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Abstract

Symmetry properties of scattering amplitudes often lead to simplifications in
their computation and in their final expression. Gluonic scattering amplitudes
in pure Yang-Mills theory in the all-plus helicity configuration exhibit remarkable
signs of conformal symmetry. At one-loop order they are found to be conformally
invariant, but this observation still lacks an explanation. In the present thesis
we analyze the conformal properties of all-plus gluon scattering amplitudes at
one-loop order and present an attempt to rewrite them in terms of manifestly
conformally invariant objects. This might lead to a better understanding of
the origin of this symmetry for these amplitudes.
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Chapter 1

Introduction

The Large Hadron Collider is a particle accelerator built by the European
Organization for Nuclear Research (CERN) near Geneva, at the French-Swiss
border. There, particles are collided at the energy scale of teraelectronvolt,
thus producing the highest-energy and most precise measurements of particle
collisions in the world. As the LHC prepares to resume its collisions in
2021, in order to interpret the abundant amount of data and compare it to
the underlying fundamental theories, it is necessary to have equally precise
theoretical predictions of such collisions. In fact, although the Standard
Model of particle physics has existed for over 40 years as an established theory
for the description of interactions between elementary particles, computing
its predictions at high accuracy remains a major challenge. This task is of
fundamental importance not only to test its validity, but also to look for
possible hints of further extensions of the theory, notably the unification
of the three currently described fundamental interactions (electromagnetic,
weak and strong interactions) with gravity.

The cornerstone of the Standard Model was put with the development of
Quantum Electrodynamics by Feynman, Schwinger, Tomonaga and Dyson in
the 40’s, which served as a model for the succeeding quantum field theories.
At this time, the famous Feynman diagrams were introduced, an intuitive and
practical way of computing scattering amplitudes perturbatively. In the 50’s,
Yang and Mills generalized the notion of gauge invariance present in QED and
provided an explicit construction of such a theory for the non-Abelian case.
Their aim was to provide a theoretical description of the strong interaction,
which was later accomplished by Quantum Chromodynamics. During the
60’s the unification of the electromagnetic and the weak interactions, and
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the later incorporation of the Higgs mechanism, lead to the formulation of
the electroweak theory. Together with QCD it forms the Standard Model.

Although Feynman diagrams are a simple and intuitive tool for the computation
of scattering amplitudes, their number and complexity grow drastically as
the number of external particles and/or the loop order increase. However,
the resulting amplitudes often have much simpler final expressions than the
intermediate results, suggesting that more efficient methods could simplify
the calculation. Significant advances have been made in this sense by Bern,
Dixon and Kosower [1], who introduced the unitarity method, and by Britto,
Cachazo, Feng and Witten [2], who, using factorization properties, were able
to derive a recursion relation for gluon amplitudes at tree-level.

The final amplitude is often simpler than the intermediate results because
it is more constrained by symmetries, for instance gauge or Poincaré symmetry.
Therefore, one might expect that finding additional symmetries will lead to
even simpler expressions. This is the case of the all-plus amplitudes in pure
Yang-Mills theory. The known amplitudes for this helicity configuration
have very simple expressions. At one-loop order they are observed to be
conformally invariant, but it is not understood why; at two-loop we also see
unexplained signs of conformal symmetry [3].

In this thesis we study these amplitudes, in particular their behavior
under conformal transformations. Imposing conformal symmetry on a theory
represents a strong restriction to it, and this leads to a simplification of the
possible features such a theory can exhibit. For example, the conformal
symmetry of an amplitude reduces dramatically the space of possible terms
it may contain, thus simplifying the search for its most general form.
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Chapter 2

Tools

Before we proceed to analyze gluon scattering amplitudes, it is convenient to
introduce certain useful tools. We begin by introducing Yang-Mills theories,
which are the basis for the description of gluon amplitudes. Then we present
the spinor helicity formalism, in which gluon amplitudes can be written
in a convenient and compact form. Finally, we describe the method of
color decomposition, which separates the color degrees of freedom from the
kinematic properties of a scattering process.

2.1 Yang-Mills Theory

Yang-Mills theories provide the theoretical foundation of the Standard Model
and can be seen as a generalization of QED to a non-Abelian gauge invariant
theory [4]. In this procedure we start from a theory of fermions containing a
global symmetry, in which the symmetry transformation is the same for all
space-time points, and upgrade the symmetry to a local one, i.e. dependent
on the space-time point. Through this construction we end up with a theory
of interacting fermions and bosons.

In QED we start from a Lagrangian in terms of the Dirac field ψ(x),
L = ψ̄(iγµ∂µ −m)ψ, which contains a global U(1) symmetry

ψ(x)→ Uψ(x), (2.1)

where U is a U(1) transformation, i.e. a phase shift. We can then promote
it to a local symmetry U(x), by substituting the derivative operator ∂µ with
the covariant derivative Dµ = ∂µ − iqAµ, where Aµ(x) is the gauge field
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introduced to ensure local symmetry and q is the coupling constant of the
field. The covariant derivative is defined so that it transforms as

Dµ → U(x)DµU
†(x), (2.2)

which leaves the Lagrangian invariant and implies the transformation rule
for the gauge field

Aµ(x)→ U(x)Aµ(x)U †(x) +
i

q
U(x)∂µ(x)U †(x). (2.3)

We can now generalize this procedure to a SU(N) transformation. We
begin with the global transformation

ψi(x)→ Uijψj(x), (2.4)

and generalize it to a local one. Any infinitesimal SU(N) transformation can
be written in terms of the generator matrices T a:

Ujk(x) = δjk − iqθa(x)(T a)jk, (2.5)

where q is the coupling constant and θa are transformation parameters.
The generator matrices are traceless and hermitian, and satisfy the commutator

relation
[T a, T b] = i

√
2fabcT c, (2.6)

where fabc are the structure constants of the Lie Algebra of the Lie group
SU(N). When the structure constants are non-zero, the group is non-Abelian.
Being N ×N hermitian traceless matrices, we can find a basis of N2−1 such
matrices. We can specify it to a diagonal basis such that

Tr(T aT b) = δab. (2.7)

The structure constants can therefore be rewritten in terms of traces of
generators as

fabc = − i√
2

Tr(T a[T b, T c]). (2.8)

We now introduce the gauge field Aµ(x) as a traceless hermitian N ×N
matrix with an analogous transformation as in 2.3:

Aµ(x)→ U(x)Aµ(x)U †(x) +
i

q
U(x)∂µU

†(x), (2.9)
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and define the covariant derivative

Dµ = ∂µ − iqAµ(x), (2.10)

where the U(x) and the Aµ(x) are no longer understood as scalar objects,
but rather as matrices, and the partial derivative ∂µ is implicitly multiplied
by the identity matrix.

Similarly to the Abelian case we define the field strength tensor

Fµν =
i

q
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (2.11)

We note that the field strength is no longer gauge invariant, so, to ensure
gauge invariance in the kinetic term, we write it as

Lkin = −1

4
Tr(F µνFµν). (2.12)

We also note that the non-vanishing commutator in Fµν implies a self-interacting
term for the gauge field in the Lagrangian.

As Aµ was defined as hermitian and traceless, we can write it in terms of
the generator matrices

Aµ(x) = Aaµ(x)T a. (2.13)

The same is true for the field strength, whose components are then

F c
µν = ∂µA

c
ν − ∂νAcµ +

√
2gfabcAaµA

b
ν . (2.14)

Then we can write

Lkin = −1

4
F c
µνF

cµν , (2.15)

and obtain the full Yang-Mills Lagrangian

LYM = ψ̄(iγµDµ −m)ψ − 1

4
F c
µνF

cµν . (2.16)

Such a theory, containing nonzero structure constants, is called a Yang-Mills
theory. One often refers to the pure Yang-Mills case, which is the purely
gluonic part of a Yang-Mills theory (2.15), excluding all fermions.

An important example of a Yang-Mills theory is QCD, which has the
gauge group SU(3) and whose Lagrangian is

LQCD = ψ̄i(i(γ
µDµ)ij −mδij)ψj −

1

4
F c
µνF

cµν , (2.17)

with the gluon field Aaµ(x) and the quark field ψi.
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2.2 Spinor Helicity Formalism

When working with massless particles, it is often useful to think of their
helicity properties. Helicity is the projection of the spin of a particle onto its
momentum:

h :=
p · S
|p|

. (2.18)

This quantity is Lorentz-invariant for massless particles, as they move at the
speed of light and therefore one cannot find a Lorentz boost which inverts
the direction of the momentum.

We introduce the spinor helicity variables, which have proven to be very
convenient for expressing scattering amplitudes involving massless particles.
We start by writing the four-momentum pµ as a matrix:

pµ → pα̇α = σ̄α̇αµ pµ =

(
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)
, (2.19)

where (σ̄µ)α̇α = (1, σi) and σi are the Pauli-matrices (see Appendix A). We
then have

pα̇αi pβ̇βj εαβεα̇β̇ = pµi p
ν
j σ̄

α̇α
µ σ̄β̇βν εαβεα̇β̇︸ ︷︷ ︸

=2ηµν

= 2pi · pj, (2.20)

with the Levi-Civita symbol εαβ. Therefore we can express the mass-shell
condition as:

p2i = m2 ⇔ pi · pi =
1

2
pα̇αi pβ̇βi εαβεα̇β̇ = det(pα̇αi ) = m2. (2.21)

Being a 2 × 2 matrix, pα̇α has at most rank 2 and can be written as pα̇α =
λαλ̃α̇ + µαµ̃α̇. However, p2 = 0 implies det(pαα̇) = 0, so the matrix has rank
1 and can therefore be written as

pαα̇i = λαi λ̃
α̇
i , (2.22)

where λαi , λ̃
α̇
i are the so called helicity spinors. Raising and lowering of the

indices are achieved with the Levi-Civita symbol:

λα := εαβλ
β, λ̃α̇ := εα̇β̇λ̃

β̇. (2.23)

In this formalism the helicity operator can be written as

h =
1

2

(
−λα ∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇

)
, (2.24)
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and so we see that the helicity spinors are eigenvectors of the helicity operator

hλα = −1

2
λα, hλ̃α̇ =

1

2
λ̃α̇. (2.25)

Thus, helicity spinor variables describe both momentum and helicity of particles.
Since scattering amplitudes are Lorentz-invariant, they can only be constructed

in terms of Lorentz-invariant variables. In the present formalism we can
define the following Lorentz-invariant objects:

〈λiλj〉 := λαi λjα = εαβλ
α
i λ

β
j = −〈λjλi〉 =: 〈ij〉,

[λ̃iλ̃j] := λ̃iα̇λ̃
α̇
j = −εα̇β̇λ̃

α̇
i λ̃

β̇
j = −[λjλi] =: [ij]. (2.26)

We may write the Mandelstam variables in term of these brackets as:

sij = (pi + pj)
2 = pαα̇i pjαα̇ = 〈ij〉[ji]. (2.27)

Important relations of these brackets are 〈ii〉 = [ii] = 0, which follows
from the antisymmetry of the brackets, the Schouten identity:

〈λiλj〉λαk + 〈λjλk〉λαi + 〈λkλi〉λαj = 0, (2.28)

and momentum conservation:

n∑
i=1

pµi = 0⇔
n∑
i=1

〈ai〉[ib] = 0, (2.29)

for any a, b = 1, . . . , n.
In this formalism, we can find representations of the polarization vectors,

which must obey

p · ε±(p) = 0, (2.30)

ε+(p) · ε−(p) = −1, (2.31)

ε+(p) · ε+(p) = ε−(p) · ε−(p) = 0, (2.32)

(εµ±)∗ = εµ∓. (2.33)

These relations are fulfilled if we write the polarization vectors as

εαα̇+,i = −
√

2
λ̃α̇i µ

α
i

〈λiµi〉
, εαα̇−,i =

√
2
λαi µ̃

α̇
i

[λiµi]
, (2.34)
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where µi and µ̃i are reference spinors that can be chosen arbitrarily. Indeed
one has

hεαα̇±,i = (±1)εαα̇±,i (2.35)

(ε+)∗ = ε−, (2.36)

p · ε± =
1

2
λαλ̃α̇ε

αα̇
±,i ∼ ([λλ] or 〈λλ〉) = 0, (2.37)

ε+ · ε− = − λ̃
α̇µαλαµ̃α̇
〈λµ〉[λµ]

= −1, (2.38)

ε+ · ε+ = − λ̃
α̇µαλ̃α̇µα
〈λµ〉[λµ]

= 0. (2.39)

2.3 Color Decomposition

When studying scattering amplitudes in QCD it is useful to separate the
color degrees of freedom from the kinematic terms of the amplitude. For
the case of pure Yang-Mills theory, the color factor of a generic diagram is
given by a chain of structure constants fabc, which follows directly from the
Feynman rules. We can now write the structure constants in terms of the
generator matrices using relation 2.8:

fabc = − i√
2

Tr(T a[T b, T c]). (2.40)

So the color degrees of freedom are all expressed by a product of traces of
generator matrices. Employing the SU(N) identity

(T a)j1i1 (T a)j2i2 = δj2i1 δ
j1
i2
− 1

N
δj1i1 δ

j2
i2
, (2.41)

we can further simplify the color dependence at tree-level so that only single
traces of the generator matrices T a are left, and write the amplitude of a
scattering process of n gluons of colors ai, momenta pi and helicities hi in
the color decomposed form

A tree
n ({ai, hi, pi}) = gn−2

∑
σ∈Sn/Zn

Tr(T aσ1 . . . T aσn )Atree
n (pσ1 , hσ1 ; . . . ; pσn , hσn),

(2.42)
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where the Atree
n are the partial or color-ordered amplitudes, containing all the

kinematic information of the amplitude. They still have to be computed, but
they are simpler than the full amplitudes, as they only receive contributions
from one specific cyclic ordering of the external gluons each. Therefore,
the poles of the partial amplitudes can only occur in channels of adjacent
momenta. In 2.42, Sn is the group of all permutations of n objects, and
Zn is the group of all cyclic permutations, so Sn/Zn are all permutations
modulo cyclic permutations, in order to eliminate cyclic terms, which would
leave the trace invariant. This is done to avoid the repetition of equal traces,
which would lead to a redundant representation. As a result, all traces are
independent, and each amplitude has to be gauge invariant by itself.

At one-loop, we get a color decomposition containing single and double
trace structures (we introduce the short-hand notation {pi, hi} := ihi):

A1-loop
n ({ai, hi, pi}) = gn

N ∑
σ∈Sn/Zn

Tr(T aσ1 . . . T aσn )An;1(σ
hσ1
1 , . . . , σhσnn )

+

bn/2c+1∑
c=2

∑
σ∈Sn/Sn;c

Tr(T aσ1 . . . T aσc−1 )Tr(T aσc . . . T aσn )An;c(σ
hσ1
1 , . . . , σhσnn )

 ,
(2.43)

where Sn;c is the subset of Sn which leaves the corresponding double trace
invariant, and bn/2c is the largest integer smaller or equal to n/2. The
amplitudeAn;1 is called the leading-color amplitude, and the other amplitudes,
An;r for r ≥ 2 are called subleading-color amplitudes.

It is convenient to extend the SU(N) group to U(N) = SU(N)×U(1) by
adding to the N2 − 1 traceless generators the U(1) generator (T 0)ji = 1√

N
δji ,

which is proportional to the identity matrix, since U(1) is Abelian. The N2

matrices fulfill the completeness relation

(T a)j1i1 (T a)j2i2 = δj2i1 δ
j1
i2
. (2.44)

Since the U(1) generator commutes with all generators, any structure
constant containing a U(1) index vanishes. This means that the corresponding
coupling term in the field strength (2.14) vanishes, and thus that the U(1)
gauge field, often called photon field, is colorless and does not couple to the
gluon fields. Therefore, amplitudes in the U(N) Yang-Mills theory containing
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a U(1) photon must vanish. This implies relations between the different color
components. If, for instance, we assume particle 1 to be a photon, we have
that T a1 ∼ 1, and so

Tr(T a1T a2 . . . T an) = Tr(T a2T a1 . . . T an) = . . . = Tr(T a2T a3 . . . T an). (2.45)

Inserting this into 2.42 then yields

0
!

= Tr(T a2T a3 . . . T an)(Atree
n (1, 2, . . . , n) + Atree

n (2, 1, . . . , n)

+ . . .+ Atree
n (2, 3, . . . , 1, n)) + Tr . . . (2.46)

However, since all traces are independent, each sum of partial amplitudes
must vanish. This implies

Atree
n (1, 2, . . . , n) + Atree

n (2, 1, . . . , n) + . . .+ Atree
n (2, 3, . . . , 1, n) = 0. (2.47)

This property is often called “photon decoupling”
At higher order, other relations appear. For instance, at one-loop we

can write all the subleading-color amplitudes as sums of permutations of the
leading-color amplitude [1].

With these tools we can now tackle some scattering processes.
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Chapter 3

Tree-Level Methods

The Feynman rules provide a simple and straightforward way of computing
scattering amplitudes. However, the increasing complexity and number of
Feynman diagrams for increasing number of particles and of loops makes the
process very intensive from the computational point of view. The simplicity
of the results however often contrasts with the complexity of the intermediate
expressions. This justifies the search for more efficient methods. One very
powerful tool for computing scattering amplitudes at tree level even for large
multiplicity n is the Britto-Cachazo-Feng-Witten (BCFW) recursion. In the
following section we will introduce this technique and in section 3.2 we will
use it to prove a compact form of the so-called maximally helicity violating
(MHV) amplitudes inductively. Finally we will present conformal symmetry,
an extension of the Poincaré group that can be very powerful in constraining
the form of a scattering amplitude, and show the conformal invariance of the
MHV amplitudes at tree-level.

3.1 The BCFW Recursion

We restrict ourselves in the following to the pure Yang-Mills case for simplicity.
An extension to include massive particles can be found in [5].

The idea underlying the BCFW recursion is to perform a shift of the
amplitude in the complex plane and then express the original amplitude in
terms of the residues of the shifted one [2]. We begin with an amplitude
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An(p1, h1; . . . ; pn, hn) and perform a complex shift of two helicity spinors:

λ1 → λ̂1 = λ1 − zλn,

λ̃n → ˆ̃λn = λ̃n + zλ̃1,
(3.1)

which implies a deformation of the momenta

p̂1(z) = λ1(λ̃1 − zλ̃n), p̂n(z) = (λn + zλ1)λ̃n. (3.2)

We note that this transformation maintains the on-shell condition for all
momenta and momentum conservation, since

p̂1(z) + p̂n(z) = p1 + pn, (3.3)

is independent of z. In Yang-Mills theory, the momentum of a propagator
in color-ordered amplitudes is always the sum of adjacent momenta, as was
discussed in 2.3, and has the form

Pij = pi + . . .+ pj, (3.4)

where the momenta of the particles between i and j in the color-ordering
are summed. Therefore, the shifted amplitude An(z) only contains poles in
z coming from the propagators, which take the form

1

P̂ 2
i (z)

=
1

(p̂1(z) + p2 . . .+ pi−1)2
=

1

(pi + . . .+ pn−1p̂n(z))2
=

1

P 2
i − z〈n|Pi|1]

,

(3.5)
where we define Pi := P1,i−1, 〈n|Pi|1] := λαnPiαα̇λ̃

α̇
1 and use P̂i(z) = Pi+zλnλ̃1.

Whenever p̂1 and p̂n are contained in the same region, the propagator is
independent of z, and therefore does not contribute with a pole. Hence, we
see that the amplitude An(z) has simple poles at

zPi =
P 2
i

〈n|Pi|1]
. (3.6)

According to Cauchy’s residue theorem, the contour integral of a function
is equal to the sum of all poles contained in the area within the contour. If
we send the contour to infinity, we include all possible poles of the function
and obtain the relation∮

C

dz

2πi

A(z)

z
=
∑
zi

Res

(
A(z)

z
, zi

)
. (3.7)
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The original amplitude is just the residue at z = 0, so

An = −
∑
zPi 6=0

Res

(
A(z)

z
, zPi

)
− Res

(
A(z)

z
,∞
)
, (3.8)

where Res
(
A(z)
z
,∞
)

is the pole at infinity, defined as Res(f(z),∞) = −
∮
C

dz
2πi
f(z).

1̂

2

3

n̂

· · ·

4

An(z) ∼
z→zPi

1

z − zPi Pi

1̂

2

· · ·

i− 1

n̂

· · ·

i+ 1

i

AL AR

Figure 3.1: Factorization on the pole z = zPi

Sending z → zPi corresponds to sending the propagator Pi on-shell, which
can be interpreted as splitting the amplitude into two on-shell subamplitudes
AL andAR connected through an on-shell propagator (see Figure 3.1). Hence,
due to factorization properties (for a thorough discussion see [6]), near the
poles we have the asymptotic behavior

An(z)

z
∼

z→zPi
− 1

z − zPi

∑
h

AhL(zPi)
1

P 2
i

A−hR (zPi), (3.9)

where the sum over h is the sum over all possible helicity states of the
propagator. The expression for the original amplitude then becomes

An =
∑
i

∑
h

AhL(zPi)A
−h
R (zPi)

P 2
i

− Res

(
A(z)

z
,∞
)
. (3.10)

In the case of gluons, the possible helicity states are h = ±1. Note that,
since in our convention all gluons are chosen to be outgoing, the helicity
of the propagator on the left amplitude is opposite to the one on the right
amplitude, hence the minus sign on the helicity state in the right amplitude.

For functions scaling as f(z) ∼ 1/z2 for z → ∞, the pole at infinity
vanishes, so if An(z) scales as 1/z we can drop the last term. This is
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indeed true for the case of the helicity configuration (+−) of the shifted
momenta. The z dependence only occurs along the path connecting particles
1 and n. From the Feynman rules, one sees that, along this path, three-
gluon vertices contribute at most z, four-gluon vertices contribute 1 and
propagators contribute 1/z. Taking the least favorable case, in which all
vertices are three-gluon vertices, due to the fact that between two vertices
there is always a propagator, the overall contribution of this path is at most
z. Apart from that, there is the contribution from the polarization vectors
at legs 1 and n. For our choice of the helicity configuration, we have:

εαα̇+,1 = −
√

2
λ̃α̇i µ

α
i

〈λ̂iµi〉
∼ 1

z
, (3.11)

εαα̇−,n =
√

2
λαi µ̃

α̇
i

[λ̂iµi]
∼ 1

z
. (3.12)

Therefore, considering the contribution from the polarization vectors, we get
an overall z-dependence given by 1/z, thus allowing us to drop the pole at
infinity. For the (++) and (−−) helicity configurations, one can also show
that the shifted amplitude vanishes at z → ∞ [7], whereas for (−+) the
amplitude diverges as z3.

3.2 The MHV Amplitudes

The BCFW recursion owes its power to the fact that it allows us to write
large scattering amplitudes in terms of smaller ones recursively, which leads
to a description based solely on the simplest types of amplitudes. An example
of such an application are the so-called maximally helicity-violating (MHV)
amplitudes, in which all but two gluons have positive helicity. These are the
simplest non-vanishing gluon amplitudes at tree-level, since all-plus amplitudes
inevitably contain products of the form ε+,i · ε+,j, which necessarily vanish,
as can be seen straightforwardly from our construction of the polarization
vectors, just as amplitudes with one flipped helicity state, which can be seen
by employing a convenient choice of the reference spinors [8].

We can compute, from the Feynman rules, that for three gluons the MHV
amplitude for two negative helicity states in gluons i and j is given by

AMHV
3 (i−, j−) =

〈ij〉4

〈12〉〈23〉〈31〉
, (3.13)
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and for the anti-MHV amplitude with two positive helicity states by

AMHV
3 (i+, j+) = − [ij]4

[12][23][31]
. (3.14)

It is important to note that momentum conservation implies the vanishing
of all Mandelstam variables:

pµ1 + pµ2 + pµ3 = 0⇒ p1 · p2 = p1 · p3 = p2 · p3 = 0, (3.15)

or
〈ij〉[ji] = 0, (3.16)

for any i, j = 1, 2, 3. The constraint 3.15, however, admits two distinct
solutions in terms of spinors: either λα1 ∝ λα2 ∝ λα3 (collinear left-handed
spinors) or λ̃α̇1 ∝ λ̃α̇2 ∝ λ̃α̇3 (collinear right-handed spinors). So, since for the
MHV case the left-handed spinors are clearly not collinear, the right-handed
ones must be, and the opposite is true for the anti-MHV case.

For n-gluons we want to show inductively that

AMHV
n (n−, 1−) =

〈n1〉4

〈12〉 . . . 〈n1〉
. (3.17)

According to the BCFW recursion we can write this amplitude as a sum
of split amplitudes. As we have seen, the propagator must lie somewhere
between particles 1 and n. Choosing an assignment (+−) to the propagator
leaves only one particle with negative helicity on the left side, and such
an amplitude is non-vanishing only for three particles. So we only get one
contribution from this choice. On the other hand, the assignment (−+) of
the propagator gives only one contribution, which is with three particles on
the right amplitude, for the same reason. So we are left with two diagrams,
which can be seen in Figure 3.2. However, the right amplitude being an
MHV3 amplitude implies λ̂n ∝ λn−1, or 〈n̂n − 1〉 = 〈nn − 1〉 = 0, which is
a collinearity condition for pn and pn−1. Since this is not the general case,
we can disregard this diagram for a generic configuration of the external
momenta.

Assuming that the MHV amplitude for n−1 particles is of the form given
in 3.17, using the BCFW recursion we construct the amplitude for n gluons.
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1̂−

2+

n̂−

(n− 1)+

· · ·

MHVn
=

p

1̂−

2+

n̂−

(n− 1)+

· · ·

3+

MHV3

+

MHVn−1

−

+

Figure 3.2: Splitting of the MHV amplitude

We have

AL = AMHV
3 (1̂−, 2+,−P̂+) = − [2(−P̂ )]3

[1̂2][(−P̂ )1̂]
, (3.18)

AR = AMHV
n−1 (P̂−, 3+, . . . , (n− 1)+, n̂−) =

〈n̂P̂ 〉3

〈P̂3〉 . . . 〈(n− 1)n̂〉
, (3.19)

where P̂ represents the shifted momentum of the propagator. We use the
convention that for a negative momentum we have | − λ̃P ] = −|λ̃P ] and
| − λP 〉 = |λP 〉. Using 〈·n̂〉 = 〈·n〉 and [1̂·] = [1·] we have:

A = ÂL
1

(p1 + p2)2
ÂR =

[2P̂ ]3〈nP̂ 〉3

[12][21]〈3P̂ 〉[P̂1]〈12〉〈34〉 . . . 〈(n− 1)n〉
. (3.20)

Momentum conservation gives:

〈nP̂ 〉[P̂2] = −〈n1̂〉[12] = −〈n1〉[12], 〈3P̂ 〉[P̂1] = −〈32〉[21], (3.21)

Inserting these relations into eq. 3.20 yields:

A = − [12]3〈n1〉3

[12][21]〈32〉[21]〈12〉〈34〉 . . . 〈(n− 1)n〉
=

〈n1〉4

〈12〉 . . . 〈(n− 1)n〉
, (3.22)
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as we wanted to show.

3.3 Conformal Symmetry

The discussion in this section follows an argument presented in [9].
The Conformal Group is a group of transformations which describes

translations, Lorentz boosts, dilation and special conformal transformations.
It therefore contains and generalizes the Poincaré group. In general, QFT’s
are Poincaré invariant, but whenever the theory does not include any dimensionful
parameter the symmetry is extended to the conformal group by adding the
dilation and the special conformal transformations.

The special conformal transformation is a non-linear transformation which
preserves causality. It can be written as a composition of an inversion, a
translation and another inversion:

xµ → x′µ =
xµ − bµx2

1− 2b · x+ b2x2
, (3.23)

where bµ is a transformation parameter. The dilation is simply a global
rescaling transformation:

xµ → x′µ = αxµ, (3.24)

for an arbitrary constant α.
An important property of conformal symmetry for quantum field theories

is that, in general, it is only present at tree-level. At loop order, renormalization
introduces mass scales that therefore break conformal symmetry.

In configuration space, the generators of the conformal algebra are

Pµ = −i∂µ (Translation), (3.25)

Lµν = i(xµ∂ν − xν∂µ) (Lorentz transformations), (3.26)

D = −ixµ∂µ (Dilation), (3.27)

Kµ = −i(2xµxν∂ν − x2∂µ) (SCT). (3.28)

A thorough introduction to the conformal group can be found in [10]. The
generators of the conformal group must obey the commutation relations that
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define the conformal algebra:

[D,Pµ] = iPµ, (3.29)

[D,Kµ] = −iKµ, (3.30)

[Kµ, Pν ] = 2i(ηµνD − Lµν), (3.31)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ), (3.32)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ), (3.33)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ). (3.34)

Performing a Fourier-transform of the generators, we get the representation
of the conformal group in momentum space

P µ = pµ, (3.35)

Lµν = pµ∂νp − pν∂µp , (3.36)

D = k · ∂p, (3.37)

Kµ =
1

2
pµ∂2p − (p · ∂p)∂µp . (3.38)

We can then map these operators to the spinor helicity variables (see [8], [9]
for further details) and get the operators

pαα̇ = λαλ̃α̇, (3.39)

lαβ =
1

2

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
, (3.40)

l̃α̇β̇ =
1

2

(
λ̃α̇

∂

∂λ̃β̇
+ λ̃β̇

∂

∂λ̃α̇

)
, (3.41)

d =
1

2

(
λα

∂

∂λα
+ λ̃α̇

∂

∂λ̃α̇
+ 2

)
, (3.42)

kαα̇ =
∂

∂λα
∂

∂λ̃α̇
. (3.43)

Note that here we defined the conformal generators for a single massless
particle. The corresponding generators for an n-particle system are obtained
by summing over the n particles, e.g.

kαα̇ =
n∑
i=1

∂

∂λαi

∂

∂λ̃α̇i
.
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As an example, we will prove the conformal invariance of MHV amplitudes
at tree-level. Without any loss of generality we can consider a specific color-
ordered amplitude, e.g.

A MHV
n = δ(4)

(
n∑
i=1

pi

)
AMHV
n , (3.44)

where n is the number of external gluons, AMHV
n is the reduced amplitude,

which we computed in 3.2, and the overall delta function imposes momentum
conservation.

Lorentz invariance is manifest since all indices are contracted, i.e. all
spinor brackets are Lorentz invariant, and translational invariance is also
fulfilled thanks to the overall delta function. Invariance under dilation is also
fulfilled: dAn = (dδ(4)(P ))An + δ(4)(P )dAn = (−4 + 4 − n + n)An = 0. We
want to focus our attention on the special conformal transformation.

Since we know from the form of the reduced amplitude that ∂AMHV
n /∂λ̃i =

0, applying a conformal boost on the amplitude gives, with the definition
Pαα̇ =

∑
i λ

α
i λ̃

α̇
i :

kαα̇A
MHV
n =

∑
i

∂

∂λαi

(
∂pββ̇

∂λ̃α̇i

(
∂

∂pββ̇
δ(4)(p)

)
AMHV
n

)

=

[(
n

∂

∂pαα̇
+ pββ̇

∂

∂pβα̇
∂

∂pαβ̇

)
δ(4)(p)

]
AMHV
n

+

(
∂δ(4)(p)

∂pβα̇

)∑
i

λβi
∂

∂λαi
AMHV
n . (3.45)

One can explicitly check that

λiα
∂

∂λβi
=

1

2
(λiα

∂

∂λβi
+ λiβ

∂

∂λαi
)︸ ︷︷ ︸

∼Lαβ

+
1

2
εαβλ

γ
i

∂

∂λγi
, (3.46)

and, since LαβA
MHV
n = 0, we get that∑

i

λβi
∂

∂λαi
AMHV
n =

1

2
δαβ
∑
i

λγi
∂

∂λγi
AMHV
n = δαβhA

MHV
n = δαβ(4− n)AMHV

n ,

(3.47)
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since the helicity of the amplitude is (4− n). So we get:

kαα̇A
MHV
n =

[(
4

∂

∂pαα̇
+ pββ̇

∂

∂pβα̇
∂

∂pαβ̇

)
δ(4)(p)

]
AMHV
n . (3.48)

Multiplying the term pββ̇ ∂
∂pβα̇

∂

∂pαβ̇
with a test function and integrating by

parts yields: ∫
d4pf(p)pββ̇

∂

∂pβα̇
∂

∂pαβ̇
δ(4)(p)

=

∫
d4p

([
∂

∂pβα̇
f(p)

]
2δαβ +

[
∂

∂pαβ̇
f(p)

]
2δα̇β̇

)
δ(4)(p)

=4

∫
d4p

[
∂

∂pαα̇
f(p)

]
δ(4)(p)

=− 4

∫
d4pf(p)

∂

∂pαα̇
δ(4), (3.49)

from which we see the relation

pββ̇
∂

∂pβα̇
∂

∂pαβ̇
δ(4)(p) = −4

∂

∂pαα̇
δ(4). (3.50)

Inserting this in 3.48 gives: kαα̇A MHV
n = 0.

Finding conformally invariant objects in momentum space is a non-trivial
task, in general, since the generator of special conformal transformations is a
second-order operator. Although in configuration space it is easier, since the
operator is only of first-order, due to the on-shell condition for the momenta
it is not possible to simply Fourier transform these objects to momentum
space. This motivates our search for conformally invariant objects in the
spinor helicity formalism.
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Chapter 4

All-Plus Scattering Amplitudes

The focus of this research project was the study of all-plus helicity amplitudes.
As was discussed in section 3.2, they vanish at tree-level. In eq. 2.43 we saw
the color decomposition of an amplitude at one-loop, given by a leading-color
term and subleading color terms. The leading-color one-loop amplitude for
the scattering of n plus-helicity gluons can be written as [11]:

An;1 = − i
3

∑
1≤i1<i2<i3<i4≤n

〈i1i2〉[i2i3]〈i3i4〉[i4i1]
〈12〉〈23〉 . . . 〈n1〉

. (4.1)

Numerically we have checked for n up to 12 that it is conformally invariant.
We therefore expect it to be true for arbitrary n and attempt to rewrite it in
a manifestly conformally invariant form. This may shed light on the reason
why this amplitude is conformally invariant at one-loop, and perhaps indicate
mechanisms to construct generic conformally invariant objects. As discussed
in section 3.3, the pure Yang-Mills Lagrangian is conformally invariant at
classical level, but this symmetry is broken at quantum level by the introduction
of the mass scales required by renormalization. It is therefore remarkable to
find an example where conformal symmetry survives at loop level, and the
reason why this occurs is yet to be understood.

For n = 4, the leading-color amplitude takes a simple form:

A4,all-plus ∼
[12][34]

〈12〉〈34〉
, (4.2)

which, using momentum conservation, can be written as

A4,all-plus ∼
[41]2

〈23〉2
. (4.3)
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Note that this last form is manifestly conformally invariant, as for each
particle it depends either on λ̃i or on λi, not on both together. Similarly, for
n = 5, the amplitude can be written as [3]:

A5,all-plus ∼
∑
S5

[
[24]2

〈13〉〈35〉〈51〉
+ 2

[23]2

〈14〉〈45〉〈51〉

]
, (4.4)

where S5 is the group of cyclic permutations of the external legs. Here we note
that the amplitude is a linear combination of conformally invariant objects,
therefore being itself manifestly conformally invariant.

These observations motivate the definition of the Rn objects:

Rn =
[ab]2

〈ij〉〈j·〉 . . . 〈·k〉︸ ︷︷ ︸
n−2 times

, (4.5)

where a, b and i, j, . . . , k are two disjunct sets of particles. We see that the
Rn objects are manifestly conformally invariant, as desired. Furthermore,
they have the right dimension of an n-point amplitude and have the all-plus
helicity configuration. One might therefore naively hope to rewrite the one-
loop all-plus amplitude in terms of permutations of these objects for arbitrary
multiplicity n, thus making conformal symmetry manifest. However, for
n ≥ 6, these objects do not span a space large enough to contain the leading-
color term.

span{R4} 1-dimensional space
span{R5} 6-dimensional space
span{R6} 30-dimensional space
span{R7} 126-dimensional space

Table 4.1: Spaces spanned by Rn objects

As shown in [1], all subleading-color terms can be written as sums of
permutations of the leading-color amplitude. Therefore, if we can show the
conformal invariance of the leading-color amplitude, it also follows directly
for the subleading-color ones.

We shift our attention towards the subleading-color amplitudes as they
exhibit a simpler form than the leading-color amplitude. The point is that
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proving the conformal invariance of the leading-color component analytically
is very complicated because of the nested summation, whereas for the subleading-
color components we have much simpler expressions. Their analysis may
therefore allow us to find other conformally invariant objects which will then
get us closer to rewriting 4.1 in a manifestly conformally invariant form.

The subleading-color terms are given by [12]:

An;2(1
+; 2+; . . . ;n+) = −i

∑
i<j

[1|ij|1]

〈23〉〈34〉 . . . 〈n2〉
, (4.6)

An;r(1
+, . . . , (r − 1)+; r+, . . . , n+) = −2i

(p1 + . . .+ pr−1)
2(pr + . . . pn)2

〈12〉 . . . 〈(r − 1)1〉〈r(r + 1)〉 . . . 〈nr〉
.

(4.7)

Indeed we found the subleading terms to be conformally invariant. To
see this for the An;r amplitude we first define new objects:

CA,B
n = ZA

n Z
B
n , A,B ⊂ Nn : {A∩B = ∅,∃σ ∈ Sn : A∪B = σ ◦Nn}, (4.8)

where

Z [i1i2...ik]
n =

(pi1 + pi2 + . . .+ pik)
2

〈i1i2〉〈i2i3〉 . . . 〈ik−1ik〉〈iki1〉
, (4.9)

and
Nn = {1, 2, . . . , n}. (4.10)

We note that An;r = −2iC
[1...r−1][r...n]
n .

Since each Zn factor contains an independent set of particles, the action
of a conformal boost to Cn can be fractorized into two contributions:

kαα̇C
A,B
n =

(
kαα̇Z

A
n

)
ZB
n + ZA

n

(
kαα̇Z

B
n

)
. (4.11)

We now prove that CA,B
n is conformally invariant.

Because of the on-shell condition p2i = 0, we can write

(pi1 + pi2 + . . .+ pik)
2 =

1

2

k∑
a,b=1

〈iaib〉[ibia]. (4.12)
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Applying a conformal boost to Z
[i1i2...ik]
n then yields:

kαα̇
(pi1 + pi2 + . . .+ pik)

2

〈i1i2〉〈i2i3〉 . . . 〈iki1〉
=

1

〈i1i2〉〈i2i3〉 . . . 〈iki1〉

k∑
a=1

[∑
b6=a

λibαλ̃ibα̇

+
k∑
b=1

(
− 〈iaib〉
〈ia−1ia〉

λia−1αλ̃ibα̇ +
〈iaib〉
〈iaia+1〉

λia+1αλ̃ibα̇

)]
,

(4.13)

where a− 1 and a+ 1 are defined modulo k, i.e. i0 = ik, ik+1 = i1.
In the last sum we added the term b = a; as it vanishes, it does not

contribute to the sum. Since the summation is cyclic, we can shift the
summation index of the last sum by one: a → (a − 1), and invert the
summation order∑

a

[∑
b 6=a

λibαλ̃ibα̇ +
∑
b

(
〈iaib〉
〈ia−1ia〉

λia−1αλ̃ibα̇ +
〈iaib〉
〈iaia+1〉

λia+1αλ̃ibα̇

)]

=
∑
b

[∑
a6=b

λibαλ̃ibα̇ +
∑
a

((
〈iaib〉
〈ia−1ia〉

λia−1α +
〈ia−1ib〉
〈ia−1ia〉

λiaα

)
︸ ︷︷ ︸

−
λibα

〈ia−1ia〉

λ̃ibα̇

)]

=
∑
b

[∑
a6=b

λibαλ̃ibα̇ −
∑
a

λibαλ̃ibα̇

]
=−

∑
b

λibαλ̃ibα̇

=− (pi1 + pi2 + . . .+ pik)αα̇, (4.14)

where we used the Schouten identity in the last step. Hence we get

kαα̇
(pi1 + pi2 + . . .+ pik)

2

〈i1i2〉〈i2i3〉 . . . 〈iki1〉
= −(pi1 + pi2 + . . .+ pik)αα̇

〈i1i2〉〈i2i3〉 . . . 〈iki1〉
. (4.15)

So, applying a conformal boost to the CA,B
n with A = {a1, a2, . . . , ak} and

B = {b1, b2, . . . , bn−k} yields:

kαα̇C
A,B
n =−

(pa1 + . . .+ pak)αα̇(pb1 + . . .+ pbn−k)
2

〈a1a2〉 . . . 〈ana1〉〈b1b2〉 . . . 〈bn−kb1〉

−
(pb1 + . . .+ pbn−k)αα̇(pa1 + . . .+ pak)

2

〈a1a2〉 . . . 〈ana1〉〈b1b2〉 . . . 〈bn−kb1〉
= 0. (4.16)
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The vanishing of the sum follows from momentum conservation:
∑

i pi = 0,
which implies

(pa1 +. . .+pak) = −(pb1 +. . .+pbn−k), (pa1 +. . .+pak)
2 = (pb1 +. . .+pbn−k)

2.
(4.17)

These new Cn-objects are in fact a generalization of the Rn objects and
extend the space spanned by them. Indeed, one has that

C [12][3...n]
n =

(p1 + p2)
2

(p1+p2)2︷ ︸︸ ︷
(p3 + . . .+ pn)2

〈12〉〈21〉〈34〉 . . . 〈(n− 1)n〉

=
〈21〉2[12]2

〈12〉〈21〉〈34〉 . . . 〈(n− 1)n〉

= − [12]2

〈34〉 . . . 〈(n− 1)n〉
. (4.18)

span{C4} 1-dimensional space
span{C5} 6-dimensional space
span{C6} 35-dimensional space
span{C7} 196-dimensional space

Table 4.2: Spaces spanned by Cn objects

For the An;2 amplitude the proof of the conformal invariance follows in a
similar way. We have

An;2 = −i
∑
i<j

[1|ij|1]

〈23〉〈34〉 . . . 〈n2〉

= −i
∑
i<j

[1i]〈ij〉[j1]

〈23〉〈34〉 . . . 〈n2〉
. (4.19)

Clearly the summation starts at i = 2, since for i = 1 the summand vanishes.
Applying a conformal boost to this object, we get, with the notation k

[m]
αα̇ =
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∂2

∂λαm∂λ̃
α̇
m

:

kαα̇An;2 = −i
∑
m

∑
i

∑
j>i

k
[m]
αα̇

(
[1i]〈ij〉[j1]

〈23〉〈34〉 . . . 〈n2〉

)
= −i 1

〈23〉〈34〉 . . . 〈n2〉
∑
m

∑
i

∑
j>i

[
δim

(
λjα +

λi−1α〈ij〉
〈(i− 1)i〉

− λi+1α〈ij〉
〈i(i+ 1)〉

)
λ̃1α̇[j1]

+ δjm

(
λiα +

λj−1α〈ji〉
〈(j − 1)j〉

− λj+1α〈ji〉
〈j(j + 1)〉

)
λ̃1α̇[1i]

]
. (4.20)

We now analyze the behavior of each part separately. For the first term
we have ∑

m

∑
i>1

∑
j>i

δim

(
λjα +

λi−1α〈ij〉
〈(i− 1)i〉

− λi+1α〈ij〉
〈i(i+ 1)〉

)
λ̃1α̇[j1]

=
∑
i>1

∑
j>i

(
λjα +

λi−1α〈ij〉
〈(i− 1)i〉

− λi+1α〈ij〉
〈i(i+ 1)〉

)
λ̃1α̇[j1]. (4.21)

Now we can exchange the summation order and shift the summation over i
for the last term:

=
∑
j>2

[∑
1<i<j

(
λjα +

λi−1α〈ij〉
〈(i− 1)i〉

)
−
∑
2<i≤j

λiα〈(i− 1)j〉
〈(i− 1)i〉

]
λ̃1α̇[j1]

=
∑
j>2

∑
1<i<j

λjα +
λi−1α〈ij〉
〈(i− 1)i〉

+
λiα〈j(i− 1)〉
〈(i− 1)i〉︸ ︷︷ ︸

=0

− λ2α〈jn〉
〈n2〉

− λjα〈(j − 1)j〉
〈(j − 1)j〉

 λ̃1α̇[j1]

=
∑
j>2

[
−λ2α〈jn〉
〈n2〉

− λjα
]
λ̃1α̇[j1]

=
λ2αλ̃1α̇
〈n2〉

=−[12]〈2n〉︷ ︸︸ ︷∑
j>2

[1j]〈jn〉−λ̃1α̇

=λ2α[12]︷ ︸︸ ︷∑
j>2

λjα[j1]

= (λ2α[12]− λ2α[12]) λ̃1α̇

= 0, (4.22)

where in the second step we used the Schouten identity and in the fourth
step we used momentum conservation. For the second part the procedure is
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similar up to the last step:∑
m

∑
i>1

∑
j>i

δjm

(
λiα +

λj−1α〈ji〉
〈(j − 1)j〉

− λj+1α〈ji〉
〈j(j + 1)〉

)
λ̃1α̇[1i]

. . . =
λ2αλ̃1α̇
〈n2〉

=0︷ ︸︸ ︷∑
i>1

[1i]〈in〉−λ̃1α̇

=0︷ ︸︸ ︷∑
i>1

λiα[i1]

= 0. (4.23)

Therefore we have:
kαα̇An;2 = 0. (4.24)

Hence, the object An;2 is conformally invariant.
Numerically we have found that for n = 6 the extended space of conformally

invariant objects contains the leading-color amplitude. However, for n = 7
it is already not large enough.

In summary, there are simplified expressions for the leading-color term
for n = 4, 5, but we did not find more compact expressions for higher
particle multiplicity. We checked numerically that the leading-color term is
conformally invariant for n up to 12 and therefore expect it to be conformally
invariant in general. Since the leading-color term itself has a rather unpractical
form for our purposes, we analyzed the subleading terms looking for hints
as to how to rewrite the leading-color amplitude in terms of manifestly
conformally invariant objects. Indeed we were able to prove the conformal
invariance of the subleading-color terms. This analysis lead us to identify
new conformally invariant objects, which suffice to rewrite the leading-color
component for 6 gluons in a manifestly conformally invariant, although not
more compact way. For 7 or more gluons we still have to extend the range
of conformally invariant objects at our disposal.
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Chapter 5

Conclusion

In this thesis we started by presenting some necessary tools for computing
gluon scattering amplitudes: the construction of Yang-Mills theories, the
spinor helicity formalism and the color decomposition. The latter allows us
to rewrite the amplitudes in such a way that all the kinematic information
is separated from the color structure and contained in color-ordered partial
amplitudes. These partial amplitudes were the subject of our research.

We further discussed the BCFW recursion relation, which provides a
very powerful technique for writing amplitudes at tree-level even for large
multiplicity iteratively in terms of lower multiplicity ones, and showed its
application for MHV-amplitudes. We then introduced the concept of conformal
symmetry and conformal transformations, showed the explicit form of the
generators and discussed conformal invariance. In particular, the fact that
theories without dimensionful parameters exhibit conformal invariance at
tree-level, but in general not at higher order due to the mass scales introduced
by renormalization.

In the last chapter we presented the results of our work, regarding gluon
amplitudes in the all-plus helicity configuration at one-loop, which surprisingly
appear to be conformally invariant. This has been checked numerically for n
up to 12, but an analytic proof is still missing. Our goal was to rewrite
the leading-color amplitude in terms of manifestly conformally invariant
objects, but, due to its involved expression in terms of nested sums, it is very
cumbersome to rewrite it directly. For this reason we studied the subleading-
color terms and found new conformally invariant objects which, up to n = 6,
suffice to write the leading-color amplitude, but not for n ≥ 7. We also proved
analytically that the subleading-color amplitudes are conformally invariant
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for arbitrary n. We expect that a further study of the leading-color amplitude
for n = 7 might lead to a more general expression in which conformal
symmetry becomes manifest for arbitrary n and to an understanding of the
mechanism protecting conformal symmetry at one-loop order in the all-plus
helicity configuration.
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Appendix A

Conventions

ηµν = diag(+,−,−,−), pµp
µ = p20 − p2,

ε12 = ε21 = +1, ε21 = ε12 = −1,

(σ̄µ)α̇α = (1,−σi), (σµ)αα̇ = εαβεα̇β̇(σ̄µ)β̇β = (1, σ),

(σ̄µ)α̇α = (1, σi), (σµ)αα̇ = (1,−σi),

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

pαα̇ = λαλ̃α̇, pα̇α = εαβεα̇β̇λ
βλ̃β̇

λα = εαβλ
β, λ̃α̇ = εα̇β̇λ̃

β̇

u+(p) = v−(p) =

(
λα
0

)
=: |p〉, u−(p) = v+(p) =

(
0

λ̃α̇

)
=: |p],

ū+(p) = v̄−(p) =
(
0 λ̃α̇

)
=: [p|, ū−(p) = v̄+(p) =

(
λα 0

)
=: |p],

〈λiλj〉 : = λαi λjα, [λ̃iλ̃j] : = λ̃iα̇λ̃
α̇
j .
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