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SUMMARY

Plant cells are characterized by a high degree of compartmentalization and a diverse proteome and metabo-

lome. Only a very limited number of studies has addressed combined subcellular proteomics and metabolo-

mics which strongly limits biochemical and physiological interpretation of large-scale ’omics data. Our

study presents a methodological combination of nonaqueous fractionation, shotgun proteomics, enzyme

activities and metabolomics to reveal subcellular diurnal dynamics of plant metabolism. Subcellular marker

protein sets were identified and enzymatically validated to resolve metabolism in a four-compartment

model comprising chloroplasts, cytosol, vacuole and mitochondria. These marker sets are now available for

future studies that aim to monitor subcellular metabolome and proteome dynamics. Comparing subcellular

dynamics in wild type plants and HXK1-deficient gin2-1 mutants revealed a strong impact of HXK1 activity

on metabolome dynamics in multiple compartments. Glucose accumulation in the cytosol of gin2-1 was

accompanied by diminished vacuolar glucose levels. Subcellular dynamics of pyruvate, succinate and fuma-

rate amounts were significantly affected in gin2-1 and coincided with differential mitochondrial proteome

dynamics. Lowered mitochondrial glycine and serine amounts in gin2-1 together with reduced abundance

of photorespiratory proteins indicated an effect of the gin2-1 mutation on photorespiratory capacity. Our

findings highlight the necessity to resolve plant metabolism to a subcellular level to provide a causal rela-

tionship between metabolites, proteins and metabolic pathway regulation.

Keywords: Arabidopsis thaliana, subcellular metabolism, proteomics, metabolomics, nonaqueous fractiona-

tion, hexokinase 1, photorespiration.
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INTRODUCTION

Regulation of biochemical pathways at the cellular level is

strongly shaped by compartmentalization. While it is cur-

rently unknown how widespread compartmentalization is

among prokaryotes, prokaryotic membrane organelles

seem to have evolved independently (Diekmann and Per-

eira-Leal, 2013), whereas eukaryotes are described to be

derived from a highly compartmentalized last eukaryotic

common ancestor (Field and Dacks, 2009). Furthermore,

eukaryotic cells are characterized by the presence of mito-

chondria that have resulted from ancient endosymbiosis

and whose acquisition is discussed to be the key step for a

more complex eukaryotic cell plan (Diekmann and Pereira-

Leal, 2013). Among eukaryotes, higher plants show a partic-

ularly high degree of cellular compartmentalization due to

the presence of compartments like vacuoles and plastids.

Previous work provided evidence for an important role of

cellular compartmentalization in stabilizing metabolism and

showed that compartmental cell structure is a prerequisite

for establishing stable metabolic states of different cell fates

(Harrington et al., 2013). The detailed knowledge of
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subcellular biochemical networks immediately draws atten-

tion to the experimental resolution of subcellular metabo-

lism. Therefore, the availability of experimental data on

subcellular fluxes, protein levels and metabolite concentra-

tions limits the applicability of genome-scale metabolic net-

works to study organism-environment interactions and the

genotype�phenotype relationship.

Decades ago the method of nonaqueous fractionation

(NAF) has been developed and applied to re-calculate sub-

cellular metabolite distributions in different organisms and

tissues (Heber, 1957; Elbers et al., 1974; Gerhardt and

Heldt, 1984). To date, NAF methodology has been applied

in a broad context, for example analyzing compartmenta-

tion of primary metabolism in potato tubers (Farr�e et al.,

2001), redox regulation of starch biosynthesis (Tiessen

et al., 2002), stabilization of photosystem II by plastidial

raffinose (Knaupp et al., 2011) or metabolic reprogram-

ming of plant metabolism during cold acclimation

(F€urtauer et al., 2016; Hoermiller et al., 2017). These

approaches are based on separation of cellular compart-

ments across a nonaqueous density gradient and the sub-

sequent correlation of compartment-specific marker

enzyme activity distribution with metabolite abundance.

This yields an estimation of relative subcellular metabolite

distribution. For example, with such an approach it

becomes possible to trace back cold-induced sugar and

amino acid dynamics in chloroplasts, the cytosol and vac-

uoles of plant leaf tissue (N€agele and Heyer, 2013; F€urtauer

et al., 2016). However, the interpretation of subcellular

metabolite dynamics revealed by this procedure is strongly

limited due to several factors (Dietz, 2017). The omission of

compartments together with the lack of robust and redun-

dant marker sets belong to the most limiting factors. Quan-

tification of marker enzyme activities in crude extracts of

separated fractions is technically limited by appropriate

(photometric) assays and their simultaneous applicability

on the same fractionated sample. Consequently, replacing

marker enzyme activities by marker protein abundance

potentially increases both the number of separable com-

partments and the number of (reliable) marker proteins.

Using such a strategy of combined NAF, proteome and

metabolome analysis enabled separation of vacuolar, plas-

tidial and cytosolic metabolites and proteins of Arabidop-

sis wild type leaf tissue, while mitochondrial and

peroxisomal proteins clustered together with the cytosol

(Arrivault et al., 2014). Observing that metabolites from dif-

ferent pathways, for example the Calvin�Benson cycle or

glycolysis, grouped together with their associated proteins

and the respective compartment provided strong evidence

for the suitability of the NAF method to resolve metabo-

lism in chloroplasts, vacuoles and the cytosol. However,

limitations exist for the resolution of mitochondrial meta-

bolism. Mitochondria represent one of the most distinctive

attributes of eukaryotic cells (Diekmann and Pereira-Leal,

2013) and are centrally involved in important cellular pro-

cesses, for example energy metabolism, redox regulation,

stress response and developmental reprogramming. Sub-

cellular proteomics enable the detection and quantification

of mitochondrial protein dynamics and, for example, its

analysis in the context of respiratory metabolism (Lee

et al., 2010).

In all phyla, hexokinases occur as enzymes of the gly-

colytic pathway, thereby contributing to breakdown of car-

bohydrates to provide carbon intermediates to numerous

anabolic pathways as well as respiration. In different plant

tissues, multiple hexokinase isoforms are found with dif-

ferent subcellular localization (Claeyssen and Rivoal, 2007).

In Arabidopsis, Hexokinase 1 (HXK1) is located at the outer

mitochondrial membrane, and it has been discussed

whether it is translocated between mitochondrion and

nucleus, for example via the cytoskeleton (Rolland et al.,

2006; Claeyssen and Rivoal, 2007). In analogy to the obser-

vation in animals, it is speculated that a detachment of the

membrane is induced by signals from G6P or methyl-jas-

monate (Xiang et al., 2011). Independently, HXK1 has a

sensing and signalling function for glucose, besides its

phosphorylating activity. The glucose sensing function

integrates environmental, nutritional and hormonal cues in

the metabolic signalling network that regulates growth and

development of plants (Moore et al., 2003). The localization

of hexokinase at the mitochondrial membrane was sug-

gested to be a prerequisite for the signalling function (Xiao

et al., 2000). The glucose insensitive mutant gin2-1 carries

a point mutation in the HXK1 gene. This mutation has a

broad impact, including alterations in vegetative and repro-

ductive development, senescence, cell proliferation as well

as gene expression (Moore et al., 2003). Sugars and sugar

sensors have a broad impact on regulation of genes and

influence several intracellular metabolic pathways from

embryogenesis to senescence (Sheen, 2014; Li and Sheen,

2016; Aguilera-Alvarado and S�anchez-Nieto, 2017). Glucose

seems to be one of the most ancient and conserved regula-

tory signals (Sheen, 2014).

The present study aimed to investigate the subcellular

metabolic consequences of deficiency in glucose sensing

and phosphorylation. A combination of NAF with pro-

teomics and metabolomics analysis was applied to reveal

compartment-specific marker protein sets for a statistically

robust estimation of dynamics of subcellular metabolite

amounts. Compartment-specific enzyme activities and liq-

uid chromatography tandem mass spectrometry (LC-MS/

MS) abundance of a specified protein marker set revealed

a high comparability between marker enzyme activities

and marker protein abundance. Subcellular diurnal dynam-

ics of the proteome and metabolome were recorded in leaf

tissue of the hexokinase 1 deficient mutant gin2-1 and its

wild type Landsberg erecta (Ler) that finally indicated a role

of hexokinase 1 in photorespiratory metabolism.
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RESULTS

Marker enzyme activities and LC-MS/MS determined

protein marker set are applicable for subcellular

metabolome analysis

Calculation of subcellular metabolite distribution critically

depends on data on compartment-specific marker enzyme

activities. Typically, a single marker enzyme activity is

determined for each subcellular compartment and, subse-

quently, correlated with metabolite levels across all frac-

tions. To evaluate the robustness of the metabolite

correlation output, calculations based on marker enzyme

activity data were compared with calculations based on a

diverse set of LC-MS/MS quantified marker proteins. Mar-

ker enzyme activities were quantified for chloroplast (py-

rophosphatase), vacuole (acid phosphatase) and cytosol

(UGPase; see Figure 1, red bars). Additionally, protein

abundance was quantified for cytosolic UGPase

(AT3G03250; Figure 1c/f, green bars). Mean enzyme activ-

ity and protein abundance of UGPase differed less than 4%

for both accessions across all time points and fractions

(Ler: 3.6% and gin2-1: 3.4%). From a shotgun proteomic

dataset across gradient fractions, proteins were considered

as a subcellular marker if they were previously confirmed

by fluorescent protein fusion (FP) to be solely present in

one compartment (Table S1). This marker protein set com-

prised 11 cytosolic, two mitochondrial, four nuclear, 47

plastidial, four vacuolar and two peroxisomal proteins.

Information on FP-proteins and their localizations were

derived from SUBA3 (Tanz et al., 2012) and the annotator

database The Arabidopsis Information Resource (TAIR)

(see Experimental procedures, Table S1). FP-proteins with

unique subcellular localization were used as protein mar-

ker set within gradients (Figure 1, turquoise bars). Compar-

ison of measured enzyme activities and the FP-protein

marker set (Figure 1) revealed high Pearson correlation

Figure 1. Comparison of different marker distributions in a typical gradient. (a–c) Ler and (d�f) gin2-1 in three compartments (a, d: chloroplast; b, e: vacuole; c,

f: Cytosol). Red colour indicates measured enzyme activities that were photometrically determined. Marker enzymes were pyrophosphatase (chloroplast), acid

phosphates (vacuole) and UDP glucose pyrophosphorylase (UGPase; cytosol). Cyan bars represent mean values of all subcellular marker proteins (LC-MS/MS;

Table S1). For cytosol, protein abundance is additionally provided for cytosolic UGPase (green bars) to allow the direct comparison to enzyme activity (red bars).
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coefficients in plastids (0.97) and vacuoles (0.94), while it

was slightly lower for the cytosol (0.73). Lowered cytosolic

correlation coefficients resulted from eight out of 163

cytosolic marker proteins that showed a deviation of ≥10%
to marker enzyme activity (UGPase). As a consequence, a

threshold of ≥10% for marker slope differences was used

to determine subcellular metabolite distributions by the

calculation algorithm to avoid overestimation due to tech-

nical limitations of marker quantification (see Experimental

procedures). This 10% threshold slightly reduced the sepa-

ration of subcellular metabolite clusters (see Figure S2) but

increased its robustness against outliers. Besides the

above described outliers, overall relative distribution of

cytosolic enzyme activity and protein marker sets differed

only slightly (<5%). An example for the heterogeneity of FP

marker within gradients is provided in Figure S3. This low

deviation indicated that quantification of single marker

enzyme activities provides robust information about com-

partmental enrichment. Alternatively, these findings pro-

vide evidence for the suitability of shotgun proteomics to

resolve subcellular metabolism.

Protein marker correlation reveals the limitation of

subcellular resolution

Subcellular protein marker sets from NAF gradients were

correlated against each other to statistically evaluate poten-

tial overlaps of compartment markers. Mean values of Pear-

son correlation coefficients were determined for both

genotypes and time points (Figure 2). Lower correlation

coefficients in Ler indicated a superior separation efficiency

Figure 2. Heatmap of mean Pearson correlation coefficients of subcellular marker proteins. For each time point, compartment protein markers of each fraction-

ated sample were correlated with each other. Results are provided as mean values of three biological replicates (n = 3) for (a–c) Ler and (d–f) gin2-1.
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compared with gin2-1. Time point comparison revealed the

best separation of compartments at 18:00 h for both geno-

types. In general, from all resolved compartments vacuole

and cytosol were separated best with negative or low corre-

lation coefficients to the other compartments. Compart-

ments like chloroplasts, mitochondria, nucleus and, to

lesser extent, also peroxisomes showed their relative max-

ima within the first five gradient fractions while they were

low abundant in the last four fractions (Figure 3a). Mito-

chondria and chloroplasts showed coefficients lower than

0.85 except for gin2-1 at 08:00 h (r = 0.88). Nuclei clustered

together with mitochondria as indicated by correlation coef-

ficients >0.9 (Figure 2b,d,e). Except for 18:00 h, nucleus and

peroxisomes were associated more to mitochondria than to

chloroplasts. An overview of full proteome correlation

against compartment marker proteins is summarized in

Table S2 indicating which proteins were positively corre-

lated with compartment marker proteins (Table S1).

Resolving mitochondrial metabolism

Comparing the gradient distribution of plastidial, mitochon-

drial and cytosolic FP marker proteins indicated the location

of mitochondria between plastids and cytosol (Figure 3a).

The reliability of correlation output of marker proteins and

metabolites critically depends on differential dynamics of

compartment markers across density gradients (Figure 3b).

Consequently, mathematical assignment of metabolites

strongly depends on the number of compartments that are

considered for each calculation. As a result, several signifi-

cant correlations of metabolites with a three-compartment

model, comprising chloroplast, cytosol, and vacuole, chan-

ged their compartmental association, when a four-compart-

ment model was applied for correlation, for example by

adding mitochondria. Citrate shifted its association towards

mitochondria (Figure 4). Citrate is an intermediate of the tri-

carboxylic acid (TCA) cycle and, thus, this indicated that the

four-compartment model improved the estimation of sub-

cellular metabolite localization. In total, the mitochondrial

four-compartment model significantly affected about 33%

of quantified metabolites of the three-compartment model

in gin2-1 while only 19% were affected in Ler (Table S3,

t-test P < 0.05). This might be the result of a better separa-

tion of compartments in Ler that became visible in the Pear-

son correlation coefficients (Figure 2).

Figure 3. LC-MS/MS subcellular marker distribution

for a typical gradient. (a) Mean marker distribution

across a nonaqueous density gradient. Mean values

were built for all marker proteins listed in Table S1.

(b) Compartment marker dynamics applied for cor-

relation with metabolites. Arrows exemplarily indi-

cate dynamics of plastidial, mitochondrial and

cytosolic marker proteins which were compared

with dynamics of metabolites in the same gradient.

Maxima (‘max’) of compartment markers are exem-

plarily depicted. Comparison of fractions 1 and 2

indicates positive slopes for mitochondrial markers,

and slightly negative slopes for chloroplasts and

cytosol (both less than 10% and therefore not con-

sidered for metabolite distributions). Comparison of

fractions 2 and 3 revealed negative slopes for

chloroplasts and mitochondria and a positive slope

for cytosol. Chloroplast (Pla, green), cytosol (Cyt,

grey), vacuole (Vac, red), mitochondria (Mit, yel-

low), nucleus (pale blue), peroxisome (purple).
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A mitochondrial four-compartment model

The impact of the mitochondrial four-compartment model

is exemplarily shown for the TCA cycle intermediate citrate

by comparing a three-compartment calculation (Figure 4a)

with a four-compartment calculation (Figure 4b). Involving

mitochondrial markers in subcellular correlation cancelled

Figure 4. Subcellular citrate dynamics. Citrate amount was resolved for (a) three compartments (chloroplast, cytosol, vacuole) and (b) four compartments (+

mitochondria). (c) Absolute amount of citrate on the whole cell level (mean � SD, n = 5). Amount is given in [nmol/gDW]. Dry weight refers to the total weight

of the sample. Purple lines above graphs indicate a significant difference between genotypes at the same time point (n = 3 9 5; t-test, *P < 0.05, **P < 0.01,

***P < 0.001). Brown lines within graphs indicate a significant difference between time points (t-test, P < 0.05, Bonferroni correction of multiple comparisons).
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out a diurnal decrease of citrate within the chloroplast that

was observable for gin2-1 in the three-compartment model

(Figure 4a,b). Generally, mean values of citrate in mito-

chondria were highest compared with the other three com-

partments for both genotypes across all three time points,

except for Ler at 18:00 h (Figure 4b). In gin2-1, significantly

higher citrate levels than in Ler were observed in mito-

chondria, cytosol and chloroplasts (Figure 4b, t-test,

P < 0.05). Within mitochondria, lowest citrate levels were

observed at 18:00 h in both genotypes.

gin2-1 is significantly affected in hexose allocation

between cytosol and vacuole

Total amounts of glucose and fructose were significantly

lower in gin2-1 than in Ler at the beginning of the day. In

Ler, hexose amount increased significantly until 18:00 h

(table in Figure 5; P < 0.05). Hexose amount in gin2-1 was

significantly lower than in Ler across all three compart-

ments at 08:00 h (Figure 5; t-test P < 0.05). Estimated mito-

chondrial hexose dynamics indicated a linear increase of

glucose amount in Ler, while in gin2-1 a significant

increase of hexoses was only found during the first 4 h in

the light (Figure S7; t-test P < 0.05). Cytosolic and plastidial

hexose levels of gin2-1 were less affected than vacuolar

levels that were significantly reduced to ~50% of Ler

(P < 0.01). gin2-1 continuously accumulated glucose in the

cytosol, while Ler showed lowered levels at 12:00 h.

Pyruvate and TCA cycle intermediates are significantly

affected in mitochondria of gin2-1

In gin2-1, mitochondrial pyruvate values were significantly

lower than in Ler across all time points (Figure 6a;

P < 0.01). Furthermore, in Ler, pyruvate levels increased

over the day whereas no significant dynamics were

observed in gin2-1. Similar to citrate (Figure 4b), mitochon-

drial succinate levels were significantly higher in gin2-1

than in Ler across all time points. Additionally, the dynam-

ics of mitochondrial succinate differed between both geno-

types, showing a significant decrease in gin2-1 and

constant levels in Ler (Figure 6b). Estimated mitochondrial

fumarate amount reached a maximum in gin2-1 at 18:00 h

(Figure 6c). Mitochondrial malate amount was significantly

higher in gin2-1 than in Ler at 08:00 and 12:00 h (Fig-

ure 6d). A summary of metabolite levels across all com-

partments is provided in Figure S4.

Photorespiration associated amino acids glycine and

serine are less abundant in gin2-1

Glycine accumulated across all compartments and geno-

types, but at 18:00 h the amount was significantly lower in

gin2-1 compared with Ler (Figure 7a; P < 0.01). In more

detail, mitochondrial glycine levels in Ler increased over

the whole light period, whereas in gin2-1 glycine levels

remained constant between 12 and 18:00 h. Similarly,

serine accumulated in chloroplasts and in the cytosol of

both genotypes (Figure 7b; P < 0.05), while plastidial levels

were significantly lower in gin2-1. In Ler, mitochondrial

serine levels significantly increased during the light phase

(Figure 7b, P < 0.05) but remained constant and signifi-

cantly lower (P < 0.05) in gin2-1. Vacuolar serine levels

were found to be significantly lower in gin2-1 than in Ler

(Figure 7b, P < 0.05). Additionally, hexokinase 1 deficiency

affected amino acid levels at the C/N interface (glutamine,

glutamate, Figure S5a,b) and to a strong depletion of pro-

line (Figure S5c). All other quantified amino acids showed

significant differences between genotypes and time points

in at least one compartment (summarized in Tables S4 and

S5).

Subcellular proteomics reveals a HXK1-induced effect on

diurnal regulation of mitochondrial metabolism

Diurnal dynamics of protein levels indicated a similar cellu-

lar protein constitution in Ler and gin2-1 during the early

morning and evening phase, while differences in mean

proteome abundance between both genotypes peaked

after 4 h into the light (Figure 8a). However, principal com-

ponent analysis showed that neither genotype nor time

points were separated by the proteomics data (Figure 8b,

c). Comparing the quartile of most abundant proteins, i.e.

750 out of 2995 with highest abundance in Ler and gin2-1

at 12:00 h, revealed an overlap of 681 proteins while 69

proteins were more abundant in either Ler or gin2-1 (Fig-

ure S6). Functional categories (TAIR10 (www.arabidopsis.

org) protein database (Lamesch et al., 2012)) of the most

abundant proteins revealed that a particular set of proteins,

involved in TCA cycle and organic acid transformation

reactions, was underrepresented in gin2-1 (Figure 9).

These proteins comprised the pyruvate dehydrogenase

complex E1 alpha subunit (E1 alpha; AT1G59900, Fig-

ure 9a), ATP-citrate lyase B-1 (AT3G06650, Figure 9b), 2-

oxoacid dehydrogenases acyltransferase family protein

(AT1G34430, Figure 9c) and isocitrate dehydrogenase 1

(AT4G35260, Figure 9d). At 12:00 h, levels of 2-oxoacid

dehydrogenases acyltransferase family protein and isoci-

trate dehydrogenase 1 were significantly higher in Ler than

in gin2-1 (P < 0.05; t-test), while levels of E1 alpha and

ATP-citrate lyase B-1 were only slightly elevated (Fig-

ure 9a–d; P = 0.09 and P = 0.2). Alternatively, the abun-

dance of the putative mitochondrial transporter Bou

(AT5G46800, Figure 9e) was higher in gin2-1 after 4 h in

the light, because of a decrease during the morning phase

in Ler (P = 0.07; Figure 9e). In gin2-1, Bou levels decreased

significantly 6 h later (P < 0.05, t-test).

These observations indicated a HXK1-dependent diurnal

regulation of mitochondrial metabolism. For a more

detailed analysis at the subcellular level, the full proteome

was correlated with marker proteins for the compartments

plastid, cytosol, vacuole, mitochondrion and nucleus
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(significant Pearson correlation, see Experimental proce-

dures). In total, 2786 out of 2995 proteins (93%) signifi-

cantly correlated with at least one compartment in either

Ler or gin2-1 (Pearson correlation, P < 0.05). The overlap of

significant correlations between both genotypes was

~75%. To reveal the effect of the gin2-1 mutation on

mitochondrial metabolism, proteins showing strongest sig-

nificant correlation with mitochondrial markers in Ler were

extracted from the data set and compared with gin2-1. In

total, 383 proteins in Ler and 586 proteins in gin2-1 were

found to significantly correlate with mitochondrial markers

over the complete diurnal period, and 94 of these proteins

Figure 5. Hexose amount in three compartments. (a) Glucose and (b) fructose amount in [nmol/gDW] for chloroplast, cytosol and vacuole. Dry weight refers to

the total weight of the sample. Purple lines above graphs indicate a significant difference between genotypes at the same time point (n = 3 9 5; t-test,

*P < 0.05, **P < 0.01, ***P < 0.001). Brown lines inside of graphs indicate a significant difference between time points (t-test, P < 0.05, Bonferroni correction of

multiple comparisons). Tables below graphs contain absolute amount of metabolites at a whole cell level (mean � SD, n = 5).

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2019), 100, 438–455

Subcellular plant metabolism 445



were only found in Ler. Among these 94 proteins, catalase

1 (Cat1; AT1G20630) showed the weakest association with

any other compartment, for example with the nucleus,

indicating a strong and exclusive association with mito-

chondria. At 12 h, Cat1 levels of Ler were five-fold higher

than in gin2-1 (Figure 10a; P = 0.068). Less significant,

catalase isoforms Cat2 and Cat3 were slightly more abun-

dant in Ler than in gin2-1 (Figure 10a). In gin2-1, strongest

association with mitochondria over the diurnal period was

observed for the putative mitochondrial transporter A

BOUT DE SOUFFLE (BOU; AT5G46800), NADH dehydroge-

nase [ubiquinone] 1 alpha subcomplex subunit 6

(AT3G12260) and NADH dehydrogenase [ubiquinone] 1

beta subcomplex subunit 7 (AT2G02050). At 12 h, Bou pro-

tein levels were 2-fold higher in gin2-1 than in Ler (Fig-

ure 10b; P < 0.05). In a previous study, Bou was identified

as a transporter involved in photorespiratory metabolism

by co-expression analysis using 14 highly co-expressed

photorespiratory genes (Eisenhut et al., 2013), and seven

of the encoded proteins were also quantified in the present

study. Those proteins comprised serine hydroxymethyl

transferase 1 (SHM1; At4g37930), glycine decarboxylase

(GDC) L-protein (mLPD1; At1g48030), glyocolate oxidase

(GOX; At3g14415), hydroxypyruvate reductase 1 (HPR1;

At1g68010), glutamate:glyoxylate aminotransferase 2

(GGT2; At1g23310), glutamine synthetase 2 (GS2;

At5g35630) and the Fd-dependent glutamate synthase (fd-

GOGAT; At5g04140). Among these seven proteins, mLPD1

levels at 12:00 h showed the most significant difference

between both genotypes, being 1.4-fold higher in Ler than

in gin2-1 (Figure 10c; P < 0.05). Although not always signif-

icant, levels of many detected photorespiratory proteins

were higher in Ler than in gin2-1 over the whole diurnal

period.

DISCUSSION

Subcellular resolution of metabolism

Resolving the dynamics of subcellular metabolite concen-

trations is essential to promote the understanding of cellu-

lar biochemistry and metabolic regulation. The NAF

technique combines efficient quenching of metabolism

with subcellular resolution by correlation of marker pro-

teins or enzymes with metabolites. Although genetically

encoded or optical sensors for metabolites enable spa-

tiotemporal tracing of subcellular dynamics in single

Figure 6. Pyruvate and TCA cycle intermediates in mitochondria. (a) Pyru-

vate, (b) succinate, (c) fumarate and (d) malate in [nmol/gDW] for both

genotypes. (e) The table contains absolute amounts of pyruvate, succinate,

fumarate and malate at a whole cell level (mean � SD, n = 5). Dry weight

refers to the total weight of the sample. Purple lines above graphs indicate

significant differences between genotypes at the same time point

(n = 3 9 5; t-test, *P < 0.05, **P < 0.01, ***P < 0.001). Brown lines inside of

graphs indicate significant differences within genotypes (t-test, P < 0.05,

Bonferroni correction of multiple comparisons).
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Figure 7. Subcellular amino acid amount. (a) Glycine and (b) serine in [nmol/gDW] for both genotypes. Dry weight refers to the total weight of the sample. Pur-

ple lines above graphs indicate significant differences between genotypes at the same time point (n = 3 9 5; t-test, *P < 0.05, **P < 0.01, ***P < 0.001). Brown

lines inside of graphs indicate significant differences within genotypes (t-test, P < 0.05, Bonferroni correction of multiple comparisons). The tables below the

graphs contain absolute metabolite amounts at a whole cell level (mean � SD, n = 5, Bonferroni correction of multiple comparisons).
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metabolite pools (Bermejo et al., 2011; De Col et al., 2017;

Depaoli et al., 2018; Zhang et al., 2018), NAF is still the

method of choice to comprehensively resolve metabolism

from one sample. Previously, NAF was combined with a

proteomics and metabolomics approach to increase the

coverage of metabolic analysis (Arrivault et al., 2014).

These authors proved the NAF method to be suitable for

separation and quantification of subcellular proteins and

metabolites, but also indicated the difficulty in separating

cytosol from mitochondria and peroxisomes. Similarly, the

present study shows that marker protein distribution

across a NAF density gradient matches the distribution of

marker enzyme activities for the compartments plastid,

cytosol and vacuole. The combined metabolite-protein

analysis was applied to resolve diurnal dynamics of sub-

cellular metabolism in gin2-1 and Ler. Here, 47 plastidial

protein markers (Table S1) were used and compared with

plastidial pyrophosphatase enzyme activities, which

matched a high Pearson correlation coefficient (>0.97) for

both genotypes (Figure 1a,d). This also held true for the

vacuole, where acid phosphatase enzyme activities and

abundance of four determined vacuolar proteins matched

with a correlation coefficient of >0.94 (Figure 1b,e).

UGPase activity and UGPase protein abundance matched

with mean discrepancies of 4%, and similar results were

obtained when FP marker proteins were compared (Fig-

ure 1c,f).

Based on marker distribution across a density gradient,

subcellular metabolite distributions are calculated applying

correlation strategies that approximates the in vivo con-

centrations in subcellular compartments. Therefore, choice

of correlation strategies is critical for calculation of subcel-

lular metabolite concentrations (Dietz, 2017). Here, only

those gradient fractions that differed by at least 10% in

Figure 8. Multivariate analysis of diurnal proteome dynamics in Ler and gin2-1. (a) Hierarchical clustering of proteome dynamics based on Euclidean distance

of mean values for genotype and time point (n = 3). Colour bar indicates scaled protein abundance across all genotypes and time points. Proteome dynamics

were analyzed by principal component analysis summarizing (b) genotype effects, and (c) diurnal dynamics. A significant genotype effect was observed for 145

proteins, while the diurnal effect is comprised of 60 significantly changed proteins in Ler and 105 significant diurnal changes in gin2-1 (ANOVA, P < 0.05, Bonfer-

roni correction of multiple comparisons).
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marker protein content were used for metabolite correla-

tion. With this threshold, over-interpretation of weak and

insignificant marker dynamics across nonaqueous density

gradients was prevented.

In contrast with subcellular metabolomics, NAF results

for subcellular proteomics can be cross-validated using

methods such as immunofluorescence. Additionally, based

on amino acid sequences, subcellular localization of pro-

teins can be predicted using programs such as ChloroP

(Emanuelsson et al., 1999), MITOPROT (Claros and Vin-

cens, 1996), or TargetP (Emanuelsson et al., 2007). Analy-

sis and correlation of the shotgun resolved proteome with

compartment-specific FP marker proteins revealed a high

consensus with correlations based on marker enzyme

activities (Figure 1) that had also been observed before

(Arrivault et al., 2014). Therefore, although numbers of

marker proteins for each compartment differed consider-

ably (see Table S1), a robust correlation output was

observed that clearly indicated the suitability of both mar-

ker enzyme activities and marker proteins for subcellular

correlation. This finding provides evidence for the suitabil-

ity of NAF to cross-validate and supplement predictions on

subcellular protein localization. Besides that, correlation

with validated marker proteins of other compartments

revealed the subcellular localization of, hitherto, experi-

mentally uncharacterized proteins (Table S2). This applica-

tion, however, is limited by the overlap of marker proteins

of two or more compartments. Previously, mitochondria

were found to cluster together with the cytosol, and this

clearly limited the resolution of cellular primary and energy

metabolism (Arrivault et al., 2014). Here, no unambiguous

explanation can be given why mitochondria and cytosol

Figure 9. Proteins involved in the TCA cycle and organic acid transformation reactions discriminate Ler and gin2-1. Candidates were selected by Venn analysis

of the high abundance quartile at 12 h. (a–d) Diurnal dynamics of proteins derived from the high abundance quartile in Ler. (e) Diurnal dynamics of the putative

mitochondrial transporter Bou. (f) Succinate dehydrogenase 5 (mean � SD, n = 3). Asterisks indicate significant differences between Ler and gin2-1 (t-test;

*P < 0.05).
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could be separated in the present study. However, both

studies differed in aspects of plant material, growth condi-

tions and applied nonaqueous gradients. While Arrivault

and colleagues analyzed Arabidopsis thaliana, accession

Col-0, the present study used the accession Ler, which is

the genetic background of gin2-1 mutants. Although it is

highly speculative at this point, different number, size and

ultrastructure of mitochondria in both genotypes might

explain the observed differences. Second, while in the pre-

sent study plants were grown under long day conditions

(16/8 h) and with PAR 120 lmol m�2 sec�1, growth condi-

tions applied by Arrivault and colleagues were 12/12 h and

150 lmol m�2 sec�1. Although light intensity differed only

by 20%, mitochondrial shape and ultrastructure has

previously been described to depend on light and cytosolic

sugar concentrations and this might contribute to the

observed differences (Jaipargas et al., 2015). Additionally,

quality of compartment separation was found to vary over

diurnal cycles and genotypes (see Figure 2). For example,

best separation of mitochondria and plastids was observed

during the late afternoon and was better in Ler than in

gin2-1 (Figure 2c,f). To further validate the separation of

mitochondrial from cytosolic and plastidial metabolism, in

future studies NAF might be applied to sensor lines, for

example ATP sensor lines (De Col et al., 2017) that would

cross-validate both methodologies. Our data indicated that

both diurnal sampling time point and genotype affect the

quality of NAFs, and, therefore, automatically affect the

reliability of estimated subcellular metabolite distribution.

Finally, in the present study, non-aqueous density gradi-

ents comprised nine fractions, while Arrivault and col-

leagues applied a 12-fraction gradient. In general, a high

number of subfractions provides robust correlation output

and, potentially, can resolve more subcellular compart-

ments. Yet, it also dilutes concentrations of marker pro-

teins and enzymes across the subfractions. Choosing the

number of density gradient fractions remains a compro-

mise between the signal-to-noise ratio of protein detection

and the number of compartments that are aimed to be

resolved.

Assignment of metabolites to multiple compartments

Increasing the resolution of NAF to more than three com-

partments led to displacements of relative and absolute

values in some or all compartments, therefore affecting

significance of correlations of metabolites with compart-

ments. Arrivault and colleagues reported that in their NAF

experiments mitochondria matched predominantly with

the cytosol (Arrivault et al., 2014). However, in the present

study, mitochondrial marker proteins peaked either

between maxima of plastidial and cytosolic markers (see

Figure 3b), or overlapped with plastidial markers. Also,

Pearson correlation indicated clustering of mitochondria

with chloroplasts rather than with the cytosol (see Fig-

ure 2). Significant shifts towards mitochondria, obtained

for 64% of resolved primary metabolites affected all three

compartments. For example, including mitochondrial

markers revealed the highest amount of citrate in this com-

partment for both genotypes at all time points (Figure 4b),

except for Ler at 18:00 h. Comparing three-compartment

with four-compartment citrate distribution (Figure 4), no

decrease in chloroplasts of gin2-1 from 08 to 18:00 h was

observable anymore, and citrate dynamics turned out simi-

lar to that of Ler (Figure 4b). In contrast, estimated cytoso-

lic and vacuolar citrate amount was only slightly affected

by involving mitochondrial markers, providing evidence

for the suitability of this method to differentiate mitochon-

drial from estimated vacuolar amount of organic acids.

Figure 10. Mitochondrial protein levels in Ler and gin2-1 under ambient

growth conditions at 12 h. (a) Relative abundance of catalase isoform Cat1

(AT1G20630), Cat2 (AT4G35090) and Cat3 (AT1G20620). (b) Relative abun-

dance of the putative mitochondrial transporter A BOUT DE SOUFFLE, Bou

(AT5G46800). (c) Relative abundance of mitochondrial lipoamide dehydro-

genase 1 (mLPD1, AT1G48030) (mean � SD, n = 3). Asterisks indicate sig-

nificant differences (t-test; *P < 0.05).
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However, a critical limitation of the suggested methodol-

ogy is indicated by the subcellularly resolved sucrose

metabolism, which displayed a significant shift of sucrose

from plastids to mitochondria when comparing the 3-com-

partment and 4-compartment model (Tables S3–S5).
Therefore, while resolving mitochondrial metabolism pre-

vents overestimation of plastidial proportions of organic

acids, plastid localized metabolites, for example sugars,

might be underestimated by this approach. A similar effect

might explain mitochondrial hexose levels in a 4-compart-

ment model (see Figure S7). Together with the observed

effects of genotype and time point on separation quality of

the 4-compartment model, our study indicates that NAF

results have to be critically discussed in the context of fur-

ther experimental evidence, for example derived from

studies on sensor lines (De Col et al., 2017). In general, we

suggest combining results from a three-compartment and

four-compartment model and to discuss the probability of

subcellular metabolite localization in context of metabolic

pathways. This, however, clearly limits the applicability of

NAF to targeted metabolomics approaches by which

metabolites and pathways are analyzed which have been

studied by other methods before. Finally, it remains to be

elucidated if compartment separation might be improved

by application of non-linear density gradients applying

methods like the benchtop NAF (F€urtauer et al., 2016).

HXK1 deficiency affects intercompartmental hexose

dynamics

Hexokinases (HXKs) constitute a gateway into glycolysis

for hexoses arising from sucrose or transitory starch

degradation. HXKs are abundant in most plant cell types

and play a central role because they are the only known

enzymes in plants which can phosphorylate glucose (Gra-

not et al., 2014). Although HXK1 is known as a conserved

glucose sensor that integrates environmental signals to

control growth and development (Moore et al., 2003), its

regulatory function in subcellular carbohydrate metabo-

lism is less clear. Whole cell hexose amount showed

reduced levels at the beginning of the day (08:00 h; Fig-

ure 5). Estimated cytosolic and chloroplastidial glucose

amount continuously increased in gin2-1 (08:00–18:00 h),

whereas vacuolar hexose amount were significantly higher

in Ler than in gin2-1 (Figure 5a,b, P < 0.01). This suggests

an important role for HXK1 in balancing glucose concen-

trations across compartments. While the most significant

genotype effect was observed for estimated vacuolar glu-

cose amounts (see Figure 5a), the cytosol probably acts as

a regulatory hub for subcellular glucose allocation that

might dampen cytosolic glucose dynamics. Although the

difference in cytosolic glucose amounts was significant

between both genotypes only at 08h and 12h, dynamics of

the median glucose amounts were more pronounced in

gin2-1 than in Ler. Glucose is the substrate for numerous

metabolic processes, for example glycolysis and mitochon-

drial metabolism that are directly linked to conserved sig-

nalling networks of energy metabolism. Conserved protein

kinases such as Target of Rapamycin (TOR) and sucrose

non-fermenting related kinase 1 (SnRK1) play a central role

in cellular signal integration (Nukarinen et al., 2016; Li

et al., 2019). Glucose, together with sucrose, play an indis-

pensable role in these signalling networks. Therefore, our

data suggest a role for hexokinase 1 in stabilizing cytosolic

glucose homeostasis that might be critical for plant energy

metabolism.

In plant mesophyll cells of leaf tissue, a significant pro-

portion of free hexoses is generated by invertase-driven

sucrose hydrolysis. Cytosolic and vacuolar invertases have

previously been found to stabilize photosynthetic carbohy-

drate metabolism by catalyzing a subcellular sucrose cycle

(Huber, 1989; N€agele et al., 2010; Weiszmann et al., 2018).

Therefore, HXK1 might stabilize sucrose cycling by reduc-

ing the concentration of free hexoses and prevent feedback

inhibition of invertases. Recently it was suggested that

gin2-1 suffers from diminished sucrose cycling capacities

that directly affect carbon allocation towards roots (K€ustner

et al., 2019). Furthermore, a cytosolic glucose accumula-

tion and feedback inhibition of sucrose cleavage might

also result in a metabolic feedback regulation of photosyn-

thesis and/or photosynthetic gene expression by transient

sugar accumulation in the cytosol (Sheen, 1994, 2014). This

regulation could be due to imbalanced ADP/ATP home-

ostasis (Weiszmann et al., 2018), a changed ratio of

organic bound and inorganic phosphate (B€ussis et al.,

1997) and stabilization of photosynthesis by preventing

phosphate depletion of chloroplasts (Stitt and Hurry, 2002).

Metabolic indications for reduced photorespiratory

capacity in gin2-1

In illuminated leaves evidence was provided for a non-

cyclic TCA cycle (Hanning and Heldt, 1993; Tcherkez et al.,

2009; Gauthier et al., 2010). Instead of a full cycle, two

weakly connected branches appear to operate in opposing

directions. Previous work has indicated a central role of

trehalose 6-phosphate (Tre6P) in the coordination of car-

bon and nitrogen metabolism in plants (Figueroa et al.,

2016). It was suggested that Tre6P activates flux through

mitochondrial pyruvate dehydrogenase (mPDH) and citrate

synthase. Although not quantified in the present study, it

is interesting to speculate about the role of Tre6P within

the gin2-1 mutant. Reduced HXK1 activity was found to

result in significantly higher cytosolic glucose amounts

than in the wild type (see Figure 5) and might lead to feed-

back inhibition of the trehalose and Tre6P pathway. This

might result in an increased Tre6P amount in gin2-1; this is

pure speculation at this point and needs to be validated in

future studies. However, it might explain the observed

increased in organic acids in gin2-1 (see Figure S4).
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Many steps of the TCA cycle can be bypassed in other

compartments such as cytosol or peroxisomes (Sweetlove

et al., 2010). This might be the reason for a lack of one

specific trend for all TCA cycle intermediates observed in

mitochondria of both genotypes (Figures 4b and 6). TCA

cycle protein abundances were reduced in gin2-1 (Fig-

ure 9), while organic acids such as succinate and malate

accumulated (Figures 6 and S4). Mitochondrial succinate is

oxidized by succinate dehydrogenase (SDH), which also

acts as a component of complex II in the electron transport

chain. Phytochrome A regulates SDH expression, and this

mechanism is probably important for regulation of mito-

chondrial respiration in the light (Popov et al., 2010). SDH

can be a limiting factor in plant growth, as inhibition of

SDH leads to downregulation of genes related to the cell

cycle (Jardim-Messeder et al., 2015). Therefore, lowered

SDH protein levels observed in gin2-1 (Figure 9f) could be

an additional factor limiting growth (Figure S8).

Under conditions of excessive formation of redox equiv-

alents, photorespiration functions as a sink for electrons

and ATP, therefore constituting an emergency valve in

plants (Heber, 2002; Scheibe, 2004). Proteomic analysis of

Ler and gin2-1 at the subcellular level revealed that diurnal

dynamics of proteins involved in mitochondrial metabo-

lism and photorespiration differed between Ler and gin2-1

(Figures 9 and 10). Photorespiration constituted the high-

est metabolic flux in mitochondria under photosynthetic

conditions (Obata et al., 2016). A close connection between

TCA cycle activity and the photorespiratory pathway exists,

as alterations in TCA metabolism are observed in pho-

torespiratory mutants and vice versa. The mitochondrial

carrier protein Bou (AT5G46800) has previously been

described to be involved in photorespiratory metabolism

(Eisenhut et al., 2013). The analysis of a bou knockout-mu-

tant revealed a significant accumulation of glycine when

compared with the wild type, and it was hypothesized that

this accumulation was due to impaired glycine oxidation in

the mitochondria (Eisenhut et al., 2013). Photorespiratory

amino acids glycine and serine showed diminished levels

in several compartments in gin2-1 (Figure 7). Although gly-

cine accumulation was observed in both genotypes during

the day, it was more pronounced in Ler than in gin2-1 (Fig-

ure 7a). Additionally, serine amount increased in mito-

chondria of Ler, while no diurnal dynamics were observed

in gin2-1 (Figure 7b). Glycine is mainly provided by pho-

torespiration, and is required for the formation of glu-

tathione, which is an important ROS scavenger during

oxidative stress (Noctor et al., 1999; Wingler et al., 2000).

Higher levels of serine are known to act as a metabolic sig-

nal to induce and control transcription of photorespiration-

related genes and proteins (Timm et al., 2013). These find-

ings let us speculate about a higher photorespiratory

capacity in Ler than in gin2-1 under ambient growth condi-

tions, which might contribute to the discrepancy of growth

rate (Figure S8) and photosynthetic CO2 assimilation (Brau-

ner et al., 2015). Furthermore, it suggests that HXK1 is

involved in the regulation of mitochondrial transport pro-

cesses that affect photorespiratory metabolism.

EXPERIMENTAL PROCEDURES

Plant material

Arabidopsis thaliana (L.) Heynh., accession Landsberg erecta (Ler)
and gin2-1 (ABRC line N6383; At4g29130, gin2–1 mutant) were
grown in a 1:1 mixture of GS90 soil and vermiculite in a growth
chamber. Light intensity was set to 120 lmol m�2 sec�1 in an 8 h/
16 h day/night 22°C/16°C cycle with 70% relative air humidity.
Plants were fertilized with a nitrogen�phosphate�potassium fertil-
izer (Wuxal� Top N, Hauert MANNA D€ungerwerke GmbH, N€urn-
berg). After 5 weeks, plants were transferred to long-day
conditions within a 16 h/8 h day/night regime. Eight days after
transfer to long-day condition plants were harvested at three time
points: (i) immediately before the light was turned on (‘08:00 h’),
(ii) after 4 h of light (‘12:00 h’) and (iii) after 10 h of light (‘18:00 h’).
Sampling was performed under the light intensity at which plants
were growing. All samples were immediately frozen in liquid nitro-
gen, frozen leaves were ground to a fine powder using a MM200
ball mill (Retsch GmbH) and stored at �80°C until further use. For
Ler, each biological replicate consisted of one leaf rosette while, for
gin2-1, two rosettes were pooled for one independent sample in
the gin2-1mutant to gain sufficient leaf material for NAF.

Nonaqueous fractionation

NAF was performed as described earlier (N€agele and Heyer, 2013;
Hoermiller et al., 2017). Briefly, approximately 100–150 mg of
freeze-dried leaf tissue was suspended in 10 ml heptane-tetra-
chlorethylene q = 1.34 g cm�3 and sonicated for 5 sec with pauses
of 15 sec over a time course of 12 min (Branson Sonifier 250, out-
put control 4; Branson, USA). The sonicated suspension was
passed through a nylon gauze of 30-lm pore size and centrifuged
afterwards. The pellet was suspended in heptane-tetra-
chlorethylene and loaded onto a linear gradient of heptane-tetra-
chlorethylene (q = 1.34 g cm�3) to tetrachlorethylene (q =
1.6 g cm�3). After ultracentrifugation for 3 h at 100 000 g, the gra-
dient was fractionated into nine fractions that were divided into five
subfractions and dried under vacuum. Subfractions were used for
enzyme activity measurements, proteomics and metabolomics
analysis (one subfraction for each of the assays described in the fol-
lowing paragraphs). The surplus of subfractions was kept as a
backup.

Enzyme activity measurements

Marker enzyme activity analysis for compartments in gradients
was performed as described before (Knaupp et al., 2011; N€agele
and Heyer, 2013). Alkaline pyrophosphatase was used as a plas-
tidial marker, UGPase as a cytosolic marker and acid phosphatase
as a marker for the vacuolar compartment.

Extraction and protein analysis via LC-MS/MS

Dried pellets from fractionated gradients were solubilized in 8 M

urea 50 mM Hepes KOH (pH = 7.8) on ice. Samples were precipi-
tated in acetone with 0.5% b-mercaptoethanol. Afterwards pellets
were washed two times with methanol and acetone, and again
solubilized in 8 M urea, 50 mM Hepes KOH (pH = 7.8). Bio-Rad
Bradford assay and BSA as the standard were used to determine

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), 100, 438–455

452 Lisa F€urtauer et al.



protein concentrations. Equal amounts of protein (15 lg) were
reduced with dithiothreitol (DTT) at a concentration of 5 mM for
45 min at 37°C, and alkylated at a concentration of 10 mM with
iodoacetamide and incubated in the dark for 60 min at 23°C. Alky-
lation was stopped by increasing the DTT concentration to 10 mM

and by incubation in the dark for 15 min. Samples were diluted
two-fold with 20% acetonitrile (ACN) and 100 mM ammonium
bicarbonate (AMBIC, Sigma-Aldrich, St. Louis, MO, USA), proteins
were predigested with Lys-C (1:1000 w:w, Sigma-Aldrich) at 30°C
for 2.5 h in the dark. Samples were diluted two-fold with 2 M urea
and 10% ACN, 25 mM AmBic, 10 mM CaCl2 and digested with
sequencing grade modified trypsin (Poroszyme, immobilized tryp-
sin; 1:100 v:w) for 12 h. Digested proteins were acidified with for-
mic acid (pH ~3.0), desalted with C18 materials (Bond Elut SPEC,
Agilent, Santa Clara, CA, USA) and dried in a vacuum concentra-
tor (ScanVac, LaboGene). Peptides were dissolved in 2% ACN,
0.1% formic acid and the same amount of total protein was loaded
and separated on a PepMap RSLC 75-lm, 50-cm column (Thermo
Fisher Scientific Inc., Waltham, USA). Flow rate was set to
300 nL min�1 with 2–40% in 90 min of mobile phase B (mobile
phase A: 0.1% formic acid (FA) in water [v/v]; mobile phase B:
0.1% FA in 90% ACN [v/v]). The run ended with 60 min of equili-
bration. Subsequently, mobile phase B was set from 40 to 90% for
1 min and held stable at 90% for 5 min, followed by continuous
decrease to 2%. MS analysis was performed using Orbitrap Elite
and Q Exactive instruments (Thermo Fisher Scientific Inc.) in posi-
tive mode and a full scan in FT with a resolution of 60,000 in pro-
file mode. Precursor masses ranged between 360–1800 m/z. MS/
MS was executed in the linear ion trap with CID fragmentation for
the 20 most intense ions, by a minimal signal threshold of 500
counts. Prediction of ion injection time was enabled (5 9 102 ions
for up to 10 msec). Dynamic exclusion was enabled with repeat
count 1 and a repeat duration of 30 sec. Exclusion list size was set
to 500 and exclusion duration to 30 sec. Excluded mass was set to
�10 ppm relative to reference mass, early expiration was enabled
with a 1 count and s/n threshold of 2.0.

Peptide identification as well as protein quantification was per-
formed using MaxQuant software (http://www.maxquant.org) and
implemented algorithms of version 1.5.5.1 (Cox and Mann, 2008)
against TAIR10 (www.arabidopsis.org) protein database (Lamesch
et al., 2012). Protein analysis for label-free quantification was car-
ried out with main settings as recommended and a false discovery
rate of 0.01. A maximum of two missed cleavages was applied.
Maximal five variable modifications per peptide were allowed for
N-terminal acetylation and methionine oxidation car-
bamidomethylation was set as a fixed modification due to previ-
ous methylation. Identification rules for proteins were set by a
required minimum of two peptides and two minimum razor +
unique peptides. Advanced identification mode was exerted with
second peptides search and match between runs, the match win-
dow was set to 0.7 min and alignment time window to 20 min.
MaxQuant LFQ protein output was normalized to total protein
amount per fraction. Whole gradients were additionally normal-
ized to inserted dry weight. Mass spectrometry proteomics data
have been deposited in the ProteomeXchange Consortium via the
PRIDE (Perez-Riverol et al., 2019) partner repository with the data-
set identifier PXD013646.

Subcellular marker protein data set

Identified proteins were analyzed regarding their subcellular local-
ization with SUBA3 (Tanz et al., 2012) and SUBACON (Hooper
et al., 2014). Proteins were considered as subcellular markers if
database entries consisted of confirmed fluorescence protein
information solely in one compartment. Additionally, annotator

database entries within SUBA3 represented the same unique sub-
cellular localization as fluorescence proteins. Proteins were used
as subcellular markers if they were present in the whole dataset,
i.e. across all genotypes and conditions. A full list of protein mark-
ers is provided in Table S1. Each gradient was analyzed individu-
ally for the distribution of subcellular protein markers. Mean
relative distributions of gradients and their measured marker
enzyme are represented in Figure S1. For each gradient fraction,
the mean protein abundance of all selected compartment markers
was built and applied to calculate the relative distribution of
metabolites.

Extraction and analysis of primary metabolites by GC-MS

TOF

Primary metabolite amount was quantified with gas chromatogra-
phy coupled to time-of-flight mass spectrometry. Fractionated gra-
dients were extracted as previously described (Weiszmann et al.,
2018). In brief, samples were extracted twice with methanol:chlo-
roform:water (MCW, 5:2:1 v:v:v), followed by an extraction step
with 80% ethanol in which the pellet was heated up to 80°C for 30
min. For phase separation, water was added to the MCW super-
natant, and the polar phase was merged with the ethanol extract
and dried in a vacuum concentrator (ScanVac, LaboGene). The
dried extracts were derivatized applying methoximation (methox-
yamine hydrochloride in pyridine) by incubation for 90 min at
30°C. For silylation, N-methyl-N-(trimethylsilyl)trifluoroacetamide
was used and samples were incubated for 30 min at 37°C. Deriva-
tized samples were transferred into glass vials, which were sealed
with a crimp cap. GC-TOF-MS analysis was performed on an Agi-
lent 6890 gas chromatograph (Agilent Technologies�, Santa Clara,
USA) coupled to a LECO Pegasus� GCxGC-TOF mass spectrome-
ter (LECO Corporation, St. Joseph, USA). Compounds were sepa-
rated on an Agilent column HP5MS (length: 30 m, diameter:
0.25 mm, film: 0.25 lm). Deconvolution of the total ion chro-
matogram and peak integration was performed using the software
LECO Chromatof�. Within gradients, relative distribution of
metabolites was determined. For absolute quantification, dried
nonfractionated plant material was extracted as described above,
and calibration curves of six different concentrations within the
linear range of detection were used.

Determination of subcellular metabolite distributions

Subcellular metabolite distribution of each fractionated sample
was calculated as described previously (F€urtauer et al., 2016). The
algorithm applied compared the distribution of marker proteins
and metabolites between all subfractions of one sample. To pre-
vent overestimation of technical errors introduced by LC-MS/MS
and GC-MS quantification of proteins and metabolites, only those
subcellular fractions were correlated that differed ≥10% in their
normalized abundance of marker proteins and ≥5% in relative
metabolite abundance, i.e. peak areas. These protein�metabolite
correlations revealed the relative distribution of metabolites
across cellular compartments. Comparing subcellular metabolite
distributions calculated with and without the 10% and 5% thresh-
old indicated a slight reduction of compartment separation by the
filter settings due to the omission of statistically weak protein
marker dynamics (Figure S2).

Absolute whole cell metabolite levels were determined from
nonfractionated plant material. Absolute subcellular metabolite
levels were calculated by multiplication of each relative distribu-
tion with each absolute amount. Therefore, multiplication was
performed for each relative distribution (three replicates) and each
absolute amount (five replicates).
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Statistical analysis and proteome correlation

Statistical analysis was performed using the R software package
(The R Project for Statistical Computing; http://www.r-project.org/)
(R Core Team, 2017), Microsoft Excel� (www.microsoft.com), and
the numerical software environment Matlab� (http://www.math
works.com).
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