32In figure B3 of Section B.14, we use the estimates reported in table 2 to show graphically how a change
in parental investments (by ventile) affects children’s IQ) and preferences.
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parental responses lead to different results if parental behaviors translate into IQ and pref-
erences differentially, or if the presence of covariates in the measurement system affects our
estimates. If we use principal factor analysis without covariates and Bartlett (1937) scores,
we find a somewhat smaller SES gap in parenting styles (see Section B.13). Moreover, the
impact of parenting styles on child IQ and preferences slightly reduces for 1Q, patience,
and risk taking. It remains similar for altruism. Regarding parental time investments our
results remain similar when we use the absolute number of highly interactive activities as
an alternative measure of parental time investments. There is, however, more variability in
the absolute number of interactive activities among low SES than among high SES families
and the estimated relationship of this measure with child outcomes is somewhat weaker

(see Section B.16 for results and a discussion).

4.5 Policy implications

The above model of the relationship between maternal IQ and preferences, investments,
SES and child IQ or preferences is complex in the sense that the CES production function is
highly non-linear. Moreover, the levels of investment also relate to SES. Consequently, the
above-reported coefficients are relatively uninformative when it comes to policy implica-
tions. Hence, whilst keeping in mind the above set of assumptions and the limitations of our
one-period model, we use our model estimates to predict outcomes and make statements
about potential policy effects. Two types of family policies are conceivable to reduce socio-
economic disparities in child development: (i) policies that change the amount of resources
available to low SES families, through either an increase in parental education or income
subsidies, whereby examples are compulsory education laws or anti-poverty policies such
as the earned income tax credit in the US (see, e.g., Oreopoulos, Page, and Stevens, 2006;
Dahl and Lochner, 2012); (ii) policies that enhance parental investments among low SES
families, for example, through home visiting programs that target parental investments.
Recent evidence shows that home visiting programs are indeed effective in raising parental
investments (Gertler et al., 2014; Attanasio et al., 2015; Baranov et al., 2016; Doyle et al.,
2017; Heckman et al., 2017).3% For example, Baranov et al. (2016) find an effect of 20% of a
standard deviation on time-intensive investment, while Heckman et al. (2017) report effect
sizes of 0.27-0.37% of a standard deviation on non-abusive parenting attitudes and of up
to 0.18% of a standard deviation on maternal emotional and verbal responsivity. We thus

conclude that an increase in parental investments of around 20% of a standard deviation

33To the extent that maternal investments can be substituted for by professional care-givers, high-quality
early child care programs might also apply here (Heckman, 2011; Heckman, Pinto, and Savelyev, 2013).
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might be realistic in terms of the effect size that a large-scale parental investment policy

can achieve.??

We investigate how five different policies would change the 1Q and preference devel-
opment of children from low SES families. For this purpose, we take our model estimates
as given and predict counterfactual outcomes for the respective group of individuals who

would be affected by a certain policy. The five different policies are:

1. A compulsory schooling policy that requires both parents to obtain 13 years of edu-

cation (A-level equivalent).

2. A policy that provides (tax-neutral) income support to poor families. All family net

equivalence incomes are raised to the threshold level of 1,065 EUR.
3. A policy that raises parenting style investments by 20% of a standard deviation.
4. A policy that raises parental time investments by 20% of a standard deviation.

5. A policy that raises both parenting style investments and parental time investments
by 20% of a standard deviation.

34 Another policy would be to enhance maternal IQ and preferences. Note, however, that such a policy
would be very long-term. Moreover, understanding its ramifications would require a more explicit model
that captures the malleability of different maternal characteristics and their relation to SES.

27



High-to-Low SES Gaps

(z-scores)
0 A 2 3 4 5 .6 v .8
| | | | | | | | |
etigonce (19 — —apls
e
T
e
e |
risk-taking .
——
m No policy
g‘ @ Policy 1 (compulsory schooling)
. m Policy 2 (income support)
Altruism ] Policy 3 (style investment)
] Policy 4 (time investment)
] Policy 5 (style+time investment)

Figure 4: The first bars show the results of the main analysis, see figure 1. The other bars show
gaps in IQ and economic preferences between elementary school children from high SES and low
SES families, as they would occur if the respective policy was put in place. In order to estimate

the effects, IQ and preferences are regressed on the SES dummy. Error bars show bootstrapped
SEs.

Figure 4 provides a graphical representation of what the SES gaps would look like in the
presence of each of the five policies (bars 2-6 in each panel) when compared to the raw
SES gap documented in figure 1 (top bar in each panel).*® We find that an increase in
parental education and family income would be most effective in closing the SES gap in
1Q.3¢ This result is in line with, e.g., Dahl and Lochner (2012), who find a positive effect of
income support on children’s academic achievement, and Lindqvist and Vestman (2011),
who find that an extension of maternal compulsory education in Sweden increased child 1Q.
Regarding preferences, the impact of a respective compulsory schooling or income support
policy on patience, risk preferences and altruism would be small or even negative. The

intuition for this result is that these policies would reduce the investment gap by relatively

35 All corresponding estimates are displayed in table A7.
36We allow education to affect income using the estimates reported in table B10.
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little (see rows 3-4 of table A7) and that the positive level effect would be countervailed
by a negative productivity effect. Figure 4 also shows that a direct change in parental
investments (policies 3-5) would have a substantial positive effect on children from low
SES families, in particular with respect to economic preferences. A policy that raised both
parenting style investments and parental time investments by 20% of a standard deviation
would nearly close the SES gap for patience and altruism, while it would fully close the
gap for risk-taking. The gap in IQ, i.e., the trait for which maternal 1Q is particularly

important (but unchanged), would only decrease by around 15%.3

5 Discussion and conclusion

Our results show that SES is a systematic predictor of a child’s IQ and economic preferences.
Already during elementary school, children from families with higher SES score higher in
IQ tests, are more patient, less risk-taking and more altruistic. The SES gaps in 1Q and
economic preferences are of sizable magnitude and remain similar when representative
population weights are applied. The overall pattern of results suggests that childhood
circumstances cumulate, given that low parental education and low parental income a
fortiori affect the formation of preferences and IQ if both are present in a single family. In
order to understand the underlying mechanisms, we provide a coherent framework of how
parental investments and maternal 1Q) and preferences influence child outcomes in which
SES can influence both the level of investments and their overall productivity. Within this
framework, we can show that disparities in the level of parental investments hold substantial

importance regarding the SES gaps in economic preferences and, to a lesser extent, IQ.

For patience and IQ, there exists abundant evidence showing that higher levels fa-
vor important outcomes in life since they are associated with higher levels of education
(Shoda, Mischel, and Peake, 1990; Heckman and Vytlacil, 2001; Cadena and Keys, 2015),
income (Heckman, Stixrud, and Urzua, 2006; Hanushek and Woessmann, 2008; Golsteyn,
Grongvist, and Lindahl, 2014) and better health (Chabris et al., 2008; Sutter et al., 2013;

Golsteyn, Gronqvist, and Lindahl, 2014).3® Moreover, altruism is positively associated

3TWe are unaware of any other studies investigating the impact of parental investments on child economic
preferences. However, our findings are somewhat in line with literature showing that non-cognitive traits
are often more easily malleable than cognitive traits in response to an exogenous change in investments
(see, e.g., Heckman, Pinto, and Savelyev, 2013).

38Concerning attitudes towards risk, there is no obvious optimal degree of risk aversion that is inde-
pendent from the environment in which an individual lives. Doepke and Zilibotti (2017) introduce the
distinction between endogenous and exogenous risk to which individuals are exposed. While exogenous
risks cannot be avoided, taking an endogenous risk is a deliberate decision that depends on the individual
risk attitude. Moreover, with respect to endogenous risks, it is difficult to claim that there is an “optimal”
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with success of groups and cooperative behavior in various domains of life as well as with
individual life satisfaction (Rustagi, Engel, and Kosfeld, 2010; Carpenter and Seki, 2011;
Becker et al., 2012; Aknin et al., 2013; Burks et al., 2016). In this sense, our results suggest

that, on average, children from families with lower SES are disadvantaged.

Differences in children’s preferences and 1Q) are important as they predict functioning
in childhood as well as adult outcomes. In particular, children’s IQ and social behavior
are positively correlated with their success at school (Reynolds, Temple, and Ou, 2010;
Almlund et al., 2011). Among children and adolescents, impatience is associated with
a higher likelihood of drinking alcohol and smoking, a higher body mass index, a lower
propensity to save, worse grades, more disciplinary conduct violations at school and a
lower likelihood to complete high school in time (Castillo et al., 2011; Castillo, Jordan,
and Petrie, 2015). Like adults, more risk-averse children and adolescents are less likely to
be overweight or obese (Sutter et al., 2013). Moreover, Moffitt et al. (2011) argue that
childhood differences in preferences determine later life outcomes for two reasons: first,
they affect the accumulation of later skills and preferences through self-productivity and
cross-fertilization (Heckman, 2007); and second, they are decisive because they affect early
decisions, which can have irreversible and lasting effects. As an example, higher levels
of self-control and patience among teenagers are associated with a lower prevalence of
school dropout, substance abuse and unplanned pregnancies. In this respect, our results
contribute to literature showing that gaps in economic opportunities open up early in life
(Case, Lubotsky, and Paxson, 2002; Heckman, 2007).3

Given that patience, risk-taking and altruism determine the shape of the utility func-
tion, our results also have implications for economic modeling. First, we show that individ-
uals already systematically differ in economic preferences at relatively young ages. It may
thus be beneficial to capture these heterogeneities in theoretical or empirical models of eco-
nomic decision-making, e.g., regarding school choice or the engagement in risky behaviors.
Second, differences in socio-economic conditions shape economic preferences, which in turn

determine economic decision-making and outcomes, suggesting that preferences and 1Q) are

level of risk attitude. For example, Dohmen et al. (2011) document that a higher willingness to take risks
is associated with behaviors that are typically perceived as both detrimental (e.g., smoking) or supportive
to good health (e.g., exercising).

39Using estimates from studies that present their results in terms of standard deviations, we derive that
the cognitive skill gap maps into hourly wage differences of, e.g., 16.8% (= 0.65%25.9%) for male and 22.2%
for female high school graduates (Heckman, Stixrud, and Urzua, 2006) and a GPA difference of 23.1% of a
standard deviation (Humphries and Kosse, 2017). The SES gap in patience maps into a 12.6% difference in
the probability of underage drinking (Sutter et al., 2013) and into a 4.9% difference in disciplinary referrals
in school (Castillo et al., 2011). The gap in risk-taking maps into a 4.5% difference in the probability of
being a smoker (Dohmen et al., 2011). The SES gap in altruism maps into an about 5% difference in the
probability to donate or volunteer (Falk et al., 2016).
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mediating variables regarding the relationship between SES across generations. Third, our
results suggest that fundamental characteristics of the utility function are not fixed or de-
termined at birth, but rather endogenously formed through parental investments early in
life, such that familial investments may have implications for utility maximization at later
stages. Regarding the transferability of our results to theoretical and empirical models
of economic choice, it is important that economic preferences were elicited by means of
revealed preferences in incentivized experiments, which are commonly used to approximate

the shape of the utility function.

In contrast to other studies, we use one coherent framework to study the gaps in
IQ and key economic preferences and document that, at elementary school age, they all
systematically differ by SES. Only such a comprehensive perspective can provide insights
into the simultaneous determination of “risk factors” that are related to SES. This is
important because economic preferences and IQ do typically not affect single decisions and
life-outcomes in an isolated manner, but rather jointly (Heckman, Stixrud, and Urzua,
2006; Ida and Goto, 2009; Becker et al., 2012; Sutter et al., 2013). For example, one
would expect that individuals who are at the same time risk-taking and impatient are
more likely to engage in addictive behaviors such as smoking, drinking or gambling (Ida
and Goto, 2009; Sutter et al., 2013). Our results document that, on average, children
from families with lower SES are less patient and more risk-taking. Thus, they tend to
combine characteristics that make them more vulnerable to addictive behaviors. Moreover,
children from families with higher SES are more intelligent and more prosocial. In this
regard, Deming (2017) shows pronounced employment and wage growth for jobs requiring
the combination of high cognitive and high social skills. Regarding education attainment,
the pattern of lower discount rates and more intelligence of children from high SES families
makes it more likely for them to obtain higher levels of education. Altogether, systematic
differences in a child’s IQQ and economic preferences by parental SES result in a tendency

to favor social immobility.

Our results also deliver insights regarding the importance and functioning of parental
investments. In line with previous studies (e.g., Guryan, Hurst, and Kearney, 2008; Cobb-
Clark, Salamanca, and Zhu, 2016), we document that high SES families significantly outper-
form low SES families when it comes to both parenting style and time investments. Their
day-to-day interactions with the child are more likely to be characterized by a warm and
forthcoming parenting style and they spend a larger fraction of their time on stimulating
activities. Interestingly, time investments are more strongly affected by parental education,
while a positive parenting style is more strongly associated with household income. Both

types of investments in turn are important for the development of IQ and economic pref-
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erences. In particular, risk-taking and patience are relatively strongly determined by time
investments, while a positive parenting style and time matter similarly for the formation of
IQ and altruism. Our results also indicate a large degree of substitutability between both
types of investments and vis-a-vis maternal characteristics. This implies that even parents
with, e.g., low levels of patience can improve their children’s patience through investments
and, even more so, since their overall investment productivity is no lower than for high SES

families.

Finally, our results allow us to derive implications about the impact of policies that
enhance socio-economic resources or parental investments, respectively. Congruent with the
literature (Lindqvist and Vestman, 2011; Dahl and Lochner, 2012), we find that parental
compulsory schooling or household income policies are relatively more effective in closing
the SES gap in IQ, but less effective in altering the SES gaps in economic preferences. By
contrast, policies that directly target investments are most effective in closing the SES gaps
in economic preferences. Specifically, given our assumptions, a policy raising both parenting
style and time investments among low SES families by 20% of a standard deviation would
close roughly two-thirds of the gaps in patience and altruism, and it would fully close
the SES gap in risk-taking. This finding is akin to literature showing that non-cognitive
traits are often more easily malleable than cognitive traits in response to a change in early
childhood investments (see, e.g., Heckman et al., 2010; Heckman, Pinto, and Savelyev,
2013), although these papers do not focus specifically on the development of economic

preferences.

In future research, richer data on genetic, social, and other factors may help to uncover
more precisely the mechanisms through which parental characteristics affect both SES,
and child characteristics. Moreover, future work may ascertain whether early childhood
interventions targeted at parental investments (such as Doyle et al., 2017) unveil effects on

child economic preferences that are of a similar magnitude as those predicted in this study.
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Labour Dynamics in Australia, HRS— Health and Retirement Survey, IUS— Irish University Study, NELS— National Education
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Youth, NLSY79- The National Longitudinal Survey of Youth 1979, NLSY97—- National Longitudinal Survey of Youth 1997, NLS-72—
National Longitudinal Study of the High School Class of 72, Perry— Perry Preschool Project, PSID— Panel Survey of Income Dynamics,
SBC- Stockholm Birth Cohort Study, SHIW- Bank of Italy Survey of Household Income and Wealth, TCMLS— Templeton-Chicago
MBA Longitudinal Study, Terman— Survey by Lewis Terman started at Stanford in 1921/22.
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A.2 Additional tables

Table A2: SES gaps in 1Q, patience, risk-taking, and altruism

1Q Patience  Risk-taking Altruism
(1) (2) (3) (4)
Low SES —0.647 —0.348 0.226 —0.212

Standard errors:

a. Bootstrapped SE (0.091)*** (0.140)** (0.124)* (0.096)**
b. OLS/OIM SE (0.091)%%*  (0.134)%**  (0.126)*  (0.096)**
c. Huber-White SE (0.091)***  (0.135)**  (0.127)*  (0.094)**

Observations 435 435 435 435

Notes: The table shows coefficients of regressions, in which IQ or economic preferences are
regressed on a low SES dummy that equals 1 for low and 0 for high SES families. Columns
(1) and (4) are estimated using OLS. In columns (2) and (3), we take the censoring of the
respective dependent variables into account and use Tobit. Standard errors are displayed in
parentheses. We report three alternative estimates of standard errors: bootstrapped stan-
dard errors (1000 bootstrap replications) in line a., OLS standard errors (column (1) and
(4)) and observed information matrix (OIM) standard errors for the Tobit models (column
(2) and (3)) in line b., and Huber-White standard errors in line c. Significance at * p < 0.1,
** p < 0.05, ¥** p < 0.01.

Table A3: 1Q/economic preferences and teenage life outcomes

‘ Success in school Social participation Juvenile offending

Panel A: Low SES ‘ —0.174*** —0.124** 0.057

Panel B: raw correlations

1Q 0.303*** 0.136** —0.022
Patience 0.110** 0.110** —0.057
Risk-taking —0.164*** —0.032 0.199***
Altruism 0.156*** —0.010 —0.132**

Panel C: correlations cond. on SES

1Q 0.274*** 0.107* —0.006
Patience 0.092* 0.097* —0.052
Risk-taking —0.156*** —0.029 0.197***
Altruism 0.141*** —0.022 —0.128**

Notes: Panel A and B: Displayed correlations are Pearson correlation coefficients. Panel C: Displayed coefficients
are standardized beta coefficients of an OLS regression (equivalent to Pearson correlation coefficients) where the
respective standardized outcome is regressed on the respective standardized measure of the child and a low SES
dummy. Success in school is measured by grade point average (converted such that higher grades are better). Social
participation and juvenile offending are survey measures. For details see Section B.5. N(Success in school) = 344,
N (Social participation) = 347 and N (Juvenile offending) = 348, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A4: Gender gaps in 1Q, patience, risk-taking, and altruism and SES gaps by gender

1Q Patience Risk-taking Altruism

(1) (2) 3) (4) (5) (6) (7) (8)
Male 0.097 0.119 0.576***  0.536%**  0.527*** (.339%* —(.393*** —().483%**

(0.090) (0.138) (0.132) (0.138) (0.129) (0.135)  (0.095) (0.123)
Low SES —0.646%** —0.626*** —0.351** —0.104 0.228%  0.095 —0.214** —0.299**

(0.091) (0.139) (0.137) (0.142) (0.120) (0.132)  (0.094) (0.128)
Male —0.040 —0.260 0.094 0.163
x low SES (0.181) (0.198) (0.181) (0.185)
Observations 435 435 435 435 435 435 435 435

Notes: In columns (1), (3), (5) and (7), the table shows coefficients of regressions, in which IQ or economic
preferences are regressed on a male dummy (1 for boys, 0 for girls) and a low SES dummy that equals 1 for low
and 0 for high SES families. Columns (1) and (7) are estimated using OLS. In columns (3) and (5), we take the
censoring of the respective dependent variables into account and use Tobit. We find no gender difference in 1Q),
but boys are significantly more patient, more risk-taking, and less altruistic than girls. In columns (2), (4), (6) and
(8), we add the interaction term “Male x low SES”. We use OLS for all four regressions to ease comparison of the
the coefficient of the interaction term. The results show that the SES gaps in IQ and economic preferences do not
differ significantly for boys and girls. Bootstrapped standard errors (1000 bootstrap replications) are displayed in
parentheses. Significance at * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A5: SES gaps by risk domain

Risk-averse Risk-neutral Risk-seeking

(1) (2) 3)

Low SES 0.011 —0.079* 0.068*
(0.047) (0.045) (0.041)
Observations 435 435 435

Notes: The table shows coefficients of linear probability
estimations, in which a binary indicator of the respective risk
preference category is regressed on a low SES dummy that
equals 1 for low and 0 for high SES families. The dependent
variable equals 1 if a child is classified as risk-averse (risk-
neutral, risk-seeking) and 0 otherwise. Section 2.3.2 contains
the exact definitions of the risk preference categories. Boot-
strapped standard errors (1000 bootstrap replications) are
displayed in parentheses. Significance at * p < 0.1, ** p <
0.05, *** p < 0.01.

48



Table A6: SES gaps in 1Q, patience, risk-taking, and altruism

(1) (2) (3) (4)
Panel A: IQ
Parental education (stand.) 0.350%** 0.257%%% 0.252%**
(0.046) (0.060) (0.060)
Log HH income (stand.) 0.309%** 0.162%** 0.160***
(0.044) (0.056) (0.056)
Parental education x Log HH income —0.082*
(0.043)

Panel B: Patience

Parental education (stand.) 0.250%** 0.171%* 0.162%*
(0.064) (0.079) (0.080)
Log HH income (stand.) 0.235%#* 0.137* 0.131
(0.068) (0.083) (0.083)

Parental education x Log HH income —0.132%*
(0.055)

Panel C: Risk-taking

Parental education (stand.) —0.110* —0.050 —0.053
(0.065) (0.071) (0.071)

Log HH income (stand.) —0.134** —0.106 —0.108
(0.062) (0.067) (0.068)

Parental education x Log HH income —0.056
(0.065)

Panel D: Altruism

Parental education (stand.) 0.140%** 0.142%* 0.143**
(0.046) (0.056) (0.057)
Log HH income (stand.) 0.077* —0.004 —0.004
(0.046) (0.056) (0.056)
Parental education x Log HH income 0.015
(0.044)

Notes: The table shows coefficients of regressions, in which IQ or economic preferences are regressed on a low
SES dummy that equals 1 for low and 0 for high SES families. Panel A and D are estimated using OLS. In
Panel B and C, we take the censoring of the respective dependent variables into account and use Tobit. Average
parental education and log household income are standardized within the analyzed sample. Standard errors are
bootstrapped standard errors (1000 bootstrap replications). For all regressions: N = 435. Significance at * p <
0.1, ** p < 0.05, *** p < 0.01.
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Table A7: Child IQ and preference changes in response to changes in parental resources or parental investments

Policies Actual Compulsory educ Income support Style Time Style and time
min 13 years min 1,065 EUR +0.2 sd +0.2 sd —+0.2 sd
SES Gap SE  SES Gap SESGap SE SESGap SE SESGap SE SES Gap SE

Developmental inputs

Education 4.071  (0.242)  2.600 4.072 (.242 4.072  (0.242 4.072  (0.242) 4.072  (0.242)
Income 838.760 (53.805) 746.205 678.905 (51.371) 838.761 (53.804) 838.761 (53.805) 838.761 (53.805)
Style 0.249  (0.092)  0.177 0.147  (0.078 0.062  (0.091 0.262  (0.091) 0.062  (0.091)
Time 0.761  (0.088) 0.514 0.673  (0.071 0.761  (0.088 0.561  (0.088) 0.561  (0.088)
Child IQ and preferences

1Q 0.647  (0.105 0.472 0.509  (0.055 0.557  (0.059 0.557  (0.059)  0.498  (0.059)
Patience 0.348  (0.148 0.328 0.374  (0.047 0.202  (0.052 0.190  (0.052) 0.131  (0.052)
Risk-taking 0.226  (0.125 0.316 0.373  (0.048 0.070  (0.056 0.044  (0.056) —0.017  (0.056)
Altruism 0.212  (0.101)  0.219 0.254  (0.050) 0.125  (0.057) 0.129  (0.057) 0.062  (0.057)

Notes: The table displays SES gaps of developmental inputs and child outputs. The first column presents the actual gap. The other columns represent predicted gaps as they
would prevail in response to five different policy changes: (1) A compulsory schooling policy which requires both parents to obtain 13 years of education (A-level equivalent). (2)
A (tax-neutral) income support policy to poor families, which raises the incomes of poor families to the threshold level of 1,065 EUR. (3) A policy which raises parenting style
investments by 20% of a standard deviation. (4) A policy which raises parental time investments by 20% of a standard deviation. (5) A policy which raises both parenting style
investments and parental time investments by 20% of a standard deviation. Counterfactual outcomes for affected families are predicted using estimates of model equations (1)
and (2). Counterfactual incomes in response to a compulsory education policy (1) were computed using estimates of equation (B5). The table shows coefficients of regressions
where the respective developmental input or outcome is regressed on a low SES dummy. Standard errors are bootstrapped using 1,000 bootstrap replications.



A.3 Additional figures

Figure A1: Toys arranged in four categories (example). To measure risk and social preferences, we
introduced an experimental currency called “stars”. After the interview, children could exchange
the number of stars that they had collected for toys. The toys were arranged in four categories
that visibly increased in value and attractiveness. The children knew that with more stars they
could choose a toy from a higher category. To ensure that each star was valuable, we converted
any remaining stars into Lego bricks, after the child had chosen his/her toy.
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Figure A2: The figure displays the shares of children categorized as risk-averse, risk-neutral or
risk-seeking by SES (for definitions of the risk categories, see Section 2.3.2). Error bars indicate
bootstrapped standard errors (1000 bootstrap replications). Table A5 provides test results on
whether the shares differ significantly by SES.
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B Additional data descriptions and analyses

B.1 Robustness checks: weighting
B.1.1 Weighting scheme 1: representative population

To allow for representative interpretable evidence, we compare our sample to the population
of families in Germany. The comparison comprises parental SES, as well as maternal
intellect, maternal patience, maternal willingness to take risks and maternal altruism. As a
reference, we make use of data from the German Socio-Economic Panel (SOEP) (Wagner,
Frick, and Schupp, 2007). The data are collected yearly and are representative of the
German population. The SOEP consists of more than 20,000 individuals in more than
10,000 households. We compare the families in our sample to families with children under
the age of 14 in the SOEP. In order to compare the samples along all dimensions which
are of importance for our study, we elicited SES in the same way as in the SOEP and used
the same validated survey questions about maternal intellect and economic preferences in
both data sets.

For both samples we use the SES definition described in Section 2.2. Concerning patience,
we use the measure validated by Vischer et al. (2013), and for risk preferences, we employ
the measure validated by Dohmen et al. (2011). As a proxy for altruism, we use a measure
of the Big Five dimension agreeableness. For details on this measure and its relation to
social preferences, see Becker et al. (2012). As a proxy for intelligence, we use a measure
of the Big Five dimension openness/intellect. For a discussion on the relation of 1Q and
openness/intellect and an example of this approach see Rustichini et al. (2016). For a
detailed description of the Big Five inventory used for the mothers in our sample and in

the SOEP, see Gerlitz and Schupp (2005).49

Table B1 shows how the measures described above compare between our sample and the
SOEP sample. The share of high SES families in our sample is moderately higher than in
the SOEP (44.6% vs. 37.8%). In order to compare the samples in terms of intellect and
economic preferences, we standardized the measures using the SOEP as a reference, i.e.,
the mean in the SOEP is zero in all dimensions. For our sample, we find that mothers are
more intelligent, more willing to take risks, and more altruistic than mothers of children
in the SOEP. There is no significant difference in patience. These findings are in line with

the observation that high SES families are slightly over-represented in our sample.

40The analysis in this section is based on SOEP (2010), the most recent available data at the time of
sampling. The measures where collected in 2008, the only exception is patience which was collected in
20009.
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Table B1: Comparison to a representative sample

Variable SOEP Analyzed sample Sign. difference
Share high SES 37.8 % 44.6 % otk
Maternal intellect 0.0 0.422 ook
Maternal patience 0.0 0.086
Maternal willingness to take risk 0.0 0.576 ok
Maternal altruism 0.0 0.283 rork

Notes: Family characteristics of the analyzed sample (N = 435) and in the SOEP (N =
1,812). t-tests indicate significant differences at * p < 0.1, ** p < 0.05, *** p < 0.01.

In order to check to what extent these deviations from a representative sample affect our
results, we re-weigh our data according to the SES, preference and skill distribution in the
SOEP. To calculate these weights, we generate 32 groups based on the combination of the
binary SES criterion and median splits of the four skill and preference dimensions. We re-
weigh the observations in our sample to produce the same distribution over the 32 groups
as in the SOEP using inverse probability weights. We also use these weights whenever
we standardize a measure. The re-weighted main results are displayed in Figure B1. The
resulting effect sizes are very similar to those from the unweighted regression, suggesting

that selective participation does not bias our results.

B.1.2 Weighting scheme 2: attrition

As described in Section 2.1 we conducted two rounds of data collection within one develop-
mental period. The sample in data collection 1 consists of 519 children and their mothers.
442 of these families also took part in the second data collection. For 435 children (83.8%),
we can construct a balanced data set with all required information (preference and skill
measures of children and mothers, SES and investment measures). For these 435 families
we have two measures of each dimension of interest (from the children), collected within

one developmental period.

To check for selective attrition related to socio-economic background, economic preferences,
or IQ of the child, we re-weigh the observed data using inverse probability weighting (IPW).
The predictions come from a probit model of a binary selection indicator (indicating if an
observation is either only available in data collection 1 (N = 84) or in the balanced data
set (IV = 435)) as a function of parental SES, child 1Q, patience, risk-taking and altruism
measured in data collection 1. We repeated the main analysis shown in Figure 1 using these
weights. The results of the regressions using IPW are shown in Figure B1. The effects sizes
are very similar to the unweighted effect sizes, suggesting that selective attrition does not

bias our results.
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Figure B1: The figure displays gaps in IQ and economic preferences between elementary school
children from high and low SES families. The horizontal bars represent coefficients of a dummy
variable that equals 1 for high and 0 for low SES households in regressions of 1QQ or preferences
on this SES dummy (OLS for IQ and altruism, Tobit for patience and risk-taking). The first,
dark blue set of bars show the results of the unweighted main analysis as in Figure 1. The second
light blue and third grey set of bars show weighted least-square (IPW) estimates, respectively
addressing possible selective attrition or the lack of representativeness of our sample. Error bars
indicate bootstrapped standard errors, for the IPW estimates obtained using the BWR-scheme
(bootstrap with replacement) by Kolenikov (2010).

B.2 Maternal skills and preferences

Our measure of maternal IQ is based on the Standard Progressive Matrices Plus test (SPM
Plus, 10 item short version). The measure of IQ corresponds to the standardized number of
correct answers. 1Q has been shown to be very stable for adults (see, Borghans et al., 2008,
for a discussion). Therefore, and due to time constraints, maternal 1) was only elicited in

data collection 2.

Concerning maternal preferences we use questionnaire measures validated by Falk et al.

(2016). For maternal time preference we use the measure: “When it comes to financial
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decisions, how do you assess your willingness to abstain from things today so that you will
be able to afford more tomorrow. Please indicate on the scale, where the value 0 means ‘not

79

at all willing to abstain today’ and the value 10 means ‘very willing to abstain today’”.

For maternal risk preferences we use the measure “How do you see yourself: are you
generally a person who is fully prepared to take risks or do you try to avoid taking risks?
Please indicate on the scale, where the value 0 means: ‘not at all willing to take risks’” and

2

the value 10 means: ‘very willing to take risks’”. For a detailed discussed on this item see

also Dohmen et al. (2011).

To measure maternal altruism, mothers played two binary hypothetical dictator games
in which they could distribute money (in euro) between themselves and another mother:
in decision A they could choose between the distributions (16, 4) and (10, 10) and in
decision B they could choose between the distributions (6, 18) and (10, 10).** The first
value indicates their own monetary amount; the second value indicates the amount for the
receiving mother. Our measure of maternal altruism is the sum of altruistic choices ((10,
10) in decision A and (6, 18) in decision B).*?

B.3 Test-retest stability of experimental measures of preferences

In our sample of elementary school children, the Spearman Rank correlations between our
measures taken in data collection 1 and our measures taken in data collection 2 (16 months
in between) are 0.301 for time preferences, 0.292 for risk preferences, and 0.382 for altruism
(p < 0.01 for all preferences). To put these test-retest properties into perspective, we
compare them to those obtained from data on young adults (for details on the data, see
Falk et al., 2016). For this group of young adults, age-adapted experimental measures on the
same preference domains were collected twice with only one week in between. Although
based on adults, and despite the small time interval between measurements, these data
display test-retest correlations which, except for patience, are only slightly higher than the

ones we find in our data, see table B2.

It seems unlikely that preferences of adults have changed within a one-week interval. The
observed variation in both samples therefore suggests that most of the instability across data
collections is due to measurement error rather than variation in the underlying preferences.
Additional evidence in support of the stability of preferences of children comes from, e.g.,
Mischel, Shoda, and Rodriguez (1989), Moffitt et al. (2011), Golsteyn, Gronqvist, and

4Falk et al. (2016) show that, in the context of social preferences, hypothetical decisions are good proxies
for incentivized decisions.
42Due to time constraints, maternal altruism was only elicited in the first data collection.

56



Table B2: Stability of preferences: test-retest Spearman correlations

Sample ‘ Patience Risk-taking Altruism
Elementary school p = 0.301 p=0.292 p=0.382
children (16-month interval)  (16-month interval) (16-month interval)
Young adults p=0.672 p=0.347 p = 0.445
(1-week interval) (1-week interval) (1-week interval)

Notes: For details on the sample of young adults, see Falk et al. (2016).

Lindahl (2014) and Cadena and Keys (2015), who show that measures elicited during
childhood have predictive power for teenage and adult outcomes. Related evidence using

our own data is presented in Section B.5 and table A3.

B.4 Empirical relations among IQ and preferences

Table B3 displays the Spearman correlations among our four measures of interest. The
overall correlation pattern is mostly in line with that found for adults: positive correlations
between 1Q and patience are found, e.g., in Dohmen et al. (2010) and Humphries and
Kosse (2017). Burks et al. (2009) also indicate a positive correlation between patience and
risk-taking. For large scale evidence on the relations at the country level, see Falk et al.

(2018). Angerer et al. (2015a) present related results concerning altruism.

Table B3: Spearman correlations among IQ and economic preferences

‘ 1Q Patience  Risk taking  Altruism
1Q 1
Patience 0.290*** 1
Risk-taking -0.063 0.100** 1
Altruism 0.119**  -0.099** -0.223*** 1

Notes: N =435, * p < 0.10, ** p < 0.05, *** p < 0.01.

B.5 Follow-up surveys: teenage outcomes

In the years 2015 and 2016 which is four and five years after the first data collection, we
collected follow-up data on teenage outcomes of the children in our sample. In 2016 the
participants are on average 13 years old and we were able to collect information on about
80% (348 of 435) of the sample that is used in the main analysis in Section 3 (see Table
A3).

In 2016 we asked mothers and children to state the most recent grades of the child in the

subjects of mathematics, German language and first foreign language. To calculate the
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grade point average (GPA), we take the average of mothers’ and children’s reports and
average over these three (main) subjects. For convenience, we recode the data such that

higher grades indicate better performance.

As a proxy for juvenile offending we asked the teenagers in 2016 to state on a 4-point scale

how often they intentionally damaged or destroyed something which they did not own.

To measure social participation we asked the participants in 2015 to state on a 5-point scale
how often they participate in youth group activities (as, e.g., boy scouts or environmental
groups), sports activities or playing music. We aggregate the three ratings to yield one

joint score.

B.6 Robustness checks: experimental protocol

In table B4 we repeat the analysis shown in table A2, adding control variables which might
have influenced the experimental measures. A possible concern is a potential bias driven
by the amount of stars earned within the testing situation (in-experiment wealth). We
therefore include controls for the number of stars which the children had already earned
during the sequence of experiments before each respective experiment took place. Another
possible concern are potential doubts of the children in the experimental protocol (e.g., in
the reliability of the mail service, in the likelihood that another family member will keep
the letter for him or herself, ...). In this case the incentivized measures could potentially

also reflect trust and risk-taking. We therefore include controls for risk-taking and trust.

Note that in order to prevent in-experiment wealth effects we put aside the money earned in
each experiment in an extra, closed paper bag. To eliminate uncertainty of future payments
we explicitly addressed the letter (delivering the delayed money) to the children themselves,
wrote the address on the envelope and put the saved amount of money in the envelope while

the children were watching. We also handed out contact details for questions or requests.

To explore if heterogeneities in in-experiment wealth or trust and risk-taking bias the SES
gaps displayed above, we repeat the analysis shown in table A2, adding measures of in-
experiment wealth, risk-taking and trust*® as control variables**. Comparing results in
tables A2 and B4 shows that the estimated SES gaps are not biased by these potential

confounding factors.

43The trust measure of children stems from a 3-item questionnaire and includes the following items:
“One can trust other people”, “Other people have good intentions towards me” and “One can rely on
other people, even if one does not know them well”, for details see Kosse et al. (2019).

44 Although this procedure is common practice in experimental economics, conditioning on other outcome
variables comes at the cost of potentially introducing a bad control problem (Angrist and Pischke, 2009).
Therefore these conditional correlations should be treated with caution.
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Table B4: Robustness check: SES gaps in patience, risk-
taking and altruism with additional control variables

Patience  Risk-taking Altruism

(1) (2) (3)

Low SES —0.383*** 0.209*  —0.181*
(0.139) (0.122) (0.094)

Control variables:

In-experiment wealth X X X

Trust X X X

Risk-taking X X

Observations 435 435 435

Notes: In columns (1) and (2), we use a Tobit model. Column (3)
is estimated using OLS. Bootstrapped standard errors (1000 bootstrap
replications) are displayed in parentheses. Significance at * p < 0.1, **
p < 0.05, *** p < 0.01.

B.7 Robustness checks: wealth effects

A further possible concern is potential heterogeneity in the valuation of incentives between
children from high and low SES families due to different amounts of available monetary
resources. To check if the availability of different monetary resources affects the relation
between SES and the incentivized preference measures, we repeat the analysis shown in
table A2 and add the weekly amount of pocket money as a proxy for available monetary
resources as control variable. For a discussion of this approach also see Sutter et al. (2013).
The results are shown in table B5, the estimates of the SES gaps are in line with the raw
gaps shown in table A2. This comparison suggests that the estimated SES gaps are not
biased by heterogeneities in available monetary resources. None of the estimated coefficients

of pocket money is statistically different from zero.
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Table B5: Robustness check: SES gaps in patience, risk-
taking and altruism with additional control variables

Patience  Risk-taking Altruism

(1) (2) (3)
Low SES —0.370%*** 0.223* —0.220%*

(0.136) (0.124) (0.097)
Amount pocket money 0.047 0.037 0.003
(in Euro per week) (0.033) (0.032) (0.034)
Observations 433 433 433

Notes: In columns (1) and (2), we use a Tobit model. Column (3) is es-
timated using OLS. Bootstrapped standard errors (1000 bootstrap replica-
tions) are displayed in parentheses. Two observations are missing due to
missing information on pocket money. Significance at * p < 0.1, ** p <
0.05, *** p < 0.01.

B.8 Robustness checks: parental education

Throughout the paper our measure of parental education is the average years of education
of both mother and father.?> This could be misleading if the educational attainment of
mother and father is very heterogeneous within a family and/or if the relation between
education and children’s IQ and preferences is different for mother and father. In this
respect it is important to point out that — in line with evidence of assortative mating
(Eika, Mogstad, and Zafar, 2019) — years of education of mother and father are highly
correlated (Spearman’s p = 0.616,p < 0.01).

In table B6 we display results on the association between parental education and children’s
IQ and preferences separately for mothers and fathers. Given the strong correlation in
educational attainment it is not surprising that the correlations with 1QQ and preferences of

children are very similar.

45Information on education of the father is provided by the mother and refers to the “current partner of
the mother”. In 88% of the cases this is the biological father of the child.
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Table B6: Robustness: parental years of education

1Q Patience  Risk-taking  Altruism
(1) (2) (3) (4)
Average years of education 0.119%** 0.085%**  —0.037* 0.047%%*
(0.016) (0.022) (0.022) (0.016)
Maternal years of education 0.108%** 0.075%*%*  —0.038* 0.040%**
(0.014) (0.020) (0.020) (0.014)
Paternal years of education 0.084*** 0.062%**  —0.047** 0.037**
(0.015) (0.022) (0.023) (0.018)

Notes: The table shows coefficients of regressions in which the respective skill or preference is re-
gressed on a constant and either average or maternal or paternal years of education 1. Columns
1 and 4 are estimated using OLS. In columns 2 and 3 we take the censoring of the respective de-
pendent variable into account and estimate a Tobit model. Bootstrapped standard errors (1000
bootstrap replications) are displayed in parentheses. The number of observations is 435 except for
the regressions using paternal education which, due to missing information, only rely on 351 ob-
servations. * p < 0.1, ** p < 0.05, ¥** p < 0.01.

B.9 Robustness checks: single parenthood

Single parent families often differ in terms of financial and non-financial resources (McLana-
han, 2009), such that single parenthood is potentially important in our context. Yet, single
parenthood explains surprisingly little of the IQ) and preference gaps (compare table B7
below to table A2).4¢ The same holds true when we include single parent status as a covari-
ate in the structural model presented in Section 4 (see top panel of table B8). Moreover,
even when we restrict the sample to two-parent households only, we find that our results
remain largely unaltered, except for a slight increase in the importance of parenting styles
(see bottom panel of table B8).

These findings are in line with recent studies showing that family status matters relatively
little in Germany compared the US (Francesconi, Jenkins, and Siedler, 2010). In fact, single
parenthood in Germany is associated with achievement gaps that are about three times
smaller than in the US (Woessmann, 2015). There are several institutional and cultural
differences that may explain these findings. For example, the social safety net and a well-
functioning public school system may reduce the economic pressure for single mothers to
work full time. Moreover, irrespective of social class or family status, females shoulder
most of the child rearing responsibilities in Germany (Aisenbrey and Fasang, 2017). Last,
biological fathers tend to remain close to their children after a marital breakup. In our

sample, separated fathers spend on average 8 hours per week as main caregiver of their

46Single parent status is defined as “not living together with a partner” at the time of sampling.
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child which is not significantly less than fathers in two-parent families (see column (1) of
table B9, information provided by the mother). Columns (2) and (3) of table B9 reveal
that this pattern also does not significantly differ by SES. Consequently, the amount of
time in which the father is “in charge” of the child explains little of the IQ and preference
gaps (see columns (2), (4), (6) and (6) in table B7).

Table B7: SES gaps, single parent status and time of father with child

1Q Patience Risk-taking Altruism

(1) (2) (3) (4) (5) (6) (7) (8)
Low SES —0.631%** —0.622%**  —0.347**  —(.342%* 0.244**  0.243% —0.212** —0.203**

(0.091) (0.091) (0.139) (0.140) (0.124) (0.125) (0.098) (0.099)
Single parent 0.136 0.145 0.005 0.010 0.154 0.153 0.003 0.011

(0.096) (0.096) (0.151) (0.152) (0.129) (0.130) (0.105) (0.105)
Time of father with child 0.061 0.041 —0.007 0.062
(standardized) (0.051) (0.062) (0.070) (0.047)
Observations 435 435 435 435 435 435 435 435

Notes: The table shows coefficients of regressions, in which IQ or economic preferences are regressed on a low SES dummy that equals 1 for low
and O for high SES families. Columns (1), (2), (7) and (8) are estimated using OLS. In columns (3) to (6), we take the censoring of the respective
dependent variables into account and use Tobit. For details on time of father with child see table B9. Standard errors are displayed in parentheses.

Standard errors are bootstrapped standard errors (1000 bootstrap replications). Significance at * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B8: Production function (average marginal effects) of the structural models controlling
for single parenthood (top panel) and restricting the sample to two-parent families (bottom

panel)

All households

AME 1 0.579*** 0.445*** 0.262*** 0.557***
(0.087) (0.100) (0.061) (0.109)
AMEg;y1e 0.311%** 0.341*** 0.414*** 0.424***
(0.074) (0.091) (0.069) (0.067)
AMETime 0.367*** 0.464*** 0.623*** 0.436***
(0.071) (0.121) (0.097) (0.086)
Observations 435 435 435 435
Two-parent households
AME 1 0.655*** 0.318*** 0.257*** 0.624*
(0.107) (0.098) (0.086) (0.365)
AMEgqy1e 0.331*** 0.423*** 0.495*** 0.448***
(0.092) (0.123) (0.099) (0.166)
AMETime 0.314*** 0.566*** 0.596*** 0.497**
(0.091) (0.173) (0.110) (0.210)
Observations 291 291 291 291

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap replications. Significance stars at *
p < 0.1, ** p < 0.05, *** p < 0.01.

Table B9: Time of father with child

Time father “in charge” of child (hours per week)

(1) (2) (3)
Single parent —2.116 —3.560
(1.736) (2.486)
Low SES —2.167 —3.199
(1.733) (2.203)
Single parent x low SES 2.190
(3.650)

Observations 435 435 435

Notes: The dependent variable is the time per week (in hours) in which the father is “in charge”
of the child (indicated by the mother). As in section B.11.1 we use the average over both data
collections. Coefficients are OLS estimates. Bootstrapped standard errors (1000 bootstrap
replications) are displayed in parentheses. Significance at * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.10 Linking maternal traits to SES

Maternal IQ and preferences translate into higher levels of education. To illustrate this rela-
tionship, we link education and income (as measures of socio-economic status) to maternal

traits by specifying a simple reduced-form system of equations as:

Ei = BY+BEME + BEM] + BEME + BIM + B5Z; + uf (B5)
yi = BY+BLME + BLMT + BLME + B4 M + BLE; 4+ BYZ; + uY

where E denotes parental education, y; is log equivalence household income, and Z; is
a vector of control variables comprising a measure of single parenthood, the number of
siblings, and the child’s age. Moreover, for a given mother, the errors may correlate across
equations, with E[ufu?|M, E,Z] = ¢°. The above system of equations (B5) serves two
purposes. First, estimates from the above system of equations help us to better understand
the extent to which socio-economic status explains intergenerational correlations in 1Q and
preferences. Second, they provide an additional form of anchoring, that is, a link between
traits and economic outcome variables. Such anchoring can be informative above and

beyond the natural anchoring of our variables in incentivized experimental behaviors.

Table B10: Parental SES

High SES Parental education Log HH income

(1) (2) (3)
1Q 0.145*** (0.023) 0.969*** (0.151) 0.075*** (0.021)
Altruism —0.020 (0.024) —0.189 (0.149) 0.028 (0.020)
Patience 0.051**  (0.025) 0.526"*  (0.144) 0.000 (0.019)
Risk 0.026 (0.023) 0.267** (0.134) 0.032* (0.019)
Parental education 0.075*** (0.008)
Observations 435 435 435

Notes: Standard errors (in parentheses) are bootstrapped using 1000 bootstrap replications. The equation for log
HH income comprises a dummy for single parenthood, parental age and parental age squared. Significance at * p <
0.1, ¥* p < 0.05, *** p < 0.01.

Table B10 presents results on the relationship between socio-economic status and mater-
nal traits. The results in column 2 suggest that maternal 1) and maternal patience are
strongly related to the average education level in the household. In particular, we find
that maternal intelligence is the strongest predictor of education, to the extent that a one
standard deviation increase in maternal 1) maps into 0.97 additional years of education.
The coefficients of maternal patience and her willingness to take risks are roughly half and
one third of the size of the intelligence effect, but also significant. This result is in line

with predictions of standard human capital models, which predict a negative relationship
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between the (subjective) discount rate and the number of years of education (Ben-Porath,
1967). The acquired level of education can be used to generate household income either
through market work or via improved marriage market opportunities. Column 3 of table
B10 shows that the return to an additional year of education amounts to around 7.5 percent
of household income in our data. In addition, we find that 1Q and willingness to take risk
are positively related to household income. A one standard deviation increase in IQ raises
household income by 7.5 percent and a one standard deviation increase in the willingness

to take risks raises it by 3.2 percent.

B.11 Further measures of parents
B.11.1 Parental investment measures

The information on parenting style and time investments are collected via the questionnaire
answered by mothers.*” To estimate latent parenting styles, we use three indicators of
parenting style investments (for an overview and a detailed description of the parenting
style measures, see Thonnissen et al., 2015, and the references therein).® First, parental
warmth (two items: (i) “I show my child with words and gestures that I like him/her.”
(ii) “I praise my child.”) measures the extent to which parents praise their child and their
tendency to show love and affection. Second, psychological and behavioral control (four
items: (i) “If my child does something against my will, T punish him/her.” (ii) “I make it
clear to my child that he/she is not to break the rules or question my decisions.” (iii) “I
think my child is ungrateful when he/she does not obey me.” (iv) “I do not talk to my
child for a while when he/she did something wrong.”) indicates child punishments. Third,
parental monitoring (two items: (i) “When my child goes out, I know exactly where he/she
is.” (ii) “When my child goes out, I ask what he/she did and experienced.”) indicates the
degree to which parents are informed about the whereabouts and doings of their child.
These eight items are used to extract one latent parenting style factor as explained in
Section 4.3.1.

Parental quality time investments are constructed from a short time diary in which parents
report the frequency of a large number of activities with the child during the past two weeks.

Highly interactive joint activities comprise, e.g., joint meals, playing board games and

4TThe data on time investments were collected in both data collections; we therefore use averages to
reduce measurement error. Parenting styles are assumed to be stable within one developmental period.
Therefore, and because of time constraints for data collection, information on parenting style was only
elicited in data collection 2.

48Tn sum, we use eight items which are rated on a 5-point Likert scale, respectively.
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playing an instrument together. Joint activities which require a low degree of interaction
comprise, e.g., grocery shopping, watching TV and playing video games. In the analysis,
our measure of parental time investment is the share of highly interactive activities (see
Section 4.3.1). This approach allows us to hold the maternal time budget for non-work
related activities fix, which in itself might be a function of familial contexts that are outside

of our framework, such as the number of children or the number of available caregivers.

Table B11 provides summary statistics of each of the above measures for high and low
socio-economic status families, as well as the estimated loadings in the measurement sys-
tem of the parenting style factor. It shows that, with the exception of parental warmth,

high socio-economic status parents score significantly higher on all investment indicators.

Table B11: Parental investment measures

Variables Ihh I diff p-value loading
Parental warmth 0.070 0.214 —0.144 0.12 0.347
Parental control —0.300 —0.062 —0.238 0.01 —0.050
Parental monitoring 0.230 0.047 0.184 0.03 1

Share of highly interactive activities 0.549 0.519 0.03 0.00 -

Notes: pp and p; indicate mean values for the high and low SES groups respectively. Reported p-values cor-
respond to a t-test for the equality of means.

B.11.2 Satisfaction with child development

Our aim is to approximate the process of a child’s 1Q) and preference development until
mid-childhood. However, we only observe parenting style and time investments at one
particular developmental stage. Thus, our model estimates might be biased if the parental
investments, parenting style and quality time respond to recent unobserved developmental
shocks. We therefore developed a survey question, which specifically asks parents about

their satisfaction with the child’s developmental process.

To measure how satisfied mothers are with the development of their child, we asked the
question: “All together, how satisfied are you with your child’s development in the last
year?” Answers were given on an 11-point scale with 0 meaning “completely dissatisfied”
and 10 meaning “completely satisfied”. As all measures directly related to children this
measure was elicited in both data collections, which allows us to use the mean over both

points in time.
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B.12 Assortative mating regarding preferences and investments

Our data only contain only limited information about secondary caregivers, as only the main
caregiver (mostly the mother) responded to the survey questions and took part in the IQ test
(see Section B.11). The information on education of the fathers used in section B.8 stems
from reports by the mother. Hence, our analyses rely on the assumption that maternal
1Q, preference and investment measures are a reasonable proxy also for paternal inputs,
e.g., because of assortative mating. Such assortative mating on preferences and abilities is
reasonable from a theoretical perspective (Bisin and Verdier, 2000, 2001). Moreover, the
empirical literature finds within-couple correlations between 0.3 to 0.5 for IQ), patience, risk
taking and altruism, respectively (Mascie-Taylor and Vandenberg, 1988; Kimball, Sahm,
and Shapiro, 2009; Dohmen et al., 2012; Arrondel and Frémeaux, 2016).

Regarding the similarity of parental investments by fathers and mothers, we have conducted
additional analyses using data of the SOEP (2017). These data contain the same style
investment measures that are used in our main analysis (see Section B.11.1) for both parents
of 8-years old children in the years 2010 to 2016 (number of families = 1,478).%® The results
are shown in table B12. The correlation between maternal and paternal parenting styles
is statistically significant and the magnitude of the correlation is in a similar range as the
within-couple correlations for preferences and 1Q reported in the literature. Moreover, the
results in column (2) indicate that the between correlation does not differ for low and high
SES families.

Thus, since mothers and fathers seem to be relatively similar regarding their economic
preferences, 1Q), and parental investments, we argue that our main caregiver information is

a reasonable proxy for parental investments within family.

49For the analysis in this section we use a score of the parental style items.
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Table B12: Correlations of style investments between mother and father

Style Investment mother (standardized)

(1) (2)
Style investment father (standardized) 0.357#H* 0.307#**
(0.027) (0.038)
Low SES —0.118**
(0.048)
Style investment father x low SES 0.068
(0.053)
Observations 1,478 1,478

Notes: Style measures of father and mother were standardized such that the coefficient in columns
(1) can be interpreted as Pearson correlation coefficients. The low SES dummy follows the defini-
tion in section 2.2. Coefficients are OLS estimates. Bootstrapped standard errors (1000 bootstrap
replications) are displayed in parentheses. Data source: SOEP (2017). Significance at * p < 0.1, **
p < 0.05, *** p < 0.01.

B.13 Parenting style factor and alternative estimates

We employ a latent factor model to extract latent parenting style. For our preferred
model specification, we use a model with a flexible distributional factor structure in form
of a mixture distribution. Our setup is thus similar to the one presented in Carneiro,
Hansen, and Heckman (2003), Heckman, Stixrud, and Urzua (2006) or Heckman, Pinto,
and Savelyev (2013). We assume that the observed measurements (M?®) of parenting
practices are additively separable in the natural logarithm of the latent parenting factor, a
function of maternal IQ and preferences (M) and household characteristics (X). Then,

for family 7 and measurement k, we can write:
M = e+ M+ XeiBe+ MIn(I%) + 6y fork=1,.. K, (B6)

where the terms py, are intercepts, A, are factor loadings and e€;,; are measurement errors.
Measurements are standardized to have a mean of zero and standard deviation of one (using
representative weights, see Section B.1). Since the scale of each factor is arbitrary, we set
the factor loading in the first measurement equation to unity (A\; = 1). Furthermore, we
assume FEleg;| = 0 for all £ = 1,..., K and that the measurement errors are independent
across equations and the latent factor. Finally, we require K > 2 to ensure identification.
The distribution of I° is flexibly approximated by a mixture of two normal distributions,

such that the probability density function can be written as:

fr(In(D)) ~ wpr(In(I7)) + (1 — w)pa(In(1y)),
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where w is the mixture weight and I¥ ~ N(uy, Vi) and I5 ~ N(ugz,Vs). We estimate
the above model (B6) using maximum likelihood by following the two-step procedure and
code laid out in Sarzosa and Urzia (2016), to recover the factor distribution. In the
measurement part of the model, we proceed as in Heckman, Stixrud, and Urzua (2006),
Heckman, Pinto, and Savelyev (2013), or Piatek and Pinger (2016) and include covariates
that might jointly affect the measurement of parenting styles or that enter the production
equation of child traits separately (such as maternal characteristics). Our aim is to recover
the latent parenting style, to increase power by reducing measurement error and to reduce

residual variance that might lead to biased estimates of equation (3).

As shown in detail in, e.g., Carneiro, Hansen, and Heckman (2003), in Sarzosa and Urzia
(2015) and in the appendix to Piatek and Pinger (2016), the above system is identified. In
the following, we briefly repeat the main identification argument. First, the factor loadings,
the variance of the factor and the measurement residual variances can be obtained from
the covariance structure of the measurements. All covariances depend on the correspond-
ing factor loading and on the variance of the factor, e.g., Cov(My; My|X) = Ay, A0

The ratios of the observed covariances then identify the ratios of the corresponding factor
Cov(My1;M2|X) _ Aagy

CouMa;Ms|X) — Aary
we set the scale of the factor by fixing the first factor loading to one (in the equation for

loadings up to a proportionality constant To achieve identification,
monitoring). Doing so, we can use the above relationship and other covariances to obtain
the values of the factor loadings, the variance of the factor and the measurement residual
variances. Second, given the factor loadings and measurement residual variances, the fac-
tor distribution is obtained from the joint distribution of measurements using Kotlarski’s

Theorem (see, pages 381 and 382 in Carneiro, Hansen, and Heckman (2003).)

Arguably, there are many alternative ways to aggregate parenting styles and the method
of aggregation will lead to different results whenever parental behaviors translate into 1Q
and preferences differentially.®® Moreover, the presence or absence of covariates in the
measurement system may influence our estimates. In figure B2 and table B13 below, we
thus present an alternative set of results, which is based on simple factor analysis (without
covariates) and Bartlett (1937) scores. We find a somewhat smaller SES gap in parenting
styles. Moreover, the impact of parenting styles on child IQ and preferences then slightly

reduces for I1Q, patience, and risk taking. It remains similar for altruism.

%0As an example, parental punishment seems to (negatively) affect child altruism more strongly than
child patience.
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Figure B2: Parental Investments by Socio-economic Status
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Table B13: Production function using principal component factor analysis and Bartlett
factor scores (average marginal effects)

Marginal effects 1Q Patience Lower risk- Altruism
taking

AME, ;1 0.499*** 0.366*** 0.233*** 0.494***
(0.090) (0.063) (0.064) (0.112)

AMEsg¢y1e 0.307*** 0.274*** 0.432*** 0.442%**
(0.064) (0.054) (0.079) (0.070)

AMETime 0.289*** 0.384*** 0.623*** 0.416***
(0.068) (0.067) (0.102) (0.092)

Observations 435 435 435 435

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap replications. To achieve
convergence of the model of child patience, we fix ¢ to the mean value of previous estimates. Significance stars
at * p < 0.1, ¥* p < 0.05, *** p < 0.01.

B.14 Child IQ and preferences by ventile of parental investments

Figure B3 displays child outcomes for each ventile of the respective parental investment
distribution. It shows that parenting styles are particularly important for the production of
altruism, while time investments matter mostly for risk-taking. The graph also shows that
changes in parenting styles and time investments are least effective in producing differences
in child IQ and altruism, as long as the corresponding maternal characteristics are kept
unchanged. The importance of an altruistic caregiver for the formation of altruism confirms
the findings reported in Kosse et al. (2019).
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B.15

Figure B3: Parental investments
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Notes: The figure displays how child IQ and preferences (displayed in standard deviations on the y-axis) respond to parental
investments. We use the standard convention that higher ventiles are associated with higher values of the variable.

Robustness check: other maternal characteristics

The structural framework in the main part of the paper imposes that only the directly
related maternal characteristic affects child preferences and 1Q). Thus, for example, mater-
nal IQ is only allowed to affect child’s IQQ but not risk taking or a child’s patience. As
a robustness check, we thus investigate whether other maternal characteristics also affect
child IQ and preferences indirectly. As a simple test, and to keep the model estimable, we

specify all other maternal characteristics to enter linearly. Thus, for example, for child 1Q

1Q
we estimate In (P/?) = In(IT{%) + WLQ In [ﬁfMZ-IQ(b + %IQIiS(bIQ + %IQIde)IQ] + 60 MFP +
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SR ME + o4, MA + T}iI © The corresponding average marginal effects, displayed in Table
B14, indicate that other maternal characteristics are of little importance after accounting
for parental investments and the directly related maternal characteristic. Most effect sizes
are very small and not statistically different from zero. In two cases, we even find a sig-
nificantly negative relationship between maternal altruism and child patience and between

maternal risk preferences and child altruism, respectively. However, given the large num-



ber of additional coefficients and small sample size, we are cautious to overinterpret these

results.

Table B14: Production function with other maternal characteristics (average
marginal effects)

Production function

1Q Patience Lower risk-taking Altruism
Marginal effects
AME ;1 0.584*** 0.438*** 0.251*** 0.547***
(0.076) (0.089) (0.052) (0.100)
AMEgiy1e 0.319*** 0.338*** 0.421*** 0.427***
(0.073) (0.102) (0.073) (0.065)
AME Time 0.367*** 0.449*** 0.620*** 0.432***
(0.063) (0.108) (0.086) (0.079)
AMEyiq -0.001 0.006 -0.073
(0.038) (0.055) (0.046)
AMEttime -0.023 -0.023 -0.034
(0.057) (0.055) (0.061)
AMEntrisk -0.024 0.023 -0.137**
(0.053) (0.067) (0.058)
AMEp a1ty -0.030 -0.119** -0.051
(0.046) (0.050) (0.053)
Observations 435 435 435 435

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap replications.
Significance stars at * p < 0.1, ** p < 0.05, *** p < 0.01.

In addition, it is conceivable that the productivity of the production process varies by
ability, i.e., because high-IQ mothers have an easier time producing child preferences. To
test this presumption, we introduce an 1Q-specific productivity parameter I1;¢ (in addition
to [lggs) to the model, to capture productivity differences that arise as maternal 1Q lies
above the median. The results of this exercise are displayed in table B15. Il;q is close
to and not significantly different from one in all instances. Hence, there are no apparent

productivity differences between high and low 1QQ mothers.
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Table B15: Production function with high IQ productivity parameter
(productivity parameters and average marginal effects)

Production function

Patience Lower risk-taking Altruism
SES/IQ productivity
Iskes 0.869 0.715 0.932
(0.103) (0.081) (0.105)
II;q 0.987 0.983 0.996
(0.014) (0.012) (0.011)
Marginal effects
AME ;1 0.444*** 0.251*** 0.559***
(0.103) (0.059) (0.108)
AMEsg¢y1e 0.342%** 0.422*** 0.417**
(0.090) (0.071) (0.064)
AMETime 0.468*** 0.620*** 0.447**
(0.119) (0.094) (0.080)
Observations 435 435 435

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap repli-
cations. Il;qg is a productivity parameter that captures differences in the productivity of
the production process for mothers with above-median intelligence. Significance stars at *
p < 0.1, ¥ p < 0.05, *** p < 0.01.

B.16 Robustness check: alternative measure of parental time in-

vestments

In the main part of this paper, time investment is measured as the share rather than the level
of “quality time.” Using the share of highly interactive activities bears several advantages.
First, it is less prone to reflect random differences in the total amount of time available to
families in the past two weeks. Second, dividing by the overall number of activities takes out
important systematic variation that is not explicitly modeled. Examples are single parent
status, parental work arrangements and the possibility to rely on institutional childcare,
such as after-school programs. Third, the share accounts for high SES mothers tending to

substitute highly interactive activities for detrimental activities (Hsin and Felfe, 2014).
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Figure B4: Parental Investments by Socio-economic Status
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Yet, the level of time investment is arguably a plausible alternative measure, given ample
evidence showing that high-SES parents tend to spend considerably more time on child
rearing in total. Therefore, we reproduce our main results displayed in tables 1 and 3 of
the main paper, but use the absolute number of highly interactive activities as an alternative
measure of parental time investment. Moreover, we also include the overall number of joint
activities as an additive covariate outside of the production function. The corresponding
results are displayed in tables B16 and B17 below. While the results of the investment
system (table B16) remain very similar, the gap in time investments is slightly smaller and
there is more variability in the absolute number of interactive activities among low SES than
among high SES families (see figure B4). Besides, the effect of the level of highly interactive
activities on child outcomes is somewhat weaker (see table B17). Both in reduced form and
structural analyses (see, e.g., the bottom of table B17), we find consistent evidence that
it is not total time, but highly interactive time that matters for the development of child
IQ and preferences (for related evidence along these lines, see Hsin and Felfe, 2014; Bono

et al., 2016).
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Table B16: The relationship between SES and parental investments (level of time)

Parental Investments

Style Time Style Time
SES
High SES 0.230** (0.091)  0.402*** (0.057)
Parental education 0.020 (0.020)  0.071*** (0.012)
Log HH income 0.310*** (0.117)  0.118* (0.068)
Satisfaction child devt.
Oa 0.126*** (0.033)  0.024  (0.021) 0.121***(0.032) 0.023  (0.021)
Observations 435 435 435 435

Notes: Standard errors (in parentheses) are bootstrapped using 1,000 bootstrap replications. Further control variables
comprise maternal preferences and 1Q, child age, the overall number of children in the household, an indicator of single
parenthood, and the overall time parents and children spend together. Significance at * p < 0.1, ** p < 0.05, ¥** p <
0.01.

Table B17: Production function with level of time (average marginal effects)

Marginal effects 1Q Patience Lower risk- Altruism
taking

AME i 0.754*** 0.264*** 0.308*** 0.552%**
(0.085) (0.035) (0.074) (0.114)

AMEs¢y1e 0.329*** 0.188*** 0.488*** 0.439***
(0.069) (0.032) (0.090) (0.124)

AMETime 0.286*** 0.143*** 0.506*** 0.277**
(0.072) (0.030) (0.106) (0.109)

AMEotaltime —0.223*** 0.064 —0.118 —0.183**
(0.085) (0.092) (0.094) (0.085)

Observations 435 435 435 435

Notes: The reported SEs (in parentheses) were bootstrapped using 1,000 bootstrap replications. Total time
enters the model as a control variable outside of the production function. Significance stars at * p < 0.1, ** p
< 0.05, *** p < 0.01.
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