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Abstract

Our sensory environment changes constantly. Accordingly, neural systems continually

adapt to the concurrent stimulus statistics to remain sensitive over a wide range of condi-

tions. Such dynamic range adaptation (DRA) is assumed to increase both the effectiveness

of the neuronal code and perceptual sensitivity. However, direct demonstrations of DRA-

based efficient neuronal processing that also produces perceptual benefits are lacking.

Here, we investigated the impact of DRA on spatial coding in the rodent brain and the per-

ception of human listeners. Complex spatial stimulation with dynamically changing source

locations elicited prominent DRA already on the initial spatial processing stage, the Lateral

Superior Olive (LSO) of gerbils. Surprisingly, on the level of individual neurons, DRA dimin-

ished spatial tuning because of large response variability across trials. However, when con-

sidering single-trial population averages of multiple neurons, DRA enhanced the coding

efficiency specifically for the concurrently most probable source locations. Intrinsic LSO

population imaging of energy consumption combined with pharmacology revealed that a

slow-acting LSO gain-control mechanism distributes activity across a group of neurons dur-

ing DRA, thereby enhancing population coding efficiency. Strikingly, such “efficient coopera-

tive coding” also improved neuronal source separability specifically for the locations that

were most likely to occur. These location-specific enhancements in neuronal coding were

paralleled by human listeners exhibiting a selective improvement in spatial resolution. We

conclude that, contrary to canonical models of sensory encoding, the primary motive of

early spatial processing is efficiency optimization of neural populations for enhanced source

separability in the concurrent environment.
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Introduction

Our ability to distinguish individual objects in complex and dynamic environments is a funda-

mental brain function [1,2]. Conversely, the functional requirements of sensory systems are

shaped by the physical properties of the outside world: only if the neural sensitivity matches

the current statistics of the sensory inputs will the coding of relevant stimulus features be both

informative and energetically efficient and consequently evolutionarily viable. Because realistic

complex environments exhibit highly nonuniform occurrence probabilities of stimulus cues

[3,4], sensory neurons adapt their action potential (“spike”) responses according to the proba-

bility of concurrent stimulus properties. This “dynamic range adaptation” (DRA) is thought to

render neuronal firing maximally sensitive to changes in the stimulus range that is most likely

to occur (Fig 1) [5–7] while keeping activity rates low. Consequently, DRA to stimulus statis-

tics is believed to reflect a neuronal adjustment to optimize stimulus encoding efficacy while

simultaneously mediating improved perceptional resolution in the relevant cue range. How-

ever, direct demonstrations of DRA-based neuronal coding that causes both increased neuro-

nal efficiency and the resulting perceptual benefits are lacking.

In the auditory system, rapid (subsecond) DRA to stimulus statistics has been revealed on

multiple processing levels from primary auditory cortex [8–11] to the midbrain [12–15] and

even brainstem (Fig 1A). Specifically, DRA is prominently exhibited already by auditory nerve

fibers (ANFs) [16,17] (Fig 1B), which consequently should affect the processing of all down-

stream centers but might potentially be most crucial for spatial computations.

To infer the location of a sound source, brainstem neurons of the Lateral Superior Olive

(LSO) compare the difference in sound level at the two ears (interaural level difference [ILD])

that is generated by a location-specific sound-attenuating effect of the head. LSO neurons

respond according to the relative strength of excitatory and inhibitory inputs from the ipsi-

and contralateral ear, respectively (Fig 1A). The ensuing sigmoidal ILD response functions

(average action potential rate as a function of ILD) are regarded as representing the neuronal

basis of auditory space encoding based on intensity difference cues [18] (Fig 1A, top, in addi-

tion to timing cues not dealt with in the present study). Specifically, individual source locations

are thought to be mapped onto a specific spiking activity pattern of precisely tuned neurons or

neuronal populations [19–22]. Yet, the nature of this spatial code and its readout is still a mat-

ter of debate [23–26]. Historically, studies have argued in favor of a labeled-line coding strategy

of auditory space (or a mix of strategies), in which small differences in the average spike-rate

tuning of individual, identifiable neurons or subpopulation contribute to sound-source locali-

zation [27–29]. Yet, the majority of recent studies have concluded that sound-source locations

are initially encoded by the specific relative spike rate of two oppositely tuned hemispheric

populations of spatially sensitive neurons (for review, see [18]). This “two-channel hemi-

spheric coding strategy” is motivated by the fact that the vast majority of neurons in each

brainstem hemisphere are broadly and similarly tuned, thus providing redundant information

about sound-source locations (reviewed in [30]). The reasons for such apparently inefficient

coding of space are, however, unknown. In either case, conclusions about spatial coding were

derived from examining average neuronal firing rates in response to multiple repetitions of a

stimulus set with uniform probability distributions of spatial cues (e.g., each ILD was equally

likely to occur). Consequently, these traditional approaches neglected that under more natural

conditions, DRA (of ANFs or later stages) might crucially alter the nature of the neuronal code

and/or its perceptual consequences.

First, the fact that sound-source positions far to the left or right will result in distinctly dif-

ferent sound levels at the two ears (i.e., a large ILD) consequently should evoke DRA to differ-

ent (monaural) stimulus levels for the ANFs in the left and right ear. Yet, it remains to be
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tested how such differential monaural DRA impacts the detection and representation of ILDs

in the LSO.

Interestingly, an earlier study from the midbrain had reported that the sensitivity to ILDs

undergoes DRA as a function of the spatial statistics [15]. These data thus suggest that spatial

processing downstream of the LSO may adapt to accentuate relative differences in sound-

source positions in complex environments. We previously also identified an activity-depen-

dent LSO gain-control mechanism [31] that might additionally influence the response to ILDs

based on stimulation history [32]. It follows that the extraction of ILDs, and consequently the

primary representation of auditory space, already might not be as rigid as traditionally

assumed. More fundamentally, since DRA to absolute sound level is already prominently

exhibited by ANFs [16,17], it is unclear to which extent the observed adaptation to ILDs at

later stages are the direct result of adaptation at either ear alone.

Fig 1. Statistic-dependent coding of spatial cues in LSO. (A) Upper panel: LSO neurons respond with increasing

higher spike rates to increasingly more ipsilateral sound-source positions because these positions generate more

“positive” ILDs (ILDs that favor the excitatory ear). Lower panel: circuit diagram of the inputs to the LSO. LSO

neurons receive excitatory input from the ipsilateral ear via the CN and inhibitory inputs from the contralateral ear via

the MNTB. (B) Non-unimodal probability distributions of monaural stimulus intensity already cause pronounced

DRA on the level of the ANFs [16]. Thus, for large ILDs, the ANFs in the left and right ear will adapt to different

intensity levels (as indicated by color-coded ANFs in A). Colored shaded areas illustrate respective HPRs of stimulus

value occurrence. See also (C) and (D). (C) Illustration of the temporal sequence of ILDs in the two HPR conditions

(centered on −20 dB ILD, shown in red, or +20 dB ILD, shown in blue) that were used to test the effect of complex

stimulation on ILD coding. Note that the sequence changed for each of the 10 iterations of each HPR epoch. (D)

Probability histogram of the sequences shown in (C). 80% of stimuli had ILDs centered on either −20dB ILD ± 8 dB

(red) or +20 dB ILD ± 8 dB (blue). (E) Representative example of DRA in response to the change in HPR condition in

a single LSO neuron. The ILD response function for this neuron was substantially different between the −20 dB

ILD ± 8 dB (red) or +20 dB ILD ± 8 dB (blue) condition. Given are mean response rates (solid lines) and SEM (shaded

area). (F) Threshold ILDs (minimal ILD that significantly differed from baseline; see Materials and methods) shift

significantly by altering the HPR condition (P = 0.001, paired Wilcoxon signed-rank test, n = 13 neurons). Inset shows

median shift (8 dB, white bar), with IQR given by the box edges. Whiskers extend to overall data range. Underlying

data can be found in S1 Data. See also S1 Fig. ANF, auditory nerve fiber; CN, Cochlear Nucleus; DRA, dynamic range

adaptation; HPR, high-probability region; ILD, interaural level difference; IQR, interquartile range; LSO, Lateral

Superior Olive; MNTB, Medial Nucleus of the Trapezoid Body; Thrsld, threshold.

https://doi.org/10.1371/journal.pbio.3000150.g001
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Second, the auditory pathway—like all sensory systems—must detect and code the relevant

stimulus properties from only a single stimulus occurrence. The nature of response distribu-

tions to such a single instance of, e.g., an ILD in a neuron population might be very different

compared to the response distribution of a single neuron to this ILD averaged across trials and

consequently could result in different coding regimes. Since the extent of DRA can vary con-

siderably across cells [10,16], such differences in response distributions might be particularly

evident in complex acoustic environments.

Third, neuronal adaptations such as DRA to increase computational efficiency supposedly

also entail a behavioral improvement within the concurrent environmental conditions. Hence,

important insight into how the brain encodes auditory space under complex conditions might

be gained by investigating the perceptual impact of DRA [22]. Yet, while perceptual changes

due to neuronal adaptation to stimulus statistics have been reported [15,33], demonstrations

of how these changes are linked to improving neuronal efficiency are missing.

To answer these questions, we studied the effects of spatially complex stimulation on ILD

processing in the LSO of gerbils and on the perception of human listeners. We extended a

well-established monaural stimulus paradigm for studying DRA [10,12,16,17] by generating a

binaural version of these stimuli to specifically test how spatial coding in the LSO is affected by

DRA on its monaural inputs. Our stimulus paradigm resulted in rapidly changing ILDs that

switched periodically between favoring either the left or right azimuthal space (Fig 1C and

1D), as can be experienced in noisy environments [34]. In response to these spatially dynamic

stimuli, we observed prominent DRA in LSO neurons, which demonstrate a lack of absolute

encoding of space by average neuronal firing rate. Surprisingly, DRA in single neurons

resulted in large response variability to a given ILD across trials. However, we find that when

considering single-instance population coding, DRA maximized the efficiency of neuronal

separability for specifically those ILDs that were most likely to occur in the concurrent statisti-

cal environment (high-probability region [HPR], Fig 1C and 1D). These enhancements in

neuronal coding were paralleled by human listeners exhibiting a selective improvement in

just-noticeable differences (JNDs) for ILDs in the hemisphere of the respective HPR. Intrinsic

LSO population imaging of energy consumption and a simple LSO model further explained

that a slow-acting gain-control mechanism enhances the population efficiency by distributing

activity across a group of neurons during DRA. We conclude that already on the primary

detector level, the processing of ILDs is not tuned towards a representation of locations in

space but optimizes efficient sound-source separation in the concurrent acoustic environment

by instantaneous population coding of ILDs.

Results

LSO neurons exhibit DRA to stimulus statistics

To explore the role of DRA on spatial coding in complex environments, we designed a stimu-

lus paradigm with constantly varying ILDs in the context of two related but statistically distinct

listening conditions. We used continuous broadband noise (identical on the two ears) and

changed the ILD every 50 ms, with ILD values drawn from one of two nonuniform distribu-

tions. The two distributions covered an identical range of ILDs but favored predominately

(80% of time) either the ipsi- or contralateral ear (ILDs of +20 dB ± 8 dB and −20 dB ± 8 dB,

named the +20 dB HPR and −20 dB HPR, respectively; Fig 1C and Materials and methods).

This way, we simulated dynamic spatial environments with dominant sound sources located

either left or right of midline (Fig 1D). The two conditions switched periodically (Fig 1C: 1 run

consisted of 19 switches every approximately 6 s; the sequence of ILDs was different for each

switch but identical across repetitions; 3 runs were recorded for each cell). To assess to what
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extent changes in stimulus statistics on the two ears alter the neuronal detection and encoding

of ILDs, we first carried out extracellular recordings from single neurons in the LSO of anes-

thetized gerbils while presenting the stimuli via calibrated earphones (see Materials and

methods).

Following previous studies of DRA [12,14–16], we first assessed the average neuronal spike

rates (calculated across occurrences of each ILD) separately for −20 dB and the +20 dB HPR

conditions. We observed that the resulting ILD response functions differed between the two

conditions (a single-neuron example is shown in Fig 1E). Specifically, a clear shift of the ILD-

spike–rate functions was observable that entailed a change in the average spike rate in the

respective HPRs (red and blue areas in Fig 1E and throughout). To quantify these shifts, which

appeared highly reminiscent of DRA to accommodate the change in the range of overrepre-

sented ILDs, we computed the minimal ILD that triggered significant spiking (“threshold

ILD”; see Materials and methods) in the respective condition for each neuron. Threshold ILDs

significantly increased when switching from the −20 dB to the +20 dB HPR (Fig 1F, n = 13

neurons, P = 0.001, paired Wilcoxon signed-rank test). For the population, the median shift in

threshold ILD between the two conditions was 8 dB (interquartile range [IQR] 6 dB; Fig 1F

inset). To further characterize the extent and specificity of the DRA, we also generated two

additional ILD distributions (n = 18 neurons and n = 19 neurons), as well as a monaural condi-

tion (stimulation only on the ipsilateral ear, n = 11 neurons). These additional conditions con-

firmed that the observed shifts in threshold ILDs were dependent on the concurrent input

statistics (S1 Fig). This presence of DRA-related shifts in ILD functions in the LSO directly

demonstrates a lack of absolute encoding of sound-source locations by the average neuronal

firing rate already on the level of cue detection.

DRA optimizes single-observation population coding

So far, we followed previous studies of DRA in the auditory system [12,14–16] and evaluated

the spatial sensitivity of individual LSO neurons by their average spike rate given the repeated

presentation of each ILD. However, in reality, processing must be able to compute the location

of a sound source from observation of a single instance of the stimulus. Therefore, we next

focused on the direct response by each neuron to each occurrence of a particular ILD. Examin-

ing individual spike counts for 75 recurrent instances of +20 dB and −20 dB ILDs in the

respective HPR condition revealed two interesting findings (Fig 2A).

First, responses of most LSO neurons for ILDs from the concurrent HPR were very sparse

(median spike count and IQR: −20 dB HPR, 0.92 and 0.46 spikes; +20 dB HPR, 3.15 and 0.85

spikes). Second, a high response variability, as indicated by the large IQR, was observable for

all ILDs: spike counts varied considerably between repeated instances of the same ILD (trial-

wise median Pearson’s correlation coefficient and IQR: 0.62 and 0.26, S2 Fig), and spike-trig-

gered average analysis showed no systematic relationship between ILD sequences and their

likelihood to trigger a spike (S2 Fig). Crucially, this lack of consistent responses to ILDs with

complex probability statistics resulted in a very limited modulation of the average spiking

probabilities in either HPR condition, i.e., the probability to observe a particular mean average

spike count across the sample population was very similar for all ILDs (Fig 2B).

In contrast, however, more specific ILD population tuning emerged from our data set when

considering the pseudopopulation response for a single occurrence of a particular ILD (i.e.,

averaging across a column in Fig 2A and 2C; compare also bottom lines in right-hand panels

of Fig 2A; note that neurons were recorded sequentially). To determine how these different

population tunings of mean single-cell population responses and single-instance pseudopopu-

lation responses impact the decoding accuracy of ILDs, we performed a Maximum Likelihood

Cooperative coding for efficient source separation
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Fig 2. Statistic-dependent DRA results in sparse and selective ILD coding for single-instance population averages.

(A) While response probabilities were low overall, the variability in spike counts to repetitive instances of the same ILD

in individual neurons was high. Shown are spike counts of all neurons in response to 75 instances of −20 dB ILD

(lower right-hand panel) or +20 dB ILD (upper right-hand panel). Bottom line in each panel shows mean responses for

each ILD instance. (B and C) Mean population spike-count probability density functions of all neurons were

constructed based on the pooled response of all single-neuron responses (B) and pseudopopulation mean responses at

each instance of ILD occurrence (C). Only the latter resulted in informative ILD tuning (see also Fig 3 and S2 Fig).

Underlying data can be found in S1 Data. DRA, dynamic range adaptation; HPR, high-probability region; ILD,

interaural level difference; Pop., population.

https://doi.org/10.1371/journal.pbio.3000150.g002

Cooperative coding for efficient source separation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000150 July 29, 2019 6 / 24

https://doi.org/10.1371/journal.pbio.3000150.g002
https://doi.org/10.1371/journal.pbio.3000150


Estimation (MLE; see Materials and methods) for both methods. In short, MLE approximates

which ILD is most likely to have occurred given the observation of a particular spike count.

The estimates differed in two important ways when either considering the mean single-cell

population responses (MLE[mean]) or the single-instance pseudopopulation response (MLE

[pop]) (Fig 3A and 3B): First, the estimated deviation from the true ILD values were much

larger for the MLE(mean) (minimal deviations: −20 dB HPR, 14.3 dB at −24 dB; +20 dB HPR,

16.8 dB at −16 dB) compared to MLE(pop) (minimal deviations: −20 dB HPR, 4.7 dB at −20

dB; +20 dB HPR, 10.1 dB at 0 dB); i.e., the accuracy of MLE(pop) was higher. Secondly, the

generally assumed advantageous effect of DRA, i.e., that DRA explicitly enhances the coding

in the respective HPR, was evident for MLE(pop) but not MLE(mean) (Fig 3A and 3B;

improvement of 9 dB and 0 dB, respectively).

Such relative enhancement in the neuronal precision of ILD estimation implies—but does

not confirm—a relative improvement in the ability to resolve nearby sound locations. To

quantify the impact of the differences in population tuning (Fig 2B and 2C) on resolution

directly, we next determined the informational content of each neurons’ response towards the

ability to distinguish adjacent ILDs. We followed previous studies on ILD coding [15,35] and

calculated the standard separation (“D”) [36], which quantifies the separability of adjacent

ILDs based on the ratio of slope steepness and response variability. We first calculated D

(mean), i.e., the mean D across neurons, which is derived from averaging the D-ILD functions

of each single neuron. Since the monaural stimuli that we presented in the −20 dB and +20 dB

HPR epochs were mirror-symmetric to each other, the responses that we recorded in the LSO

of one hemisphere during each HPR epoch can be assumed to reflect the responses to the

other HPR epoch in the LSO in the other brain hemisphere (compare [12,15]). In other words,

the LSO on each side of the brain would provide complementary spatial information for each

HPR condition towards D. We therefore summed the D-ILD functions of each condition with

the mirror-image of the function of the other condition (Fig 3C; dashed lines indicate single-

hemisphere data, solid line represents sum of both hemispheres). In remarkable contrast to

previous midbrain studies [12,15), we found that the average neuronal separability was not

enhanced by the DRA but actually considerably lower for the ILDs from the respective HPRs

(Fig 3C; change for concurrent HPR: −15%, compare red and blue lines in respective HPRs in

left panel). Thus, D(mean) would predict a worsening of ILD resolution by the observed DRA

to spatial stimulus statistics. In contrast, when D is calculated based on the mean spike count

of all neurons to each instance of an ILD (D[pop]), a specificity of separability for the ILDs of

the concurrent hemisphere, including the HPR, becomes evident (Fig 3D; change for concur-

rent HPR: +27%). Similarly, a distinct benefit of D(pop) over D(mean) was also observed for

the two additional binaural stimulus paradigms we tested (S1 Fig).

Human spatial resolution improves specifically for HPR ILDs

To directly test whether the increased performance as predicted by analyzing MLE(pop) and

D(pop) also results in an improved ability to resolve sound-source locations, we performed a

spatial separability test with human listeners via calibrated headphones (Fig 3E). The subjects

(N = 5) were presented with a 2-s–long snippet of the same stimulus used in the electrophysio-

logical experiments, taken alternatively from the +20 dB and −20 dB ILD HPR condition (only

+20 dB is illustrated in Fig 3F). Shortly after (0.35 s) this adapting period, the listeners were

presented with two probe ILDs (each consisting of 50 ms broadband noise, spaced apart by

100 ms) and were asked to indicate which of the two was perceived more lateralized. Using an

adaptive tracking paradigm (see Materials and methods), the difference in ILD between the

two probe ILDs was systematically reduced to determine the JND in ILD for each subject. The

Cooperative coding for efficient source separation
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probe ILDs were centered either on +20 dB ILD or −20 dB ILD (Fig 3F) to allow for decipher-

ing the influence of matching and mismatching the adapter conditions. Specifically, the

Fig 3. Single-instance population averaging predicts human spatial perception. (A) Average MLE(mean) exhibited

no apparent advantage of DRA for decoding ILDs (improvement = 0%, right-hand panel), as the tuning function

obtained from the −20 dB HPR condition was overall better in estimating the ILDs compared to those obtained from

the +20 dB HPR condition. Solid lines show the mean deviations, and shaded area represents SEM. (B) Average MLE

(pop) showed a 9-dB improvement (calculated as the difference between the red and blue functions within the HPRs)

for decoding ILDs from the concurrent HPR. Conventions as in (A). (C) Average D(mean) across all cells (n = 13)

decreased for the concurrent HPR, suggesting a relative worsening of the ability to distinguish adjacent ILDs by

−15.5% (right-hand panel). Solid lines represent D, including the hypothetical second hemispheric response. Mean

data from a single hemisphere are given by dashed lines (shaded area represents SEM). (D) Average D(pop) of the

recorded LSO neurons (n = 13) increased for ILDs from the concurrent HPR by 27.1% (right-hand panel). Solid lines

represent D(pop), including the hypothetical second hemispheric response. Mean data from a single hemisphere are

given by dashed lines (shaded area represents SEM). (E) and (F) The effect of DRA to HPRs on ILD JND of human

subjects were measured with stimuli presented over headphones. Presentation of an adapter sound consisting of a 2-s

snippet of one of the two HPR stimuli was followed by two noise probes (50 ms each) for JND measurement. The ILDs

of the probe tones were centered on −20 dB ILD or +20 dB ILD and hence either matched or mismatched the HPR of

the preceding adapter. (G) Single-subject example of the influence of the HPR on ILD JND. Colocation (i.e., matching)

of the adapter HPR and probe sound position led to significant improvement of the ILD JND (P = 0.004, Friedman

test, n = 12 trials each). (H) The average improvement of colocation by adapter HPR and probe sound position across

listeners was 52.6% (P = 0.002, unpaired Wilcoxon signed-rank test, n = 10 sets from 5 subjects, conventions as in inset

in Fig 1F). Underlying data can be found in S1 Data. DRA, dynamic range adaptation; HPR, high-probability region;

ILD, interaural level difference; JND, just-noticeable difference; MLE, Maximum Likelihood Estimation; pop,

population.

https://doi.org/10.1371/journal.pbio.3000150.g003
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electrophysiological data suggested that JNDs should be enhanced for ILDs in the same hemi-

sphere as the adapter HPR (Fig 3D). In agreement with this prediction made on the basis of D

(pop), we observed a significant improvement in JND when probe center ILDs matched the

hemispheric bias of the adapter (single-subject example in Fig 3G: −20 dB adapter and −20 dB

probe, red, or +20 dB adapter and +20 dB probe, blue; P = 0.004, Friedman test). On average,

JNDs of the five listeners improved by 52.6% (Fig 3H, IQR: 51.8%, P = 0.002, Wilcoxon

signed-rank test). Thus, human JND performance is in close agreement with the neuronally

derived MLE(pop) and D(pop), suggesting that DRA crucially affects both population coding

and perception of ILDs in complex acoustic environments.

Slow gain control maximizes efficiency

How could single-instance population responses in the LSO be optimized for separability in

the concurrent HPR? Moreover, what effect might link high response variability of single neu-

rons and highly informative population ILD coding? To gain insight into potential underlying

mechanisms, we first analyzed the time course of DRA in LSO neurons. In accordance with

DRA studies using similar stimulus statistics in other centers of the auditory system [12,14,16],

we observed an exponential time course of rate adaptation (Fig 4A). Yet, in contrast to previ-

ous reports, we found that adaptation kinetics were best described not by a single but by two

time constants (Fig 4B). Addition of the second time constant resulted in lower root mean-

squared errors (rmses) of fits (median rmse(double) = 0.149, median rmse(single) = 0.255,

P = 0.001, Wilcoxon signed-rank test; Fig 4C), and double-exponential fitting was significantly

superior to single-exponential fits even after compensating for the unspecific benefit of an

additional fitting parameter (Fig 4D; median adjusted R2
(double) = 0.45, median adjusted R2

(sin-

gle) = 0.025, P = 0.001, Wilcoxon signed-rank test). We also fitted the time course of DRA

using a power-law fit [37] and found that it was also superior to single-exponential fitting in

explaining the observed time course (median rmse(power) = 0.151, P = 0.001, Wilcoxon signed-

rank test; S3 Fig). Indeed, rmse(power) was comparable across cells, yet consistently slightly

worse, to the double-exponential fitting (P = 0.02, Wilcoxon signed-rank test; S3 Fig). More-

over, double-exponential fitting had greater explanatory power towards the origin of the

observed adaptation. Specifically, the shorter (first) time constants of the double-exponential

fit (Fig 4B; median tau = 222.8 ms, IQR: 1.465 s) were similar to the kinetics reported for the

auditory nerve [17], suggesting that monaural DRA upstream of the LSO contributed substan-

tially to the ILD adaptations in the LSO. The second time constants were considerably slower

and in the range of a few seconds (Fig 4B; median tau = 2.2 s, IQR: 7.7 s).

Such slow rate adaptation is consistent with previous reports of negative feedback loops in

LSO neurons: the inhibitory transmitter gamma-aminobutyric acid (GABA) is released in an

activity-dependent manner into the extracellular matrix and thereby suppresses presynaptic

inputs in the vicinity via slow-acting GABA-B receptors [31]. Hence, DRA in the LSO might

be considerably influenced by a slow binaural gain control for ILD coding during complex

stimulation. It has been suggested that such slow negative feedback serves to increase the effi-

ciency of population coding [38,39]: because spiking is energetically costly, the efficiency of a

neuronal representation depends on the informational content of a spiking response relative

to the number of spikes that conveyed this information [40,41]. To quantify neuronal popula-

tion efficiency directly, we calculated the average D transmitted per spike for the instantaneous

hemispheric average (D[pop]/spike). This analysis revealed a hemispheric specificity of

response efficiency for the concurrent spatial conditions (Fig 4E). Thus, the slow gain-control

mechanism associated with the second time constant of DRA that we found might serve to

maximize the efficiency of neuronal processing within the hemisphere of the HPR. To
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investigate this potential role of slow gain control on ILD coding in more detail, we generated

a simple model of the LSO based on existing models of DRA. Specifically, we extended an

existing auditory nerve model that included both threshold and gain adaptation [17] by adding

a binaural subtraction stage to reflect LSO processing (S3 Fig). As expected, this simple model

exhibited clear DRA in response to the binaural HPR stimuli (Fig 4G, dotted lines, and S1 Fig),

demonstrating that the HRP-specific shifts in ILD sensitivity are predominately caused by the

oppositional monaural DRA of the LSO inputs. Likewise, the model was also able to reproduce

the nature and extent of DRA to the two additional binaural stimulus paradigms that we tested

(S1 Fig and S3 Fig).

However, since this version of the model lacked a binaural gain-control stage, it captured

only the fast time course of rate adaptation and quickly reached a steady-state spike rate (<1 s,

Fig 4F, gray trace). To account for the second, slow adaptation component in the neuronal

data, we included an additional slow negative feedback stage after binaural comparison in the

model (S3 Fig). This modification resulted in a close match in the dynamics of rate adaptation

between model and LSO neurons (Fig 4F, black trace) and led to lowered overall spike counts

during DRA (Fig 4G, solid lines). This effect of slow gain control had little effect on the overall

amount of spatial information (Fig 4H), again indicative that the shift in ILD sensitivity in the

LSO can be mostly explained by DRA in its monaural inputs (presumably already in the ANFs,

compare also S3 Fig for analysis of additional stimulus paradigms). Nonetheless, addition of a

slow gain control specifically increased D/spike of model responses for ILDs from the concur-

rent HPR (Fig 4I; compare dotted and solid lines). These modeling results thus suggest that

the main function of slow gain control in the LSO is the optimization of coding efficiency (i.e.,

separability per unit of neuronal activity).

Fig 4. Slow rate adaptation increases population efficiency. (A) Evolution of rate adaptation is best explained by a double-exponential process. Shown is

a single-neuron example (black) and double-exponential fit (magenta). Besides a rapid rate adaptation at the beginning of an epoch, a second, slow time

constant was also present in gerbil LSO. (B) Average fast and slow time constants of DRA in the LSO from double-exponential fitting: median tau(first) =

0.22 s, IQR: 1.465 s; median tau (second) = 2.2 s, IQR: 7.7 s. (C and D) Inclusion of a second time constant was superior to single time constant fitting of

rate adaptation: the rmses of fits decreased (C; P = 0.001, paired Student t test, n = 13 neurons) and adjusted R2-values increased (D; P = 0.001, paired

Student t test, n = 13 neurons). (E) Efficiency of responses was measured by calculating D(pop)/spike, displaying high specificity for ILDs in the

concurrent HPR. (F) A simple subtraction model of the LSO and DRA of its inputs can replicate the electrophysiological results only when including a

binaural gain-control stage. Shown are adaptation time courses of the model (as for the neuron in A). Gray and black traces represent results excluding

and including binaural negative feedback, respectively. (G, H, I) The model was able to qualitatively reproduce both the HPR-specific shifting effect of

DRA in the LSO (G) and the HRP specificity of D (H) and D/spike (I). Model responses without and with slow negative feedback stage after binaural

processing are shown by dashed and solid lines, respectively. Crucially, the presence of negative feedback resulted in stronger rate adaptation, which did

not affect D but substantially increased efficiency by 55% (mean improvement within the two HPR regions). Underlying data can be found in S1 Data.

DRA, dynamic range adaptation; HPR, high-probability region; ILD, interaural level difference; IQR, interquartile range; LSO, Lateral Superior Olive;

rmse, root mean-squared error.

https://doi.org/10.1371/journal.pbio.3000150.g004
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Intrinsic imaging reveals energetic benefits of slow GABAergic gain control

To directly test the model prediction that slow feedback signaling may minimize energy expen-

diture in subpopulations of LSO neurons, we took advantage of the intrinsic autofluorescence

of a key intermediate nicotinamide adenine dinucleotide (NADH) during metabolic activity

[42,43]. Specifically, our rationale was to examine energy consumption across large regions of

the LSO during prolonged activity in an in vitro brain slice preparation using a self-designed

imaging system for determining the changes in relative levels of NADH [41] (see Materials

and methods). This technique allowed us studying the temporal and spatial evolution of energy

expenditure and testing of any energy-minimizing effect by gain-control mechanisms. To this

end, we monitored the relative change in NADH levels with high spatial resolution in LSO

brain slices (21 μm × 23 μm per region of interest [ROI], 1,200 ROIs per field of view; Fig 5A

and 5B; see Materials and methods). Using 20-s–long fiber stimulation of the excitatory inputs

to the LSO at 200 Hz, we determined the spatial distribution of energy consumption in the

LSO (six brain slices). As expected, large parts of the imaged LSO area displayed a monotonic

increase in energy consumption with a single minimum (SM) in response to the 20-s–long

stimulation (Fig 5C, red region; Fig 5D, lowest trace). However, we also frequently observed

areas in which energy consumption declined after a few seconds of stimulation before ulti-

mately increasing again (Double minima [DM]; Fig 5D and 5F). This nonmonotonic progres-

sion of energy consumption, combined with its apparent slow time course (4.58 s; IQR: 2.36 s;

Fig 5E), is highly suggestive of the known GABA-B-receptor–mediated, activity-dependent

gain-control mechanism. Accordingly, application of the specific antagonist CGP 55845

hydrochloride (CGP, 10 μM) to the bath revealed that DM largely disappeared during block-

ade of GABA-B signaling, resulting in considerably larger energy consumption (Fig 5G). In

accordance with the assumed gain-control function of GABA, on the population level (i.e.,

across all ROIs per slice), CGP had differential effects on the prevalence of observed DM. A

spatial diversity in the effect of blocking GABA-B mediated inhibition was clearly observable

within individual brain slices (Fig 5H). Specifically, DM were either more or less likely to

appear during CGP dependent on the fraction of DM during control (Fig 5I). Application of

CGP also had a striking effect on the overall energy consumption in the LSO: across the entire

imaged area, the block of GABA-B signaling on average almost doubled the energy consump-

tion (median CGP/control ratio: 1.6, IQR: 1.5; n = 6 slices; Fig 5J). Moreover, similar to the his-

tory-dependency observed for the DMs, the magnitude of change in the energy consumption

during CGP application was highly correlated with the prior activity level during control con-

ditions (Spearman correlation, P< 0.0001; Fig 5K), providing further corroboration for the

activity dependency of the gain-control mechanism. Together, these data strongly suggest that

the spatially variable, slow gain control mediated by GABA-B in the LSO serves for the efficient

population coding of ILDs.

Discussion

Our findings advocate a novel, to our knowledge, concept for the neuronal detection and pri-

mary encoding of spatial cues. We observed that LSO neurons strongly adapted their ILD rate

functions in response to changes in the input statistics. Consequently, ILD representation is

dynamic and devoid of absolute mapping of sound-source locations already on the detector

level. We further discovered that the average rate tuning of single LSO neurons conveys little

spatial information during complex stimulation because of high response variability. However,

if responses to individual instances of an ILD were averaged across neurons, DRA optimized

the efficiency of responses, which resulted in improved separation of ILDs from the concur-

rent HPRs. Correspondingly, human listeners showed evidence of a focal improvement in ILD
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resolution specifically for HPR ILDs. Importantly, this study is—to our knowledge—the first

to demonstrate stimulus-specific benefits by DRA both for the efficiency of neuronal coding as

well as human perception. Finally, a simple LSO model and intrinsic energy imaging explained

that the efficiency of the enhancement in spatial separability is facilitated by a slow gain-con-

trol mechanism involving GABAergic signaling downstream to binaural integration.

The established concept of spatial encoding assumes that specific average response rates of

sensory neurons are mapped onto a particular physical cue to allow for a faithful encoding of

the corresponding source location [19–21]. A recent study by Dahmen and colleagues [15] was

instructive in suggesting that this assumption does not unrestrictedly hold because they found

that already in the midbrain, ILD sensitivity was modulated by stimulus statistics, thus pro-

moting a relative coding of sound-source positions. We expanded this concept and deter-

mined a prominent role of DRA for binaural processing that refutes the idea of an absolute

representation of space already on the detector level. In this sense, our study represents an

extension to earlier reports that had established the susceptibility of spatial tuning to adapta-

tion by stimulus history [44–48].

However, since these earlier studies were conducted in downstream targets of the primary

spatial cue detectors, the site of modulation was unresolved. We determined that the observed

shifts in ILD sensitivity in the LSO are predominantly generated by the combinatory effect of

upstream monaural adaptation to absolute sound level in the excitatory and inhibitory path-

ways (most likely the ANFs). This finding is not only crucial for the assessment of the func-

tional role of DRA in the LSO (see next paragraph) but also bears significance towards the

interpretation of previous finding of adaptive ILD coding at downstream processing stages

such as the midbrain [15]. The fact that already in the LSO, DRA of single cells was not ILD-

specific (i.e., not beneficial for the separability of adjacent ILDs within the HPRs) strongly

indicates that monaural adaptational mechanisms are the dominant driver for shifts in ILD

sensitivity at any processing stage. Thus, fundamentally, our data highlight the importance of

considering monaural DRA to sound level (as control data) when assessing the specificity of

adaptation in binaural neuronal sensitivity along the auditory pathway.

Our evaluation of the impact of DRA on neuronal information further suggests that the

basic principle of LSO spatial coding is the preservation of ecologically relevant coding effi-

ciency by providing high separability of nearby sound sources within the statistically predomi-

nant range of ILDs [5,40]. In accordance with this interpretation, recent studies reported

modulatory effects of a preceding stimulus (adapter) on perceptual spatial resolution, both for

Fig 5. GABA-B signaling regulates NADH consumption in the LSO in an activity-dependent manner. (A)

Schematic view of the optical path for intrinsic fluorescence imaging of metabolic activity in the LSO. (B) Bright-field

image of brainstem (oblique illumination with IR-LED). Dashed rectangular denotes imaged area shown in (C). (C)

Heat map illustrating spatial distribution of maximal relative decrease of NADH autofluorescence in the LSO in

response to 20 s fiber stimulation at 200 Hz. (D) Exemplary traces for the temporal evolution of changes of NADH

levels (colors correspond to respective regions in C). Gray horizontal bar denotes duration of electrical stimulation.

While only an SM was present in the bottom trace (red, corresponding to large NADH decrease), the top three traces

with less overall NADH decrease exhibited DM. (E) Mean time from stimulation start to first minimum calculated for

each slice from those ROIs that exhibited DM. Population median: 4.58 s. (F) Distribution of SM and DM in the

recording shown in (C). (G) Exemplary CGP-induced change in NADH fluorescence of a single ROI. (H) Spatial

distribution of CGP-induced changes of NADH response types (SM/DM) for the recording shown in (C). (I) CGP-

induced changes in the fraction of ROIs showing DM (n = 6 slices). (J) The average CGP/control ratio of NADH levels

at mean time point of first minima (independent of presence of first minimum in the respective ROIs) was 1.6. (K)

CGP/control ratio of NADH levels as function of NADH level changes in the control measurement (both measured 20

s after onset, in 100 neighboring ROIs in C); red line corresponds to exponential fit (tau = 0.97%; Spearman

correlation, r = 0.8176, P< 0.0001). Underlying data can be found in S1 Data. CGP, CGP 55845 hydrochloride; Con.,

control; DM, double minima; GABA, gamma-aminobutyric acid; IR, infrared; LED, light-emitting diode; LSO, Lateral

Superior Olive; M, mirror; NADH, nicotinamide adenine dinucleotide; ROI, region of interest; sCMOS, scientific

Complementary metal-oxide semiconductor; SM, single minimum; TL, tube lens.

https://doi.org/10.1371/journal.pbio.3000150.g005

Cooperative coding for efficient source separation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000150 July 29, 2019 13 / 24

https://doi.org/10.1371/journal.pbio.3000150.g005
https://doi.org/10.1371/journal.pbio.3000150


ILDs and the other binaural cue, the interaural time difference (ITD) [49–51]. These findings

corroborate the generality of stimulus-history–dependent effects on spatial perception. Impor-

tantly, it has been shown that the improvements in JND cannot be explained by unspecific

attentional effects because acoustic priming of spatial attention to the location of the probe via

the adapter by itself does not alter JNDs. Rather, it requires a congruence of both spectral con-

tent and the relevant binaural cue between adapter and probe to elicit an improvement in spa-

tial resolution [49,51]. These findings clearly demonstrate that JND improvements are caused

by adaptation in the spatial processing circuits in the respective frequency channels and not by

attentional priming. Our present data and a prior study on ITD processing (33) provide a

mechanistic explanation on the detector level that has so far been linked to secondary process-

ing at higher stages [13,15,49,52,53].

Because the LSO represents the initial binaural stage of ILD detection, our findings stand

out for two more reasons: (I) Adaptive processing at the spatial cue detector should result in

absolute localization errors because of a missing reference frame. This notion is supported by

reports of human listeners producing significant absolute localization errors when presented

with biased spatial statistics [15,33,50,52,54]. (II) While adaptation with the purpose to pre-

serve a large dynamic coding range within the predominant stimulus range can be found

across sensory systems [7], we showed that in the LSO, DRA is likely to be inherited to a large

degree by adaptation to intensity statistics in the monaural inputs (e.g., the auditory nerves

from each ear). This susceptibility to differences in adaptation between the two inputs due to

different input statistics largely explained the observed DRA in the LSO (compare Fig 4 and S1

Fig) and may also explain findings of LSO sensitivity to overall intensity [55]. We furthermore

show that the major computational modification after binaural integration serves to optimize

the efficiency of coding for the concurrent ILDs by further decreasing population spike rates.

Such stimulus-statistic–specific processing to maximize the efficiency of information transmis-

sion (by redundancy reduction) has so far been associated with the midbrain and cortex, i.e.,

processing that is secondary to the initial detection of the respective feature [56–60]. In con-

trast, ILD detection and efficiency optimization are realized concurrently by the LSO (and sub-

sequent negative feedback; see below). Interestingly, adaptation to binaural statistics to

optimize spatial sensitivity has also been described for the detector neurons of the second

important binaural cue, the ITDs [28,61]. However, in contrast to the short-term changes of

the LSO, these adaptations take place over days during maturation and entail long-term mor-

phological changes.

Different from prior studies on adaptation to spatial statistics in the midbrain [12,15], MLE

(mean) declined for the concurrent HPR ILDs because of the high response variability of indi-

vidual neurons. An informational gain was only revealed by applying a single-observation

pseudopopulation coding concept in the form of MLE(pop). In this regard, our data provide

physiological support for the framework of cooperative population decoding [38], which has

been developed to explain the apparent noisiness of cortical processing. Specifically, the frame-

work suggested that recurrent inhibition with a slow time constant can be utilized to maximize

the efficiency of an average population code at the expense of increased response variability of

individual neurons. Congruent with such a coding regime, individual LSO neurons responded

sparsely (intermitted and with few spikes) and therefore decreased the redundancy of firing in

the population for a given ILD. A potential limitation for such an interpretation of our data is

that the neurons were not recorded at the same time (because of methodological limitations

for brainstem recordings of highly stimulus-time–locked responses) and thus bear the possibil-

ity of overestimating the population advantage because of missing noise correlations. How-

ever, it is known that spiking in auditory brainstem nuclei occurs independently [62], and our

in vitro recording of a large population of LSO neurons conclusively supports the single-

Cooperative coding for efficient source separation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000150 July 29, 2019 14 / 24

https://doi.org/10.1371/journal.pbio.3000150


neuron data. Accordingly, population analyses of single-neuron recordings are assumed a

valid approximation and thus are commonly performed [12,13,15].

In conclusion, our findings suggest a new concept for spatial coding in the LSO: the detec-

tion and processing of ILDs is optimized for efficient sound-source separation in a given stim-

ulus context by sparse population coding. This coding regime not only is energy efficient but

also allows for detecting changes in the auditory periphery during high activity levels (noisy

conditions) by maintaining high resolution. In ecologically plausible situations, the accompa-

nying detriment of absolute localization accuracy might be compensated by an orienting head

movement to bring the sound source into frontal space.

Materials and methods

All data underlying the presented quantitative observations can be found in S1 Data.

Ethics statement

Animal experiments using ketamine/xylazine anesthesia were approved by the German animal

welfare act (District Government of Upper Bavaria, reference number: 55.2-1-54-2531-105-

10). Psychophysical testing with human subjects (data were analyzed anonymously) was

approved by the Ethics Committee of the Medical Faculty of the LMU (59–16).

Electrophysiology

In vivo extracellular single-cell recordings were made from the LSO of young adult (postnatal

age>80 days, n = 7 animals) Mongolian gerbils (Meriones unguiculatus) of both sexes.

To anesthetize the animals, a combination of ketamine (Ketavet, 100 mg/mL; Pfizer Inc.,

New York, NY, USA) and xylazine (Xylazin, 100 mg/mL; Sigma-Aldrich Chemie GmbH,

Munich, Germany) was used. Physiological sodium chloride solution (NaCl, 0.9%; B. Braun

Medicare GmbH, Melsungen, Germany) was mixed with 20% ketamine and 2% xylazine.

After weighing the animals, they were anesthetized with an intraperitoneal injection (0.5 ml

per 100 g body weight) of this anesthetic. After initial injection, the anesthetic was continu-

ously provided by an automatic pump (801 Syringe Pump; Univentor High Precision Instru-

ments Ltd., Zejtun, Malta) at a rate of 1.6 to 2.8 μl per minute depending on body weight and

state of anesthesia. The anesthetic stage was periodically tested with the hind leg reflex. Con-

stant body temperature of 37˚C was ensured and checked by a thermostatically controlled

heating pad the animals were placed on (Harvard Homeothermic Blanket Control Unit Model

#50–7129; Harvard Apparatus Inc., Holliston, MA, USA). In order to ensure a sealed place-

ment of the headphones on the acoustic meatus, the tragus was cut at two sides. The pericra-

nium was anesthetized with lidocaine (Xylocain Pumpspray dental; AstraZeneca GmbH,

Wedel, Germany).

A small cut of the skin was made across the rostrocaudal axis on the upper part of the skull,

and a craniotomy and a durotomy (ca. 1.5 × 2.5 mm) approximately 1,800 mm lateral to the

midline and 4,500 mm caudal to the bregmoid axis was performed. Ringer solution was peri-

odically applied to the opening to prevent damage of the brain surface due to dehydration. The

animals’ body functions were monitored though various devices. The heart rate and breathing

cycle was monitored optically and acoustically through an electrocardiogram. The animals’

blood oxygen was measured through a pulse oximetry monitor (LifeSense Tabletop Capnogra-

phy and Pulse Oximetry Monitor; Nonin Medical Inc., Plymouth, MN, USA). The animal was

also typically provided carbogen through a custom-made mask. Recording sessions typically

lasted between 10 to 12 hours.

Cooperative coding for efficient source separation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000150 July 29, 2019 15 / 24

https://doi.org/10.1371/journal.pbio.3000150


The recording site was marked by iontophoretic application of the enzyme horseradish per-

oxidase (HRP). Experiments were then finalized by euthanizing the animals without awaken-

ing by an intraperitoneal injection of 1 ml of 20 mg/ml pentobarbital in Ringer solution. The

animals were transcardially perfused with Ringer solution and 4% paraformaldehyde (PFA)

for approximately 30 minutes. The brain was carefully removed from the cranium and put

into 4% PFA at 4˚C upon further processing to determine the recording location. Only record-

ings from locations that were positively identified within the LSO were used for further data

analysis.

Extracellular single-cell recordings were obtained using pulled glass micropipettes (1.5 mm

OD × 0.86 mm ID, GC150F-10; Harvard Apparatus Ltd) filled with 1 M HRP in 1 M NaCl and

a resistance of 7 to 10 MO (measured with Omega-Tip Z; World Precision Instruments Inc.,

Sarasota, FL, USA). The electrode was mounted on a piezo drive (Inchworm controller 8200;

Burleigh Products Group Inc., Victor, NY, USA), which was connected to a motorized manip-

ulator (Digimatic series 164 type 161; Mitutoyo Deutschland GmbH, Neuss, Germany). The

electrode signal was amplified (Electro 705, World Precision Instruments Inc. and Wide Band

Amplifier, TOE 7607; Toellner GmbH, Herdecke, Germany) and fed to a computer via an

A/D-converter (TDT RP2.1, System III; Tucker-Davis Technologies Inc., Alachua, FL, USA),

where the signal was filtered. A notch filter was used to filter the 50-Hz electrical noise caused

by the power line hum, and a high-pass filter with 300 Hz and low-pass with 5-kHz bandpass

filtered the signal in the RP2.1. Brainware (Jan Schnupp, University of Oxford, Oxford, UK,

for Tucker-Davis Technologies Inc., USA) was used to visualize and analyze incoming spike

trains. The spike times and raw traces were recorded and saved for subsequent analysis.

Stimulus generation and presentation

All the stimuli were digitally generated using MATLAB (The MathWorks Inc., Natick, MA,

USA) and fed into TDT hardware using Brainware. The stimuli were D/A-converted in a TDT

Multi-Function Processor (TDT RX6, System III; Tucker-Davis Technologies Inc.) and then

attenuated with a TDT Programmable Attenuator (TDT PA5, System III; Tucker-Davis Tech-

nologies Inc.). The analog signal was delivered to the headphones. To cover the wide range of

the LSO’s frequency spectrum, either Etymotic Research headphones ER-10B+ with ER

10D-T04 silicon ear tips (Etymotic Research, Inc., Elk Grove Village, IL, USA) or custom-

build electrostatic headphones were used. The same silicon ear tips were fitted to either head-

phones to have a comparable seal to the animals’ ears. Custom-written calibration filters were

used to achieve a flat spectrum over the entire range of the respective headphones.

When spikes of single cells were identifiable, the characteristic frequency (CF) and absolute

threshold were determined using a pure-tone stimulus having the same length as the search

stimulus. For further characterization of a neuron, a baseline ILD function was obtained and a

broadband noise rate-level functions were recorded in response to 50-ms bursts presented on

the ipsilateral excitatory ear only. These recordings were used for determining a cell’s latency

(median latency = 4.2 ms, IQR = 3.5 ms, n = 25 cells).

To measure DRA in LSO neurons, a bimodal HPR stimulus was created. The intensity of

continuous broadband noise was drawn from a pseudorandomized predefined distribution

every 50 ms (see Fig 1). The range of monaural intensities spread from 20 to 80 dB SPL in 2 dB

steps, similar as used monaurally [16,17]. The predefined distribution consisted of two HPRs’

intensity levels around center intensities of 50 dB ± 4 dB SPL and 70 dB ± 4 dB SPL, resulting

in 5 values per HPR with a cumulative occurrence probability of 0.8. To generate ILDs, the

stimulus intensities were mirrored at 60 dB for presentation on the other ear, resulting in HPR

center regions of −20 dB ILD and +20 dB ILD, respectively.
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A single condition epoch was 6.55 seconds long and was repeated 10 times with different

pseudorandomizations each time (but identical cumulative probabilities). A 131-s–long stimu-

lus was generated by alternating the two HPR conditions repeatedly, resulting in 10 HPR

epochs per sweep for each condition. The stimulus sequence was identical across recordings.

Acquisition of a complete set of stimuli typically lasted >2 h, thereby making the acquisition

of a large sample size challenging.

Neuronal data analysis

Recorded data files were analyzed offline using custom-made analysis in MATLAB and

Python. First, the average latency of each cell was determined on the basis of its monaural rate-

level functions to allow for subsequent spike-triggered analysis of responses to the HPR sti-

muli. To this end, spikes were assigned to 50-ms bins of the respective ILD that elicited the

spikes (taking into account the latency of the cell). This resulted in a mean ILD response-rate

function for each HPR condition.

Spike-triggered stimulus averages where calculated to investigate whether a particular ILD

sequence influenced the spiking if neurons. To this end, we selected all bins with a nonzero

response and determined the ILD values presented during this time bin and during the nine

previous bins. We then averaged the determined ILD values for each of the 10 bins. The data

are plotted relative to the mean ILD of the bin that triggered the spike. The non-spike–trig-

gered average was calculated the same way but based (i.e., triggered) on bins that did not show

any response.

The standard separation D is calculated as previously described [36]:

Dn ¼ jmun þ 1 � munj=ðsqrtðsigmanþ1 � sigmanÞÞ;

where mun + 1 and mun are the mean values of the responses to two ILD values while sigman

+ 1 and sigman are their standard deviation. Dn was subsequently smoothed using a 5-sample

moving average filter.

The metric D/spike was calculated as

Dn; spike ¼ ð2 �DnÞ=ðmunþ1 þmunÞ:

In the case of the model, we calculated D based on the assumption of an underlying Poisson

process in which the variance would equal the mean response.

MLEs were used to find the most probable ILD to result in a specific observed response Robs

given all other observed responses R. For this, the joint probability density functions P(R, ILD)

of the observed spike counts R and the presented ILDs were calculated for all responses of one

neuron, excluding Robs. The ILD that maximizes P(R = Robs, ILD) was then used as the MLE

for Robs.

To characterize shifts in ILD functions due to HPR statistics, the threshold ILD—defined as

the ILD at which the firing rate differentiates more than 10% from baseline firing—was

determined.

Time courses of adaptation were measured by fitting a single- or double-exponential func-

tion to the mean responses rates averaged over all 30 repetitions of an HPR condition. Inbuilt

functions in MATLAB for the rmse and the adjusted coefficient of determination (R2) were

used to evaluate the goodness of fits.

Psychophysical measurements and data analysis

Five normal-hearing (within 20 dB of ISO/TR 389–5:1998) listeners (2 males and 3 females,

mean age 26 ± 4 years, right-handed) participated in the measurement of just-noticeable ILD

Cooperative coding for efficient source separation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000150 July 29, 2019 17 / 24

https://doi.org/10.1371/journal.pbio.3000150


differences. The signals consisted of white noise that was generated in MATLAB at a sampling

rate of 44.1 kHz. The signals were digital to analog converted (Audio 2 Dj; Native Instruments

GmbH, Berlin, Germany) before being presented over circumaural headphones (HDA 200;

Sennheiser Electronic GmbH & Co. KG., Wedemark, Germany), which were calibrated for a

flat frequency response between 20 Hz and 20 kHz. The signals were presented at 60-dB SPL

average diotic sound-pressure level, and ILDs were introduced by symmetrically amplifying

and attenuating the right and left ear signals by half the desired ILD. Within the experiment, a

2-s–long adapter stimulus was followed, after 350 ms, by two 50-ms probe stimuli that were

separated by 100 ms. Similar to the physiological experiments, the adapter consisted of

concatenated diotic noise bursts, each 50 ms in duration, with ILDs that were randomly drawn

from one of the two nonuniform HPR distributions.

ILD JNDs were determined at two reference ILDs (i.e., −20 dB ILD and +20 dB ILD). One

of the two probe stimuli was randomly presented at one of the two reference ILDs, while the

other probe stimulus was systematically varied using a transformed up–down procedure, fol-

lowing a one-up three-down rule, as implemented by the MATLAB AFC package [63]. To

determine the JND, listeners were asked to specify the perceived direction of the probe pair

sounds, which allows deducing which of the two probe stimuli was perceived as more lateral-

ized. Following the subject’s answer, the variable probe ILD was adjusted until reaching the

termination criterion (6 reversals) of the one-up three-down rule. ILD JNDs for each listener,

each probe position, and each listening condition (i.e., HPR) were calculated as median over

six sessions (each session consisting of 3 measurements). For each subject, the effect of listen-

ing condition was expressed as normalized change in ILD JND because of colocation of probe

position and preceding HPR.

LSO model

The LSO was modeled using a phenomenological rate model similar to the one used by Wen

and colleagues [17] to model adaptation in the ANF (see S1 Fig). The LSO is implemented as a

subtraction stage with inputs from the ipsi- and contralateral ANFs and a sigmoidal activation

function (CN and MNTB were omitted to minimize model complexity). The firing rate

RLSO(t) in spikes per second (sps) of the LSO is calculated as follows:

RLSO tð Þ ¼
Rmax � Rmin

1þ e� kðRdiff ðtÞ� R0Þ
þ Rmin

Rdiff ðtÞ ¼ RipsiðtÞ � g � RcontraðtÞ;

where Rmax and Rmin are the maximum and the minimum firing rates, R0 is the rate at zero

input, and k is the steepness of the sigmoid. Ripsi(t) and Rcontra(t) are the firing rates from the

ipsi- and the contralateral ANFs, and g is a gain factor to weight the relative strength of the

excitatory and inhibitory inputs. The ANF inputs were each calculated using a dual adaptation

model [17], which was fitted to the data shown in Fig 2 of [16]. Because we only fitted the

response of one ANF, we switched the saturating nonlinearity used in the original model with

a simple logistic function.

The parameters for the LSO model were determined by calculating the ILD rate function of

the model and fitting it to the ILD rate function given by Fig 4 in [64] (resulting parameters:

Rmax ¼ 200sps; k ¼ 0:19 1

sps ;R ¼ 42sps; g ¼ 0:69). The slow LSO adaptation was implemented

to resemble the second adaptation stage of [17]. The adaptation parameters where adjusted so

that the time course of adaptation was in agreement with the recorded data from the LSO.

This resulted in an adaptation time constant of 4 ms, g1 = 0.3, g2 = 0.01, with an adaptation
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threshold of 35 sps (see [17] for details on the implementation). Running this model often

resulted in zero firing rates for larger negative ILD values, which led to undefined D/spike val-

ues, so we introduced a minimal LSO firing rate of Rmin = 30 sps.

LSO intrinsic metabolic imaging

Changes in NADH levels in the LSO were monitored by imaging of NADH autofluorescence

in acute brainstem slices as recently described [43,65]. The animals were anesthetized with iso-

flurane and decapitated. We removed the brains and cut 250-μm–thick transverse slices

(VT1200S Vibratome; Leica Microsystems GmbH, Wetzlar, Germany). The slices were super-

fused at room temperature (22–25˚C) in the recording chamber with gassed (95% O2 and 5%

CO2) artificial cerebrospinal fluid (ACSF) solution containing (in mm): 23 sucrose, 125 NaCl,

25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 2 glucose (Sigma-Aldrich). NADH

was excited with a 365-nm LED, and fluorescence images (emission filter: 447 ± 30 nm) were

recorded at 2 Hz (pco.edge 5.5; PCO AG, Kehlheim, Germany).

LSO neurons were electrically excited by a 20-s stimulation train at 200 Hz with biphasic

pulses of 1 ms duration and 5-V amplitude using a bipolar Tungsten electrode placed in the

fiber tract targeting the LSO. NADH fluorescence intensity was measured in individual rectan-

gular ROIs, corrected for photobleaching, and presented as ΔF/F0 (F0 = fluorescence level at

stimulation onset; ΔF = change in fluorescence level relative to F0).

The occurrence of DM was automatically detected based on their amplitudes (>0.05–

0.10%), the time difference between them (>6–10 s), and the time differences between the

minima and the interjacent maximum (>1–2 s). These parameters were individually adjusted

for each slice by analyzing a measurement with larger ROIs and by comparing the automated

results with those of visual inspection of the individual traces. Specific blockade of GABA-B

receptors was performed by application of 10 μM CGP [(2S)-3-[[(1S)-1-(3,4-Dichlorophenyl)

ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid hydrochloride] (Tocris Biosci-

ence, Bristol, UK) to the ACSF for 20 minutes.

Supporting information

S1 Fig. Schematics of additional HPR stimulus paradigms. (A, F, and K) The intensity distri-

bution on the ipsilateral ear was identical to the main HPR paradigm (Fig 1) but altered on the

contralateral ear (A and F) or not stimulated at all (ipsi only, K). For (A) and (F), the intensity

distribution on the contralateral ear was fixed for an entire epoch at 70 dB or 50 dB and

switched between HPR conditions. These intensities were either presented out of phase with

the mean HPR intensity on the ipsilateral ear (contra paradigm 2, panel A) or in phase (contra

paradigm 3, panel F). (B, G, and L) Mean ILD response functions of all LSO neurons tested

with the respective paradigm. Conventions as in Fig 2C. (C, H, and M) Scatter plot of thresh-

old ILDs illustrates significant changes with HPR condition in paradigm 2 (P = 0.0003, N = 18

neurons, paired Wilcoxon signed-rank test) and paradigm 3 (P = 0.0005, N = 19 neurons,

paired Wilcoxon signed-rank test) but not for the ipsi-only paradigm (P = 0.4, N = 11 neurons,

paired Wilcoxon signed-rank test). Conventions as in Fig 1. (D–E and I–J) Similar to the origi-

nal stimulus paradigm (Fig 1 and Fig 3), the advantage of these shifts for ILD computation is

displayed when calculating D(pop) but not for D(mean) analysis. In contrast to Fig 3D, the

asymmetry of the stimulus paradigms 2 and 3 do not allow calculating summed D-functions

across both hemispheres. Note that the peaks of D(pop) are very close to the respective HPRs

but do not perfectly align. In contrast, D(mean) takes minimal values within the respective

HPRs in either condition. Underlying data can be found in S1 Data. HPR, high-probability
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region; ILD, interaural level difference; LSO, Lateral Superior Olive.

(TIF)

S2 Fig. (A) Spike-count histograms for four representative LSO neurons (aligned in rows) to a

full epoch (approximately 6.55 s) in each HPR condition (left column: −20 dB HPR condition,

right column: +20 dB HPR condition). Bins (i.e., 50-ms snippets) during which the ILDs took

the center value of the respective HPR in each condition (−20 dB and +20 dB, respectively) are

color-coded, illustrating a high response variability. (B) Histogram of Pearson correlations of

LSO responses to the full HPR stimulus. The average correlation of spike counts across three

repetitions of the entire stimulus set (19 switches) was surprisingly low for the majority of neu-

rons (median Pearson correlation coefficient = 0.62, IQR: 0.26). (C) A spike-triggered analysis

of the responses of all neurons established that the likelihood of spiking to any ILD was not

systematically associated with a prior occurrence of specific relative ILDs (upper panel; color

code represents HPR conditions). Performing the same analysis but triggered by nonspiking

to a represented ILD (lower panel) exposed a tendency of nonresponsiveness due to presenta-

tion of a more positive ILD shortly before. (D) The mean Pearson correlation coefficients of

responses to the same ILDs was significantly higher when stimuli were presented with gaps of

300 ms in between (“Control”) compared to either HPR condition (paired-sample t test,

N = 13 neurons). Underlying data can be found in S1 Data. HPR, high-probability region;

ILD, interaural level difference; IQR, interquartile range; LSO, Lateral Superior Olive.

(TIF)

S3 Fig. (A) Comparison of goodness of fits for power law and exponential fitting of the adap-

tation time course in LSO neurons. Left: Rmses using a power-law fit were lower compared to

a single-exponential fit (left, P = 0.001, Wilcoxon signed-rank test), but slightly higher com-

pared to a double-exponential fit (right, P = 0.02, Wilcoxon signed-rank test). (B) Block dia-

gram of the LSO rate model. The input to the model is given as a sequence of sound levels on

the ipsi- (Lipsi) and contralateral (Lcontra) ear. A dual adaptation model is used to calculate the

ANF firing rates R_ipsi and R_contra. The LSO model is implemented as a subtraction stage,

with the contralateral input weighted by a gain value and a following sigmoid to model the

activation of the neuron. An optional adaptation stage that resembles the rate adaptation stage

in the ANF model is used to account for the slow adaptation component present in the LSO

measurements. (C) Model responses (left panel) and resulting D(pop) in response to contra

paradigm 2 (see S1 Fig). The model closely captures both the magnitude of ILD tuning func-

tion shifts and corresponding changes in D(pop) (compare S1 Fig). (D) Same as in (C), but for

contra paradigm 3 (compare S1 Fig). Underlying data can be found in S1 Data. ANF, auditory

nerve fiber; ILD, interaural level difference; LSO, Lateral Superior Olive; rmse, root mean-

squared error.

(TIF)

S1 Data. Primary data set. This file contains all individual numerical values used to generate

figures in this manuscript.

(XLSX)
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