
Variety of Evidence

Abstract

Varied evidence confirms more strongly than less varied evidence, ce-
teris paribus. This epistemological Variety of Evidence Thesis enjoys
widespread intuitive support. We put forward Bayesian models of scien-
tific inference in which we explicate one notion of varied evidence and the
Variety of Evidence Thesis by appealing to measures of entropy. Our ex-
plication of the Variety of Evidence Thesis holds in all our models which
also pronounce on disconfirmatory and discordant evidence. We argue that
our models pronounce rightly. Against a backdrop of failures of the intu-
itive Variety of Evidence Thesis, the case for the Variety of Evidence Thesis
emerges strengthened.

1 Introduction
Varied evidence for a hypothesis confirms it more strongly than less varied evi-
dence, ceteris paribus. In this explicit form, it can be traced back in the philosophy
of science at least to (Carnap, 1962, p. 230). It also appears in (Kenynes, 1921,
p. 253) “The variety1 of the circumstances, in which the Newtonian generalisa-
tion is fulfilled, rather than the number of them, is what seems to impress our
reasonable faculties”, (Horwich, 1982, p. 118) “It is an undeniable element of
scientific methodology that theories are better confirmed by a broad variety of dif-
ferent sorts of evidence than by a narrow and repetitive set of data”, in (Earman,
1992, p. 77) “It is a truism of scientific methodology that variety of evidence can
be as important or even more important that the sheer amount of evidence” and in
(Claveau, 2013, p. 94) “Seeking a variety of evidence for a hypothesis is standard
practice in science, as well as in normal life”.

1Emphasis original.
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Variety of evidence is not only discussed by philosophers but also, for exam-
ple, in social psychology in (Hüffmeier et al., 2016, p. 82) “The more often a
new finding is replicated, and the more different types of replications there are
in particular, the more trust and confidence there should be in the validity of this
finding” and in epidemiology, by (Borm et al., 2009, p. 711) “The results of a
single trial should be interpreted with caution. When it is difficult to predict or
determine how trial-specific factors influence the results, the best way to evaluate
the performance of a treatment is to use multiple, possibly smaller, trials.”

(Hempel, 1966, p. 224) points out that: “For that the confirmation of a hy-
pothesis depends not only on the quantity of the favorable evidence available, but
also on its variety: the greater the variety, the stronger the resulting support.”
Hempel’s thinking was given a logical formulation in (Meehl, 1990, p. 109).

Given the predominance of Bayesian reasoning and modelling and the wide-
spread intuitive support for the Variety of Evidence Thesis (VET), one would think
that a general Bayesian analysis of the VET comprising of an explication of the
notion of varied evidence and the VET has been developed. This, however, is not
the case.

2 The Story of the Variety of Evidence Thesis

2.1 The Story – So Far
While the intuitive appeal of the VET is widely spread, its status within the
Bayesian paradigm has been contested. There are three main approaches, the
latter two overlap.2

The eliminative approach put forward in Horwich (1982) aims to capture the
intuition that varied evidence for a hypothesis rules out competing hypotheses
better than non-varied evidence, see also (Earman, 1992, p. 79), (Glymour, 1980,
pp. 139-142), (Horwich, 1998, pp. 611-613), (Howson and Urbach, 2006, pp.
124-126) and (Schupbach, 2015, p. 314). Schupbach (2017) recently argued that
varied evidence does a better job ruling out competitive explanations.

Wayne (1995) extends Horwich’s approach from deterministic hypotheses to
non-deterministic, i.e., statistical hypotheses and unearths cases in which his ver-
sion of the VET fails. (Steel, 1996, p. 671) defends the eliminative approach by

2The notion of evidential variety has received a range of labels, the reader is referred to
(Claveau, 2011, p. 249, Footnote 18). Refer to Lloyd (2015); Vezér (2017) for recent Variety
of Evidence reasoning in (the rational reconstruction of) climate science.
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pointing out that Wayne has not taken a pertinent ceteris paribus condition into
account. Fitelson (1996) criticises Wayne (1995) for an uncharitable reconstruc-
tion of Horwich (1982). However, Fitelson (1996) finds cases in which the VET
fails even in a more charitable reconstruction of the eliminative approach.

In the correlation approach of (Earman, 1992, Section 3.5), see also Franklin
and Howson (1984), one considers a body of evidence E = {E1, . . . , En}which is
entailed by the agent’s background knowledgeK and the hypothesis of interestH .
The variety of the body of evidence E is greater, the slower P (En|E1 . . . En−1K)
approaches one. It is then shown that the posterior probability of the hypothesis
of interest is greater the greater the variety of the body of evidence. Wayne (1995)
later pointed out – correctly we think – that this approach fails to incorporate the
prior probabilities of the items of evidence themselves. Adding a ceteris paribus
clause requiring that the prior probabilities of the items of evidence to be equal
resolves this issue, as argued in Wayne (1995); Myrvold (1996).

Wayne (1995) also alleges that this approach is incomplete as it omits a discus-
sion of how judgements of similarity depend on theoretical context. Steel (1996);
Myrvold (1996) provide such discussions within the Bayesian paradigm.

A major blow to the correlation approach was dealt by Bovens and Hartmann
(2002, 2003)3. Their starting point is different, (Bovens and Hartmann, 2003,
p. 93-94) “interpret more varied evidence as evidence that stems from multiple
instruments (rather than a single instrument) and that tests multiple testable con-
sequences (rather than a single testable consequence) of the hypothesis”. Their
analysis unearths cases in which their VET fails within their models of scientific
inference.

Furthermore, they also show that if varied evidence is conceptualised in the
correlational sense, then the principle that more varied evidence leads, ceteris
paribus, to more confirmatory support to the hypothesis fails in particular circum-
stances (Bovens and Hartmann, 2003, p. 104-106). The counter-intuitive results
obtained by Bovens and Hartmann do not contradict Earman’s results since they
relax the assumption that the hypothesis has to entail the evidence and they hence
consider a much larger set of situations. The VET fails for some of these situations
which were not considered by Earman (Bovens and Hartmann, 2003, Section 4.2
and 4.3).

The Bayesian quest for a vindication of the VET in full generality has failed.
While the quest for a vindication of the VET is over, a case could be made

3Fresh interest in their model for their model in (the philosophy of) pharmacology is taken in
Landes et al. (2017).
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for the VET in particular epistemological cases or applications. The only such
attempt is that of Claveau (2013) in the philosophy of science.

His starting point is a different construal of the unreliability of scientific instru-
ments. Rather than construing unreliable instruments as complete randomisers –
the approach taken by Bovens and Hartmann – he models unreliable instruments
as systematically biased. His models satisfy a version of the VET on first pass,
see (Claveau, 2013, Section 4).4 On second pass, Claveau drops the assumption
that the systematic biases of instruments are fully independent. In this enlarged
class, in which systematic biases of instruments are dependent to some degree, his
version of the VET fails in certain cases, see (Claveau, 2013, Section 5). Seem-
ingly puzzled and/or unsatisfied by his findings, (Claveau, 2013, p. 113) ends his
discussion with: “The fate of the variety-of-evidence thesis is not yet settled”.

Approaches to the VET are summarised in Table 1. Lacking in all these ap-
proaches is a widely-applicable explication of the notion of varied evidence. Nei-
ther Horwich nor his successors attempt an explication. Earman only considers
the variety of a body of evidence which follows deductively from the hypothesis
and the background knowledge. The only other ingredient to his explication of
variety of evidence is the agent’s prior. To us, this seems too meagre a recipe for
a well-rounded explication. Bovens and Hartmann do not offer an explication.
Claveau’s explication only applies to bodies of evidence consisting of two items
of evidence.

Approach Variety in terms of
Correlation Correlation of items of evidence
Eliminative Disconfirmation of competing hypotheses
Sources of Evidence & Con-
sequences of the Hypothesis

Multiple consequences of the hypothesis
and/or multiple instruments

Table 1: Different approaches to the Variety of Evidence Thesis.

2.2 The next Chapter
Bayesians who hold the VET dear and are thus deeply troubled by the negative re-
sults obtained by Bovens and Hartmann and Claveau face the challenge of squar-

4This is consistent with the Bovens and Hartmann approach since their analysis “does not apply
to unreliable instruments that do not randomize” (Bovens and Hartmann, 2003, p. 95).
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ing their bond to the VET and these negative results which spell an end to the
unconditional love of the VET.

The plan for battle is a follows: First, we devise models scientific inference
in which it makes sense to think about varied evidence. We put forward such
models in Section 3 drawing on the Bovens and Hartmann approach. We then
explicate a notion of varied evidence (Section 4) within our models. This puts us
in a position to offer an explication of the VET within these models of scientific
inference (Section 5). We argue in Section 5.3 that our model and explication are
better suited for the philosophy of science than those of Bovens and Hartmann and
Claveau. Furthermore, we argue that their models do not track how scientists think
about the reliability of their instruments, conclusions drawn within their models
are hence of limited interest in (the philosophy of) science. In Section 6, we show
that the VET holds in all our models.

Interestingly, our models not only pronounce on confirmatory evidence but
also on disconfirmatory and discordant evidence, see Theorems 4 and 5. Discon-
firmation is rarely discussed in the Bayesian literature while featuring prominently
in Popperian writings. Our models give the – we think – intuitively right result for
disconfirmatory and discordant evidence, see Section 6.2.2 and Section 6.2.3.

We claim to establish that the VET can be given a formal justification within
a variety of models of scientific inference and gesture at a re-examination of intu-
itions which drive the VET (Section 7).

The theoretical discussion is accompanied by an episode in the history of
science in which variety of evidence clinched the argument: the thirteen ways
of determining Avogardo’s constant from the hypothesis that matter consists of
molecules (atomism), see Perrin (1924). (Poincaré, 1963, p. 91) famously con-
ceded his opposition to atomism when presented with a highly diverse body of
evidence: “What makes it all the more convincing are the multiple correspon-
dences between results obtained by totally different processes.”

3 Models of Scientific Inference

3.1 Variables
We base our models on two widely-held beliefs. i) Scientific inference is amenable
to Bayesian modelling and ii) concerned with the status of scientific hypotheses.

Our models of scientific inference use a binary propositional hypothesis vari-
able, H , where h stands for the proposition that the hypothesis of interest is true
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(e.g., ‘matter consists of molecules’).5 The reader interested in the descriptive ad-
equacy of a hypothesis may replace ‘true’ by ‘descriptively adequate’ and ‘false’
by ‘not descriptively adequate’ throughout.

For a body of evidence E , we shall be interested in the Bayesian probability
of H being true, PE(h). We freely admit that not all scientific inferences can
be captured by our models, for example we only consider direct evidence for
or against a hypothesis of interest; indirect evidence such as the No Alternative
Argument of Dawid et al. (2015) is not considered here.

Next, we incorporate into our models that scientific hypotheses are typically
not directly tested, rather it is some of their observable consequences which are
testable (Bovens and Hartmann, 2003, p. 89). We shall use two sets of binary
propositional consequence variables, the Cn and the Dk. The values cn, respec-
tively, dk, stand for the proposition that the testable consequence Cn, respectively,
Dk, of H holds. 6 Evidence pertaining to the first set of variables will vary for ev-
idential situations we compare, while the evidence pertaining to the Dk variables
will not vary. C denotes the set of all consequence variables.

In our running example for the hypothesis H that ‘matter consists of
molecules’, the testable consequences might be: i) ‘the sky is blue’ (Perrin,
1924, §83, pp. 197), ii) ‘at room temperature, the viscosity of hydrogen is
0.88·10−5Nms−2’ (Perrin, 1924, §46, pp. 107), iii) ‘the pressure in in an emulsion
is exponentially decreasing with decreasing depth’ (Perrin, 1924, §54, pp. 129),
iv) ‘black bodies emit electromagnetic radiation with the black body spectrum’
(Perrin, 1924, §88-90, pp. 211).

Finally, measurements of a testable consequence are modelled by an evidential
propositional variable. We use variables El to represent evidence pertaining to the
Cn. Furthermore, the evidence variables Fl pertains to the Dk. el, respectively,
fl, stand for the proposition that a (series of) measurement(s) of the quantity of
interest has resulted in some value. Let e+ stand for the proposition that this value
is consistent with C (e.g., ‘the average measured quantity of helium produced by
one gram of radium per day in our lab was 0.02mm3’). As usual, closes misses
count as hits. What counts as a close in a particular application depends. Eviden-

5It is irrelevant for our discussion whether the hypothesis in question is deterministic or statis-
tical, e.g., ‘85% of patients treated with drug D recover more quickly than patients not receiving
any treatment’.

6Variety of Evidence reasoning in climate science has recently been analysed to proceed via
different consequences of the hypothesis that temperatures are rising, see Vezér (2017). Conse-
quence considered were patterns in temperature profiles in ice, rock and soil as well as the lengths
of mountain glaciers and sizes of tree rings.
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tial variables have finite arity which is obtained by suitably discretising the set of
possible measurements.

For a variable V we also let v1 := v and for the negation we put v0 := v̄.

3.2 Topology of Bayesian Networks
We use Bayesian networks to represent and reason with probability functions de-
fined over the space spanned by these variables. The topology of the directed
acyclic graphs of the Bayesian networks is adopted from Bovens and Hartmann
(2002).

The hypothesis variable H is the unique root node. The children of H are the
consequence variables in C. They have, in turn, a number of evidential variables
as children.7 Every child of a consequence variable has exactly one parent. There
are no further edges in the Bayesian network. See Figures 1 and 2 for example
networks.8 The assumed independences can be read off the Bayesian networks
using the usual d-separation criterion, see for example Pearl (2009). Consequence
variables without children represent lines of scientific inquiry which are currently
unexplored.

This topology is generated by the following modelling choices regarding prob-
abilistic independences and dependences. We first consider the independences,
i.e., the missing edges. Firstly, H screens off every consequence variable from
every other consequence variable:

C ⊥ C ′|H for all different C,C ′ ∈ C . (1)

For example, the probability that the colour of the sky is blue, P (c), depends on
whether atomism (H) holds but does not also depend on the viscosity of hydrogen
at room temperature (C ′).

Furthermore, a testable consequence variable screens C off its evidence from
the hypothesis H

E ⊥ H|C for all C ∈ C and all children E of C. (2)

The probability that the colour of the sky is observed to be blue depends on
whether the sky is blue; but this probability does not also depend on the truth
of atomism, P (e+|ch) = P (e+|c).

7As suggested as future work in (Bovens and Hartmann, 2002, p. 65, (II)), we consider conse-
quence variables which may have three or more children.

8See Section 5.2 for a generalisation of the network topology.
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Finally, a consequence variable C screens off its evidence variables

E ⊥ E ′|C for all C ∈ C and all different children E,E ′ of C . (3)

This says that conditionalising on a consequence variable renders their children
variables independent.9

We now turn to the edges present in our models. The probability of whether a
testable consequence holds or not is directly influenced by whether the hypothesis
of interest holds or not. Similarly, the probabilities of measurements coming out a
certain way directly depends on whether the relevant testable consequence of the
hypothesis holds. This motivates the edges and their orientation.

3.3 Probabilities for Bayesian Networks
To avoid unnecessary technical complications, we assume that all conditional
probabilities in our Bayesian networks are non-zero.

That C is a consequence of H means that C is probabilistically entailed by H
and hence thatC is more likely underH than under its negation. We hence require
(as do Bovens and Hartmann (2003)) that P (c|h) > P (c|h̄) or equivalently

P (c̄|h) < P (c̄|h̄) . (4)

If C were a deductive consequence of the hypothesis H , then P (c|h) = 1 and
hence P (c|h) + P (c|h̄) = 1 + P (c|h̄) > 1 holds. We shall here relax the require-
ment that C is a deductive consequence of H and only require that P (c|h) is so
large that10

P (c|h) + P (c|h̄) > 1 . (5)

When is a measurement which is in agreement with the predicted theoretical value
likely? Clearly, it is more likely if the theory used for predicting it is true than if
this theory is false. In mathematical prose this is

P (e+|c) > P (e+|c̄) for all C ∈ C and all its children E. (6)

9Evidence variables which are confirmationally independent regarding the hypothesis variable
and their role in confirming the hypothesis with respect to different confirmation measures are
investigated in Fitelson (2001).

10Bovens and Hartmann only require that P (c|h) > P (c|h̄). None of their counter-intuitive
cases in which the VET fails depend on whether P (c|h) = 1. Claveau does not employ conse-
quence variables for this very reason (Claveau, 2013, p. 96). For us, testable consequences are
instrumental for explicating the notion of varied evidence, see Section 4, and are hence part of our
models.
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This is not a condition with sharp teeth: P (e+|c) is close to one, it is a Bayesian
agent’s degree of belief that, if the testable consequence C holds, the experiment
turns out as predicted. P (e+|c̄) will be close to zero: if the testable consequence
fails to hold, then there is a wide range of possibilities the experiment could turn
out. Hence, every particular result of the experiment, here e+, is unlikely. So,
P (e+|c̄) is close to zero. It follows that

1 & P (e+|c)� P (e+|c̄) & 0 for all C ∈ C and all its children E. (7)

Modelling assumptions are discussed in Section 7.

4 Variety

4.1 Varieties of Evidence
While Bovens and Hartmann (2003) and Claveau (2013) are interested in a variety
of sources of evidence, we are interested in how varied a body of evidence is with
respect to the hypothesis of interest. Background information about the sources of
evidence is here taken care of by the all important prior probability distribution.
We can think of two natural ways in which bodies of evidence formalised within
the present models may vary thusly. Firstly and more importantly, the items in a
body of evidence may pertain in different ways to different consequences of the
hypothesis. This sort of variety is thus fully determined by the topology of the
Bayesian network and is pursued here. The idea to understand variety in terms
of the topology of the Bayesian network is not new, it is already in Bovens and
Hartmann (2002, 2003).

Secondly, the items in a body of evidence may be informative to different
degrees about consequences of the hypothesis. This second sort of variety depends
on actual conditional probabilities, which is left to further study. Clearly, two
bodies of evidence formalised within the present models may vary in both these
senses at the same time and in further senses.

Those who prefer science to be as objective as possible might appreciate that
our topological explication is based on facts of the matter: which item pertains to
which consequence. The choice of a prior – consistent with the topology – does
not affect the degree of variety. This can be seen as an answer to (Wayne, 1995,
pp. 115-116) who claimed that Bayesians had to give a satisfactory account of
their judgement of diversity.
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Our explication of the notion of varied evidence is but one way to formalise
some intuitions regarding varied evidence. We side with (Howson and Urbach,
2006, p. 125) in doubting that the grand project of giving one explication which
captures all senses of varied evidence can ever successfully be completed since
our intuitions seem too vague.

4.2 Explicating Varied Evidence
A variety of objects is a set of objects in which few (very few or even no) objects
look the same. Clearly, variety is the sort of thing which comes in degrees. A
degree of variety then measures how different objects are in some fixed set of
objects. A degree of variety thus measures the degree of dis-order or chaos in
some set. The most widely used measure of (dis-)order in (the philosophy of) the
sciences is Shannon Entropy, see Shannon (1948).11

With this understanding of what ‘variety of evidence’ may mean and with
models of scientific inference in place we now proceed to explicate the degree of
variety of a body of evidence.

We use |E| to denote the total number of items of evidence in E and |C| for
the number of children of consequence variable C. The fraction |C||E| then gives the
proportion of items of evidence which are children of C. The variety V of a body
of evidence E can then be defined by12

V (E) := −
∑
C∈C

|C|
|E|
· log

( |C|
|E|

)
. (8)

This is in close analogy with Shannon Entropy for probability functions w defined
on some finite not-empty set of possible worlds Ω by

H(w) := −
∑
ω∈Ω

w(ω) · log(w(ω)) .

Our explication of variety formalises the degree of uniformity with which the
items of evidence pertain to a variety of testable consequences of the hypothesis.

11A variety of measures of entropy have been put forward. The well of measures of entropy
shows no sign of drying up any time soon, see Csiszár (2008) for an overview of entropies and
their axiomatic characterisations.

12Adopting the standard convention that 0 · log(0) := 0.

10



4.3 Shannon’s Axioms for Explicating Varied Evidence
Shannon’s axiom H1 says that the measure of entropy should be continuous in
the probabilities w(ω). In our discrete application (a finite number of items of
evidence are children of a finite number of consequences of the hypothesis), this
amounts to the requirement that the variety of a large body of evidence varies
only little, if one item of evidence is adopted by a new parent. This strikes us
reasonable, small changes in the topology of the Bayesian network entail only
small changes in the variety of evidence. Our measure V tracks this thought.

The degree of variety V (E) increases with increasingly larger bodies of evi-
dence in which every consequence variable has exactly one child. This is (Shan-
non, 1948, Section 6)’s axiom H2. This seems right, the variety of a body of
evidence which has maximal variety (no two evidence variables look the same
[have the same parent]) increases with the size of the body of evidence.

Shannon’s third and final axiom H3 formalises “conditional entropy”. Con-
ditionals have long interested philosophers and a number of competing analyses
have been put forward. It is hence not surprising that different measures of entropy
do not satisfy Shannon’s axiom H3. In general, different measures of entropy dis-
agree about which of two probability functions has greater entropy. For an illus-
tration of different intuitively plausible measures of entropy disagreeing on which
probability function has greater entropy see, e.g., (Landes and Williamson, 2013,
Figure 1). For example, our variety measure (employing Shannon Entropy) pro-
nounces on whether body of evidence E with |C1| = 5, |C2| = 3, |C3| = 2, |C4| =
2 or body of evidence E ′ with |C ′1| = 4, |C ′2| = 4, |C ′3| = 3, |C4| = 1 has greater
variety.13 An argument as to whether E or E ′ has greater variety could be made
either way: the evidence pertaining to C1 and C2 is more varied for E ′ while the
evidence pertaining to C3 and C4 is more varied for E .

4.4 Two Conditions: Novel Evidence and Adoption
We next identify two conditions every entropy measure employed in an explica-
tion of varied evidence ought to satisfy. If one of these conditions is satisfied, then
it is intuitive which of two bodies of evidence has greater evidential variety. We
shall hence only consider ordered pairs of bodies of evidence which satisfy one of
these conditions. There may be further conditions under which such comparisons
are intuitive.

13For the record, E has a slightly greater variety score the E ′: V (E) = 1.3086 > 1.2861 =
V (E ′).
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Condition A: The variety of a body of evidence E increases when a
novel item of evidence is discovered which is the only-child of its parent con-
sequence variable, see Figure 1 for a network representation. For this larger body
of evidence E ′, we have that V (E) < V (E ′) (Proposition 4).

H

D1 DK

F 1
1 F 1

f1 FK
1 FK

fK

. . .

. . . . . .

HC1E1

D1 DK

F 1
1 F 1

f1 FK
1 FK

fK

. . .

. . . . . .

Figure 1: General Bayesian network model of Condition A in which a novel item
of evidence has been added. It pertains to a consequence for which there was no
evidence available.

Condition B: The variety of a body of evidence increases E when an item of
evidence switches its parent variable from C to C ′ such that, prior to the switch,
|C| ≥ |C ′|+2. Figuratively speaking: C ′ adopts a child of C such that C ′ ends up
not having more children than C, see Figure 2 for graphical illustration. This is
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intuitively right, the more evenly spread out the items of evidence are, the greater
the variety of evidence, ceteris paribus.

Denoting the body of evidence after the adoption by E ′, we now show that
V (E) < V (E ′). Shannon Entropy strictly increases when the probability of some
ω ∈ Ω is reduced by α ∈ (0, 1) and added to w(ν) some ν ∈ Ω, if w(ω) − α >
w(ν). This follows immediately from the strict concavity of H . We can conclude
that V (E) < V (E ′).

Our “continuous” measure V satisfies H2 and agrees with these two intuitive
comparisons of evidential variety.

4.5 The Non-Issue of Normalisation
Shannon Entropy is defined for probability functions while our measure of variety
V (E) is defined on formal representations of bodies of evidence. To strengthen
the analogy, we normalised by dividing by |E|. Had we not normalised, we would
have defined

V1(E) := −
∑
C∈C

|C| · log(|C|) . (9)

Since we are not interested in the absolute variety of a body of evidence but rather
in which body of evidence has the comparatively greater variety, the following
proposition shows that normalising is unproblematic for bodies of evidence of
equal size:

Proposition 1. For bodies of evidence E , E ′ with |E| = |E ′| it holds that

V (E) ≥ V (E ′), if and only if V1(E) ≥ V1(E ′) .

Non-trivial proofs of main arguments, such as this one, can be found in Ap-
pendix A.

Whatever the technical details, the key idea is this: An entropy measure can
be used to explicate the notion of varied evidence.

5 Explicating the Variety of Evidence Thesis
With an explication of varied evidence in place, we can now proceed to offer an
explication of the VET.
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HC1 C2

E1

E|C1|−1 E|C1|

D1 DK

F 1
1 F 1

f1 FK
1 FK

fK

. . .

. . . . . .

E|C1|+1 E|C1|+|C2|
. . .

...

HC1 C2

E1

E|C1|−1

E ′|C1|
...

D1 DK

F 1
1 F 1

f1 FK
1 FK

fK

. . .

. . . . . .

E|C1|+1 E|C1|+|C2|
. . .

Figure 2: General Bayesian network model of Condition B where E|C1| has
switched parents and become a child of the consequence variable C2. Again,
the evidence pertaining to the D variables remains stable and is shaded grey. The
switching variable is highlighted in blue (prior to the switch) and orange (after the
switch).

5.1 Our Variety of Evidence Thesis
We follow (Claveau, 2013, p. 95) and put forward our
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Variety of Evidence Thesis. Ceteris paribus, the strength of confir-
mation of a hypothesis by an evidential set of independent and confir-
matory items of evidence increases with the diversity of the evidential
elements in that set.

which we shall explicate in our models of scientific inference. We added the
independence clause and the condition concerning confirmatory evidence which
we will discuss in Section 6.2.3 and Section 7. Here, we shall only consider two
Scenarios.

In Scenario A, two bodies of evidence E , E ′ satisfy Condition A; in Scenario
B they satisfy Condition B. These are however not all the restrictions we im-
pose. Ceteris paribus means all other things being equal, respective conditional
probabilities included. In both scenarios, (conditional) probabilities of the same
variables remain unchanged. In Scenario B, this means that the conditional prob-
abilities of E|C1| given C1 have to equal those E ′|C1| given C2, the conditional
probabilities of C1 given H have to equal those of C2 given H [Ceteris Paribus]14

and finally the set of children of C2 has to be equally confirmatory as a sub-set of
children of C1 [Pairing Off], see Table 2.

Finally, we need to require that evidence is confirmatory, see Table 2. To do
so, we simplify notation by abbreviating the conditional probabilities of evidence
pertaining to C1, C2 as follows:

χ1s :=

|C1|−1∏
n=1

P (en|cs1) and χ2s :=

|C2|∏
g=1

P (e|C1|+g|cs2) .

We are ready to state our

Explication of the Variety of Evidence Thesis
In case of Scenario A or Scenario B it holds that PE(h) < PE ′(h).

Note that we do not require E|C1| and E ′|C1| to have the same arity. We are thus
only establish results within the models which concerns the observed evidence.
Results for all possible observations are established by requiring the conditions
for all truth values e|C1|, e

′
|C1| of E|C1|, E

′
|C1|. Doing so, one restricts attention to

cases in which E|C1|, E
′
|C1| do have the same arity.

14The case for treating two observable consequence on equal epistemological footing in (the
reconstruction of) scientific inference has recently been defended in Parkkinen (2016).
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Network Topology Condition A
Confirmatory Evidence P (e1|c1) > P (e1|c̄1)

Network Topology Condition B

Confirmatory Evidence
P (e|C1||c1) > P (e|C1||c̄1)∏|C1|−1

l=|C2|+1 P (el|c1) >
∏|C1|−1

l=|C2|+1 P (el|c̄1)

χ11 · χ21 ≥ χ10 · χ20

Ceteris Paribus

P (e|C1||c1) = P (e′|C1||c2)

P (e|C1||c̄1) = P (e′|C1||c̄2)

P (c1|h) = P (c2|h)
P (c1|h̄) = P (c2|h̄)

Paring Off
∏|C2|

n=1
P (en|c1)
P (en|c̄1)

= χ21

χ20

Table 2: Scenario A (top) and Scenario B (bottom) under which more varied
evidence ought to be more confirmatory.

The strict inequalities formalise that items of evidence have to be confirmatory,
these constraints are rather weak. In Secnario B, we only require that the adopted
item of evidence is somewhat confirmatory, as is the body of evidence which is
not paired off. Furthermore, we require that the entire body of evidence without
the adopted evidence variable is – as a whole – confirmatory. In particular, there
is no requirement on the bodies of evidence to be strongly confirmatory in any
sense; nor is there such a requirement on any particular item of evidence. Some
items of evidence may even be disconfirmatory and the entire body of evidence
may be discordant.

Considering Scenario A to be vacuous on the grounds that more evidence is
always more confirmatory seems unduly hasty. It is well-known since (Carnap,
1962, p. 382) that a body of evidence consisting of two items of evidence, which
both confirm the hypothesis of interest, may disconfirm the hypothesis. So, simply
adding “confirmatory” item of evidence to an existing body of evidence does not
always boost confirmation. Scenario A is also of interest as it concerns an increase
in variety of evidence by the introduction of unexplored lines of inquiry along
Shannon’s axiom H2.
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5.2 Alternative Explications
We are interested in which of two bodies of evidence is more confirmatory. Hence,
we are interested in which of the posterior probabilities PE(h), PE ′(h) is greater.
Our choice of confirmation measure is thus the difference of two posterior prob-
abilities. Those interested in other confirmation measures in this context are re-
ferred to (Bovens and Hartmann, 2002, Appendix M) for discussion. Trivially,
every choice of a confirmation measure which is ordinally equivalent to the dif-
ference measure yields same the comparisons of posterior probabilities. Thus, it
delivers the same verdict about the VET.

One could also allow edges between the Dk or allow the children of the Dk to
have multiple parents among the Dk. However, this renders the defined measure
V (E) meaningless since it ought to matter how exactly the evidence variables
pertain to their parents. While the measure V (·) is meaningless, one can still talk
about the variety V of the restrictions of E , E ′ to the consequence variables where
they disagree (C1, . . . , CN ). If one thusly defines comparative degrees of variety,
then all results derived here hold, too.

Alternatively, one could define a measure of variety V ′ under which the variety
of the evidence pertaining to the Cn is additive, i.e., V ′(E) = V ′(ED) + V ′(EC)
where the index denotes the restriction to these variables. Again, the obtained
results hold in this alternative approach, too.

In the same vein, one can allow for consequence variables Dk which have ar-
bitrary infinite arity and our results still hold – still assuming non-zero conditional
probabilities.

Another generalisation, is to employ a hypothesis variable with countable (fi-
nite or infinite) arity and consequence variables which all have the same countable
(finite or infinite) arity. We have so far only be interested in a binary hypothesis
variable and binary consequence variables. We require that the consequence vari-
ables have equal arity to ensure that our explication of variety makes sense for
these more general models. Given – we think – natural ceteris paribus conditions,
the established technical results also hold for these more general models as we
show in Appendix B.

5.3 Comparison to Bovens and Hartmann and Claveau
In the approaches of Bovens and Hartmann and Claveau, bodies of evidence vary
by the agent’s judgements of the dependence of the sources which provided the
evidence. Imposing ceteris paribus conditions, they study the confirmation pro-

17



vided by different bodies of evidence under different (in)dependence assumptions.
The key idea is that the more independent the sources the greater their notion of
varied evidence. With thusly understood variety, they discover cases in which less
varied bodies of evidence confirm the hypothesis more strongly than more varied
bodies of evidence.

Since the main contributions of these works is to show that there are cases
in which purportedly varied evidence confirms less strongly than less varied evi-
dence, failing to offer an explication of variety is, in our view, not the main issue
with these arguments. It seems that some explication of their notion of variety
should be possible. We feel that the main problems with their arguments lie else-
where, their use and construal of the notion of reliability of scientific instruments.

We avoid the notion of reliability by considering variety of evidence with re-
spect to the hypothesis. Conceptually, we exclude reliability from our analysis of
the VET since the notion of reliability is – neither directly nor indirectly – invoked
in the VET. Our analysis is thus closer in spirit to the epistemological thesis under
investigation. Reliability is subsumed here in the all-important Bayesian prior.

(Bovens and Hartmann, 2002, p. 33) model scientific instruments as either be-
ing fully reliable or as being a complete randomiser: either a scientific instrument
distinguishes correctly whether the pertinent testable consequence C holds [fully
reliable] or it reports the value predicted by the pertinent testable consequence
C with fixed probability a, regardless of whether C holds or not [complete ran-
domiser]. In the latter case, all measurements from this instrument provide no
information whatsoever.

We agree with (Claveau, 2013, p. 96) “The unreliable sources in their model
are not like unreliable sources in actual science (i.e., their unreliable sources are
randomly biased while systematic bias is far more likely to be the issue)”. There
is another problem with modelling scientific instruments as randomisers. Two
conflicting measurements from the same instrument force us to conclude that the
instrument is a randomiser. This seems much too strong.

While Claveau’s model of (un)reliability is an improvement, it suffers from a
similar problem. It is inconsistent with the agent’s beliefs that the readings of an
instrument on two runs of the same experiment differ, see (Claveau, 2013, p. 105).
This cannot be right. When repeating a scientific experiment, it is normally very
hard to guarantee that the (exact) initial and boundary conditions hold on multiple
occasions. One should hence expect that the measurements disagree (to some de-
gree) without suspecting a problem with measuring instruments. It hence seems,
to us, that Claveau’s formalisation of (un)reliability of scientific instruments does
not adequately capture our intuitive understanding of (un)reliable scientific instru-
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ments.15

5.4 Comparison to Correlational and Eliminative Approach
Our approach extends results in Earman (1992) since we consider bodies evidence
which may not be entailed by the hypothesis, some items of evidence may even
be inconsistent with the hypothesis.

There do not seem to be deep connections to the eliminative approach, in
general. For two competing (mutually exclusive and jointly exhaustive) hypoth-
esis (H, H̄) we readily find for their posterior probabilities PE(h) + PE(h̄) = 1.
Hence, evidence which confirms H more strongly is better at disconfirming the
single competing hypothesis.16

With the generalisation to higher arity variables, our approach may be seen
as an eliminative approach, see Appendix B. The hypothesis that H is true is
confirmed by evidence, if and only if the disjunction of all competing hypotheses
is dis-confirmed by the evidence. We leave it to the reader to judge whether this
does justice to the spirit of the eliminative approach.

6 The Variety of Evidence Thesis
We now discuss the status of the VET in our models.

6.1 Novel Confirmatory Evidence
We consider a fixed body of evidence E and add a new item of evidence which
pertains to a consequence C for which there is no other evidence available. The
variety of this new body of evidence E ′ has increased (Proposition 4). The poste-
rior probability of h increases, if the added new item of evidence is in agreement
with its predicted value:

Theorem 1. In case of Condition A

sign(PE(h)− PE ′(h)) = sign(P (e1|c̄1)− P (e1|c1)) .

15(Claveau, 2013, p. 113) offers another caveat of his results: “One could thus read the result
as highlighting the danger of using extremely weak evidential sources, rather than as a direct
refutation of the variety-of-evidence thesis.”

16A rare meeting of Bayes and Popper, see also Section 6.2.2 for disconfirmatory evidence.
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Put differently

Corollary 1 (The VET – Scenario A). Condition A and P (e1|c1) > P (e1|c̄1)
imply

PE(h) < PE ′(h) .

In other words, the more independent items of evidence which are in agree-
ment with their respective predicted value, the greater the posterior probability of
the hypothesis.

6.2 Adoption
As explained in Section 4.2, the variety of a body of evidence increases, when an
item of evidence changes parents where the new parent has – after the switch – not
more children than the previous parent, Condition B. The Bayesian networks for
the corresponding bodies of evidence E , E ′ are depicted in Figure 2, with |C1| ≥
|C2| + 2. For the remainder of this section, E , E ′ will denote an ordered pair of
such bodies of evidence.

We obtain a surprisingly simple formula for the sign of PE(h)− PE ′(h):

Theorem 2. In case Condition B, the Ceteris Paribus Conditions and the Pairing
Off Condition condition all hold, then

sign(PE(h)− PE ′(h))

= sign
(

[P (e|C1||c̄1)− P (e|C1||c1)] ·
( |C1|−1∏
l=|C2|+1

P (el|c1)−
|C1|−1∏
l=|C2|+1

P (el|c̄1)
))

.

We note, all terms using the extra evidence ~f , the paired-off evidence, the
prior probability of h and the conditional probabilities of the Ci given H have
disappeared. Hence, the fate of the VET only depends on conditional probabilities
of the non-paired-off evidence given (the negation of) testable consequences.

We now consider different evidential situations. First, we see what happens,
if this evidence is in agreement with the predicted value. Then, we consider items
of evidence which are all not in agreement with the predicted value. Finally, we
consider discordant items of evidence.
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6.2.1 Confirmatory Evidence

Turning to confirmatory evidence, we find by applying Theorem 2 that for evi-
dence which is more probable under a consequence C than under its negations
that:

Theorem 3 (The VET – Scenario B). If Condition B, the Ceteris Paribus Con-
ditions and the Pairing Off Condition condition all hold and if for all l ∈
{|C2|+ 1, . . . , |C1|} it holds that P (el|c1) > P (el|c̄1), then

PE(h) < PE ′(h) .

We now discuss the plausibility of our main results for confirmatory evidence,
Corollary 1 and Theorem 3. Let us assume that we have conducted a number of
independent experiments to measure the viscosity of hydrogen at room tempera-
ture (C1) and have not investigated any other consequence of H (‘matter consists
of molecules’). All measurements were (around) 0.88 · 10−5Nms−2. Our degree
of belief in the hypothesis H being true will take some value d. Further experi-
ments regarding the viscosity of hydrogen at room temperature which agree with
the predicted value will do little to change our belief in H being true, even if these
experiments are carried out at different places, at different times, by different peo-
ple with different equipments.

Our models indeed track this line of thought that there is an upper bound to
confirmation by only investigating a single consequence – even when all experi-
ments turn out as predicted:

Corollary 2. If E1, . . . , E|C1| are the children of C1, then for all possible mea-
surements E1 = e1, . . . , E|C1| = e|C1|

P (h|e1 . . . e|C1|
~f) < P (h|c1

~f) =
1

1 + P (h̄)·P (c1|h̄)·P (~f |h̄)

P (h)·P (c1|h)·P (~f |h)

< 1 .

The upper bound for the confirmation is smaller the further C1 is from being
a perfect indicator from H , i.e., the greater P (c1|h̄) and the smaller P (c1|h).

Instead of conducting yet another experiment on the viscosity of hydrogen
let us contemplate conducting an experiment on the radiation emitted by a black
body (C2). If we detect the predicted black body radiation, then we are confident
– to some degree – that black bodies do emit black body radiation. We hence
become more confident that the consequences of H are borne out across a variety
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of phenomena. Our degree of belief in the hypothesis H being true increases
non-negligibly beyond our prior degree of belief d.

This thinking is captured by Theorem 3 for the situation when there is no
further background evidence, i.e., |C2| = 0 and ~f = ∅. Corollary 1 and Theorem 3
demonstrate that our Bayesian models capture this reasoning in a wider range of
circumstances, e.g., when there is further background knowledge (~f 6= ∅) and/or
a few experiments regarding the black body radiation had measured results in
agreement with the predicted spectrum (|C2| > 0).

In fact, we can calculate when it pays more to stop investigating the viscosity
of hydrogen and move to investigating black body radiation. To simplify calcula-
tions we shall assume that P (c1|h) = 1 = P (c2|h).

Proposition 2. If Condition B, the last two ceteris paribus condition and if
P (c1|h) = 1 = P (c2|h) hold, then

sign(PE(h)− PE ′(h)) = sign
(∑1

j,l=0 P (cj1|h̄)P (cl2|h̄)P (e′|C1||c
l
2) · χ1j · χ2l

P (e′|C1||c2)

−
∑1

j,l=0 P (cj1|h̄)P (cl2|h̄)P (e|C1||c
j
1) · χ1j · χ2l

P (e|C1||c1)

)
.

While this formula might appear somewhat opaque at first glance, we can
already note that all the background ~f and the prior belief in H have disappeared.
In order to make progress, we need to have that the conditional probabilities of
EL+1|C1 andE ′L+1|C2 are – at least for certain truth values – comparable. Making
such an assumption we find

Proposition 3. If Condition B, the last two ceteris paribus condition, P (c1|h) =
1 = P (c2|h) and if P (e|C1||c1) = P (e′|C1||c2) > P (e′|C1||c̄2) hold, then

sign(PE(h)− PE ′(h)) =− sign
(α0,0 · β0,0 + α0,1 · β0,1

α1,0 · β1,0

+

|C1|−1∏
n=1

P (en|c1)

P (en|c̄1)

)
,

where the α and β are parameters independent of |C1| which are defined in (14).

In a given epistemic situation (α and β parameters and |C2| ≥ 0 fixed) there
comes a point at which evidence in favor of black body radiation (C2) is more
confirmatory than evidence in favor of the predicted viscosity of hydrogen (C1),
the second summand is eventually greater than the first. For example,
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Corollary 3. Under the assumptions of Proposition 3, if there also exists some
δ > 0 such that P (en|c1)

P (en|c̄1)
> 1 + δ = constant for all n, then for bodies of evidence

E with

|C1| ≥ 1 + log(1 + δ)− log
( α1,0 · β1,0

α0,0 · β0,0 + α0,1 · β0,1

)
it holds that

PE(h) < PE ′(h) .

It is worth pointing out that these results only require one weak ceteris paribus
condition, P (e|C1||c1) = P (e′|C1||c2), the Pairing-Off Condition is not required.

The main point is this, there comes a point in life when investigating the exact
same consequence yet again cannot provide significant further confirmation for
the hypothesis of interest. Investigating a different consequence may be more con-
firmatory. A weaker version of this result is given in (Howson and Urbach, 2006,
p. 95). Our argument is more general in that items of evidence are not necessarily
logical consequences of the testable consequences, some items of evidence may
even be strongly disconfirmatory in our result.

6.2.2 Disconfirmatory Evidence

Having discussed evidence confirming a hypothesis, we now turn to evidence
which does not confirm to expectations. That is, we consider evidence which
is more likely when consequences of the hypothesis are false.

Theorem 4. If Condition B, the Ceteris Paribus Conditions and the Pairing Off
Condition conditions hold and if for all l ∈ {|C2| + 1, . . . , |C1|} it holds that
P (el|c1) < P (el|c̄1), then

PE(h) < PE ′(h) .

Theorem 4 says that a more varied body of evidence which speaks against
testable consequences entails a higher probability of H being true than a less
varied body of evidence. In other words, the probability of H being true is lower,
if evidence against the testable consequences is clustered around few or even just
a single testable consequence.

Those interested in showing that a scientific hypothesis is (likely) false are thus
interested in discovering disconfirmatory independent items of evidence which are
concentrated on as few as possible different testable consequences, ceteris paribus.
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Let us consider whether this intuitively right. Assume for the moment that the
Cn are deductive consequences of the hypothesis. So, if only a single Cn is known
to be false, then we know that H is false and assign zero posterior probability to
H being true.

In the running Perrin case, if the experiments conclusively rule out that black
bodies emit black body radiation, then we can be sure that matter does not consist
of molecules (holding the auxiliary background assumptions fixed as usual). A
body of evidence which strongly discredits belief in black body radiation and in
that the viscosity of hydrogen is 0.88 · 105Nms−2 at room temperature, makes for
a (very) low, but non-zero, belief in atomism.

We can now use a continuity argument to pass from categorical ruling out of
a consequence C to evidence which strongly indicates (but not entails) the falsity
of C: a body of evidence strongly telling against one testable consequence C is
preferable for disconfirming the hypothesis to amassing a body of evidence which
discredits the belief in the truth of multiple testable consequences, ceteris paribus.
This thought is formalised in Theorem 4.

6.2.3 Discordant Evidence

There are a wide range of cases in which some of the evidence confirms a hy-
pothesis while other evidence speaks against it. We here only consider cases
in which one item of evidence, E|C1|, goes against the other items of evidence
E|C2|+1, . . . , E|C1|−1.

We obtain the following

Theorem 5. If Condition B, the Ceteris Paribus Conditions, the Pairing Off Con-
dition conditions hold and if one of the following two conditions is satisfied

• P (el|c1) < P (el|c̄1) for all l ∈ {|C2| + 1, . . . , |C1| − 1} and P (e|C1||c1) >
P (e|C1||c̄1),

• P (el|c1) > P (el|c̄1) for all l ∈ {|C2| + 1, . . . , |C1| − 1} and P (e|C1||c1) <
P (e|C1||c̄1),

then

PE(h) > PE ′(h) . (10)

Theorem 5 expresses the thought that making the item of evidence which is
discordant with other items of evidence more prominent by switching it to a new
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parent with fewer children makes for a comparatively lower posterior probability
of h. Let us see whether this is right.

The theorem says that evidence in disagreement with one predicted value ac-
cording to C1 leads to a lower posterior probability of h, if the other evidence,
which is in agreement with the predicted value, pertains to another testable con-
sequence (C2), other things being equal. This is in line with our reasoning for the
disconfirmation case. Disconfirmation is strongest, if disconfirmatory evidence is
unopposed.

Let us recall (Claveau, 2013, p. 95)’s VET: “Ceteris paribus, the strength of
confirmation of a hypothesis by an evidential set increases with the diversity of
the evidential elements in that set.” This version of the VET fails in our models
for discordant evidence. As argued here, we think that it is right that more varied
evidence confirms less strongly for discordant evidence. We suspect a slip in
Claveau’s writing. In the appendix in which Claveau proves his formal results,
he only ever considers evidence which is in agreement with the predicted value.
Furthermore, in (Claveau, 2011, p. 241) he writes “I take evidence to be always
evidence for a specific proposition” [emphasis original]. He might have simply
forgotten to state this convention in Claveau (2013). Bovens and Hartman and
Earman also only consider confirmatory evidence.

We conclude our discussion of bodies of evidence (Sections 6.2.1–6.2.3) by
stating the hope the reader agrees with us that our models also pronounce rightly
on disconfirmation and discordant evidence.

7 Discussion
We now discuss two of our modelling assumptions (independent evidence and the
novel condition 5) which are not in Bovens and Hartmann (2003) in two respects:
i) their applicability in actual cases and ii) their adequacy for explicating the VET.

Addressing both assumptions and both respects we point out that idealisations
made may only hold approximately in applications/may only be approximately
adequate for explication of the VET. Since our main results (Corollary 1 and The-
orem 3) are strict inequalities, these inequalities continue to hold in a neighbour-
hood of the idealisations, too. These neighbourhoods are the larger, the stricter the
inequalities. In particular, for evidence which is in good agreement with the pre-
dicted value the inequality (6) is very strict. For such evidence, we hence expect
the VET to be robust under non-drastic changes of idealisations made.

As for the applicability of the assumption of independent evidence we point to
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(Fitelson, 2001, Footnote 20) who defends an idealisation of independent evidence
thusly: “I do not mean to suggest that confirmational independence can be used to
undergird all of our intuitions about the value of diverse evidence. But, I do think
that there are many important scientific cases that fit this mold” (our emphasis).
We agree with these sentiments. However, when evidence is strongly dependent,
for instance on sources, then neither our models nor our explication apply.

Concerning the adequacy of the independence assumption, we feel that it is
mainly independence assumptions which drive the intuitive appeal of the VET.
Again, we refer to (Fitelson, 2001, p. 131) who is thinking along similar lines: “I
suspect that the notion of independent evidence can undergrid, at least partially,
(some of) our intuitions about the significance of diverse evidence. At least one
recent philosophers seems to share this suspicion. Sober (1989) shows [...]” (em-
phasis original). As we saw in Section 6.2.3, varied discordant evidence supports
the hypothesis less than less varied evidence, ceteris paribus and under certain
conditions. Out of this discussion a proponent of the VET might re-examine her
intuitions and discover that they were mainly driven by an implicit assumption
of independent evidence which supports the hypothesis. The intuition regarding
dependent and/or discordant evidence may be felt less clearly or less strongly.

Strongly dependent evidence is another kettle of fish altogether. While we
have not considered strongly dependent evidence here, we did cast some doubt
on the applicability of the models by Bovens and Hartmann and Claveau for the
philosophy of science, in which their formulation of the VET fails to hold for
strongly dependent evidence. Clearly, there are many more ways (to formalise) in
which evidence could be dependent – none of which we discussed here.

The condition that P (c|h) is large is plausible in applications in science. After
all, C is a consequence of H . In our running example, the consequences are
(almost) deductive consequence of the hypothesis. So, P (c|h) is only marginally
– if at all – less than one. Hence, any addition of a non-negligible amount of
probability will make this sum larger than one, i.e., 5 holds. The same is true
for the consequences considered in Landes et al. (2017); Vezér (2017). There are
hence good reasons to think that 5 will hold in most applications in science.

The adequacy of condition 5 for the explication is less clear. While we feel
that is reasonable to assume that 5 holds, others may disagree. They might point
out that there is a symmetry between the hypothesis and its negation. Hence, if 5
were to hold, it would also need to hold for the negation of the hypothesis (due to
a symmetry argument), too. This however entails a contradiction.

We think that such a symmetry is implausible since there is something special
about scientific hypotheses and their consequences. Elementary logic tells us that

26



if ‘H entails C’, then it does not follow that ‘H̄ entails C̄’. For example, if matter
would not consist of atoms, then it would not be a consequence that the sky is
not blue. Likewise in (Landes et al., 2017, Figure 4), if a drug does not cause a
side-effect, then it is not a consequence that there is no probabilistic dependence
between drug use and observed side-effect; the observed side-effect may well be
due to confounding. Scientific hypotheses tend to be specific and their testable
consequences tend to be (almost) deductive consequences.

Nevertheless, it is a fact that when 5 fails, then there are instance in which our
formulation of the VET fails for very specific parameter configurations for the
adoption scenario. The VET then fails, if and only if17

P (e|C1||c) · α11 · P (c|h) · P (c|h̄)− P (e|C1||c̄) · α00 · P (c̄|h) · P (c̄|h̄) < 0 .

The evidence in the VET is taken to evidence for the hypothesis. It is hence
very plausible that we are entitled to assume that P (e|C1||c) > P (e|C1||c̄) and that
α11 > α00. While the VET is silent on how strong the evidence confirms the
conclusion (how strict these inequalities are), it seems safe to conclude that the
VET only fails for very specific parameter values – when P (e|C1||c) ≈ P (e|C1||c̄)
and α11 ≈ α00. On the other hand, if 5 is accepted, then the VET does not fail.

Generally speaking, while these two modelling assumptions place further re-
strictions on the prior probability distribution our approach is more general than
the Bovens and Hartmann model in that extends to variables of greater arity (Ap-
pendix B) and to bodies of evidence with three or more items of evidence.

8 Conclusion
Despite enjoying widespread intuitive support the VET has received bad press
of late Bovens and Hartmann (2002, 2003); Claveau (2013); Fitelson (1996). A
model-independent or explication-independent vindication of the VET is – given
these negative results – a pipe-dream. Hence, at best one can hope for a wide class
of pertinent models in which explications of the VET hold.

We here put forward an explication of the notion of varied evidence within
a class of models of scientific inference by appealing to measures of entropy.
Our explication of the VET holds in our models. Furthermore, our models also
pronounce rightly on disconfirmation and discordant evidence, we think. This

17see (13) at the end of the proof of Theorem 2
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lends pertinence to the class of discussed models. We would hence argue that the
case for the Variety of Evidence Thesis emerges strengthened.

It will be interesting to see, if the investigation of more realistic (read more
complicated) models of scientific inference unearths more cases in which the VET
fails or if the VET holds (much) more widely. One option is to consider measures
of variety which take more senses of variety into account, such measures appear
in the ecology literature on diversity, e.g., see Tuomisto (2010).

Much remains to be said about the Variety of Evidence Thesis.
Acknowledgements Blinded for review.
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Hüffmeier, J., Mazei, J., and Schultze, T. (2016). Reconceptualizing replication as
a sequence of different studies: A replication typology. Journal of Experimental
Social Psychology, 66:81–92.

Kenynes, J. M. (1921). A Treatise on Probability. MacMillan.

Landes, J., Osimani, B., and Poellinger, R. (2017). Epistemology of Causal In-
ference in Pharmacology. European Journal for Philosophy of Science. 47
pages.

Landes, J. and Williamson, J. (2013). Objective Bayesianism and the maximum
entropy principle. Entropy, 15(9):3528–3591.

Lloyd, E. A. (2015). Model robustness as a confirmatory virtue: The case of
climate science. Studies in History and Philosophy of Science Part A, 49:58–
68.

Meehl, P. E. (1990). Appraising and Amending Theories: The Strategy of
Lakatosian Defense and Two Principles that Warrant It. Psychological Inquiry,
1(2):108–141.

29



Myrvold, W. C. (1996). Bayesianism and diverse evidence: A reply to Andrew
Wayne. Philosophy of Science, 63(4):661.

Parkkinen, V.-P. (2016). Robustness and evidence of mechanisms in early exper-
imental atherosclerosis research. Studies in History and Philosophy of Science
Part C: Studies in History and Philosophy of Biological and Biomedical Sci-
ences, 60:44–55.

Pearl, J. (2009). Causality Models, Reasoning and Inference. Cambridge Univer-
sity Press, 2 edition. Zbl 1188.68291.

Perrin, J. (1924). Les Atomes. Félix Alcan.
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A Proofs of Main Results
We now give the longer proofs. The propositions to be proved are re-stated for
convenience.

Proposition 1. For bodies of evidence E , E ′ with |E| = |E ′| it holds that

V (E) ≥ V (E ′), if and only if V1(E) ≥ V1(E ′) .

Proof. We begin by computing using that:
∑

C∈C |C| = |E|

V (E) = −
∑
C∈C

|C|
|E|
· log

( |C|
|E|

)
= − 1

|E|
·
(∑
C∈C

|C| · log
( |C|
|E|

))
= − 1

|E|
·
(∑
C∈C

|C| · (log(|C|)− log(|E|))
)

= − 1

|E|
·
(
−V1(E) +

∑
C∈C

|C| · (− log(|E|)
)

=
V1(E)

|E|
+ log(|E|) .

Hence, V1(E) is a positive-slope affine-linear transformation of V (E).

Proposition 4. For all |Ω| ≥ 1 and all ~x := 〈w(ω) : ω ∈ Ω〉 it holds that
H(~x) < H( |Ω||Ω|+1

~x, 1
|Ω|+1

).

Proof. Using that
∑|Ω|

i=1 xi = 1 and that H(~x) ≤ − log( 1
|Ω|) = log(|Ω|) we find

H(
|Ω|
|Ω|+ 1

~x,
1

|Ω|+ 1
)−H(~x)

= − 1

|Ω|+ 1

(
log(

1

|Ω|+ 1
) +

|Ω|∑
i=1

|Ω|xi · log
( |Ω|
|Ω|+ 1

xi

))
−H(~x)

= − log(
1

|Ω|+ 1
)− |Ω|
|Ω|+ 1

·
( |Ω|∑
i=1

xi · [log(xi) + log(|Ω|)]
)
−H(~x)
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= log(|Ω|+ 1)− |Ω|
|Ω|+ 1

(−H(~x) + log(|Ω|))−H(~x)

= log(|Ω|+ 1)− |Ω|
|Ω|+ 1

· log(|Ω|)− 1

|Ω|+ 1
H(~x)

≥ log(|Ω|+ 1)− |Ω|
|Ω|+ 1

log(|Ω|)− 1

|Ω|+ 1
log(|Ω|)

= log(|Ω|+ 1)− log(|Ω|)
> 0 .

Theorem 1. In case of Condition A

sign(PE(h)− PE ′(h)) = sign(P (e1|c̄1)− P (e1|c1)) .

Proof. To simply notation we let ~f denote the conjunction of all items evidence
pertaining to the Dk and obtain:

PE(h) =
P (h~f)

P (~f)
=

P (~f |h) · P (h)∑1
s=0 P (~f |hs) · P (hs)

=
1

1 + P (~f |h̄)·P (h̄)

P (~f |h)·P (h)

.

PE ′(h) =
P (he1

~f)

P (e1
~f)

=
P (~f |h) · P (h) · (

∑1
i=0 P (ci1|h)P (e1|ci1))∑1

s=0 P (~f |hs) · P (hs) · (
∑1

i=0 P (ci1|hs)P (e1|ci1))

=
1

1 +
P (~f |h̄)·P (h̄)·(

∑1
i=0 P (ci1|h̄)P (e1|ci1))

P (~f |h)·P (h)·(
∑1

i=0 P (ci1|h)P (e1|ci1))

.

Hence,

sign(PE(h)− PE ′(h))

= sign
( 1

1 + P (~f |h̄)·P (h̄)

P (~f |h)·P (h)

− 1

1 +
P (~f |h̄)·P (h̄)·(

∑1
i=0 P (ci1|h̄)P (e1|ci1))

P (~f |h)·P (h)·(
∑1

i=0 P (ci1|h)P (e1|ci1))

)

= sign
(∑1

i=0 P (ci1|h̄)P (e1|ci1)∑1
i=0 P (ci1|h)P (e1|ci1)

− 1
)
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= sign
( 1∑
i=0

P (ci1|h̄)P (e1|ci1)−
1∑
i=0

P (ci1|h)P (e1|ci1)
)

= sign
(
P (e1|c1) · [P (c1|h̄)− P (c1|h)] + P (e1|c̄1) · [P (c̄1|h̄)− P (c̄1|h)]

)
= sign

(
P (e1|c1) · [P (c1|h̄)− P (c1|h)]− P (e1|c̄1) · [P (c1|h̄)− P (c1|h)]

)
= sign

(
[P (e1|c1)− P (e1|c̄1)] · [P (c1|h̄)− P (c1|h)]

)
.

By (4) we have P (c1|h)−P (c1|h̄) < 0 and hence the proof is completed by noting
that

sign(PE(h)− PE ′(h)) = sign
(
P (e1|c̄1)− P (e1|c1)

)
.

Theorem 2. In case Condition B, the Ceteris Paribus Conditions and the Pairing
Off Condition condition all hold, then

sign(PE(h)− PE ′(h))

= sign
(

[P (e|C1||c̄1)− P (e|C1||c1)] ·
( |C1|−1∏
l=|C2|+1

P (el|c1)−
|C1|−1∏
l=|C2|+1

P (el|c̄1)
))

.

Proof. In a bid to further simplify notation we drop the subscript of c in the
following conditional probabilities: P (el|c1), P (el|c̄1), P (el|c2), P (el|c̄2) – when-
ever there can be no confusion. We also employ the Ceteris Paribus conditions
and simply write P (c|h) and P (c|h̄); dropping the subscript of c.

We begin by calculating the posterior probabilities in turn

PE(h) =
P (he1 . . . e|C1|+|C2|

~f)

P (e1 . . . e|C1|+|C2|
~f)

=
P (~f |h) · P (h) ·

∑1
j,l=0 P (cj1c

l
2e1 . . . e|C1|+|C2||h)∑1

a=0 P (~f |ha) · P (ha) ·
∑1

j,l=0 P (cj1c
l
2e1 . . . e|C1|+|C2||ha)

=
P (~f |h) · P (h) ·

(∑1
j,l=0 P (cj|h)P (cl|h)P (e|C1||cj)χ1j · χ2l

)
∑1

a=0 P (~f |ha) · P (ha) ·
(∑1

j,l=0 P (cj|ha)P (cl|ha)P (e|C1||cj)χ1j · χ2l

) (11)
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=
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj |h̄)P (cl|h̄)P (e|C1||c

j)·
∏|C1|−1

n=1 P (en|cj)·
∏|C2|

g=1 P (e|C1|+g |cl)
)

P (~f |h)·P (h)·
(∑1

j,l=0 P (cj |h)P (cl|h)P (e|C1||c
j)·

∏|C1|−1
n=1 P (en|cj)·

∏|C2|
g=1 P (e|C1|+g |cl)

) .

Similarly, we find for PE ′(h) that

PE ′(h) =
P ′(he1 . . . e|C1|−1e

′
|C1|e|C1|+1 . . . e|C1|+|C2|

~f)

P (e1 . . . e|C1|−1e
′
|C1|e|C1|+1 . . . e|C1|+|C2|

~f)

=
P (~f |h) · P (h) ·

∑1
j,l=0 P

′(cj1c
l
2e1 . . . e|C1|−1e

′
|C1|e|C1|+1 . . . e|C1|+|C2||h)∑1

a=0 P (~f |ha)P (ha)
∑1

j,l=0 P
′(cj1c

l
2e1 . . . e|C1|−1e

′
|C1|e|C1|+1 . . . e|C1|+|C2||ha)

=
P (~f |h) · P (h) ·

(∑1
j,l=0 P (cj|h)P (cl|h)P (e|C1||cl) · χ1j · χ2l

)
∑1

a=0 P (~f |ha) · P (ha) ·
(∑1

j,l=0 P (cj|ha)P (cl|ha)P (e|C1||cl) · χ1j · χ2l

)
(12)

=
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj |h̄)P (cl|h̄)P (e|C1||c

l)·χ1j ·χ2l

)
P (~f |h)·P (h)·

(∑1
j,l=0 P (cj |h)P (cl|h)P (e|C1||c

l)·χ1j ·χ2l

) .

Note that the only difference between these two posteriors is that the first pos-
terior contains the term P (e|C1||cj) while the second posterior contains the term
P (e|C1||cl).

The leading factors play no role, the sign of PE(h) − PE ′(h) is thus equal to
the sign of ∑1

j,l=0 P (cj|h̄)P (cl|h̄)P (e|C1||cl) · χ1j · χ2l∑1
j,l=0 P (cj|h)P (cl|h)P (e|C1||cl) · χ1j · χ2l

−
∑1

j,l=0 P (cj|h̄)P (cl|h̄)P (e|C1||cj) · χ1j · χ2l∑1
j,l=0 P (cj|h)P (cl|h)P (e|C1||cj) · χ1j · χ2l

.

The sign of this expression is equal to the sign of

( 1∑
j,l=0

P (cj|h̄)P (cl|h̄)P (e|C1||cl) · χ1j · χ2l

)
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·
( 1∑
j,l=0

P (cj|h)P (cl|h)P (e|C1||cj) · χ1j · χ2l

)
−
( 1∑
j,l=0

P (cj|h̄)P (cl|h̄)P (e|C1||cj) · χ1j · χ2l

)
·
( 1∑
j,l=0

P (cj|h)P (cl|h)P (e|C1||cl) · χ1j · χ2l

)
.

To simplify notation we let for j, l ∈ {0, 1}

αjl :=

|C1|−1∏
n=1

P (en|cj) ·
|C2|∏
g=1

P (e|C1|+g|cl) = χ1j · χ2l .

We obtain the more manageable

( 1∑
j,l=0

P (cj|h̄)P (cl|h̄)P (e|C1||cl) · αjl
)
·
( 1∑
j,l=0

P (cj|h)P (cl|h)P (e|C1||cj) · αjl
)

−
( 1∑
j,l=0

P (cj|h̄)P (cl|h̄)P (e|C1||cj) · αjl
)
·
( 1∑
j,l=0

P (cj|h)P (cl|h)P (e|C1||cl) · αjl
)
.

Spelling this out we obtain(
P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11

+ P (c̄|h̄)P (c|h̄)[P (e|C1||c̄)α10 + P (e|C1||c)α01]
)

·
(
P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11

+ P (c̄|h)P (c|h)[P (e|C1||c)α10 + P (e|C1||c̄)α01]
)

−
(
P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11

+ P (c̄|h̄)P (c|h̄)[P (e|C1||c)α10 + P (e|C1||c̄)α01]
)

·
(
P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11

+ P (c̄|h)P (c|h)[P (e|C1||c̄)α10 + P (e|C1||c)α01]
)
.
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Fortunately, all those terms which do not contain α00 nor α11 (these are precisely
those terms with P (c̄|h̄)P (c|h̄)P (c̄|h̄)P (c|h̄)) cancel out. Furthermore, all terms
which contain α2

00 and all terms containing α2
11 cancel out. Finally, all terms

containing α00 and α11 also cancel out.
What remains is the much more manageable(
P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11

)
·(

P (c̄|h)P (c|h)[P (e|C1||c)α10 + P (e|C1||c̄)α01 − P (e|C1||c̄)α10 − P (e|C1||c)α01]
)

+
(
P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11

)
·(

P (c̄|h̄)P (c|h̄)[P (e|C1||c̄)α10 + P (e|C1||c)α01 − P (e|C1||c)α10 − P (e|C1||c̄)α01]
)

=
(
P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11

)
· P (c̄|h)P (c|h)

·
(

[P (e|C1||c̄)− P (e|C1||c)] · [α01 − α10]
)

+
(
P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11

)
· P (c̄|h̄)P (c|h̄)

·
(

[P (e|C1||c̄)− P (e|C1||c)] · [α10 − α01]
)
.

We have now identified one of the factors we were looking for, P (e|C1||c̄) −
P (e|C1||c).

Using the Pairing Off condition we find

α10−α01 =

|C1|−1∏
n=1

P (en|c) ·
|C2|∏
g=1

P (e|C1|+g|c̄)−
|C1|−1∏
n=1

P (en|c̄) ·
|C2|∏
g=1

P (e|C1|+g|c)

=

|C2|∏
n=1

P (en|c) ·
|C2|∏
g=1

P (e|C1|+g|c̄) ·
( |C1|−1∏
l=|C2|+1

P (el|c)−
|C1|−1∏
l=|C2|+1

P (el|c̄)
)
.

We found the second and final factor. To conclude the proof we show that

[P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11] · P (c̄|h̄)P (c|h̄)

−[P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11] · P (c̄|h)P (c|h)

>0 .

After some algebra we find

[P (c̄|h)2P (e|C1||c̄)α00 + P (c|h)2P (e|C1||c)α11] · P (c̄|h̄)P (c|h̄)
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− [P (c̄|h̄)2P (e|C1||c̄)α00 + P (c|h̄)2P (e|C1||c)α11] · P (c̄|h)P (c|h)

=(P (e|C1||c̄)α00) · [P (c̄|h)2 · P (c̄|h̄)P (c|h̄)− P (c̄|h̄)2 · P (c̄|h)P (c|h)]

+ (P (e|C1||c)α11) · [P (c|h)2 · P (c̄|h̄)P (c|h̄)− P (c|h̄)2 · P (c̄|h)P (c|h)]

=(P (e|C1||c̄)α00) · [P (c̄|h)P (c̄|h̄)] · [P (c̄|h)P (c|h̄)− P (c̄|h̄)P (c|h)]

+ (P (e|C1||c)α11) · [P (c|h)P (c|h̄)] · [P (c̄|h̄)P (c|h)− P (c̄|h)P (c|h̄)]

=[P (c̄|h̄)P (c|h)− P (c̄|h)P (c|h̄)]·
(P (e|C1||c) · α11 · P (c|h) · P (c|h̄)− P (e|C1||c̄) · α00 · P (c̄|h) · P (c̄|h̄) . (13)

Since P (c|h) > P (c|h̄) we have P (c̄|h̄) = 1 − P (c|h̄) > 1 − P (c|h) = P (c̄|h).
Thus, P (c̄|h̄)P (c|h)− P (c̄|h)P (c|h̄) > 0.

By the first Confirmatory Evidence conditions we have P (e|C1||c) >
P (e|C1||c̄). We also have

α11 − α00 =

|C1|−1∏
n=1

P (en|c1)

|C2|∏
g=1

P (e|C1|+g|c2)−
|C1|−1∏
n=1

P (en|c̄1)

|C2|∏
g=1

P (e|C1|+g|c̄2)

>0

by the second and the third Confirmatory Evidence condition.
We thus show that

P (c|h) · P (c|h̄)− P (c̄|h) · P (c̄|h̄)

=(1− P (c̄|h)) · (1− P (c̄|h̄))− P (c̄|h) · P (c̄|h̄)

=1− P (c̄|h)− P (c̄|h̄)

>0 .

This last inequality is (5) which we motivated above.

Corollary 2. If E1, . . . , E|C1| are the children of C1, then for all possible mea-
surements E1 = e1, . . . , E|C1| = e|C1|

P (h|e1 . . . e|C1|
~f) < P (h|c1

~f) .

Proof. The proof is a relatively simple exercise in Bayesian network calculations

P (h|e1 . . . e|C1|
~f) =

1

1 +
P (~f |h̄)·P (h̄)·(

∑1
j=0 P (cj |h̄)

∏|C1|
n=1 P (en|cj))

P (~f |h)·P (h)·(
∑1

j=0 P (cj |h)
∏|C1|

n=1 P (en|cj))

.
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P (h|c1
~f) =

1

1 + P (~f |h̄)·P (h̄)·(P (c|h̄))

P (~f |h)·P (h)·P (c|h)

.

Hence,

sign(P (h|e1 . . . e|C1|
~f)− P (h|c1

~f))

= sign
(P (c|h̄)

P (c|h)
−
∑1

j=0 P (cj|h̄)
∏|C1|

n=1 P (en|cj)∑1
j=0 P (cj|h)

∏|C1|
n=1 P (en|cj)

)

= sign
(
P (c|h̄)

1∑
j=0

P (cj|h)

|C1|∏
n=1

P (en|cj)− P (c|h) ·
1∑
j=0

P (cj|h̄)

|C1|∏
n=1

P (en|cj)
)

= sign
(
P (c|h̄)[P (c|h)

|C1|∏
n=1

P (en|c) + P (c̄|h)

|C1|∏
n=1

P (en|c̄)]

− P (c|h) · [P (c|h̄)

|C1|∏
n=1

P (en|c) + P (c̄|h̄)

|C1|∏
n=1

P (en|c̄)]
)

= sign
(
P (c|h̄)P (c̄|h)

|C1|∏
n=1

P (en|c̄)− P (c|h) · P (c̄|h̄)

|C1|∏
n=1

P (en|c̄)
)

= sign
(
P (c|h̄)P (c̄|h)− P (c|h) · P (c̄|h̄)

)
.

By (4) we have that P (c|h̄) < P (c|h) and that P (c̄|h) < P (c̄|h̄). Hence the
bracket is negative and it follows that

P (h|e1 . . . e|C1|
~f) < P (h|c1

~f) .

Proposition 2. If Condition B, the last two ceteris paribus condition and if
P (c1|h) = 1 = P (c2|h) hold, then

sign(PE(h)− PE ′(h)) = sign
(∑1

j,l=0 P (cj1|h̄)P (cl2|h̄)P (e′|C1||c
l
2) · χ1j · χ2l

P (e′|C1||c2)

−
∑1

j,l=0 P (cj1|h̄)P (cl2|h̄)P (e|C1||c
j
1) · χ1j · χ2l

P (e|C1||c1)

)
.
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Proof. The proof is a simple exercise in Bayesian network calculations. First, we
use (11) and (12) to obtain

P E(h) =
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj1|h̄)P (cl2|h̄)P (e|C1||c

j
1)·χ1j ·χ2l

)
P (~f |h)·P (h)·

(∑1
j,l=0 P (cj1|h)P (cl2|h)P (e|C1||c

j
1)·χ1j ·χ2l

) .

P E ′(h) =
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj1|h̄)P (cl2|h̄)P (e′|C1|

|cj1)·χ1j ·χ2l

)
P (~f |h)·P (h)·

(∑1
j,l=0 P (cj1|h)P (cl2|h)P (e′|C1|

|cj1)·χ1j ·χ2l

) .

Using that P (c1|h) = 1 = P (c2|h) and hence P (c̄1|h) = 0 = P (c̄2|h) the
expressions simplify to

P E(h) =
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj1|h̄)P (cl2|h̄)P (e|C1||c

j
1)·χ1j ·χ2l

)
P (~f |h)·P (h)·

(
P (e|C1||c1)·χ1j ·χ2l

)
and

P E ′(h) =
1

1 +
P (~f |h̄)·P (h̄)·

(∑1
j,l=0 P (cj1|h̄)P (cl2|h̄)P (e′|C1|

|cj1)·χ1j ·χ2l

)
P (~f |h)·P (h)·

(
P (e′|C1|

|c1)·χ1j ·χ2l

) .

The claimed result follows by re-substituting the definitions of χ1j and χ2l.

Proposition 3. If Condition B, the last two ceteris paribus condition, P (c1|h) =
1 = P (c2|h) and if P (e|C1||c1) = P (e′|C1||c2) > P (e′|C1||c̄2) hold, then

sign(PE(h)− PE ′(h)) =− sign
(α0,0 · β0,0 + α0,1 · β0,1

α1,0 · β1,0

+

|C1|−1∏
n=1

P (en|c1)

P (en|c̄1)

)
,

where the α and β are parameters independent of |C1| which are defined in (14).
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Proof. Under the assumption that P (e|C1||c1) = P (e′|C1||c2) the denominators are
equal. Furthermore, the terms with j = l = 1 cancel out. We hence find

sign
(
P (h|e1 . . . eLe|C1|e|C1|+1 . . . e|C1|+|C2|

~f)

− P (h|e1 . . . e|C1|−1e
′
|C1|e|C1|+1 . . . e|C1|+|C2|

~f)
)

= sign
( 1∑

j,l=0
(j,l)6=(1,1)

P (cj1|h̄)P (cl2|h̄)P (e′|C1||c
l
2) · χ1j · χ2l

−
1∑

j,l=0
(j,l)6=(1,1)

P (cj1|h̄)P (cl2|h̄)P (e|C1||c
j
1) · χ1j · χ2l

)
.

With (subscripts represent the values for j and l)

α0,0 := P (c̄1|h̄)P (c̄2|h̄) ·
|C2|∏
g=1

P (e|C1|+g|c̄2)

β0,0 := P (e′|C1||c̄2)− P (e|C1||c̄1)

α1,0 := P (c1|h̄)P (c̄2|h̄) ·
|C2|∏
g=1

P (e|C1|+g|c̄2)

β1,0 := P (e′|C1||c̄2)− P (e|C1||c1)

α0,1 := P (c̄1|h̄)P (c̄2|h̄) ·
|C2|∏
g=1

P (e|C1|+g|c2)

β0,1 := P (e′|C1||c2)− P (e|C1||c̄1) (14)

this becomes equal to

sign
(
α0,0 · β0,0 ·

|C1|−1∏
n=1

P (en|c̄1) + α0,1 · β0,1 ·
|C1|−1∏
n=1

P (en|c̄1)

+ α1,0 · β1,0 ·
|C1|−1∏
n=1

P (en|c1)
)

= sign
(

[α0,0 · β0,0 + α0,1 · β0,1] ·
|C1|−1∏
n=1

P (en|c̄1) + α1,0 · β1,0 ·
|C1|−1∏
n=1

P (en|c1)
)
.
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Note that the α and the β parameters do not change value with varying |C1| and
are hence treated as constants.

Using that α1,0 · β1,0 < 0 and
∏|C1|−1

n=1 P (en|c̄1) > 0 we find that

sign(P (h|e1 . . . e|C1|−1e|C1|e|C1|+1 . . . e|C1|+|C2|
~f)

− P (h|e1 . . . e|C1|−1e
′
|C1|e|C1|+1 . . . e|C1|+|C2|

~f)

=− sign
(α0,0 · β0,0 + α0,1 · β0,1

α1,0 · β1,0

+

∏|C1|−1
n=1 P (en|c1)∏|C1|−1
n=1 P (en|c̄1)

)
.

B High Arity Variables
We now address the claim that the so-far established technical results, also hold
for models which employ higher arity hypothesis and/or consequence variables.

Denote by h2, h3, . . . the values of H different from h and by c2, c3, . . . the
values of consequence variable C different from c. h0 is the (possibly infinite)
disjunction of the hi with i ≥ 2. c0 is the (possibly infinite) disjunction of the ck

with k ≥ 2. To simplify notation we let P (c0
j |hi) := 1− P (cj|hi).

The ceteris paribus conditions are that for every consequence variables Cj and
every evidence variable E pertaining to the consequence variable Cj it holds that

P (c0
j |hi) = P (c0

j |h2) = P (c̄j|h̄) (15)

P (e|ckj ) = P (e|c2
j) = P (e|c̄j) . (16)

This formalises the thought that all values of the hypothesis variable H different
from h are equal. Furthermore, the conditional probability of the evidence does
not depend on the particular value ck.

Proposition 5. If (15) and (16) hold, then Theorem 1 and Theorem 3 hold for
higher arities, too.

Proof. Using the ceteris paribus condition for the second and third equality, we
find ∑

i≥2

∑
k≥2

P (hi) · P (ckj |hi) · P (e|ckj ) =
∑
i≥2

P (hi) ·
∑
k≥2

P (ckj |hi) · P (e|ckj )
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= P (e|c2
j) ·
∑
i≥2

P (hi) ·
∑
k≥2

P (ckj |hi)

= P (e|c̄j) ·
∑
i≥2

P (hi) · P (c0
j |hi)

= P (e|c̄j) · P (c̄j|h̄) · P (h̄) .

To complete the proof it suffices make the following observations:
1) Whenever the term ‘P (e|c̄j) · P (c̄j|h̄) · P (h̄)’ appears in a proof for the basic
model it is replaced by the term ‘

∑
i=2

∑
k=2 P (hi) · P (ckj |hi) · P (e|ckj )’. Since

both terms are equal, no new difficulties arise.
2) The terms of the form ‘P (c̄j|h̄)’ for i ≥ 2 are replaced by terms of the form∑

k≥2 P (ckj |hi)’. The latter is equal to P (c0
j |hi). By the first ceteris paribus as-

sumption for greater arities, these terms are equal.
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