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Abstract
Most of the background variables in MICS (multiple indicator cluster surveys) are categorical with many
categories. Like many other survey data, the MICS 2014 women's data suffers from a large number of
missing values. Additionally, complex dependencies may be existent among a large number of
categorical variables in such surveys. The most commonly used parametric multiple imputation (MI)
approaches based on log linear models or chained equations (MICE) become problematic in these
situations and often the implemented algorithms fail. On the other hand, nonparametric MI techniques
based on Bayesian latent class models have worked very well if only categorical variables are considered.
This paper describes how chained equations MI for continuous variables can be made dependent on
categorical variables which have been imputed beforehand by using latent class models. Root mean
square errors (RMSEs) and coverage rates of 95% confidence intervals (CI) for generalized linear models
(GLM’s) with binary response are estimated in a simulation study and a comparison is made among
proposed and various existing MI methods. The proposed method outperforms the MICE algorithms in
most of the cases with less computational time. The results obtained by the simulation study are supported
by a real data example.
Keywords: Complex dependencies; MICE; Multiple Indicator Cluster Surveys
1 Introduction
Information on many variables is collected in different large-scale surveys like Multiple Indicator Cluster
Surveys (MICS). The MICS provides opportunities to fill data gaps for monitoring the health situation of
children and women in under developed countries. MICS collects data on various indicators like
mortality, nutrition, child and reproductive health, etc. Face to face interviews with household members
are conducted to collect data. Information based on background variables of the indicators mentioned
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above is very important for data analysis, and for policy making (Corsi, Perkins and Subramanian, 2017).
However, the problem of missing data is inevitable in such studies. For example, the data set of individual
women from MICS 2014, which has been used in the real data example latter, has a high percentage of
data missing on 200 background variables. This problem arises, for example, due to item non response
(INR) or entry errors etc. Beside INR, general reasons for the missing datasets include data entry errors,
system failures etc. There are three missing data mechanisms. Missing values in any data can be missing
completely at random (MCAR), or missing at random (MAR), or missing not at random (MNAR) (Rubin,
1987; Little and Rubin, 2002). In MCAR, the probability of missing data on a variable is not correlated to
itself and or other measured variables. In MAR, the probability of missing depends on other, observed,
variables. Finally, data are MNAR if the probability of missing depends on the variable value itself.
Practically all methods implemented in software assume MAR. MNAR is called “non-ignorable”, if the
parameters driving the missing data process and the parameters driving the data generating process are
distinct (or independent in a Bayesian analysis), but this is not further considered in the paper. Exact
missing data mechanisms are often unknown when dealing with large scale data sets. Therefore, most of
the time, certain assumptions are made accordingly. Li et al. (2012) addresses some problems with
missing large data. Little’s MCAR test proposed by Little (1988) is used commonly for testing missing
data beingMCAR.

The representativeness of the sample can be reduced and inferences about the population can be
distorted due to missing values. Moreover, ignoring missing data can lead to a bias of unknown direction
and magnitude in the estimated parameters. Therefore, it is critical to impute the data, which usually
provides more accurate inference compared to ad-hoc methods (e.g. complete case (CC) analysis or
single imputation) in case of missing at random (MAR) (Abdella and Marwala, 2005; Little and Rubin,
2002). The CC analysis sacrifices all units where at least the value of one variable is missing. Such
methods are still very popular in psychological research (Schlomer et al., 2010). However, the CC
analysis (listwise deletion) can lead to biased estimates (Little and Rubin, 2002). The CC method also
results in a loss of power, which can make the analysis inefficient (Little and Rubin, 2002). Despite of
being the worst available method (Wilkinson and Task Force on Statistical Inference, 1999), CC is still
the most applied technique due to the simplicity and availability as default option in statistical software
packages (van Ginkel, 2007). The hot-deck method is another approach and belongs to the family of
single-imputation approaches. This method replaces missing values with values from a “similar”
responding unit (Andridge and Little, 2010) and the empirical distribution obtained is used to draw the
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imputed values. In the case that the entire sample of respondents is being used as a single donor pool, this
method produces consistent and unbiased estimates for missing completely at random (MCAR) data
(Rubin, 1976; Little and Rubin, 2002). This method uses covariate information, avoids strong parametric
assumptions and requires no careful modelling to develop selection criteria for imputing a value because
it does not have any parametric model (Schafer and Graham, 2002). However, the problem with this
method is that it lacks the clear criteria to guide the selection of the donor set of complete cases (Pérez et
al., 2002). Bayesian bootstrap (Rubin, 1987) is a useful alternative when standard hot-deck becomes
unsuitable to impute in the presence of a large number of variables (Andridge and Little, 2017). Other
proposed methods for missing data use various statistical methods including self-organizing maps (SOM)
(Kohonen, 1995; Oja and Kaski, 1999), k-nearest neighbour (kNN) (Batista and Monard, 2003), multi-
layer perceptron (Sharpe and Solly, 1995), recurrent neural networks (Bengio and Gingras, 1995). Auto-
associative neural network imputations with genetic algorithms are proposed by Pyle (1999), Narayanan
et al. (2002), Chung and Merat (1996). Marseguerra and Zoia (2005) and Marwala and Chakraverty
(2006) also implement some of the well-known methods used for handling missing data. Multi-task
learning approaches are some other techniques based on machine learning methods (Ankaiah and Ravi,
2011).. According to the studies of Horton and Kleinman (2007), Honaker et al. (2011), Royston and
White (2011) and van Buuren and Groothuis-Oudshoorn (2011), over the last three decades, a wide range
of variety and settings of multiple imputation (MI) techniques has been introduced for catering missing
data problems in different research areas (Abdella and Marwala, 2005; Honaker et al., 2011; Little and
Rubin, 2002; Schafer and Graham, 2002). MI, likelihood based analysis, and weighting approaches are
alternatives to listwise and pairwise deletion methods. These methods usually make the assumption that
the missing data is missing at random (MAR), hence making the estimates unbiased, consistent, and
asymptotically normal (Allison, 2002; Barnard and Meng, 1999; Roth, 1994; Schafer and Graham, 2002)
if that assumption holds. Model-based MI is currently considered the most popular method of addressing
missing data problems. The true complete-data distribution and the missing-data mechanism form the
basis of the imputation model which can be explicit or implicit by nature (Rubin, 1987). Draws from the
posterior predictive distribution of the unobserved data given the observed data can be used to impute
missing values. This process is repeated andM imputed data sets are created. By conducting the analysis
on each of these data sets, the resulting M point and M variance estimates are then combined by a set of
rules (Rubin, 1987). Missing values in continuous variables are often treated using a multivariate normal
MI. These models are often robust to departure from normality by nature (Graham and Schafer, 1999;
Schafer, 1997). Indicators in survey datasets are mostly categorical. Schafer (1997) describes that MI
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with log-linear models can be used to generate imputed values for such indicators by capturing the
associations in the joint distribution. A severe restriction is that the number of variables must in general be
small (Vermunt et al., 2008). The fully conditional specification (FCS) (van Buuren, 2007), also known
as MI by chained equations (MICE) (Raghunathan et al., 2001; van Buuren, 2007) is another important
tool. Missing values are sequentially imputed by estimating a series of univariate conditional models.
Normal regressions and logistic or multinomial logistic regressions are used for continuous and
categorical dependent variables, respectively. Alternatively, a method called predictive mean matching
(PMM) can be used. Newer implementations also allow classification and regression trees (CART).
MICE is an iterative method and imputes missing values variable by variable. It uses the current
regression estimates for the response variable, where the response variable in this context is the actual
target variable in the iterative process for which missing values are imputed. MICE assumes that
equivalent, or at least nearly as good, draws for the joint distribution of the variables can be approximated
by the sequential draws from the univariate conditional models. There are three main limitations or
difficulties in the implementation of MICE. First, there is a possible lack of compatibility among the set
of univariate conditional regression models and the joint distribution of the variables being imputed
(Arnold and Press, 1989; Gelman and Speed, 1993). Although an algorithm is proposed which selects the
sequence of regression models such that they are assumed to be a good fit for the data, it is very
complicated to establish exact conditions for convergence (Zhu and Raghunathan, 2016). Second, the risk
of overlooking higher order interactions arises when MICE includes only the main effects in the
univariate conditional regression models, although using CART may resolve this problem. Third, the
procedure is very time consuming when higher-order interactions are included parametrically in the
model (Vermunt et al., 2008). To resolve such complications, a fully Bayesian Joint Modelling (JM)
approach, called Dirichlet process mixture of products of multinomial distributions (DPMPM), is
proposed by Si and Reiter (2013). This approach uses nonparametric Bayesian versions of latent class
models to multiply impute high-dimensional categorical data (Vermunt et al., 2008). This approach has
two stages. In stage one, a mixture of independent multinomial distributions is modelled for a
contingency table of the categorical variables. In the second stage, the mixture distributions are estimated
non-parametrically with Dirichlet process prior distributions. Arbitrarily complex dependencies can be
described by such mixtures of multinomials. Since the computation of these dependencies is practical and
generally easy, they can serve as an effective general purpose MI engine. These models have been
successfully used to impute missing values in up to 80 categorical variables (Si and Reiter, 2013).Murray
and Reiter (2016) have also worked on combining Dirichlet process mixtures of multinomial and
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multivariate normal distributions for categorical and continuous variables, but this approach involves
complicated models to create the dependence structure between the continuous and the categorical
variables. The R (R Core Team, 2018) package “NPBayesImputeCat” by Quanli et al. (2018) is a tool for
non-parametric Bayesian JM MI, but the implementation of this package is restricted to categorical
variables. Since categorical variables are internally represented as dummy variables which could easily
double the actual number of predictors, the implementation of the FCS MI by chained equations
algorithm becomes extremely slow or difficult in the presence of categorical variables with missing
values. The R package “mice” by van Buuren and Groothuis-Oudshoorn (2011) implements MI by
chained equations. Usually, household surveys based on health studies include data on a range of risk
factors and health outcomes, including categorical variables with many categories mainly, and often the
number of numeric variables is less as compared to categorical variables in such studies (Chandra et al.,
2005; Gulliford et al., 1999). Therefore, one is limited in the choice of both MI methods, i.e. for using the
former (JM), one has to sacrifice continuous variables in the analysis (or categorize them) and the latter
(FCS) becomes problematic if many categorical variables are involved. Due to certain limitations, both
approaches cannot be used together without correct modifications. An easy to implement hybrid
technique is proposed in this paper which describes how FCS MI by chained equations for continuous
variables can be blended with JMMI by latent class models for categorical variables.
The paper is organized as follows: A detailed description of a fully Bayesian, JM approach for multiple
imputations of large categorical datasets is given in Section 2. In Section 3, the measures of performance
used for the comparisons are described. The hybrid algorithm is described in Section 4. Section 5
compares the performance of different imputation methods in simulation studies. In Section 6, the
proposed method is applied to a real data set and results are discussed. Concluding remarks are given at
the end.

2 Latent class models and multiple imputation
2.1 Bayesian latent class imputation model and MI
To understand a fully Bayesian, JM approach to multiply impute large categorical datasets, it is important
to understand a few details regarding how mixture models are used for density estimation and MI. The
distribution of categorical data can be described by a mixture model known as latent class model
(Lazarsfeld, 1950). Mixture models are considered as flexible tools which model the association structure
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of a set of variables (their joint density) by utilizing a finite mixture of simpler densities (McLachlan and
Peel, 2000). The probability of having a specific response pattern is defined by each mixture component
in a Latent Class Analysis (LCA). A weighted average of the class-specific densities generates the
estimated overall density. As described by Lazarsfeld (1950), the scores of different items are
independent of each other within latent classes due to local independence assumptions in LCA. A brief
introduction to the mathematical form of an LC model as a tool for density estimation is given in the
following: Let yij be the score of the ithperson on the jth categorical item belonging to an n×J data-matrix Y
(i = 1, ..., n, j = 1, ..., J), yi the J-dimensional vector with all scores of person i, and xi a discrete
(unobserved) latent variable with K categories. In the LC model, the joint density P (yi; π) has the
following form:

P (yi; π) =∑K
𝑘=1 𝑃(𝑥 𝑖 = 𝑘;𝛑𝒙) P 𝑦𝑖ǀ𝑥𝑖 =  𝑘;𝛑𝒚

=  ∑K
𝑘=1 𝑃(𝑥 𝑖 = 𝑘;𝛑𝒙)∏ 𝐽

𝑗=1 P 𝑦 𝑖𝑗ǀ𝑥 𝑖 =  𝑘;𝛑𝑦𝑗 (1)

where π=(πx, πy) is a set of LC model parameters which can be partitioned into two parts. The first part
contains the latent class proportions (πx) and the second contains class-specific item response
probabilities (πy). A separate set of parameters for each of the J items (πyj) is assigned to the second part.
Due to the fact that a mixture distribution is used, a weighted sum of the K class-specific multinomial
densities P(yi|xi = k; πy) generates the overall density. In this generation, the latent proportions are used as
weights. From (1) it can be seen that the product over the J independent multinomial distributions
(conditional on the k-th latent class) makes use of the local independence assumption. The first, second,
and higher-order moments of the J response variables can be captured in LC models by setting the
number of latent classes large enough (McLachlan and Peel 2000). The generated higher-order moments
are actually the univariate margins, bivariate associations, and higher-order interactions when dealing
with categorical variables (Vermunt et al., 2008). The unit’s posterior class membership probabilities, i.e.
the probability that a unit belongs to the k-th class given the observed data pattern yi, is the quantity of
interest when using LC models. According to the theorem of Bayes, we can define this quantity as
follows:

 P(𝑥𝑖 =  𝑘|𝑦𝑖 ; 𝛑) =  𝑃(𝑥𝑖 = 𝑘;𝛑𝐱)𝑃(𝑦𝑖|𝑥𝑖= 𝑘;𝛑𝐲)
𝑃(𝑦𝑖;𝛑)   (2)
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2.2 Dirichlet process infinite mixtures of products of multinomials
The fully Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of products of
multinomial distributions model” (DPMPM) (Dunson and Xing, 2009) is described as:

1. Assume that each individual i belongs to exactly one of K < ∞ latent classes
2. For i = 1,…, n, let x𝑖 𝜖  { 1,…, 𝑘} indicate the class of individual i, and let
𝜋𝑘=P 𝑥𝑖 = 𝑘 . Assume further, that 𝜋 = { 𝜋1,…, 𝜋∞} is the same for all individuals. Within
any class, we suppose that each of the j variables independently follows a class-specific
multinomial distribution i.e. for any value yj 𝜖  { 1,…, 𝑑𝑗} let Ұ(𝑗)

𝑘𝑗𝑦 = 𝑃 𝑦𝑖𝑗 = 𝑦𝑗  ǀ𝑥𝑖 = 𝑘 . Here,
𝑑𝑗 is the the total number of categories for the variable j.

Mathematically expressing the finite mixture model as
𝑦𝑖𝑗 |x𝑖 , Ұ i𝑛𝑑 Multinomial (Ұ(𝑗)

𝑥𝑖1
,…,Ұ(𝑗)

𝑥𝑖𝑑𝑗
) for all i and j (3)

  x𝑖 | 𝜋 ~ Multinomial (𝜋1, …, 𝜋∞) for all i (4)
For prior distributions on Ұ and 𝜋 , we have

  𝜋𝑘 = Vk ( ∏
𝑙<𝑘

1 − Vx) For k=1,…, ∞
Vw    ii𝑑 Beta (1, 𝛼)
𝛼 ~ Gamma (aα, bα )

Ұkj  ~ Dirichlet ( 𝑎𝑗1 , …, 𝑎𝑗𝑑j
)

Here (aα, bα)  and (𝑎𝑗1, …, 𝑎𝑗𝑑j
) are analyst-supplied constants. Each element of (𝑎𝑗1 , …, 𝑎𝑗𝑑j

) is set to one
in order to correspond to the uniform prior distribution. Following Dunson and Xing (2009), we set 𝑎𝛼 =
0.25 and 𝑏𝛼= 0.25 and k=80, 150 and 400 as numbers for the mixture components.
3 Evaluation of performance
In order to incorporate the uncertainty introduced by missing data and the imputations into the inferences,
the estimates for quantities of interest obtained by analyzing each completed dataset are combined by
utilizing rules proposed by Rubin (1987). Let Q be any quantity of interest (e.g. a population proportion or
a probability or a regression coefficient). For m = 1,…,M, let q(m) and u(m) be respectively the point
estimate of Q in the m-th imputed data set with variance estimate q(m). Valid inferences for a scalar Q by
combining the q(𝑚) and u(𝑚) according to Rubin (1987) are obtained as follows:

𝑞
𝑀
=∑𝑀

𝑚=1
q (𝑚)

𝑀 , (5)
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𝑏𝑀=∑𝑀
𝑚=1

(q 𝑚 − 𝑞
𝑀

)2

𝑀−1 , (6)

 𝑢 𝑀 =∑𝑀
𝑚=1

u (𝑚)

𝑀 , (7)
𝑞

𝑀
can be used to estimate Q and the variance of 𝑞

𝑀
can be estimated by

TM =  1 + 1
𝑀 𝑏𝑀 + 𝑢 𝑀 , (8)

with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 +
𝑢 𝑀

( 1+ 1
𝑀 𝑏𝑀)2

).
Confidence intervals can be constructed using standard multiple imputation confidence interval
construction rules, which approximately follow a t-distribution. For more detail see Rubin (1996),
Barnard and Meng (1999), Reiter et al. (2006), Harel and Zhou (2007).

4Proposed hybrid architecture
Since the application of the package “NPBayesImputeCat” (Quanli et al., 2018) is limited to only
categorical variables, the incomplete dataset is proposed to be partitioned into two sets, one consisting of
categorical variables (Miss.cat), (which MICE may not be able to impute due to reasons described in the
introduction) and the other consisting of continuous variables (Miss.num), where variables may be missing
in both sets. A fully Bayesian JM (DPMPM) approach is used to fill in missing values by utilizing the
package "NPBayesImputeCat" in Miss.cat. This results in a complete version (Imp.cat) of categorical
variables independent of information available in the continuous variables. This complete version
(Imp.cat) of categorical variables can be used by MICE to construct chained equations based on
categorical variables which have already been imputed by the fully Bayesian joint models to now impute
the continuous variables. To achieve this, the dataset (Miss.num) is added to the dataset (Imp.cat) andMICE
is run. This provides one completely imputed dataset where the imputations of the continuous variables
obtained by FCS using chained equations depend on the information available in the imputed categorical
variables. This process is repeatedM times to obtain multiple imputed datasets using different algorithms
offered by the R package “mice” (van Buuren and Groothuis-Oudshoorn, 2011) along with some prior
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specifications and a number of mixture components used in the R package "NPBayesImputeCat" (Quanli
et al., 2018).Algorithm 1 explains the proposed hybrid architecture in detail.

1: 𝑞(𝑧)  are pooled point estimatesoverM imputed datasets across z simulations.
2: 𝑇(𝑧)  are pooled variancesoverM imputed datasets across z simulations.
3: 𝑞 is an average of pooled point estimates ( 𝑞(𝑧))across z simulations.
4: 𝑇 is an average of pooled variances (𝑇(𝑧))across z simulations.
5 Simulation studies
Simulation studies are conducted to examine the impact of MI by our proposed method. The incomplete
data is generated as MAR with (known) effects and the number of categorical variables is kept more than
the number of continuous variables, aiming to compare strategies in a realistic data situation.
We generate a sample of size n={1000} for five (X1, X2, X3, X4,X5) dimensional correlated random
covariates from a multivariate normal distribution MVN. The marginal distributions of X1, X2, X3, X4, X5
are normal and we set the mean and variance of each variable to 0 and 0.5 respectively. The correlation
structure is given as:

Algorithm 1: Proposed hybrid architectureRequire: P nxp matrix with incomplete data1. Miss.cat , Miss.num← Initial division of p variables into factor and numeric subsets.2. for z= 1, … ,Z do3. for m= 1, …,M do  4. 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚
← Imputing Miss.cat using R package “NPBayesImputeCat”.

5. 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚
𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚← Combining 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚

 and 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚 to generate partially imputed dataset.
6. 𝐼𝑚𝑝𝑧

𝑚← Imputing 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚
𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚using R package “mice” i.e. 𝑓( 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚⃒ 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚

)
7. 𝐼𝑚𝑝𝑧

𝑚 ← Final imputed data set.
8. 𝑞(𝑧)← ∑𝑀

𝑚=1
q (𝑚)

𝑀 Pooled point estimates1.
9. 𝑏(𝑧) ←∑𝑀

𝑚=1
(q 𝑚 −𝑞 (𝑧))2

𝑀−1

10. 𝑢(𝑧) ←∑𝑀
𝑚=1

u (𝑚)

𝑀11. 𝑇(𝑧) ←  1 + 1
𝑀 𝑏(𝑧) + 𝑢(𝑧) Pooled variances2.

12.  end for
13. 𝑞← ∑𝑍

𝑧=1
𝑞 (𝑧)

𝑍 Average of pooled point estimate3.
14. 𝑇 ←  ∑𝑍

𝑧=1
𝑇 (𝑧)

𝑍 Average of pooled variance4.
end for
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R = 1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

,
where 𝜌 = 0.5. The following component-wise threshold is used to transform random covariates into
binary values.

𝑋𝑖 = 0   𝑖𝑓    𝑋𝑖  ≤ 0 .5   ,
     1    𝑖𝑓     𝑋𝑖 > 0.5   ,      

where i=1, 2, 3, 4, 5.
We than define 𝜇6 = -0.2X1-0.3X2+0.5X3 -0.2X4+ 0.22X5 and 𝜇7= -2+𝜇6 . Outcomes for two
continuous covariates are generated from normal distributions (ND) described as below:

X6 ~ N (𝜇6; 2),
X7 ~ N (𝜇7; 2).

We generate X8 from Bernoulli distributions with probabilities governed by the logistic regression with
logit Pr (X8) =-3+1.5X1 -2.15X2+2.25 X3+1.6X4-1.88X5 +1.11X6 -0.96 X2X3+2.3 X1X3+0.5 X2X6 -2 X5
X6+1.21 X1 X5-2.7 X1X2+1.2 X1X2X3+3 X6X7.
A covariate dependent binary response y is generated from Bernoulli distributions with probabilities
governed by the logistic regression with
logit Pr (y) = 0.2-0.1X1 -0.1 X2-0.1 X3+0.3X4 -0.5X5 +0.2 X6-0.1 X7-0.1 X8 and βtrue = (0.2;-0.1 ;-0.1 ;-
0.1 ;0.3 ;-0.5;0.2 ;-0.1 ;-0.1). We suppose that values in all covariates are missing at random with the
following probabilities

p = 1 - 𝑒(−𝜏−𝑋7)

(1 + 𝑒(−𝜏−𝑋7))
,

where 𝝉 is a constant. The probabilities defined above yield about 10% to 15 % of the observations in Xj to
be missing (at random) for 𝝉=-1.5 and 𝝉= -0.5 respectively. We repeat the process 1000 times, each
time generating new binary response variables and new missing patterns. We use three purely MICE
based MI methods, namely classification and regression trees (CART) (Breiman, 2001), ppredictive
mean matching (PMM) (Morris et al., 2014) and the Default (which uses logistic models for categorical
and PMM for continuous variables). We use two Hybrid Multiple Imputation (HMI) methods e.g.
H.CART and H.DEF depending on various combinations with MICE algorithms (Default and CART)
and different tuning parameters (aα, bα; k ). We further define H.CART1 which is a combination of
MICE.CART and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25, k = 80), H.CART2 which is a combination of MICE.CART and (𝑎𝛼=
0.25, 𝑏𝛼= 0.25, k =150) and H.CART3which is a combination of MICE.CART and (𝑎𝛼=0.25, 𝑏𝛼=0.25, k =
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400). Also we define H.DEF1 which is a combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 80),
H.DEF2 which is a combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 150) and H.DEF3 which is a
combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 400). In order to achieve convergence and
estimates from simulations in a reasonable time, a Gibbs sampler with 100 Markov-Chain-Monte-Carlo
(MCMC) iterates is used. Two hundred iterations are run to insure convergence and to have the results of
the simulations in a reasonable time when using the HMI methods. The R (R Core Team, 2018) version
3.0.1 is used to perform all calculations. The packages “mice” (van Buuren and Groothuis-Oudshoorn,
2011), version 2.17 and “NPBayesImputeCat” (Quanli et al., 2018), version 0.1 are used to perform
MICE for continuous data and non-parametric Bayesian MI for categorical variables, respectively. Three
sets of M=10 imputed datasets are generated using MICE methods, i.e. MICE.PMM, MICE.DEF and
MICE.CART, three sets of (M=10) imputed datasets are generated using H.CART1, H.CART2 and
H.CART3 and three sets of (M=10) imputed datasets are generated using H.DEF1, H.DEF2 and H.DEF3.
The number of multiple imputations (M=10) is large in order to get better estimates of standard errors.
Even a higher number ofMwould have been desirable but would have led to further increased computing
times. Simulated root mean square errors (RMSEs), empirical standard errors (ESEs) and coverage rates
of 95% confidence intervals for generalized linear models (GLM’s) with binary response and mixed
covariates are estimated via combining rules described above and a comparison is made among the
proposed and various existing MI methods. Tables 1-2 and Tables 3-4 display the coverage rates of 95%
confidence intervals (CI) and RMSEs (ESEs) for the 10% and 15% MAR datasets, respectively, across
1000 simulations. Figures 1-2 and Figures 3-4 show boxplots of the pooled point estimates and standard
errors for 10% and 15%MAR datasets, across 1000 simulations respectively.
5.1 Results
As discussed, we used two HMI methods i.e. (“H.CART” and “H.DEF”) for comparison with three
MICE based MI methods, i.e. (“MICE.DEF”, “MICE.CART” and “MICE.PMM”). In the simulation study in
section 5, we generated datasets with two missing rates, i.e. 10% and 15%, using a MAR process. The
HMI method “H.DEF1” provides almost equal 95% CI coverage rates for the most parts and the
remaining two “H.DEF” methods, i.e. (“H.DEF2” and “H.DEF3”) provide better results for the most parts
as compared to the “MICE.DEF” and “MICE.PMM” MI methods. This may imply that larger values for k
have an effect on the overall performance of the “H.DEF” MI methods. All three MI methods based on
“H.CART” provide better 95% CI coverage rates for the most parts as compared to “MICE.DEF” and
“MICE.PMM”, but slightly worse coverage than “MICE.CART” for some of the simulations. Surprisingly,
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the coverage rates for the regression coefficient β8 of all three “H.CART” based MI methods are higher
for the 10% MAR datasets, indicating a better ability to detect complex dependency structure as
compared to “MICE.CART”. See Tables 1-2. However, we observe no such real differences in the monte
carlo errors (Koehler et al., 2009). This can be due to the limited number of simulation runs used. We
observe for the most parts that the between imputation variations (i.e. ESEs) for all HMI MI methods are
smaller compared to “MICE.DEF” and “MICE.PMM” and almost equal compared to “MICE.CART”. The
amount of bias is also relatively low for the proposed HMI methods, see Tables 3-4. The average point
estimates based on the proposed HMI methods are close to the corresponding true values in most of the
cases, see Figures 1-2. Average standard errors based on the proposed HMI methods are also smaller for
all cases as compared to the threeMICE basedMImethods, see Figures 3-4.

Table 1. Simulated data: 95% confidence intervals (CI) coverage rates for 10% MAR.

Table 2. Simulated data: 95% confidence intervals (CI) coverage rates for 15% MAR.

Method β1 β2 β3 β 4 β 5 β6 β 7 β 8MICE.PMMMICE.CARTMICE.DEFH.DEF1H.CART1H.DEF2H.CART2H.DEF3H.CART3

95 95 96 95 95 94 95 9697 96 97 96 96 96 95 9695 95 96 96 95 96 95 9596 96 96 94 95 95 96 9695 96 97 94 96 96 97 9796 96 96 95 95 95 95 9795 96 96 94 97 95 96 9696 96 96 94 95 94 95 9796 96 96 95 97 96 96 97

Method β1 β2 β3 β 4 β 5 β6 β7 β 8MICE.PMMMICE.CARTMICE.DEFH.DEF1H.CART1H.DEF2H.CART2H.DEF3H.CART3

97 95 95 95 95 96 95 9798 96 97 95 94 95 95 9794 95 95 96 96 96 96 9697 97 97 96 96 96 95 9896 97 97 95 96 96 96 9698 96 97 96 95 96 95 9796 96 96 95 96 96 96 9798 96 96 96 95 96 96 9796 96 97 96 96 96 96 97



13

Table 3. Simulated data: RMSEs (ESEs) for 10%MAR.

Table 4. Simulated data: RMSEs (ESEs) for 15% MAR.

Var
iabl

es

Mice.PMM MICE.DEF MICE.CART H.DEF1 H.CART1 H.DEF2 H.CART2 H.DEF3 H.CART3

β1β2β3β4β5β6β7β8

0.16(0.16)0.16(0.16)0.16(0.16)0.16(0.16)0.16(0.16)0.08(0.08)0.05(0.05)0.19(0.19)

0.16(0.16)0.16(0.15)0.16(0.16)0.16(0.16)0.16(0.16)0.08(0.08)0.04(0.04)0.19(0.19)

0.14(0.14)0.15(0.15)0.15(0.15)0.15(0.15)0.16(0.16)0.08(0.08)0.04(0.04)0.17(0.17)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.15)0.08(0.08)0.04(0.04)0.17(0.17)

0.15(0.15)0.15(0.15)0.15(0.15)0.16(0.16)0.15(0.15)0.08(0.08)0.04(0.04)0.17(0.16)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.15)0.08(0.08)0.05(0.05)0.17(0.17)

0.15(0.15)0.15(0.15)0.15(0.15)0.16(0.16)0.15(0.15)0.08(0.08)0.04(0.04)0.17(0.16)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.15)0.08(0.08)0.05(0.04)0.17(0.17)

0.15(0.15)0.15(0.15)0.15(0.15)0.16(0.16)0.15(0.15)0.08(0.08)0.04(0.04)0.17(0.16)

Var
iabl

es Mice.PMM MICE.DEF MICE.CART H.DEF1 H.CART1 H.DEF2 H.CART2 H.DEF3 H.CART3

β1β2β3β4β5β6β7β8

0.15(0.15)0.16(0.16)0.17(0.17)0.16(0.16)0.17(0.17)0.08(0.08)0.05(0.05)0.20(0.20)

0.17(0.17)0.17(0.17)0.17(0.17)0.16(0.16)0.17(0.17)0.08(0.08)0.05(0.05)0.21(0.21)

0.14(0.14)0.15(0.15)0.15(0.15)0.16(0.16)0.17(0.16)0.08(0.08)0.05(0.05)0.18(0.17)

0.14(0.14)0.15(0.15)0.15(0.15)0.16(0.15)0.16(0.16)0.08(0.08)0.05(0.05)0.17(0.17)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.16)0.08(0.08)0.05(0.05)0.18(0.17)

0.14(0.14)0.15(0.15)0.15(0.15)0.16(0.15)0.17(0.16)0.08(0.08)0.05(0.05)0.18(0.17)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.16)0.08(0.08)0.05(0.05)0.18(0.17)

0.14(0.14)0.15(0.15)0.16(0.15)0.16(0.15)0.17(0.16)0.08(0.08)0.05(0.05)0.18(0.17)

0.15(0.15)0.15(0.15)0.16(0.16)0.16(0.16)0.16(0.16)0.08(0.08)0.05(0.05)0.18(0.17)
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Figure 1. Simulated data: Boxplots of the pooled point estimates for 10% MAR (1000 simulations).
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Figure 2. Simulated data: Boxplots of the pooled point estimates for 15% MAR (1000 simulations).
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Figure 3. Simulated data: Boxplots of the pooled standard errors for 10% MAR (1000 simulations).
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Figure 4. Simulated data: Boxplots of the pooled standard errors for 15% MAR (1000 simulations).
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6 Real data-based example
6.1 Motivation
The Bureau of Statistics Punjab has conducted the Multiple Indicator Cluster Survey (MICS) Punjab,
2014, Pakistan, in collaboration with the United Nations Children's Fund (UNICEF). The Government of
the Punjab has provided the major funding through the Annual Development Program 2014-15 and
UNICEF has provided the annual report. The documents related to MICS Punjab consisting of the final
report, key findings, survey plan, list of indicators and questionnaires can be found on the MICS website
(www. http://bos.gop.pk). UNICEF in the 1990s has developed the global MICS program as an
international household survey program. MICS provides support to the countries in gathering universal
comparable data consisting of a wide range of indicators on the health and socio economic situation of
children and women. We have used the MICS 2014 women's data that comprises more than 200
background variables on 61286 observations from 36 districts of Punjab. The data contains information
of women's background characteristics like demographics, age, education, motherhood and recent births
etc. Most of the background variables are categorical with lots of categories whereas few variables like
age are numeric. The health benefits of breastfeeding are no longer in doubt (WHO 2003). Breastfeeding
does not only contribute to the early development of a child but is also crucial for the wellbeing of the
mother as well. MICS 2014 women's data can be used to determine the effect of various factors affecting
the feeding practices in Punjab. This analysis could be very helpful in decision making policies regarding
women and child health.
6.2 Imputation ofMICS background variables
Since MICS data for women contains data with a possibly complex dependency structure, the application
of the package “mice” can become problematic due to various limitations, e.g. non-convergence of the
Gibbs sampler in special cases, large amount of missing values, tedious work required for specification of
imputation models and interaction terms in presence of large data bases with hundreds of variables and
multicollinearity problems (van Buuren and Oudshoorn, 1999). It was not possible to have a proper
comparison of the proposed and existing MI approaches in such cases. Therefore, it was decided to select
a subset containing 7 continuous and 37 categorical variables. The selection of variables is made
according to the evidence from demographical and behavioral risk factors effecting inclination towards
breastfeeding. Some of the selected categorical variables, i.e. district, has lots of categories (k=36), hence
keeping the analysis comparable and challenging at the same time. Among these 43 variables, 5 variables
have less than 14% missing values; 16 variables have between 32 to 68 per cent missing values; 20
variables have between 80 to 95 per cent missing values. Only 2 variables are completely observed. All
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variables are included in the imputation model. The reasons of missing observations in MICS data are
typical, i.e. nonresponse, don’t know, not reached, etc. For the sake of multiple imputations, all reasons
for item nonresponse are treated asMAR.
The whole process of creating imputations is repeated twenty times and M=10 completed datasets are
generated for each MI method. The binary response (Ever Breastfeed), which compromises two
categories (Yes / No), is finally modeled using a GLM analysis model depending on four categorical
variables (Mother Ever Attended School: two categories, Delivery by C Section: two categories,
Satisfaction from Health: two categories, Area: two categories) and two continuous covariates (Age of
Mother and Freq. ofMother Reads New). The R package “VIM” (Templ et al., 2012) is utilized to explore
the pattern of missing values. Figure 5 displays the proportion of missing values and the missing data
pattern for the variables used in the analysis model. Since there are no true values to compare for in the
real data example, we calculated complete case (CC) estimates for comparison purposes (Table 5). The
time taken by each MI method is shown in Table 6. Boxplots of the pooled point estimates and standard
errors for the real data are shown in Figures 6 and 7 respectively.
6.3 Results
Figure 5 in the real data example displays the bar plot on the left side which shows the proportions of
missing values in the predictors. The categorical predictor “Delivery By C Section” has the highest
amount of missing values (i.e. more than 80%) followed by “Ever Breastfeed” (about 80%), “Satisfaction
FromHealth” (about 60%) and “Freq. ofMother Reads New” (about 40%). The amount of missing values
is rather small for “Mother Ever Attended School” and “Age” (i.e. less than 20%). The categorical
predictor “Area” has no missing values. An aggregation plot on the right side shows all existing
combinations of missing (red) and imputed observed (blue) values. The frequencies of different
combinations can be seen by a small bar plot on the right side (Templ et al., 2012). The aggregation plot
reveals that if missing values occur in the variable “Ever Breastfeed”, they most often also occur in the
variables “Satisfaction From Health”, “Freq. of Mother Reads New” and “Delivery By C Section”. We
note, that the standard errors for most of the coefficients are smaller relative to the (absolute) point
estimates under all MI methods (see Figures 6-7). We noticed that point estimates in MICE.CART are
nearer to the estimates in complete case analysis for most of the cases as compared to the hybrid methods
(see Table 5). In the real data example, the HMI methods tend to show smaller pooled standard errors for
most of the co-variates as compared to the MICE methods. We see, that when HMI MI methods are
applied to the real data set, the pooled standard errors are comparatively smaller for all covariates as
compared to the “MICE.DEF”MI method and smaller for most the covariates ( i.e. “Age”, “Freq. of Mother
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Reads New”, “Delivery By C Section” and “Area”) as compared to the “MICE.PMM” MI
method. “H.CART” tends to show smaller pooled standard errors for the covariates (i.e. “Age” and
“Delivery by C Section”) as compared to its counterparts. For the rest of the covariates, the differences
are also not so high, which suggests a reasonable performance compared to MICE, see Figures 6-7. The
computational burden is significantly reduced for most of the settings using the proposed HMI methods,
see Table 6.

Table 5. Real data: complete case (CC) estimates
Variables est seAgeMother Attended SchoolFreq. Mother Reads NewsDelivery by C SectionSatisfaction FromHealthArea

0.14-0.59-0.090.430.270.16

0.060.770.150.250.270.25The “est” and “se” denote the point estimates and standard errors of the coefficients of the GLM,respectively.
Table 6. Real data: Time taken by various MI methods.

Note: Time = the time to complete 10 multiple imputation by variants of MI across 20 simulations andd = days.

Method Time
MICE.CARTMICE.PMMMICE.DEFH.DEF1H.CART1H.DEF2H.CART2H.DEF3H.CART3

4.20d3.52d3.14d1.70d1.62d1.68d1.64d1.82d1.77d
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Figure 5. Aggregation graphic of the incomplete covariates.

Figure 6.Real data: Boxplots of the pooled point estimates.
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Figure 7. Real data: Boxplots of the pooled standard errors.

7 Concluding remarks
The superiority of CARTand the JM technique DPMPM over the default MI methods in MICEis already
established in Akande et al. (2017). Results from simulations and a real data example show that for most
of the cases, hybrid techniques tend to perform better not only than the default MI methods in MICE, but
also than the remaining MICE options in the presence of mixed type variables, at least for the considered
GLM analysis model with binary response. The statistical properties of the proposed approach can be
further studied for continuous response with mixed type covariates. In this method, chained equations
used to multiply impute continuous variables are made dependent on categorical variables which have
been already multiply imputed by DPMPMs through a conceptually simple method. The user can choose
a set of incomplete categorical covariates that the regular MICE can sometimes fail to impute due to
various restrictions, i.e. large datasets, complex dependencies, high percentage of missing data,
specification of higher order interactions, multicolinearity and other instability problems. Missing values
in categorical variables can be imputed by a nonparametric MI approach called DPMPMs. After filling
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the categorical variables, these variables are replaced in the original dataset in order to perform regular
MICE. This method combines MI by chained equations and mixtures of multinomial distributions. This
approach could be very appropriate for a large number of variables with complex association structures,
especially coming from large sample surveys. To implement this method, no knowledge of complicated
models is required. Various combinations of prior specifications and the maximal number of mixture
components can be chosen together with the appropriate MICE algorithms to achieve better coverage
rates and point estimates. We have observed that increasing the maximal number of mixture components
tends to result in better coverage rates compared to most of the MICE methods in many cases. The
proposed method is more flexible in specifying higher order interactions in the model. It also eliminates
the use of predictor selection beforehand. Further comparisons can be made for data with ordinal nature
and more categories with large values of prior specifications. Our proposed method is also
computationally inexpensive and requires less time even when performed with a large number of
iterations. Since most of the educational and health surveys contain lots of categorical and comparatively
less continuous variables, various organizations can use this imputation method to create completed
datasets without understanding the complexity of the dependency and model structures. However, of
note, one limitation of the proposed method is, that the information available in the continuous variables
is not used for imputing the categorical variables. Therefore, it is too early to make any final conclusion
until unless experiments with diversity of settings are conducted.
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