Technical Release No. 4
– The Bioenergy Component –

Andrea Reimuth and Veronika Locherer
This technical release was issued in the context of the project INOLA (Innovations for a sustainable land and energy management on a regional scale) which is funded by the German Federal Ministry of Education and Research (BMBF) in the period from 2014 to 2019. The author(s) is/are responsible for content and results of this release.

Author(s):

Andrea Reimuth (LMU Munich, Department of Geography, research and teaching unit “Physical Geography and Remote Sensing”)

Veronika Locherer (LMU Munich, Department of Geography, research and teaching unit “Physical Geography and Remote Sensing”)

© July 2018

Contact:

M.Sc. Andrea Reimuth
Department of Geography
Ludwigs-Maximilians-University Munich
Luisenstr. 37
80333 Munich
E-Mail: a.reimuth@iggf.geo.uni-muenchen.de

All INOLA-Technical Releases are available on the project home page www.inola-region.de.

Already published INOLA-Technical releases:

- **INOLA-Technical Release No. 1:** INOLA Software Documentation. The Solar Energy Component
- **INOLA-Technical Release No. 2:** INOLA Software Documentation. The Wind Power Component
- **INOLA-Technical Release No. 3:** INOLA Software Documentation. The Hydropower, Geothermal and Environmental Energy Component
- **INOLA-Technical Release No. 4:** INOLA Software Documentation. The Bioenergy Component
- **INOLA-Technical Release No. 5:** INOLA Software Documentation. The Energy Consumption Component
- **INOLA-Technical Release No. 6:** INOLA Software Documentation. The Energy Storage Component
- **INOLA-Technical Release No. 7:** INOLA Software Documentation. The Energy Management Component
- **INOLA-Technical Release No. 8:** INOLA Software Documentation. The Investment Cost Component
Content

List of Figures .. V
List of Tables .. V
List of Equations .. VI
List of Abbreviations ... VII

1 Introduction .. 8

2 The substrate management ... 9

2.1 General equations .. 9

2.1.1 Grass and maize .. 9

2.1.2 Manure .. 11

2.1.3 Wood .. 13

2.2 Pre-processing .. 17

2.3 Input data and format .. 17

2.3.1 The bioenergy management file ... 17

2.3.2 The substrate parametrization file .. 19

2.3.3 The livestock input file .. 22

2.3.4 The stock of wood input file ... 23

2.4 Output .. 26

3 The biogas plant model ... 27

3.1 General equations .. 27

3.1.1 Biogas production ... 27

3.1.2 Biogas utilization ... 29

3.2 Pre-processing .. 30

3.3 Input data and format .. 30

3.4 Output .. 32

4 The central heating model ... 33

4.1 General equations ... 33

4.1.1 Wood-fired heating systems ... 33
4.1.2 Pellet-systems ... 33
4.1.3 Gas-fired heating systems .. 34
4.2 Pre-processing.. 35
4.3 Input data and format ... 35
4.4 Output .. 35
5 The biomass heating plant model ... 36
 5.1 General equations .. 36
 5.1.1 The wood-fired heating model .. 36
 5.1.2 The wood gasifier model .. 37
 5.1.3 The power-generation model .. 38
 5.2 Pre-processing .. 38
 5.3 Input data and format ... 39
 5.4 Output .. 40
6 The gas plant model ... 41
 6.1 General equations .. 41
 6.1.1 The gas-fired heating model ... 41
 6.2 Pre-processing .. 42
 6.3 Input data and format ... 42
 6.4 Output .. 43
7 Implementation within the energy model 44
References.. 45
A. Appendix .. 47
List of Figures

Figure 2-1: Example of the input file for the energy management ... 19
Figure 2-2: Example of the input file for the substrate parametrization .. 22
Figure 2-3: Example of the input file for livestock .. 23
Figure 2-4: Example of the input file for wood .. 26
Figure 3-1: Example of the input file for the biogas plant model .. 32
Figure 5-1: Example of the input file for the biomass heating plant model 40
Figure 5-1: Example of the input file for the gas plant model ... 43
Figure A 1: Determination of the linear parameters from the obtained fermenter volumes and nominal
electrical power for the selected substrate input amounts .. 47
Figure A 2: Determination of the parameters for the obtained vessel volume of the wood gasifiers from the
thermal performance according to manufacturer data collected in FNR (2015) 48

List of Tables

Table 1-1: Implemented models with type of fuel and produced energy ... 8
Table 2-1: Dates for the ensilage and the fermentation end of grassland and maize 9
Table 2-2: Conversion factors for wood fuel types ... 16
Table 2-3: Technical characteristics of the pellets ... 16
Table 2-4: Description of the input-file for the bioenergy management, Section BEM_ECO 17
Table 2-5: Description of the input-file for the bioenergy management, Section BEM_SBT 17
Table 2-6: Description of the input-file for the bioenergy management, Section BEM_BGS 18
Table 2-7: Description of the input-file for the bioenergy management, Section BEM_PROXEL 18
Table 2-8: Description of the input-file for the substrate parametrization, Section General 19
Table 2-9: Description of the input-file for the substrate parametrization, Section SubstrateParams 20
Table 2-10: Description of the input-file for the substrate parametrization, Section WoodHVPParams ... 20
Table 2-11: Description of the input-file for the substrate parametrization, Section WoodParams 21
Table 2-12: Description of the input-file for livestock, Section Dairy... ... 22
Table 2-13: Description of the input-file for the substrate parametrization, Section Manure 22
Table 2-14: Description of the input-file for the stock of wood, section deciduous_total 23
Table 2-15: Description of the input-file for the stock of wood, section coniferous_total 24
Table 2-16: Description of the input-file for the stock of wood, Section forest_growth_m3 24
Table 2-17: Description of the input-file for the stock of wood, Section wood_share 25
Table 3-1: Description of the input-file for the biogas plant-model, Section General 31
Table 3-2: Description of the input-file for the biogas plant-model, Section BioGasPlant 31
Table 4-1: Description of the input-file for central heating systems in PIC-Format 35
Table 5-1: Description of the input-file for the biomass heating plant-model, Section General 39
Table 5-2: Description of the input-file for the biomass heating plant-model, Section BioMassPlant 39
Table 5-1: Description of the input-file for the gas plant-model, Section General 42
Table 5-2: Description of the input-file for the gas plant-model, Section GasPlantModel 42
List of Equations

Equation (1) ... 9
Equation (2) ... 10
Equation (3) ... 10
Equation (4) ... 10
Equation (5) ... 11
Equation (6) ... 12
Equation (7) ... 12
Equation (8) ... 12
Equation (9) ... 13
Equation (10) ... 13
Equation (11) ... 14
Equation (12) ... 14
Equation (13) ... 14
Equation (14) ... 15
Equation (15) ... 15
Equation (16) ... 15
Equation (17) ... 16
Equation (18) ... 27
Equation (19) ... 27
Equation (20) ... 28
Equation (21) ... 28
Equation (22) ... 29
Equation (23) ... 29
Equation (24) ... 29
Equation (25) ... 30
Equation (26) ... 30
Equation (27) ... 33
Equation (28) ... 34
Equation (29) ... 34
Equation (30) ... 36
Equation (31) ... 37
Equation (32) ... 37
Equation (33) ... 37
Equation (34) ... 38
Equation (35) ... 38
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALH</td>
<td>Other deciduous trees with long lifetime</td>
</tr>
<tr>
<td>ALN</td>
<td>Other deciduous trees with short lifetime</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined heat and power</td>
</tr>
</tbody>
</table>
1 Introduction

The bioenergy component describes the conversion of biomass to gas, heat and electrical energy. It includes the utilization of grass and maize yields, the production of manure from livestock data and the growth of forests for the supply with wooden fuels. As shown in Table 1-1 six different types of plants are implemented in the component, which are fed by renewable energy sources. The biogas and biomass heating plants in power generation mode are implemented as plants providing base load, whereas biomass heating plants in heating mode, gas plants and the central heating systems are operated continuously to meet the hourly demand in thermal energy from local heat networks or single buildings.

Table 1-1: Implemented models with type of fuel and produced energy

<table>
<thead>
<tr>
<th>Plant</th>
<th>Fuel</th>
<th>Operation mode</th>
<th>Heat</th>
<th>Electrical Power</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas plant</td>
<td>Grass silage, maize silage, manure, organic waste</td>
<td>Base load</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biomass heating plant</td>
<td>Wood</td>
<td>Base load/Heat operated</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gas plant</td>
<td>Gas</td>
<td>Heat operated</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Central heating – gas fired</td>
<td>Gas</td>
<td>Heat operated</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central heating – wood fired</td>
<td>Wood</td>
<td>Heat operated</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central heating – pellets</td>
<td>Wood</td>
<td>Heat operated</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 The substrate management

Four types of substrate are considered within the bioenergy component: Grass and maize silage, manure, which is gassed within the bio gas plants, and wood as fuel for biomass heating plants and wood-fired plants.

2.1 General equations

2.1.1 Grass and maize

The annual yields of grass and silage maize are calculated within the plant physiology model based on the approach of Farquhar, et al. (1980), which is integrated in the PROMET-environment. Further information about the model design, the input data and the outputs of this component are given in HANK (2008), HANK, et al. (2015), MAUSER, et al. (2015).

The availability of substrates for ensilaging is checked once a year for silage maize and three times a year for silage grass from intensive grassland fields at the dates of ensilaging shown in Table 2-1. The yields in tonnes of fresh matter are determined separately for three areas, which are obtained from the harvests for the pixels with land use category 2 and 7.

<table>
<thead>
<tr>
<th>Type of substrate</th>
<th>Date of ensilaging</th>
<th>Date of the fermentation end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>30.04</td>
<td>30.08</td>
</tr>
<tr>
<td>Grass</td>
<td>31.08</td>
<td>30.12</td>
</tr>
<tr>
<td>Silage maize</td>
<td>30.09</td>
<td>31.12</td>
</tr>
<tr>
<td>Grass</td>
<td>31.12</td>
<td>04.29</td>
</tr>
</tbody>
</table>

To simulate the influence of organic farming practices, the organic yield is decreased by 19.2% compared to conventional practice (Ponisio, et al. 2015). The fraction of ecologic farming is calculated annually from the share at the initial year and the annual increase according to Equation (1).

\[PE_{t+1} = PE_t \cdot (1 + h_{PEa}) \]

with:

\[PE_t \] = Share of ecologic farming at the current year
\[h_{PEa} \] = Annual increase/decrease of ecologic farming
Equation (2) shows the determination of the total annual yield of maize and grass considering the reductions due to organic farming practices.

\[M_{Y,MZ} = M_{MZ} \cdot (1 - 0.192 \cdot PE_{t+1}) \]
\[M_{Y,G} = M_{G} \cdot (1 - 0.192 \cdot PE_{t+1}) \]

with:

- \(M_{Y,MZ}, M_{Y,G} \) = Total yield of maize/grass of the current year \([t \text{ FM}]\)
- \(M_{MZ}, M_{G} \) = Yield obtained in the plant physiology model \([t \text{ FM}]\)

The share of silage maize and grass, which is available for the energy production, is determined according to Equation (3).

\[M_{MZ,A} = M_{Y,MZ} \cdot u_{MZ} \]
\[M_{G,A} = M_{Y,G} \cdot u_{G} \]

with:

- \(M_{MZ,A} \) = Stock of maize usable for the energy production of the current year \([t \text{ FM}]\)
- \(u_{MZ} \) = Utilization factor for maize \([-]\)
- \(M_{G,A} \) = Stock of grass usable for the energy production of the current year \([t \text{ FM}]\)
- \(u_{G} \) = Utilization factor for grass \([-]\)

It is assumed that the harvest of grass is ensilaged three times per year and the yield of maize each September. The starting dates for ensilaging of the substrates available for the biogas production are listed in Table 2-1.

The total amount of silage maize and silage grass is calculated at the end of the fermentation (dates listed in Table 2-1) using the silage densities of the input file (see chapter 2.3.2) for each district according to Equation (4).

\[M_{totMZ,t} = M_{totMZ,t-1} + \frac{M_{AMZ} \cdot \eta_{S}}{\rho_{MS}} \cdot 1000 \]
The stock of grass and maize silage is reduced hourly by the amounts of consumed substrates from the bio gas plants (see chapter 3.1.1) as shown in Equation (5).

\[
M_{tot,G,t} = M_{tot,G,t-1} + \frac{M_{A,G} \cdot \eta_S}{\rho_G} \cdot 1000
\]

with:
- \(M_{tot,G,t} \) = Total stock of silage maize/silage grass [m³]
- \(t \) = Day [d]
- \(\eta_S \) = Efficiency of the silaging process of 0.9 [-]
- \(\rho_{MS}, \rho_G \) = Density of silage maize/silage grass [m³/t FM]

\[
M_{tot,MZ,t} = M_{tot,MZ,t-1} - M_{cons,MZ,t-1}
\]

\[
M_{tot,G,t} = M_{tot,G,t-1} - M_{cons,G,t-1}
\]

with:
- \(M_{cons,MZ}, M_{cons,G} \) = Amount of consumed silage maize/silage grass [m³]
- \(t \) = Hour [h]

2.1.2 Manure

The total amount of available manure is calculated from the livestock for three areas specified in the input-file described in chapter 4.3. The considered animal types include the following categories:

- dairy
- calves with less than one year
- cattle between one and two years
- cattle with a minimum of two years
- porker
- breeding pigs
- piglets
- sheep
- chickens
- poultry

The current annual livestock is interpolated linearly from the known livestock for the input years for
each district at annual resolution (see Equation (6)). For animal categories, which have only one input year, the livestock is kept constant over time.

\[
LS(y, a) = LS(y_{t-1}, a) + \frac{LS(y_t, a) - LS(y_{t-1}, a)}{(y_t - y_{t-1}) \cdot (y - y_{t-1})}
\]

(6)

with:

\[
LS(y, a) = \text{Live stock of animal type } a \text{ at year } y \text{ [pcs.]} \\
t = \text{Input year} \text{ [a]}
\]

The amount of manure is calculated daily from the average annual amount of produced manure per animal for each category according to Equation (7).

\[
M_{Man,D}(a) = LS(y, a) \cdot \frac{Am(a)}{365}
\]

(7)

with:

\[
M_{Man,D}(a) = \text{Daily amount of manure of the animals of category } a \text{ at year } y \text{ [m}^3\text{]} \\
Am(a) = \text{Average annual amount of produced manure per animal category} \text{ [m}^3/\text{a]}
\]

The amount of produced manure is aggregated as following for the three districts:

- Cattle: dairy, calves with less than one year, cattle between one and two years, cattle with a minimum of two years
- Pigs: Porker, breeding pigs, piglets
- Poultry: chickens, poultry

The availability of the manure for the energy sector is determined by the utilization factor for manure as shown in Equation (8).

\[
M_{Cat,D} = \sum_{\text{cattle}} M_{Man,D}(a) \cdot u_M
\]

\[
M_{Pig,D} = \sum_{\text{Pigs}} M_{Man,D}(a) \cdot u_M
\]

(8)
\[M_{POU,D} = \sum_{poultry} M_{Man,D}(\alpha) \cdot u_M \]

with:

\[M_{Cat,D}/M_{Pig,D}/M_{POU,D} \]

- Stock of manure of cattle/pigs/poultry usable for the energy production of the current day \(d \) \([m^3] \)

\[u_M \]

- Utilization factor for manure \([-]\)

The total amount of manure is calculated for each day as the production sum of all animal categories except sheep:

\[M_{totM,t} = M_{totM,t-1} + M_{Cat,D} + M_{Pig,D} + M_{POU,D} \quad (9) \]

with:

\[M_{totM} \]

- Total stock of manure \([m^3] \)

\[t \]

- Day \([d] \)

The stock of manure is reduced hourly by the amount of consumed substrate from the bio gas plants (see chapter 3.1.1) as shown in Equation (10).

\[M_{totM,t} = M_{totM,t-1} - M_{consM,t-1} \quad (10) \]

with:

\[M_{consM} \]

- Amount of consumed manure \([m^3] \)

\[t \]

- Hour \([h] \)

2.1.3 Wood

The total amount of available wood is calculated for three areas specified in the input-file described in chapter 2.3.4 at the beginning of each year.

The area covered by forest is determined from pixels with the land use categories coniferous and deciduous trees. The composition of the conifers is partitioned into spruce, fir, douglas, pine and larch. Deciduous trees are classified into oak, beech, ALH (other deciduous trees with high life time) and ALN (other deciduous trees with short life time) by shares, which are constant over time and specified in
the input as shown in chapter 2.3.4. A detailed definition of the used tree categories is given in LWF (2014a).

The stock of available wood is calculated from annual, constant growth rates, which separate between the wood types for deciduous forest and for coniferous forest (see Equation (11) and (12)).

\[M_{Y,DC} = A_{DC} \cdot (gr_{oak} \cdot sh_{oak} + gr_{beech} \cdot sh_{beech} + gr_{ALH} \cdot sh_{ALH} + gr_{ALN} \cdot sh_{ALN}) \]

(11)

with:

- \(M_{Y,DC} \): Total growth of deciduous trees of the current year \([m^3]\)
- \(A_{DC} \): Area that is covered by deciduous forest \([hectare]\)
- \(gr_{oak} / gr_{beech} / gr_{ALH} / gr_{ALN} \): Annual average growth rate of the stock of oak/beech/ALH/ALN \([m^3/hectare]\)
- \(sh_{oak} / sh_{beech} / sh_{ALH} / sh_{ALN} \): Average share of oak, beech, ALH and ALN per ha forest [-]

\[M_{Y,Cf} = A_{Cf} \cdot (gr_{spruce} \cdot sh_{spruce} + gr_{fir} \cdot sh_{fir} + gr_{Douglas} \cdot sh_{Douglas} + gr_{pine} \cdot sh_{pine} + gr_{larch} \cdot sh_{larch}) \]

(12)

with:

- \(M_{Y,Cf} \): Total growth of coniferous trees of the current year \([m^3]\)
- \(A_{Cf} \): Area that is covered by deciduous forest \([hectare]\)
- \(gr_{spruce} / gr_{fir} / gr_{Douglas} / gr_{pine} / gr_{larch} \): Annual average growth rate of the stock of spruce/fir/Douglas/pine/larch \([m^3/hectare]\)
- \(sh_{spruce} / sh_{fir} / sh_{Douglas} / sh_{pine} / sh_{larch} \): Average share of spruce/fir/Douglas/pine/larch per ha forest [-]

The availability of wood for the energy sector is determined by the utilization factors for wood as shown in Equation (13).

\[M_{DC,A} = M_{Y,DC} \cdot u_L \cdot u_W \]

\[M_{Cf,A} = M_{Y,Cf} \cdot u_L \cdot u_W \]

(13)

with:

- \(M_{DC,A} \): Stock of wood usable for the energy production of the current year \([m^3]\)
- \(M_{Cf,A} \): Stock of wood usable for the energy production of the current year \([m^3]\)
The total amount of available wood is calculated as the sum of the logged, annual wood growth available for the energy sector and the stock of the recent years:

\[M_{\text{totW},t} = M_{\text{totW},t-1} + (M_{\text{DC,A}} + M_{\text{CF,A}}) \cdot u_i \] \hspace{1cm} (14)

with:

- \(M_{\text{totW}} \): Total stock of wood \([m^3]\)
- \(t \): Year \([a]\)
- \(u_i \): Logging rate \([-]\)

The stock of wood is reduced hourly by the amount of consumed substrate from the central heating systems and the biomass heating plants (see chapters 4.1.1, 0 and 5.1) as shown in Equation (15).

\[M_{\text{totM},t} = M_{\text{totM},t-1} - M_{\text{consM},t-1} \] \hspace{1cm} (15)

with:

- \(M_{\text{consM}} \): Amount of consumed manure \([m^3]\)
- \(t \): Hour \([h]\)

The mean heat value for deciduous wood and coniferous wood is calculated according to Equation (16).

\[h_{v_{\text{DC}}} = h_{v_{\text{oak}}} \cdot s_{\text{oak}} + h_{v_{\text{beech}}} \cdot s_{\text{beech}} + h_{v_{\text{ALH}}} \cdot s_{\text{ALH}} + h_{v_{\text{ALN}}} \cdot s_{\text{ALN}} \]

\[h_{v_{\text{CF}}} = h_{v_{\text{spruce}}} \cdot s_{\text{spruce}} + h_{v_{\text{fir}}} \cdot s_{\text{fir}} + h_{v_{\text{douglas}}} \cdot s_{\text{douglas}} + h_{v_{\text{jaw}}} \cdot s_{\text{pine}} + h_{v_{\text{larch}}} \cdot s_{\text{larch}} \] \hspace{1cm} (16)

with:

- \(h_{v_{\text{DC}}} \), \(h_{v_{\text{CF}}} \): Average heat value for the stock of deciduous/coniferous wood \([kWh/m^3]\)
- \(h_{v_{\text{oak}}} \), \(h_{v_{\text{beech}}} \), \(h_{v_{\text{ALH}}} \), \(h_{v_{\text{ALN}}} \): Heat value of oak/beech/ALH/ALN \([kWh/m^3]\)
The mean heat value for the whole region is finally determined including the shares of the two types of forest as shown in Equation (17).

\[
hv_m = \frac{hv_{DC} \cdot sh_{DC} + hv_{CF} \cdot sh_{CF}}{sh_{DC} + sh_{CF}}
\]

(17)

with:

- \(hv_m\) = Mean heat value of the stock of wood [kWh/m\(^3\)]
- \(sh_{DC}\) = Share of deciduous wood [-]
- \(sh_{CF}\) = Share of coniferous wood [-]

The conversion factors from cubic meters wood to other forms like chippings are taken from LWF (2014b) and shown in Table 2-2.

Table 2-2: Conversion factors for wood fuel types

<table>
<thead>
<tr>
<th>Type of wood</th>
<th>Conversion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs (33cm) layered</td>
<td>1.6</td>
</tr>
<tr>
<td>Round timber layered</td>
<td>1.4</td>
</tr>
<tr>
<td>Logs (33cm) poured</td>
<td>2.1</td>
</tr>
<tr>
<td>Chippings</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The production of pellets from the available wood stock is calculated from the demand at each time step as explained in chapter 4.1. The technical characteristics of the pellets according to DIN EN 14961-2 (2011), QUASCHNING (2013) are listed in Table 2-3.

Table 2-3: Technical characteristics of the pellets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density in poured state</td>
<td>600</td>
<td>[kg/m(^3)]</td>
</tr>
<tr>
<td>Heating value</td>
<td>4.93</td>
<td>[kWh/kg]</td>
</tr>
</tbody>
</table>
2.2 Pre-processing

The input data for the bioenergy management file is taken from literature (BAYlfSTAD 2015, 2017). The pixel containing the information about the stock of substrate types has to be located within the mask. The substrate mixture and the parameter values for the biogas plants are taken from KTBL (2013). The densities are estimated from GALLER (2009) and LWK NIEDERSACHSEN (2006). The heat values for the wood species are taken from LWF (2014b) and the wood densities from HARTMANN, et al. (2013) assuming that the density at 0% water content is similar to 15% water content. The data for the livestock are taken from BAYlfSTAT (2017). The parameters for the stock of wood input file is taken from in LWF (2014a).

2.3 Input data and format

2.3.1 The bioenergy management file

The setup file for the bioenergy management is split into the following sections:

- [BEM_ECO]:

 Table 2-4: Description of the input-file for the bioenergy management, Section BEM_ECO

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefYear</td>
<td>Reference year for the fraction of ecologic production</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>EcoProd</td>
<td>Percentage of the ecologically cultivated land of the agricultural area for three areas</td>
<td>[-]</td>
<td>real, real, real</td>
</tr>
<tr>
<td>EcoRate</td>
<td>Annual growth rates of ecologically cultivated areas for three areas</td>
<td>[-]</td>
<td>real, real, real</td>
</tr>
</tbody>
</table>

- [BEM_SBT]:

 Table 2-5: Description of the input-file for the bioenergy management, Section BEM_SBT

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DegUtilMaize</td>
<td>Degree of utilization of silage maize for the biogas production for three areas</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>DegUtilGrass</td>
<td>Degree of utilization of silage grass for the biogas production for three areas</td>
<td>[-]</td>
<td>real</td>
</tr>
</tbody>
</table>

| Losses at production | 0.02 | [m³] |
The Substrate Management

DegUtilManure: Degree of utilization of manure for the biogas production for three areas

DegUtilWood: Degree of utilization of the logged wood for the energy production

LogRate: Logging rate of the annual growth of wood for three areas

[BEM_BGS]:

Table 2-6: Description of the input-file for the bioenergy management, Section BEM_BGS

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>PercMaize</td>
<td>Percentage of maize silage of the substrate input for biogas plants</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>PercGrass</td>
<td>Percentage of grass silage of the substrate input for biogas plants</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>PercManure</td>
<td>Percentage of manure of the substrate input for biogas plants</td>
<td>[-]</td>
<td>real</td>
</tr>
</tbody>
</table>

[BEM_PROXEL]:

Table 2-7: Description of the input-file for the bioenergy management, Section BEM_PROXEL

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeciduousProxel1</td>
<td>Pixel number displaying the stock of utilizable deciduous trees in dm³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>ConiferousProxel1</td>
<td>Pixel number displaying the stock of utilizable conifers in dm³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>WoodProxel1</td>
<td>Pixel number displaying the stock of total utilizable wood in dm³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>MaizeSilageProxel1</td>
<td>Pixel number displaying the stock of utilizable maize silage in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>GrassSilageProxel1</td>
<td>Pixel number displaying the stock of utilizable grass silage in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>CattleManureProxel1</td>
<td>Pixel number displaying the stock of utilizable cattle manure in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>PigManureProxel1</td>
<td>Pixel number displaying the stock of utilizable pig manure in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>Poultry-ManureProxel1</td>
<td>Pixel number displaying the stock of utilizable poultry manure in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
<tr>
<td>ManureTotProxel1</td>
<td>Pixel number displaying the stock of total utilizable manure in m³ for area 1</td>
<td>[-]</td>
<td>integer, integer</td>
</tr>
</tbody>
</table>
Example setup for the bioenergy management input file:

```
[BEM_ECO]
RefYear          2016
EcoProd         0.20 0.31 0.20
EcoRate         0.01 0.02 0.01
[end]

[BEM_SBT]
DegUtilMaize    1.00 1.00 1.00
DegUtilGrass    1.00 1.00 1.00
DegUtilManure   1.00 1.00 1.00
DegUtilWood     1.00 1.00 1.00
[end]

[BEM_BGS]
PercMaize       0.6
PercGrass       0.1
PercManure      0.3
[end]

[BEM_Proxel]
DeciduousProxel1 121 502
ConiferousProxel1 121 503
WoodProxel1      121 504
MaizeSilageProxel1 121 505
GrassSilageProxel1 121 506
CattleManureProxel1 121 507
PigManureProxel1 121 508
PoultryManureProxel1 121 509
ManureTotProxel1 121 510
...[end]
```

Figure 2-1: Example of the input file for the energy management

2.3.2 The substrate parametrization file

The setup file for the substrate parametrization is split into the following sections:

- [General]:

Table 2-8: Description of the input-file for the substrate parametrization, Section General

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubName</td>
<td>Name of the substrate type</td>
<td>[-]</td>
<td>character</td>
</tr>
<tr>
<td>SubID</td>
<td>ID-number of the substrate type</td>
<td>[-]</td>
<td>integer</td>
</tr>
</tbody>
</table>
• [SubstrateParams]:

Table 2-9: Description of the input-file for the substrate parametrization, Section SubstrateParams

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DryMass</td>
<td>Dry mass of the substrate</td>
<td>[TM/FM]</td>
<td>real</td>
</tr>
<tr>
<td>OrgDryMass</td>
<td>Fraction of organic dry mass</td>
<td>[oTM/TM]</td>
<td>real</td>
</tr>
<tr>
<td>GasYield</td>
<td>Amount of biogas yield</td>
<td>[l/kg oTM]</td>
<td>real</td>
</tr>
<tr>
<td>MethCont</td>
<td>Methane content of biogas</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>FermRes</td>
<td>Share of fermentation residues of the substrate</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>Dens</td>
<td>Density of the substrate</td>
<td>[kg FM/m3]</td>
<td>real</td>
</tr>
</tbody>
</table>

• [WoodHVParams]:

Table 2-10: Description of the input-file for the substrate parametrization, Section WoodHVParams

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVOak</td>
<td>Heat value of oak with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVBeech</td>
<td>Heat value of beech with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVALH</td>
<td>Heat value of other deciduous trees with high life time with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVALN</td>
<td>Heat value of other deciduous trees with short life time with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVSpruce</td>
<td>Heat value of spruce with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVFir</td>
<td>Heat value of fir with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVDouglas</td>
<td>Heat value of douglas fir with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVPine</td>
<td>Heat value of pine with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
<tr>
<td>HVLarch</td>
<td>Heat value of larch with 15% water content</td>
<td>[kWh/m3]</td>
<td>real</td>
</tr>
</tbody>
</table>
[WoodParams]:

Table 2-11: Description of the input-file for the substrate parametrization, Section WoodParams

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DensOak</td>
<td>Gross density of oak with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensBeech</td>
<td>Gross density of beech with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensALH</td>
<td>Gross density of other deciduous trees with high life time with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensALN</td>
<td>Gross density of other deciduous trees with low life time with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensSpruce</td>
<td>Gross density of spruce with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensFir</td>
<td>Gross density of fir with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensDouglas</td>
<td>Gross density of douglas fir with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensPine</td>
<td>Gross density of pine with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
<tr>
<td>DensLarch</td>
<td>Gross density of larch with 15% water content</td>
<td>[kWh/m³]</td>
<td>real</td>
</tr>
</tbody>
</table>

Example setup for the substrate parametrization input file:

```plaintext
[General]
ObjectType     substrat
SubName        CattleManure
SubID          1
[end]

[SubstrateParams]
DryMass        0.10
OrgDryMass     0.80
GasYield       380
MethCont       0.55
FermRes        0.98
Dens           1000
[end]

[WoodHVParams]
HVOak           2788
HVBeech         2724
HVALH           2724
HVALN           1723
HVSpruce        1926
HVFir           1926
HVDouglas       1926
HVPine          2190
```
2.3.3 The livestock input file

The setup file for the livestock is split into the following sections:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoRefYears</td>
<td>Amount of reference years</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>RefYear, LvSt1, LvSt2, LvSt3</td>
<td>Reference year with livestock for three areas</td>
<td>[-,-,-]</td>
<td>integer, integer, integer</td>
</tr>
</tbody>
</table>

- [manure]:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManDairy</td>
<td>Amount of manure of dairy per animal and year</td>
<td>[m³/a]</td>
<td>real</td>
</tr>
<tr>
<td>ManCalves_<1y</td>
<td>Amount of manure of calves less than 1 year per animal and year</td>
<td>[m³/a]</td>
<td>real</td>
</tr>
<tr>
<td>ManCattle_1_2y</td>
<td>Amount of manure of cattle between 1 and 2 years per animal and year</td>
<td>[m³/a]</td>
<td>real</td>
</tr>
<tr>
<td>ManCattle_>2y</td>
<td>Amount of manure of cattle more than 2 years per animal and year</td>
<td>[m³/a]</td>
<td>real</td>
</tr>
<tr>
<td>ManPorker</td>
<td>Amount of manure of porkers per animal and year</td>
<td>[m³/a]</td>
<td>real</td>
</tr>
</tbody>
</table>
Example setup for the livestock input file:

```
[dairy]
NoRefYears  6
2010       20095     18021     37088
2016       18480     16819     34065
2020       18436     16510     33690
2030       17943     15764     32113
2040       17451     15018     30537
2050       16958     14272     28960
[end]

[calves_1y]
...

[manure]
ManDairy    20.00
ManCalves_<1y 6.12
ManCattle_1_2y 10.90
ManCattle_>2y 14.46
ManPorker    3.60
ManBreeding_pig 5.00
ManPiglets   1.05
ManSheep     1.65
ManChicken   1.93
ManPoultry   10.13
[end]
```

Figure 2-3: Example of the input file for livestock

2.3.4 The stock of wood input file

The setup file for the stock of wood is split into the following sections:

- [deciduous_total]:

Table 2-14: Description of the input-file for the stock of wood, section deciduous_total

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
</table>

23
NoTreeType: Amount of species of deciduous trees

TreeType, WSt1, WSt2, WSt3: Tree species with stock for three areas

- [coniferous_total]:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoTreeType</td>
<td>Amount of species of coniferous trees</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>TreeType, WSt1, WSt2, WSt3</td>
<td>Tree species with stock for three areas</td>
<td>[-]</td>
<td>integer, real, real, real</td>
</tr>
</tbody>
</table>

- [forest_growth_m3]:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForGrowthOak</td>
<td>Annual average growth of oak per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthBeech</td>
<td>Annual average growth of beech per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthALH</td>
<td>Annual average growth of other deciduous trees with high life time per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthALN</td>
<td>Annual average growth of other deciduous trees with low life time per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthSpruce</td>
<td>Annual average growth of spruce per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthFir</td>
<td>Annual average growth of fir per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthDouglas</td>
<td>Annual average growth of douglas per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthPine</td>
<td>Annual average growth of pine per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
<tr>
<td>ForGrowthLarch</td>
<td>Annual average growth of larch per ha forest area</td>
<td>[m³/ha]</td>
<td>real</td>
</tr>
</tbody>
</table>
Table 2-17: Description of the input file for the stock of wood, Section wood_share

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShareOak</td>
<td>Share of the area with oak trees in the total area with deciduous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareBeech</td>
<td>Share of the area with beech trees in the total area with deciduous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareALH</td>
<td>Share of the area with other deciduous trees with high life time in the total area with deciduous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareALN</td>
<td>Share of the area with other deciduous trees with low life in the total area with deciduous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareSpruce</td>
<td>Share of the area with spruce in the total area with coniferous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareFir</td>
<td>Share of the area with fir in the total area with coniferous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareDouglas</td>
<td>Share of the area with douglas in the total area with coniferous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>SharePine</td>
<td>Share of the area with pine in the total area with coniferous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>ShareLarch</td>
<td>Share of the area with larch in the total area with coniferous trees</td>
<td>[-]</td>
<td>real</td>
</tr>
</tbody>
</table>

Example setup for the stock of wood input file:

```
[deciduous_total]
NoTreeType 4
Oak 67960.60 45307.06 30891.18
Beech 4469021.37 2979347.58 2031373.35
ALH 1728853.97 1152569.31 785842.71
ALN 753825.46 502550.30 342647.93
[end]

[coniferous_total]
NoTreeType 5
Spruce 18270476.02 12180317.34 8304761.83
Fir 2538306.56 1692204.37 1153775.71
Douglas 110766.31 73844.21 50348.32
Jaw 338995.33 225996.89 154088.79
Larch 72017.86 48011.90 32735.39
[end]

[forest_growth_m3]
ForGrowthOak 8.48
ForGrowthBeech 8.36
ForGrowthALH 5.37
ForGrowthALN 7.19
ForGrowthSpruce 11.52
```
2.4 Output

The output includes the amount of consumed gas, wood, maize, grass and manure substrates at hourly resolution for three districts.

```
| ForGrowthFir  | 14.37 |
| ForGrowthDouglas | 31.22 |
| ForGrowthPine   | 2.11  |
| ForGrowthLarch  | 3.04  |

[wood_share]
| ShareOak       | 0.7   |
| ShareBeech     | 49.6  |
| ShareALH       | 33.8  |
| ShareALN       | 15.9  |
| ShareSpruce    | 85.6  |
| ShareFir       | 8.7   |
| ShareDouglas   | 0.2   |
| SharePine      | 5.0   |
| ShareLarch     | 0.4   |
```

Figure 2-4: Example of the input file for the stock of wood
3 The biogas plant model

The biogas plants are implemented as energy producers providing base load electrical and heat power.

3.1 General equations

3.1.1 Biogas production

Depending on the type of used substrates, two different biogas models are implemented:

For the biogas production from organic waste like leftover food, the amount of hourly produced biogas is read in from the input file (see chapter 0).

The use of silage maize, silage grass and manure is the standard input into the bio gas plants implemented in this component. The biogas model for this substrate mixture follows the approach of an idealised, continuously stirred tank reactor with constant substrate consumption. The amount of fed-in substrate is calculated by Equation (18).

\[Q_t = \frac{V_{Ferm} \cdot L_{df}}{R_T \cdot 24} \]

with:

- \(Q_t \): Amount of the hourly substrate input [m³/h]
- \(V_{Ferm} \): Fermenter volume [m³]
- \(R_T \): Average retention time [d]
- \(L_{df} \): Level of filling of 0.92 [-]

The quantities of the selected substrate types are calculated according to Equation (19) from the substrate shares defined in the BEM-file (see Chapter 2.3.1). If grass silage is not available, it is replaced by manure. The biogas plant ceases the production when it runs out of any of its fed-in substrate types.

\[Q_{Man} = Q_t \cdot P_{Man} \]

\[Q_{GS} = Q_t \cdot P_{GS} \]

\[Q_{MS} = Q_t \cdot P_{MS} \]

with:

- \(Q_{Man}/Q_{GS}/Q_{MS} \): Amount of the hourly substrate input of manure, grass silage and maize silage [m³/h]
The Biogas Plant Model

\[\frac{P_{GS}/P_{MS}/P_{Man}}{\text{Shares of grass silage, maize silage and manure}} \] [-]

The hourly yield of biogas is calculated according to Equation (20). The parameters for manure are further classified according to the different characteristics of slurry from cattle, pigs and poultry.

\[
Q_{BG} = \frac{Q_{Man} \cdot G_{Man} + Q_{GS} \cdot TM_{GS} \cdot oTM_{GS} \cdot E_{GS_{oTM}} + Q_{MS} \cdot TM_{MS} \cdot oTM_{MS} \cdot E_{MS_{oTM}}}{1000}
\]

\[
G_{Man} = TM_{Cat} \cdot \rho_{Cat} \cdot oTM_{Cat} \cdot E_{Cat_{oTM}} \cdot P_{Cat} + TM_{Pig} \cdot \rho_{Pig} \cdot oTM_{Pig} \cdot E_{Pig_{oTM}} \cdot P_{Pig} + TM_{Pou} \cdot \rho_{Pou} \cdot oTM_{Pou} \cdot E_{Pou_{oTM}} \cdot P_{Pou}
\]

with:

- \(Q_{BG} \) = Amount of produced Biogas \([m^3]\)
- \(G_{Man} \) = Parameter for mixed manure \([l/kg]\)
- \(\rho_{Cat} / \rho_{Pig} / \rho_{Pou} \) = Density of cattle manure/pig manure/poultry manure fresh matter \([kgFM/m^3]\)
- \(TM_{GS}/TM_{MS}/TM_{Cat}/TM_{Pig} \) = Dry matter of grass silage/maize silage/cattle manure/pig manure \([TM/FM]\)
- \(oTM_{GS}/oTM_{MS}/oTM_{Cat}/oTM_{Pig} \) = Organic dry matter of silage/maize silage/cattle manure/pig manure \([TM/oTM]\)
- \(E_{GS_{oTM}}/E_{MS_{oTM}}/E_{Cat_{oTM}}/E_{Pig_{oTM}}/E_{Pou_{oTM}} \) = Biogas yield of grass silage/maize silage/cattle manure/pig manure/poultry manure \([l/kg_{oTM}]\)
- \(P_{Cat}/P_{Pig}/P_{Pou} \) = Percentage of the manure from cattle, pig and poultry [-]

The methane content of biogas is calculated according to Equation (21).

\[
BG_{CH4} = Q_{Man} \cdot G_{Man} + Q_{GS} \cdot TM_{GS} \cdot oTM_{GS} \cdot E_{GS_{oTM}} \cdot C_{GS_{CH4}} + Q_{MS} \cdot TM_{MS} \cdot oTM_{MS} \cdot E_{MS_{oTM}} \cdot C_{MS_{CH4}}
\]

\[
G_{Man} = TM_{Cat} \cdot \rho_{Cat} \cdot oTM_{Cat} \cdot E_{Cat_{oTM}} \cdot P_{Cat} \cdot C_{Cat_{CH4}} + TM_{Pig} \cdot \rho_{Pig} \cdot oTM_{Pig} \cdot E_{Pig_{oTM}} \cdot P_{Pig} \cdot C_{Pig_{CH4}} + TM_{Pou} \cdot \rho_{Pou} \cdot oTM_{Pou} \cdot E_{Pou_{oTM}} \cdot P_{Pou} \cdot C_{Pou_{CH4}}
\]

with:

- \(BG_{CH4} \) = Amount of produced methane \([m^3]\)
- \(C_{GS_{CH4}}/C_{MS_{CH4}}/C_{Cat_{CH4}}/C_{Pig_{CH4}}/C_{Pou_{CH4}} \) = Fraction of \(CH_4 \) in biogas of grass silage/maize silage/cattle manure/pig manure/poultry manure [-]

Equation (22) shows the determination of the annually accumulated fermentation residues from the hourly substrate flows.
\[\text{GR}_{a,t} = \text{GR}_{a,t-1} + Q_{MS,t} \cdot FF_{MS} + Q_{GS,t} \cdot FF_{GS} + Q_{Man,t} \cdot \left(P_{Cat} \cdot FF_{Cat} + P_{Pig} \cdot FF_{Pig} + P_{Pou} \cdot FF_{Pou} \right) \]

with:

- \(\text{GR} \): Fermentation residues \([m^3]\)
- \(t \): Hour \([h]\)
- \(FF_{Ms} / FF_{Gs} / FF_{Cat} / FF_{Pig} / FF_{Pou} \): Fraction of remaining liquids of grass silage/maize silage/cattle manure/pig manure/poultry manure \([-]\)

After a maximum of 8000 h of continuous operation, the biogas plants are turned off for 31.67 days due to cleaning and maintenance.

3.1.2 Biogas utilization

The type of the biogas plant defines the further processing of the produced biogas:

For plants feeding into the gas grid the amount of bio-methane is calculated according to Equation (23). The efficiency parameter includes the energy needed to adapt to the grid pressure, the purification and adjustment of the calorific value.

\[GF_{CH4} = BG_{CH4} \cdot \eta_{GFI} \cdot h_{VCH4} \]

with:

- \(GF_{CH4} \): Amount of methane gas fed into the grid \([\text{kWh}]\)
- \(\eta_{GFI} \): Losses due to methane slips and adaption to the grid \([-]\)
- \(h_{VCH4} \): heat value of methane of 11.03 kWh/m\(^3\) \([\text{kWh/m}^3]\)

If the biogas is utilized onsite by cogeneration plants, the electrical and thermal energy is calculated according to Equation (24) and Equation (25). The produced energy is limited by the maximum thermal and electrical power of the cogeneration plant.

\[P_{el} = Q_{CH4} \cdot h_{VCH4} \cdot \eta_{el} \cdot (1 - L_{BG}) \]

with:
The data is taken from literature (FNR 2013, KTBL 2013). The pixel of the plants can be determined by overlaying the GIS-Layer with the mask of the model region.

The fermenter volume can be estimated from the plant’s nominal power by Equation (26) based on the linearly interpolated results of KTBL (2017) (see Appendix Table A 1 and Figure A 1). The underlying assumption is that a substrate share of 60 % maize silage, 30 % cattle manure and 10 % grass silage is used.

\[
V_{\text{Ferm}} = 6.5855 \cdot P + 21.037 \tag{26}
\]

with:

\[
V_{\text{Ferm}} = \text{Fermenter volume} \quad [l]
\]

\[
P = \text{Nominal Power of the Biogas plant} \quad [kW]
\]

3.3 Input data and format

The setup file for the Biogas plants is split into the following sections:
• [General]:

Table 3-1: Description of the input-file for the biogas plant-model, Section General

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGSName</td>
<td>Name of the Biogas plant</td>
<td>[-]</td>
<td>character</td>
</tr>
<tr>
<td>BGSID</td>
<td>ID-number of the Biogas plant</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BGSPixel</td>
<td>Pixel of the Biogas plant</td>
<td>[-]</td>
<td>integer</td>
</tr>
</tbody>
</table>

• [BioGasPlant]:

Table 3-2: Description of the input-file for the biogas plant-model, Section BioGasPlant

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGSActive</td>
<td>Status of the biogas plant: 0 – off, 1 – on</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BGSSStartYear, BGSSStartMonth, BGSSStartDay</td>
<td>Start time of the biogas plant</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BGSType</td>
<td>Biogas utilization: 1 – cogeneration plant, 2 – feed-into the gas grid</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>FermVol/OWGas</td>
<td>Volume of the fermenter for BGS-model 1, Hourly amount of bio methane for BGS-model 2</td>
<td>[m³]</td>
<td>real</td>
</tr>
<tr>
<td>BGSMModel</td>
<td>Substrate input: 1 – as defined in BEM-file, 2 – organic waste</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>ConvLoss</td>
<td>Biogas/Methane losses at the gas production</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>RetTime</td>
<td>Average retention time of the substrate</td>
<td>[d]</td>
<td>integer</td>
</tr>
<tr>
<td>Nu_el</td>
<td>Electrical efficiency of the cogeneration plant</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>Nu_therm</td>
<td>Thermal efficiency of the cogeneration plant</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>Nu_chem</td>
<td>Conversion efficiency of the biomethane facility</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>P_el</td>
<td>Maximum electrical power of the cogeneration plant</td>
<td>[kW]</td>
<td>real</td>
</tr>
<tr>
<td>P_therm</td>
<td>Maximum thermal power of the cogeneration plant</td>
<td>[kW]</td>
<td>real</td>
</tr>
</tbody>
</table>
Example setup for a biogas plant located in Rottenbuch:

```
[General]
ObjectType       biogas
BGSName          E3117701000000000500779678-00000
BGSID            1
BGSProxel        297 197
[end]

[BioGasModel]
BGSActive        1
BGSSStartYear    2005
BGSSStartMonth   09
BGSSStartDay     29
BGSType          1
FermVolume       1054
BGSMModel        1
ConvLoss         0.01
RetTime          38
Nu_el            0.369
Nu_therm         0.489
Nu_chem          0.000
P_el             140
P_therm          185
[end]
```

Figure 3.1: Example of the input file for the biogas plant model

3.4 Output

The output of the biogas plant model includes the amount of produced electrical and thermal energy of the cogeneration plants as well as the gas output of plants producing biomethane. The biomass conversion used for gas production is shown by the amount of consumed substrates and the fermentation residues.
4 The central heating model

Three types of domestic heating systems are implemented in this component:

- Wood-fired systems with continuous woodchip supply
- Pellet-heating systems that are coupled to buffer storages and solar thermal plants
- Gas-fired heating systems, such as gas fired water heaters

It is assumed that the vessels of the central heating systems are dimensioned sufficiently in performance and size, so that the energy demand is always fully provided at each hour.

4.1 General equations

4.1.1 Wood-fired heating systems

The wood-fired systems are operated with an automatic wood chips feed-in. The amount of wood needed to supply the thermal energy demand of all buildings with wood-fired heating systems is calculated according to Equation (27).

\[D_W = \sum_{i=1}^{n_{whf}} \frac{E_{th}(i)}{\eta_{WH} \cdot h v_m} \]

with:

- \(D_W \) = Demand in wood \([m^3]\)
- \(E_{th} \) = Thermal energy demand of the building \([kW]\)
- \(\eta_{WH} \) = Efficiency of wood-fired heating system \([-]\)
- \(n_{whf} \) = Total number of wood-fired heating systems \([-]\)

4.1.2 Pellet-systems

For wood-fired systems coupled to solar thermal plants and buffer storages, the amount of heat energy that is supplied by pellet vessels is calculated in the buffer storage model. It is assumed that the pellet vessels always secure the excess of the minimum demanded energy content of the buffer storages (see Technical Release No. 6 Chapter 6).

Equation (28) shows the calculation of the pellet demand from the difference between the current and the minimum thermal energy content of the buffer tanks. It is assumed that the pellet vessels have a
constant efficiency of 92.5% according to HARTMANN, et al. (2013) and that there is a material loss of 2% during the production of pellets.

\[
D_W = \sum_{i=1}^{n_{sts}} \frac{\Delta E_{buf}(i)}{(1 - L_P) \cdot \eta_{PlH} \cdot h v_{Pl} \cdot \rho_{Pl}}
\]

(28)

with:

- \(D_W\) = Demand in wood [m³]
- \(\Delta E_{buf}\) = Thermal energy demand of the buffer storage [kW]
- \(L_P\) = Losses of the pellet production [-]
- \(\eta_{PlH}\) = Efficiency of the pellet heating system [-]
- \(n_{sts}\) = Total number of solar thermal plant systems [-]
- \(\rho_{Pl}\) = Density of the pellets [kg/m³]
- \(h v_{Pl}\) = Heating value of the pellets [kWh/kg]

4.1.3 Gas-fired heating systems

Gas fired heating systems are modelled with a similar approach like the wood-fired central heating systems described in chapter 4.1.1. The demand in gas per hour is calculated from the energy demand of the buildings using gas-fired vessels according to Equation (29).

\[
D_G = \sum_{i=1}^{n_{ghf}} \frac{E_{th}(i)}{\eta_{GH}}
\]

(29)

with:

- \(D_G\) = Demand in gas [kW]
- \(E_{th}\) = Thermal energy demand of the building [kW]
- \(\eta_{GH}\) = Efficiency of the gas-fired heating system [-]
- \(n_{ghf}\) = Total number of gas-fired heating systems [-]
4.2 Pre-processing

The parameter data is taken from literature (HARTMANN, et al. 2013, FNR 2017). The pixel of the plant can be determined by overlaying the GIS-Layer with the mask of the model region.

4.3 Input data and format

Input data for the pellet heating systems coupled to solar thermal plants and buffer storages is not necessary, as the required information is already part of the production and storage input files.

The input for spatially distributed wood and gas fired heating systems is stored in raster files in PIC-format with the following layers:

Table 4-1: Description of the input-file for central heating systems in PIC-Format

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWFH</td>
<td>Number of wood-fired heating systems per pixel</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>WFHStart</td>
<td>Starting year of wood-fired heating systems per pixel</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>NGFH</td>
<td>Number of gas-fired heating systems per pixel</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>NGFHStart</td>
<td>Starting year of gas-fired heating systems per pixel</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>LK</td>
<td>Allocation number of the administrative district</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>GEM</td>
<td>Allocation number of the municipality</td>
<td>[-]</td>
<td>integer</td>
</tr>
</tbody>
</table>

4.4 Output

The output includes the amount of consumed wood in m3 and gas in kWh per district and the produced heat energy in kWh.
5 The biomass heating plant model

Three operation modes of biomass heating plants are implemented in this component:

- The **wood-fired heating model**, which can be operated in partial load to meet the hourly demand in thermal energy. The energy consumption of the previous hour calculated in the local heat network component is the amount of heat production for the current hour. Further details are described in Technical Release No. 7 Chapter 2.

- The **wood-gasifier model**, which corresponds to a batch system. The vessel is filled and operated at maximum performance until the fuel is completely burned. This type has to be coupled to a buffer tank or local heat network, as the start time of the wood-gasifier is determined externally.

- The **power generation model**, which delivers electric power for base load supply. This model does not have to be coupled to local heat networks mandatory, when the waste heat is not used.

5.1 General equations

The biomass heating plant is activated after reaching the start date specified in the input file. The consumption of wood is aggregated to the level of the administrative districts.

5.1.1 The wood-fired heating model

The wood-fired heating model accepts all types of wooden solid fuels, which are specified for each plant in the variable BHSFuelType of the input file.

According to FNR (2017) it is assumed that the wood-fired heating systems operate in a partial load range of 30%-100% of the rated power. Furthermore, the full supply with solid fuel is always secured at each time step.

The consumption of wood for the wood-fired heating plant is calculated according to Equation (30).

\[
C_W(t) = \frac{D_{\text{therm}}(t - 1)}{\eta_{\text{therm}} \cdot h_v m}
\]

with:

- \(C_W(t)\) = Consumption of the wooden solid fuel at time step \(t\) \([m^3]\)
- \(D_{\text{therm}}(t-1)\) = Thermal energy demand of the local heat network from time step \(t-1\) \([kW]\)
- \(\eta_{\text{therm}}\) = Thermal efficiency of the wood-fired heating \([-\])
The calculation of the electric energy production for cogeneration plants is shown in Equation (31).

\[
E_{el} = \frac{D_{\text{therm}}(t - 1)}{\eta_{\text{therm}}} \cdot \eta_{el}
\]

(31)

with:

\[
E_{el} = \text{Produced electric energy [kW]}
\]

\[
\eta_{\text{wfh}} = \text{Electric efficiency of wood-fired heating [-]}
\]

5.1.2 The wood gasifier model

In the wood gasifier model, the possible fuel types are restricted to round timbers and poured logs with a size of 33 cm. The feeding of the plant is determined in the component of the local heat networks as explained in Technical Release No. 7 chapter 2.

Equation (32) shows the calculation of the feeding of a plant after activation.

\[
C_W = \frac{V_{wg}}{f_{\text{conv}} \cdot 1000}
\]

(32)

with:

\[
C_W = \text{Amount of consumed wood fuel [m}^3\text{]}
\]

\[
V_{wg} = \text{Volume of the wood gasifier vessel [l]}
\]

The combustion period, which can be achieved from the wood filling, is calculated according to Equation (33). It is assumed that the plant is operated at rated thermal and electric power during the operation time.

\[
t_{cb} = \frac{C_W \cdot h_v_m}{P_{\text{therm}} \cdot \eta_{\text{therm}}}
\]

(33)

with:

\[
t_{cb} = \text{Combustion time [h]}
\]

\[
P_{\text{therm}} = \text{Rated thermal power of the wood gasifier plant [kW]}
\]

\[
\eta_{\text{therm}} = \text{Thermal efficiency of the wood gasifier plant [-]}
\]
When the remaining combustion time is less than one hour, this information is further processed in the local heat network component, in which the decision of the refuelling is taken.

5.1.3 The power-generation model

The biomass plants that are operated in the mode of base-load supply have a constant consumption of wood as shown in Equation (34).

\[
C_W = \frac{P_{el}}{h_{vm} \cdot \eta_{el}}
\]

where:
- \(C_W\) = Consumption of wood \([m^3]\)
- \(P_{el}\) = Rated electric power of the biomass plant \([kW]\)
- \(\eta_{el}\) = Electric efficiency of the biomass plant \([-]\)

After 8000 h of operation, the biomass plants are turned off for 31.67 days due to cleaning and maintenance.

5.2 Pre-processing

The data is taken from literature (FNR 2015, 2017). The pixel numbers of the plants can be determined by overlaying the GIS-Layer with the mask of the model region.

The vessel size of the wood gasifier can be estimated from the performance by Equation (35) based on the linearly interpolated results of the list in FNR (2015) with manufacturer information (see Figure A 2).

\[
V_{WG} = 5.3265 \cdot P_{WG}
\]

where:
- \(V_{WG}\) = Vessel volume of the wood gasifier \([l]\)
- \(P_{WG}\) = Thermal performance of the wood gasifier \([kW]\)
5.3 Input data and format

The setup file for the Biomass heating plants is split into the following sections:

- [General]:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHSName</td>
<td>Name of the biomass heating plant</td>
<td>[-]</td>
<td>character</td>
</tr>
<tr>
<td>BHSID</td>
<td>ID-number of the biomass heating plant</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BHSProxel</td>
<td>Pixel</td>
<td>[-]</td>
<td>integer</td>
</tr>
</tbody>
</table>

- [BioMassModel]:

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHSActive</td>
<td>Status of the biomass heating plant: 0 – off, 1 – on</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BhSSStartYear,</td>
<td>Start time of the biomass heating plant</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BHSStartMonth,</td>
<td></td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BHSStartDay</td>
<td></td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>BHSFuelType</td>
<td>Type of fuel: 1 – logs (33cm) layered, 2 – round timber, 3 – logs (33cm) poured, 4 – chippings, 5 – pellets</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>ComChamVol</td>
<td>Volume of the combustion chamber</td>
<td>[l]</td>
<td>real</td>
</tr>
<tr>
<td>BHSModel</td>
<td>Heating model: 1 – wood-fired heating, 2 – wood gasifier, 3 – power generation</td>
<td>[-]</td>
<td>integer</td>
</tr>
<tr>
<td>Nu_el</td>
<td>Electrical efficiency of the biomass heating plant</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>Nu_therm</td>
<td>Thermal efficiency of the biomass heating plant</td>
<td>[-]</td>
<td>real</td>
</tr>
<tr>
<td>P_el</td>
<td>Maximum electrical power of the biomass heating plant</td>
<td>[kW]</td>
<td>real</td>
</tr>
<tr>
<td>P_therm</td>
<td>Maximum thermal power of the biomass heating plant</td>
<td>[kW]</td>
<td>real</td>
</tr>
</tbody>
</table>

Example setup for a biomass heating plant located in Steingaden:

```
[General]
ObjectType    biomass
```
5.4 Output

The output includes the amount of produced heat and electric energy as well as the consumed wood in \(\text{dm}^3\) for each plant.
6 The gas plant model

This model component includes gas-fired power plants and combined heat and power plants (CHP).

One operation modes of gas plants is implemented in this component:

The **gas-fired heating model**, which can be operated in partial load to meet the hourly demand in thermal energy. The energy consumption of the previous hour calculated in the local heat network component is the amount of heat production for the current hour. Further details are described in Technical Release No. 7 Chapter 2.

6.1 General equations

The gas plant is activated after reaching the start date specified in the input file.

6.1.1 The gas-fired heating model

The gas-fired heating plant is strictly operated according to the demand in thermal energy of the heat networks. Surplus electrical energy is fed into the grid. The maximum thermal energy, which can be produced, is limited to the thermal power of the plant.

The hourly consumption of gas is calculated according to Equation (30).

\[
C_G(t) = \frac{D_{\text{therm}}(t-1)}{\eta_{\text{th},G}}
\]

with:

- \(C_G(t)\) = Consumption of gas at time step \(t\) [kWh]
- \(D_{\text{therm}}(t-1)\) = Thermal energy demand of the local heat network from time step \(t-1\) [kW]
- \(\eta_{\text{th},G}\) = Thermal efficiency of the gas-fired heating [-]

The calculation of the electric energy production for cogeneration plants is shown in Equation (31).

\[
E_{el} = \frac{D_{\text{therm}}(t-1)}{\eta_{\text{th},G}} \cdot \eta_{\text{el},G}
\]

with:

- \(E_{el}\) = Produced electric energy [kW]
- \(\eta_{\text{el},G}\) = Electric efficiency of gas-fired heating [-]
6.2 Pre-processing

The data is taken from literature. The pixel numbers of the plants can be determined by overlaying the GIS-Layer with the mask of the model region.

6.3 Input data and format

The setup file for the gas plants is split into the following sections:

- [General]:

 Table 6-1: Description of the input-file for the gas plant-model, Section General

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPLName</td>
<td>Name of the gas plant</td>
<td></td>
<td>character</td>
</tr>
<tr>
<td>GPLID</td>
<td>ID-number of the gas plant</td>
<td></td>
<td>integer</td>
</tr>
<tr>
<td>GPLProxel</td>
<td>Pixel</td>
<td></td>
<td>integer</td>
</tr>
</tbody>
</table>

- [GasPlantModel]:

 Table 6-2: Description of the input-file for the gas plant-model, Section GasPlantModel

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
<th>Unit</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPLActive</td>
<td>Status of the gas plant: 0 – off, 1 – on</td>
<td></td>
<td>integer</td>
</tr>
<tr>
<td>GPLStartYear, GPLStartMonth, GPLStartDay</td>
<td>Starting time of the gas plant</td>
<td></td>
<td>integer</td>
</tr>
<tr>
<td>GPLModel</td>
<td>Gas plant model: 1 – gas-fired heating, 2 – cogeneration, 3 – power generation,</td>
<td></td>
<td>integer</td>
</tr>
<tr>
<td>Nu_el</td>
<td>Electrical efficiency of the gas plant</td>
<td></td>
<td>real</td>
</tr>
<tr>
<td>Nu_therm</td>
<td>Thermal efficiency of the gas plant</td>
<td></td>
<td>real</td>
</tr>
<tr>
<td>P_el</td>
<td>Maximum electrical power of the gas plant</td>
<td>kW</td>
<td>real</td>
</tr>
<tr>
<td>P_therm</td>
<td>Maximum thermal power of the gas plant</td>
<td>kW</td>
<td>real</td>
</tr>
</tbody>
</table>
Example setup for a gas plant for peak supply of a local heat network located in Steingaden:

```
[General]
ObjectType      gas
GPLName        Steingaden
GPLID          1
GPLProxe1       331    118
[end]

[GasPlantModel]
GPLActive       1
GPLStartYear    2005
GPLStartMonth   1
GPLStartDay     1
GPLModel        1
Nu_el           0.
Nu_therm       0.
P_therm         500
P_el           0
[end]
```

Figure 6-1: Example of the input file for the gas plant model

6.4 Output

The output includes the amount of produced heat and electric energy as well as the consumed gas in kWh for each plant.
7 Implementation within the energy model

The bioenergy component is executed after the energy production and the energy consumption models. Depending on the type of plant, the biomass models are coupled to different storage models with a time delay of one hour or the consumption model as shown in Table 7-1.

<table>
<thead>
<tr>
<th>Bioenergy model</th>
<th>Reason</th>
<th>Coupling</th>
<th>Coupled models</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas plant</td>
<td>Provides utilization of waste heat</td>
<td>Non mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>Central heating model</td>
<td>Needs thermal energy demand of the building</td>
<td>Mandatory</td>
<td>Thermal energy demand</td>
<td>Energy consumption</td>
</tr>
<tr>
<td>Wood-fired heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central heating model</td>
<td>Needs energy to excess minimum energy content of the buffer</td>
<td>Mandatory</td>
<td>Buffer model, solar thermal energy model</td>
<td>Energy storage, energy management, solar thermal energy</td>
</tr>
<tr>
<td>Pellet heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central heating model</td>
<td>Needs thermal energy demand of the building</td>
<td>Mandatory</td>
<td>Thermal energy demand</td>
<td>Energy consumption</td>
</tr>
<tr>
<td>Gas-fired heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass heating plant</td>
<td>Needs thermal energy demand of the linked local heat network of the previous hour</td>
<td>Mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood-fired heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass heating plant</td>
<td>Needs activation and switch off order of the local heat network</td>
<td>Mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood-gasifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass heating plant</td>
<td>Provides utilization of waste heat</td>
<td>Non mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-generation mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas plant</td>
<td>Needs thermal energy demand of the linked local heat network of the previous hour</td>
<td>Mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>Peak-load mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas plant</td>
<td>Provides utilization of waste heat</td>
<td>Non mandatory</td>
<td>Local heat network</td>
<td>Storage management</td>
</tr>
<tr>
<td>Power generation mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

BayLfStaD 2017: Landwirtschaftliche Betriebe mit ökologischem Landbau 2016 nach jeweiligen ökologischen Flächen und Anbaukulturen Bayern. München:

FNR 2017: Hackschnitzelheizungen. Fachagentur Nachwachsende Rohstoffe e. V. .

LWK NIEDERSACHSEN 2006: L. NIEDERSACHSEN (Eds.) Handbuch Futter und Fütterung - Rinder. Landwirtschaftskammer Niedersachsen Futterberatungsdienst Niedersachsen e. V.

Integrated Land Surface Processes and Human Impacts Simulator for the Quantitative Exploration of Human-Environment Relations. Part, 1.

A. Appendix

Table A 1: Fermenter volume and nominal electrical power of biogas plants using on-site combustion with a gas Otto engine and 8000 h of full load hours for different substrate inputs according to KTBL (2017)

<table>
<thead>
<tr>
<th>No. of input</th>
<th>Substrate [t FM/a]</th>
<th>Nominal power [kW]</th>
<th>Fermenter volume [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maize silage</td>
<td>Cattle manure</td>
<td>Grass silage</td>
</tr>
<tr>
<td>1st Input</td>
<td>1,500</td>
<td>750</td>
<td>250</td>
</tr>
<tr>
<td>2nd Input</td>
<td>3,000</td>
<td>1,500</td>
<td>500</td>
</tr>
<tr>
<td>3rd Input</td>
<td>6,000</td>
<td>3,000</td>
<td>1,000</td>
</tr>
<tr>
<td>4th Input</td>
<td>12,000</td>
<td>6,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Dimensioning of the Fermenter Volume

$V_{\text{Ferm}} = 6.5855 P - 21.037$

Figure A 1: Determination of the linear parameters from the obtained fermenter volumes and nominal electrical power for the selected substrate input amounts
Dimensioning of the vessel volume of wood gasifiers

Figure A 2: Determination of the parameters for the obtained vessel volume of the wood gasifiers from the thermal performance according to manufacturer data collected in FNR (2015)