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ABSTRACTMultiple-imputation (MI) is a method for treating the problem of missing data. There arevarious competing computational algorithms available in the R environment to address missingdata problems of categorical and continuous variables. In the case of a high amount of missinginformation, large sample sizes and complex dependency structures among categorical variables,the utility of the provided R packages is somewhat limited. A computationally expedient, fullyBayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of multinomialdistributions” (DPMD), automatically models complex dependencies among variables. But thisapproach is limited to categorical variables only. We propose a simple and easy to implementcombining algorithm which imputes continuous variables using various algorithms and uses theJM approach to detect complex dependency structures among categorical variables. We review,describe and evaluate software packages commonly available in R and compare the results withthe proposed MI method by using as example an artificial data set. The results suggest that theMI approach which combines the JM approach and various algorithms based on generalizedlinear models dominates various algorithms when applied solely.Keywords: Survey data; Multiple Imputation; Complex dependencies; Hybrid; Dirichletprocess prior distributions, R - project.
1. INTRODUCTION

Item non response is a main problem in large scale surveys. Such surveys usually have alarge number of categorical variables as compared to the number of continuous variables. Usingonly the available data results in decreased efficiency and possibly biased inference. Rubin(1987) has proposed multiple-imputation (MI), a method for handling missing data, more than 40years ago. For more details, see Rubin (1987) and Schafer (1997).MI requires random draws from the posterior distribution of the missing data given theobserved data. Although this method is conceptually simple but it can become difficult andcontentious, especially when there are categorical variables with complex dependencies and highdimensions to impute. There exist various competing computational algorithms to impute data.There is a need to investigate which of these algorithms outperform the others with respect to MIin the presence of complex dependencies among categorical variables in large scale surveys. Afully Bayesian, joint modeling approach called “Dirichlet process mixtures of multinomialdistributions” (DPMD) for multiple imputation (MI) for categorical data (Si and Reiter, 2013) inlarge scale surveys automatically models complex dependencies while being computationallyefficient at the same time. Akande et al. (2017) have compared repeated sampling properties ofvarious MI methods for categorical data. They found that chained equations using Classification
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and Regression Trees (CART), and a fully Bayesian approach based on Dirichlet Processmixture models dominate the default chained equations approaches based on Generalized LinearModels (GLM’s). The DPMD MI approach is limited to categorical variables; but it is possibleto impute categorical variables with complex dependencies and high dimensions using DPMDand continuous variables with existing MI methods by combining two approaches. In this paperwe propose a hybrid MI (HMI) approach which combines DPMD and existing MI approaches byimputing categorical variables with DPMD and use various imputation techniques to impute thecontinuous variables. In this paper, we compare the performance of existing and proposed MImethods in the presence of complex dependency structures among categorical variables. Thejudgment about the performance will be based on various dimensions, such as accuracy incomparison with the true values, point estimates and standard errors for the fitted GLM’s andcoverage rates of 95% confidence intervals.
2 NOTATIONS AND ASSUMPTIONS FOR THE MISSINGMECHANISMS
Let D denote the incomplete data with sample size n and p variables. The distribution ofD is an arbitrary multivariate distribution.Also assume i and j refer to observations where i=1,…,n and variables j=1,…,p, respectively.There are two components of the data set D= {Dobs, D miss}. A response indictor matrix with samedimensions as D is

R𝑖𝑗 =
0  𝑖𝑓 𝑣𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔
1  𝑖𝑓 𝑣𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

Note that we use R in atelic for the R environment in this article. Missing Completely AtRandom (MCAR) is one possible assumption where 𝑃𝑟 Rǀ𝐷𝑚𝑖𝑠𝑠,𝐷𝑜𝑏𝑠 = 𝑃𝑟 R . The second
possible assumption is Missing At Random (MAR) where 𝑃𝑟 Rǀ𝐷𝑚𝑖𝑠𝑠,𝐷𝑜𝑏𝑠 = 𝑃𝑟 Rǀ𝐷𝑜𝑏𝑠 .
Missing Not At Random (MNAR) is another possible assumption where 𝑃𝑟 Rǀ𝐷𝑚𝑖𝑠𝑠,𝐷𝑜𝑏𝑠 ≠
𝑃𝑟 Rǀ𝐷𝑜𝑏𝑠 and depends on 𝐷𝑚𝑖𝑠𝑠. The third assumption is also called non-ignorable (NI) and
not further used in the paper. (Little and Rubin, 2002).

3 IMPUTATION SOFTWARE
Various imputation algorithms are implemented in a variety of statistical packages tohandle missing data and to perform MI. Many standard statistical packages i.e., R, S-Plus, SAS,SPSS, and STATA not only implement standard algorithms but also offer user-written programsto facilitate a variety of more elaborated methods to handle missing data. Readers who areinterested in the comparison of the performances of these packages are suggested to read Yu etal. (2007) or Horton and Kleiman (2007). We take R under consideration in this paper due to itsopen source character and its popularity. NA’s are used to indicate missing values in R. “AmeliaII”, “Hmisc”, “mi”, “mice”, “yaImpute”, “mix”, “cat”, “NPBayesImpute”, “norm”, “pan”,“monoman”, “mvnml” etc., all use the R environment to impute missing data. “mitools” is auseful package to combine the results from MI whereas the package “VIM” can be utilized forexploring data and the pattern of missing values. We use “Amelia II”, “Hmisc”, “mice” and
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"NPBayesImpute” in our examples. Short descriptions of some of these packages are presentedin Table 1.

4 REVIEW OF EXISTING APPROACHES
There is a wide range of imputation models available which are based on the missingnesspatterns. These approaches can be categorized according to the data types. In case of a monotonemissing pattern, simple methods, i.e. “propensity” (Rosenbaum and Rubin, 1983) or “PredictiveMean Matching” (PMM) (Little, 1988), are used for continuous variables. Markov Chain MonteCarlo (MCMC) approaches use markov chains to generate random draws from multidimensionalprobability distributions. A sequence of random variables where the distribution of each elementdepends on the values of the previous ones is called a markov chain. MCMC approaches aresuggested for complicated missingness patterns. The MCMC approach has few downsides; it iscomplicated and usually requires more time Statistical packages “SAS”, “S-Plus” and “mice”etc. use the MCMC approach. Multivariate normality assumptions apply to both the predictivemean matching and MCMC approaches (Horton and Lipsitz, 2001). According to Schafer(1997), inferences based on this normality assumption can be robust for minor departures.Discriminant analysis or logistic regression are preferred for discrete variables formonotone missing pattern. There is a variety of imputation methods for categorical data in highdimensions. For details, see Vermunt et al. (2008). Log-linear models may be the preferredmethod for discrete variables, since arbitrary complex dependency structures can be modeled.But the implementation of this approach becomes difficult or impossible in high dimensions(Erosheva, er al., 2002). Naturally, there are a large number of possible models in highdimensions which makes model selection very challenging and makes it also impossible to selecta model from all possible log-linear models as well. In this situation, implementation ofautomated model selection procedures becomes unavoidable. Moreover, model selectionprocedures become more complicated with missing data. Maximum likelihood estimates of thelog-linear model coefficients can be biased in high dimensions (Bishop et al., 1975).Imputation methods like fully normal (FN) imputation (Rubin and Schenker, 1986)convert categorical data to multivariate normal or continuous by applying rounding techniques.But there are evidences that the performance of these methods is limited. For example, animputed value when made “plausible” using rounding, can tend to generate a bias and themethod can fail even in low dimensions (Ake, 2005; Allison, 2000; Bernaards et al., 2007; Finch,2010; Graham and Schafer, 1999; Horton et al., 2003; Yucel et al., 2011). Below we discuss indetail the MI algorithms we used for comparison purposes. Advantages and disadvantages of thealgorithms are discussed as well.

4.1 EXPECTATION-MAXIMIZATION WITH BOOTSTRAPPING (EMB) USED BYAMELIA IIThe combination of the expectation-maximization algorithm and non-parametricbootstrapping is called the Expectation-Maximization with Bootstrapping (EMB) algorithm.First, starting values for the mean and variance and a multivariate distribution is assumed, thedistribution is updated by calculating an expected value of the model likelihood followed byparameter estimation. Expectation and maximization steps are iterated until estimates converge.
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However, below is a brief summary of the expectation-maximization (Schafer, 1997; Watanabeand Yamaguchi, 2000; Little and Rubin, 2002).As far as the non-parametric bootstrapping method is concerned, it works by utilizing theobserved sample as the pseudo-population and randomly drawing a subsample of size n withreplacement from this observed sample. This process is repeated M times (Wooldridge, 2002).Assuming a data set with q observed and n - q missing values, the EMB algorithms consists ofthe following steps: First, bootstrap samples of size n are drawn from incomplete data M timesby applying non-parametric bootstrapping method. Second, M point estimates of µ and Ʃ arecalculated by applying the EM algorithm to each of these M bootstrap samples. Finally, Mmultiply-imputed data sets are constructed (Honaker and King, 2010). R package “Amelia II”(Honaker et al., 2011) version 1.6.1 implements this algorithm. EMB is computationally moreefficient as compared to MCMC methods but is only an approximate Bayesian procedure.
4.2 MIXTURE MODELS FOR MULTIPLE IMPUTATION

To impute high-dimensional categorical data with significant item non-response, one hasto face the challenges of model selection and estimation of log-linear models. Moreover, log-linear models and sequential regression techniques become computationally inefficient andpotentially biased when the number of possible models becomes very large. Therefore, a MItechnique is preferred that not only addresses these difficulties but also has a theoreticalgrounding as a coherent Bayesian joint model and tackles all sources of uncertainty, includingparameter estimation and inference, see Rubin (1987). According to Si and Reiter (2013),Bayesian models incorporate such uncertainty automatically. They propose to use the fullyBayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of products ofmultinomial distributions model” (DPMPM) which was originally proposed by Dunson and Xing(2009). DPMPM is a nonparametric Bayesian model for multivariate unordered categorical data.Below we describe categorical data imputation using Bayesian joint modeling. A briefdescription is given how this approach can be combined with existing approaches through aflexible and easy to implement architecture.
Assume, we have item non-response in n individuals with p variables 𝐶𝑖𝑗 i.e. (value of variable jfor individual i, where each i belongs to exactly one of K < ∞ latent classes). Further assume fori = 1,…, N, we have the class 𝑧𝑖 of individual i i.e. 𝑧𝑖 𝜖  1,…, 𝐾 with probability 𝜋𝑘 =Pr 𝑧𝑖 =
𝑘 . Let 𝜋 = { 𝜋1,…, 𝜋𝑘} be the same for all individuals. We suppose that within any class, eachof the p variables independently follows a class-specific multinomial distribution. For any value
𝑐𝑗 𝜖  1,…, 𝑑𝑗 , let Ұ 𝑗

𝑘𝑙𝑗 = 𝑃𝑟 𝐶𝑖𝑗 = 𝑐𝑗ǀ𝑧𝑖 = 𝑘 . We can express the finite mixture model
mathematically as    𝐶𝑖𝑗 |𝑧𝑖 , Ұ i𝑛𝑑  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 Ұ 𝑗

𝑧𝑖1
,…,Ұ 𝑗

𝑧𝑖𝑑𝑗
for all i and j and    𝑧𝑖 |𝜋 ~

𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( 𝜋1,…, 𝜋𝑘 ) for all i. For prior distributions on Ұ and 𝜋 , we have 𝜋𝑘 =
𝑉𝑘 ( ∏

𝑙<𝑘
1 − 𝑉 𝑙) for k =1,…, 𝐾 and  𝑉𝑘~ 𝐵𝑒𝑡𝑎 (1, 𝛼) for k=1,…,𝐾 − 1, 𝑉𝑘 = 1. Finally we have

𝛼 ~ Gamma (𝑎𝛼 , 𝑏𝛽 ) and   Ұ 𝑗
𝑘1 ,…,Ұ 𝑗

𝑘𝑑𝑗
~ Dirichlet ( 𝑎𝑗1 , …, 𝑎𝑗𝑑𝑗

). In order to get complete
data sets, first the latent class indicator for each individual is drawn from the full conditional andthen, second, each missing 𝐶𝑖𝑗 is drawn from class-specific, independent categorical
distributions.
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This approach is consistent, can include any possible distribution, is computationallyefficient and easy to code. The R package, “NPBayesImpute” by Manrique-Vallier et al. (2014)implements this approach. Short coming of this package is that it only takes categorical variablesinto account.
4.3 FULLY CONDITIONAL SPECIFICATION (FCS): CHAINED EQUATIONS
The FCS approach is an alternative to MCMC (see Yu et al., 2007). Multivariate missingdata is imputed on a variable-by-variable basis. We specify a multivariate distribution Pr(D, R│

𝜃) using a series of conditional densities Pr(𝐷𝑗│𝐷−𝑗, R,𝜆𝑗) where λ is the unknown parameter of
the imputation model. An imputation model is specified for each variable, depending on theobserved values in the dataset and the response mechanism, i.e 𝑃𝑟 𝐷𝑚𝑖𝑠ǀ𝐷𝑜𝑏𝑠,R  in our setting.
A simple draw is made using the marginal distributions first. Then imputation is repeated overthe conditionally specified imputation models (van Buuren, 2012). Imputations are created foreach variable iteratively. Multivariate Imputation by Chained Equations (MICE) is a prominentconditionally specified imputation model. MICE works as follows.1 Specify an imputation model for each variable 𝐷𝑗Pr(𝐷𝑗,𝑚𝑖𝑠𝑠│𝐷𝑗,𝑜𝑏𝑠,𝐷−𝑗, R).2 Let 𝐷𝑗,0 be the starting imputation for each variable j. This value is e.g. obtained by

making random draws from the observed values 𝐷𝑗,𝑜𝑏𝑠.3 Repeat this process for t=1,…,T and j=1,…,p as well.4 Draw 𝜆𝑗,𝑡~𝑃𝑟(𝜆𝑗,𝑡│𝐷𝑗,𝑜𝑏𝑠,𝐷−𝑗,𝑡,R).
5 At the end draw imputations

𝐷𝑗,𝑡~𝑃𝑟(𝐷𝑗,𝑚𝑖𝑠𝑠│𝐷𝑗,𝑜𝑏𝑠,𝐷−𝑗,𝑡,R,𝜆𝑗,𝑡).MICE uses logistic or multinomial logistic regression models for categorical variables.Similar to log-linear models, these conditional models suffer from model selection andestimation problems in high dimensions. Moreover, it is very time consuming to specify manyconditional models when the number of variables is large. This can result in biased estimates ifdefault settings are used for chained equations, i.e. when we are ignoring interaction effects inthe conditional models and hence fail to capture complex dependencies (Vermunt et al., 2008).The R Package, “mice” 2.13 (van Buuren and Groothuis-Oudshoorn, 2011) implements the FCSalgorithm.4.4 ADDITIVE REGRESSIONS, BOOTSTRAPPING AND PREDICTIVE MEANMATCHING TECHNIQUESAdditive regressions, bootstrapping and predictive mean matching techniques for MI areimplemented in the “Hmisc” package using “aregImpute” functions. A brief summary of thesteps used by the “aregImpute” algorithm is as follow:Consider p variables containing m missing observations (NAs)1 Initial values are assigned to the NAs by drawing a random sample of size m fromobserved values. Random samples are drawn with replacement if there exist asufficient number of NAs.2 The observations from the variable already imputed, i.e. having no missings, are usedto draw a sample with replacement for a variable containing any missing value.3 After transforming the variable, a flexible additive model is fitted to predict this targetvariable.
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4 This semi-parametric fitted model is used to predict the target variable in all of theoriginal observations.5 The target variable can be imputed either by using the observed value whosepredicted transformed value is closest to the predicted transformed value of themissing value or a drawn from a multinomial distribution with probabilities derivedfrom distance weights.6 Repeat this process whenever predicting other missing variables with current targetvariable by using random draws from imputations obtained.
This approach has few downsides. Many of the multiple imputations for an observationwill be identical when the predicted transformed value is closest to the predicted transformedvalue of the missing value. This happens when less than three variables are used to predictthe target variable and implementation of PMM fails. Moreover, PMM and Bayesianpredicted values will always match to same donor observation when only monotonictransformations of left and right-side variables are allowed e.g., every bootstrap resamplewill give predicted values of the target variable that are monotonically related to predictedvalues from every other bootstrap resample.

Table 1. Basic information: Multiple Imputation in R

#Method Acronym Description
1234
5

Amelia IImiHmiscNPBayesImpute
mice

Uses a bootstrap +EM algorithmUses multiple iterative regression algorithmUses Additive Regression, Bootstrapping and PMM algorithmsUses a fully Bayesian, joint modeling approach to multipleimputations for categorical data based on latent class modelswith structural zeros.MI using FCP
Source: Based on Manuals available on http://www.r-project.org/

Table 2 .Basic information: Hybrid Multiple Imputation (HMI) in R

Source: Self-prepared.

#Method Acronym Description

123
H.AmeliaH.HmiscH.MICE

Amelia+NPBayesImputeHmisc+NPBayesImputeMice+NPBayesImpute
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5 MI METHOD FOR COMBINING ESTIMATES
For 𝑚 = 1,…, M, assume q and u are complete-data estimators. Let q(𝑚) and u(𝑚) berespectively the point estimates of quantity of interest, Q and variance estimates of q(𝑚). Validinferences for scalar Q by combining the q(𝑚) and u(𝑚) , by Rubin (1987) are as follow.

q
M

=∑M
m=1

q (m)

M , (1)

bM=∑M
m=1

(q m − q
M

)2

M−1 , (2)

 u M =∑M
m=1

u (m)

M , (3)

where q
M

can be used to estimate Q and variance of q
M

can be estimated by 𝑇𝑀 =  1 +
1
𝑀 𝑏𝑀 + 𝑢 𝑀 with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 +

𝑢 𝑀

( 1+ 1
𝑀 𝑏𝑀)2

).

6 HYBRID MI (HMI) APPROACH
We propose an easy to implement hybrid MI (HMI) approach. HMI combines fullBayesian joint models (JM) MI with various MI algorithms commonly implemented in the Renvironment. Although a great number of algorithms have been designed to tackle missing dataproblems but many of them can only work with a specific amount of missing rate, variables anddata. Many MI algorithms are specific for categorical variables, only, and cannot beimplemented on continuous variables where as other accept both types of variables but fail toperform in presence of high dimensions and complex dependencies. These methods arecomputationally expensive and, in some cases, less accurate. Such complex structures arecommon in high dimension household surveys where categorical variables have lots ofcategories i.e. District, Country etc. These limitations motivate the use of DPMPM for MI ofcategorical data because this method has better capacity to work in high dimension and missingat random mechanism. The superiority of DPMPM MI is well established over default MICE,see Si and Reiter (2013). The proposed method consists of three stages: Firstly, data instancesare separated into two different groups i.e. Gcat and Gnum. All categorical variables are assignedto Gcat and numeric ones to Gnum. Both groups may have missing information. We impute Gcatusing the DPMPM MI method implemented in R package, “NPBayesImpute” (Manrique-Vallieret al., 2014) in the second stage. Then, we combine Gcat and Gnum again but this time we havemissing information in Gnum, only. Lastly, we apply different algorithms to impute Gnum based onvalues already imputed by DPMPM. We investigate the ability of various approaches to detectcomplex dependency structures in high dimensions using the HMI approach. To access theefficiency, we applied three well known MI methods (R-packages “mice”, “Amelia” and“Hmisc”) to both groups and contrast the results with our HMI methods (“H.Amelia”,“H.MICE”, “H.Hmics”). Details of these methods are already provided in section 4 of thisarticle. Algorithm 1 below explains HMI in detail.
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1: 𝑞𝑧
𝑀  are pooled point estimates over m imputed datasets across z simulations.

2: 𝑇𝑧
𝑀  are pooled variances over m imputed datasets across z simulations.

3: 𝑞 is an average of pooled point estimates (𝑞𝑧
𝑀  ) across z simulations.

4: 𝑇 is an average of pooled variances (𝑇𝑧
𝑀) across z simulations.

7 SIMULATION STUDIES
The simulation studies are inspired by Si and Reiter (2013). The data consists of N = 1000observations. First, five binary variables (X1, X2, X3, X4, and X5) are generated from amultivariate normal (MVN) distribution, followed by a categorization. The marginaldistributions of X1, X2, X3, X4, X5 are normal and we set the mean of each variable at 0 and thevariance of each variable at 0.5. The correlation structure is given as:

Algorithm 1: Hybrid MI
Require: n x p matrix with incomplete data.
1. Gcat ,Gnum ← Initial division of p variables into two factor and numeric groups2. for z= 1, … ,Z do3. for m= 1, … ,M do  4. 𝐺𝑧

𝑐𝑎𝑡𝑚
← Imputation using NPBayesImpute.

5. 𝐺𝑧
𝑐𝑎𝑡𝑚

𝐺𝑧
𝑛𝑢𝑚𝑚← Combining 𝐺𝑧

𝑐𝑎𝑡𝑚
imputed and 𝐺𝑧

𝑛𝑢𝑚𝑚 missing to generate partially
imputed dataset.6. 𝐺𝑧

𝑚← Imputing 𝐺𝑧
𝑛𝑢𝑚𝑚missing using mice⃒Amelia⃒Hmisc⃒i.e.

𝑓( 𝐺𝑧
𝑛𝑢𝑚𝑚missing│𝐺𝑧

𝑐𝑎𝑡𝑚
imputed).

7. 𝐺𝑧
𝑚 ← Final imputed data set.

8. 𝑞𝑧
𝑀← ∑𝑀

𝑚=1
q (𝑚)

𝑀 Pooled point estimates1.
9. 𝑏𝑧

𝑀 ← ∑𝑀
𝑚=1

(q 𝑚 − 𝑞
𝑀

)2

𝑀−1

10. 𝑢𝑧
𝑀 ← ∑𝑀

𝑚=1
u (𝑚)

𝑀

11.𝑇𝑧
𝑀 ←  1 + 1

𝑀 𝑏𝑧
𝑀 + 𝑢𝑧

𝑀 Pooled variances2.
12.  end for
13. 𝑞← ∑𝑍

𝑧=1
𝑞𝑧

𝑀
𝑍 Average of pooled point estimate3.

14.𝑇 ←  ∑𝑍
𝑧=1

𝑇𝑧
𝑀

𝑍 Average of pooled variance4.
end for
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H = 1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1Where 𝜌 = 0.5. Random variates are transformed into binary values using the followingthreshold:

𝑋𝑖 = 0   𝑖𝑓    𝑋𝑖  ≤ 0 .5   
     1    𝑖𝑓     𝑋𝑖 > 0.5         

Here i=1, 2, 3,4,5.We than define 𝜇6 = 5 X1- 3X2+ 5X3 -4 X4+ X5 and 𝜇7= -2+𝜇6 . Outcomes for two continuouscovariates are generated from a normal distribution (ND) as described below:
X6 ̴ N (𝜇6; 2),X7 ̴ N (𝜇7; 2).We generate X8 from Bernoulli distributions with probabilities governed by the logisticregression withlogit Pr (X8) =-1 - 1.5X1 -1.15X2+1.25X3+1.6X4 + 2.88X5 +1.11X6 - 1.5 X7 -1.9 X2X3 + 2.3X1X3 -1.5X2X6 -2X5X6 X7 +1.21 X1X5 -2.7X1X2 +1.2X1X2 X3 +3X6X7.We then define a co-variate dependent binary response generated from Bernoullidistributions with probabilities governed by the logistic regression as follow:logit Pr (y) = 0.5-0.1X1 -0.1 X2-0.1 X3+0.9X4 - 0.5X5 +0.2 X6 - 0.1 X7 - 0.5 X8+ ε and ϕ= βtrue =(0.5;-0.1;-0.1;-0.1;0.9;-0.5;0.2;-0.1;-0.5). We suppose that values in all covariates are MARwith the following probability

p = 1 - 𝑒(−0.001−𝑋7)

(1 + 𝑒(−0.001−𝑋7))
.

This provides around 10% of the observations in Xi to be missing (at random). Forapplying the DPMPM MI method, we set the prior specifications for 𝑎𝛼 and 𝑏𝛼 to (𝑎𝛼 = 0.05, 𝑏𝛼= 0.01) with 80 as the maximum number of mixture components (k). We implement theDPMPM MI method using the R package “NPBayesImpute” version 0.6 (Manrique-Vallier etal., 2014). We implement a default version of chained equations using the “mice” softwarepackage in R version 2.12 (van Buuren and Oudshoorn, 1999). We implement bootstrap andPMM MI methods using 13 (for convenience) iterations with the “aregImpute” function in the“Hmisc” software package in R version 4.1 (Harrell, 2010). We also use the R package “AmeliaII” version 1.6.1 (Honaker et al., 2011) with defaults as basic command. Various imputations(M) are generated for each MI method. Five thousand sampling simulations are run.Pooled point estimates and standard errors for the fitted GLM’s with binary responseare presented in figures 1, 2 ,3 and 4 for 10 and 20 imputed data sets, respectively. In order toget insight into the performance of the imputation algorithms, we make comparisons of differentimputation methods using the root mean square error (RMSE) and empirical standard errors(ESE) indices, which are calculated using the following formulas:
RMSE = 𝐸𝛽 𝛽𝑗 −  𝛽𝑗 

2 ,
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ESE = 𝐸𝛽 (𝛽𝑗 −  𝛽𝑗 )2,
where 𝛽𝑗 and 𝛽𝑗 denote the estimated parameter pooled over M imputed data sets and original
parameters, respectively. The average values of the pooled estimated parameters over the 5000simulations are presented by 𝛽𝑗. The smaller values for RMSEs and ESEs indicate better
performance (Oba et al., 2003). Results for ESEs and RMSEs for the described standard andHMI techniques are presented in Tables 3, 4, 6 and 7 respectively. Tables 5 and 8 present thecoverage rate of 95% confidence intervals for 10 and 20 imputed data sets.

8 SIMULATION RESULTS
As discussed, we used three software package in R i.e (“Amelia”,“MICE” and“Hmisc”) for comparison with our proposed HMI methods, i.e (“H.Amelia”,“H.MICE” and“H.Hmisc”). We limited the simulation study to low missingness rates and consider 10% ofvalues MAR, only. We also increased the number of imputations from M=10 to M=20 foreventually better estimates. Between imputations variation can be assessed by ESEs presented inTables 3 and 6. We observe for the most part, that the ESEs are lower or equal for the“H.Hmisc” approach except for ß8 which is slightly high as compared to the standard “Hmisc”approach. The ESEs for fitted generalized linear models under the “H.MICE” approach aresmaller or equal for all cases as compared to its counterpart. The “H.Amelia” MI approach tendsto have slightly higher ESEs, overall. The amount of bias can be assesed by RMSEs presented inTables 4 and 7. All six methods are slightly downward biased for most of the cases. Estimatesobtained from “H.MICE” tend to have lower bias for most of the cases as compared to the“MICE” MI approach. The coverage rates, for most estimands, are higher or at least similarbetween all three HMI methods. See tables 5 and 8. Pooled standard errors are often lower forthe three HMI methods, see figures 2 and 4. The results suggest that the MI approach whichcombines the JM approach for categorical variables and various algorithms based on linearmodels for continuous variables is a useful alternative to the various algorithms when appliedsolely.

Table 3. Simulated Data: ESEs for fitted generalized linear models to 10 imputed data sets

Variables H. Hmics Hmics H.Amelia Amelia H.MICE MICE
β1β2β3β4β5β6β7β8

0.180.170.180.170.170.240.470.17

0.180.170.190.170.150.260.470.16

0.180.170.180.170.170.230.470.17

0.170.160.180.160.150.240.460.15

0.180.180.180.180.160.250.500.17

0.200.180.200.190.170.300.510.18
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Table 4. Simulated Data: RMSEs for fitted generalized linear models to 10 imputed data sets

Table 5. Simulated Data: Coverage rate of 95% confidence intervals for 10 imputed data sets

Methods β1 β2 β3 β 4 β5 β6 β7 β8AmeliaHmicsMICEH.AmeliaH.HmicsH.MICE

97 98 98 92 96 96 97 9697 97 96 94 96 97 97 9796 95 95 95 96 96 95 9596 97 96 94 96 95 97 9696 97 96 94 96 95 97 9696 97 96 94 96 95 96 96

Variables H. Hmics Hmics H.Amelia Amelia H.MICE MICE
β1β2β3β4β5β6β7β8

0.190.170.190.190.170.270.470.17

0.180.170.190.190.160.270.470.16

0.190.170.190.190.170.270.470.17

0.180.160.180.210.160.280.460.16

0.190.180.190.190.170.280.500.17

0.200.180.200.190.170.300.510.18
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Figure 1. Simulated data: Pooled Point Estimates for 10 imputed data sets



13

Figure 2. Simulated data: Pooled Standard Errors for 10 imputed data sets
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Table 6. Simulated Data: ESEs for fitted generalized linear models to 20 imputed data sets

Variables H.Hmics. Hmics. H.Amelia Amelia H.MICE MICE

β1β2β3β4β5β6β7β8

0.170.170.180.180.160.230.460.17

0.180.160.180.170.160.260.470.15

0.170.170.180.170.160.230.460.17

0.160.160.170.160.150.240.460.15

0.180.170.180.180.160.250.490.17

0.200.180.200.190.170.300.510.18

Table 7. Simulated Data: RMSEs for fitted generalized linear models to 20 imputed data sets

Variables H.Hmics. Hmics. H.Amelia Amelia H.MICE MICE

β1β2β3β4β5β6β7β8

0.180.170.180.190.160.280.460.17

0.180.160.180.190.160.270.470.16

0.180.170.180.190.170.270.460.17

0.180.160.180.200.160.280.460.17

0.190.170.190.190.160.280.490.17

0.200.180.200.190.170.300.510.18

Table 8. Simulated Data: Coverage rate of 95% confidence intervals for 20 imputed data sets

Methods β1 β2 β3 β 4 β5 β6 β7 β8AmeliaHmicsMICEH.AmeliaH.HmicsH.MICE

97 98 97 92 96 96 97 9697 98 97 95 96 97 97 9695 96 95 96 96 95 95 9696 96 97 94 96 96 97 9696 97 97 94 96 95 97 9696 97 96 94 96 95 96 96
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Figure 3. Simulated data: Pooled Point Estimates for 20 imputed data sets
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Figure 4 . Simulated data: Pooled Standard Errors for 20 imputed data sets
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9 CONCLUDING REMARKS
Based on results obtained by simulations, we can make several general conclusionsabout the three HMI procedures. The three HMI methods use the JM approach for categoricaldata having complex dependency structure and three different algorithms for continuousvariables. First, the default application of “MICE” (which uses logistic models forcategorical and PMM for continuous variables), appears to be inferior to “H.MICE”, overall.“H.MICE” utilizes the JM approach to identify complex dependency structures amongcategorical variables where missing continuous variables are imputed using the PMM techniqueas used beforehand. Of course, one could use various applications offered by MICE, i.e.classification and regression trees (CART) or PMM to automatically find and model importantdependence structures which were not possible by default MICE. But it would be problematicto select appropriate sets of interaction effects to include in the conditional models in the highdimensional case. Second, identification of a clear winner between “Hmisc” and “H.Hmisc” islittle difficult. The coverage rates of the 95% confidence intervals for “Hmisc” tend to be largerthan the coverage rates for “H.Hmisc”. The “H.Hmisc” tends to result in lower standard errorsthan “Hmisc”. It tends to result in smaller RMSEs as well. Third, analysts may prefer“H.Amelia” for high coverage rates for most estimands with slight bias and due to itsfastness5. Increasing the number of imputed data sets improves results by reducing RMSEs.Since now, we have considered small numbers of prior specifications ( 𝑎𝛼, 𝑏𝛽) and mixture

components (k) in simulations. The generalization of these results may not be possible to allother settings. Extensive comparison is required for increased levels of 𝑎𝛼, 𝑏𝛽 and k.We
considered only binary response with binary and continuous covariables. Of course, statisticalproperties of the HMI approach can be studied for continuous response with mixed typecovariates, also. Additionally, data with ordinal nature and more categories can be included forfurther comparisons.

5: The time taken by hybrid methods may vary depending on number of iterations and mixturecomponents assigned i.e. it takes more time for large values of k and iterations. Therefore,“H.Amelia” is slower than “Amelia” but fastest then all the remaining MI methods used inanalysis.
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