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Abstract

We study the optimal design of student financial aid as a function of parental income.
We derive optimal financial aid formulas in a general model. For a simple model version,
we derive mild conditions on primitives under which poorer students receive more aid
even without distributional concerns. We quantitatively extend this result to an empiri-
cal model of selection into college for the United States that comprises multidimensional
heterogeneity, endogenous parental transfers, dropout, labor supply in college, and uncer-
tain returns. Optimal financial aid is strongly declining in parental income even without
distributional concerns. Equity and efficiency go hand in hand.
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1 Introduction

In all OECD countries, college students benefit from financial support (OECD, 2014). More-
over, with the goal of guaranteeing equality of opportunity, financial aid is typically need-
based and targeted specifically to students with low parental income. In the United States,
the largest need-based program is the Pell Grant. Federal spending on this program exceeded
$30 billion in 2015 and has grown by over 80% during the last 10 years (College Board, 2015).
One justification for student financial aid in the policy debate is that the social returns to
college exceed the private returns because the government receives a share of the financial
returns through higher tax revenue (Carroll and Erkut, 2009; Baum et al., 2013). This lowers
the effective fiscal costs (i.e., net of tax revenue increases) of student financial aid.1

In this paper, we study the optimal design of financial aid and show that considering
dynamic scoring aspects is crucial to assessing the desirability of need-based programs such
as the Pell Grant. The reduction in the effective fiscal costs of student financial aid due to
dynamic fiscal effects varies along the parental income distribution. We show that effective
fiscal costs are increasing in parental income and are therefore lowest for those children that
are targeted by the Pell Grant. The policy implication is that need-based financial aid is
desirable not only because it promotes intergenerational mobility and equality of opportunity.
Need-based financial aid is also desirable from an efficiency point of view because subsidizing
the college education of children from weak parental backgrounds is cheaper for society than
subsidizing students from "average" parental backgrounds. The usual equity-efficiency trade-
off does not apply for need-based financial aid.

To arrive there, we start with a general model without imposing restrictions on the under-
lying heterogeneity in the population. Further, besides enrollment, labor supply and savings
decisions, we consider dropout, labor supply during college and endogenous parental trans-
fers. We derive a simple optimality condition for financial aid that transparently highlights
the key trade-offs. At a given level of parental income, optimal financial aid decreases in the
share of inframarginal students, which captures the marginal costs. These costs are scaled
down by the marginal social welfare weights attached to these students. Optimal financial aid
increases in the share of marginal students2 and the fiscal externality per marginal student,
which jointly capture the marginal benefits of the subsidy. The fiscal externality is the change
in lifetime fiscal contributions causal to college attendance.3 For the optimality condition, the

1The Congressional Budget Office (CBO), following a request by the Senate Committee on the Budget,
recently documented the growth in the fiscal costs of Pell Grant spending (Alsalam, 2013). Dynamic scoring
aspects are neglected in this report: the positive fiscal effects through higher tax revenue in the future are
not taken into account. Generally, the CBO does consider issues of dynamic scoring: https://www.cbo.gov/
publication/50919.

2Those students that are at the margin of attending college with respect to financial aid.
3On top of that, financial aid is also increasing in the completion elasticity with respect to financial aid

and the fiscal externality due to completing college instead of dropping out. This channel, however, turns out
to be quantiatively of minor importance.
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specific reason why marginal students change their behavior due to a change in subsidies (e.g.,
borrowing constraints or preferences) is not important.

Elasticities linking changes in enrollment behavior to changes in financial aid have been
estimated in the literature (e.g., by Dynarski (2003) and Castleman and Long (2016)). These
papers provide guidance about the average value of this policy elasticity or about its value at
a particular parental income level. However, knowledge about how this elasticity varies along
the parental income distribution is missing. Knowledge of those parameters for students from
different parental income groups, however, is necessary to analyze the welfare effects of need-
based financial aid. Further, these elasticities are not deep parameters but do change as policy
changes. The main approach of this paper is therefore a structural model of selection into
college that allows us to compute this policy elasticity along the parental income distribution
and for alternative policies.

As a first step, however, before studying this empirical model, we consider a simple theo-
retical setting. We reduce the complexity of the problem by focusing on two dimensions of
heterogeneity: (i) parental transfers and (ii) returns to college. Further, we simplify the model
by making the problem static, shutting down risk, labor supply during college and dropout.
We first show that financial aid is decreasing in parental income even in the absence of dis-
tributional concerns if the distribution of returns is log concave (which implies a decreasing
hazard rate)4 and if returns and parental income are independently distributed. We then
show that these analytical results extend to the empirically more plausible case of a positive
association between parental income and child ability.5

We then move to our structural life-cycle model, where we account for earnings risk,
dropout, labor supply during college and, importantly, we account for crowd-out of parental
transfers by explicitly modeling parental decisions to save, consume and provide transfers
to their children. Another additional crucial ingredient of the model is heterogeneity in the
psychic costs of education because monetary returns can only account for a small part of the
observed college attendance patterns (Heckman et al., 2006). Using data from the National
Longitudinal Survey of Youth 1979 and 1997, we estimate the parameters of our model via
maximum likelihood and provide a detailed discussion of how variation in the data helps us
to identify the crucial parameters.

We find that optimal financial aid policies are strongly progressive. In our preferred specifi-
cation, the level of financial aid drops by 48% moving from the 25th percentile of the parental
income distribution to the 75th percentile. The strong progressivity result does not rely on
the Utilitarian welfare criterion. We show that a social planner that sets equal social wel-
fare weights on all students or is only interested in maximizing tax revenues would choose

4The hazard rate pins down the ratio of marginal over inframarginal students which is also key in this
simplified model.

5We obtain this clear analytical result if the ability distribution of high parental income children dominates
the distribution of low parental income children in the hazard rate order. For a Pareto distribution, e.g., the
property of hazard rate dominance always holds in case of first-order stochastic dominance.
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an almost equally progressive financial aid schedule. Second, our estimates suggest that tar-
geted increases in financial aid for students below the 59th percentile of the parental income
distribution, are self-financing by increases in future tax revenue; this implies that targeted
financial aid expansions could be free-lunch policies. Both results point out that financial aid
policies for students are a rare case in which there is no equity-efficiency trade-off.

In a last step, we provide several extensions and robustness checks. We show that our pro-
gressivity result also holds if we (i) remove borrowing constraints, (ii) choose the merit-based
dimension of financial aid optimally, (iii) allow the government to set an optimal Mirrleesian
income tax schedule, (iv) model early educational investments and thereby endogenize ability
and (v) if the relative wage for college educated labor is determined in general equilibrium.

Our paper contributes to the existing literature in several ways. Stantcheva (2017) char-
acterizes optimal human capital policies in a very general dynamic model with continuous
education choices. The main differences with our approach are twofold. First, theoretically,
we study a model with discrete education choices as we find this a natural way to study finan-
cial aid policies. As we show, the optimality conditions are quite distinct from the continuous
case and different elasticities are required to characterize the optimum. Second, the extensive
margin education decision allows us to incorporate a large degree of heterogeneity without
making the optimal policy problem intractable. This allows for a modeling approach that is
close to the empirical, structural literature.

Bovenberg and Jacobs (2005) consider a static model with a continuous education choice
and derive a “siamese twins” result: they find that the optimal marginal education subsidy
should be as high as the optimal marginal income tax rate, thereby fully offsetting the dis-
tortions from the income tax on the human capital margin.6 Lawson (2017) uses an elasticity
approach to characterize optimal uniform tuition subsidies for all college students.7 Jacobs and
Thuemmel (2018) study the role of skill-biased technical change for optimal college subsidies
and income taxation. We contribute to this line of research by developing a new framework to
analyze how education policies should depend on parents’ resources and also trade off merit-
based concerns. Our theoretical characterization of optimal financial aid (and tax policies)
allows for a large amount of heterogeneity, and we tightly connect our theory directly to the
data by estimating the relevant parameters ourselves. Finally, the paper is also related to
many empirical papers, from which we take the evidence to gauge the performance of the
estimated model. These papers are mentioned in Section 4.

6Bohacek and Kapicka (2008) derive a similar result as in a dynamic deterministic environment. Findeisen
and Sachs (2016), focus on history-dependent policies and show how history-dependent labor wedges can be
implemented with an income-contingent college loan system. Koeniger and Prat (2017) study optimal history-
dependent human capital policies in a dynastic economy where education policies also depend on parental
background. Stantcheva (2015) derives education and tax policies in a dynastic model with multi-dimensional
heterogeneity, characterizing the relationship between education and bequest policies.

7Our work is also complementary to Abbott et al. (2018) and Krueger and Ludwig (2013, 2016), who study
education policies computationally in very rich overlapping-generations models.
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We progress as follows. In Section 2 we develop the general model and characterize the
optimal policies in terms of reduced-form objects. In Section 3 we consider a simplified version
of the model, which allows us to transparently study mild conditions on primitives under
which financial aid is optimally decreasing in parental income. In Section 4 we specify our
quantitative model as a special case of the general model presented in Section 2 and present
our estimation approach. Section 5 presents optimal financial aid policies, and Section 6
decomposes the forces which lead to an optimal financial aid schedule. In Section 7 we discuss
further robustness issues. Section 8 concludes.

2 Optimal Financial Aid Policies

In this section we characterize optimal (need-based) financial aid policies for college students.
Our approach is to work with a general model and characterize the optimal financial aid in
terms of reduced-form objects. This formula is general on the one hand and economically
intuitive on the other hand. It clearly highlights the role of the fiscal externality as a reason
for why education is subsidized (Bovenberg and Jacobs 2005). The fiscal externality arises
through the tax-transfer system: if college increases human capital and therefore earnings,
college education implies a fiscal externality since the individual will pay more taxes. Hence,
if the government imposed lump sum taxes that were independent of earnings, there would be
no fiscal externality. In Section 4, we explore the quantitative implications of this optimality
condition in a fully specified structural empirical model, which is a special case of the model
analyzed in Section 2. As an intermediate step, we theoretically explore a simplified framework
in Section 3, for which we can derive conditions on primitives that imply that optimal financial
aid is indeed need-based, i.e., that financial aid is decreasing in parental income, even in the
absence of distributional concerns.

2.1 Individual Problem

Individuals start life in year t = 0 as high school graduates and are characterized by a vector
of characteristics X 2 � and (permanent) parental income I 2 R+. Life lasts T periods and
individuals face the following decisions. At the beginning of the model, they face a binary
choice: enrolling in college or not. If individuals decide against enrollment, they directly enter
the labor market and make labor-leisure decisions every period. If individuals decide to enroll
in college, they also make a labor-leisure decision during college and, at the beginning of the
year, decide to drop out or continue. After graduating or dropping out, individuals enter the
labor market.

We start by considering labor market decisions of individuals that either are out of college
or have chosen to forgo college altogether. This is a standard labor-leisure-savings problem
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with incomplete markets. Let V
W

t
(·) denote the value function of an individual in the labor

market in year t. Then the recursive problem is given by

V
W

t
(X, I, e, at, wt) =max

ct,`t

U(ct, `t) + �E
⇥
V

W

t+1(X, I, e, at+t, wt+1)|wt

⇤

subject to the budget constraint

ct + at+1 = `twt � T (`twt) + at(1 + r) + trt(X, I, e, wt).

The state variables are the initial characteristics (X, I), the education level e 2 {H,D,G}
(high school graduate, college dropout, college graduate), assets at, and the current wage
wt. The variables (X, I, e) are state variables because they may affect parental transfers
trt(X, I, e, wt) and because they may affect the evolution of future wages. The dependence
on the education decision then captures the returns to education. The function T captures
the tax-transfer system. Finally, we assume that the utility function is such that there are
no income effects on labor supply. Given those value functions, we now turn to the value
functions of the different education decisions. The value of not enrolling in college (i.e.,
choosing education level H) is simply given by

V
H(X, I) =E

⇥
V

W

1 (X, I, e = H, a1 = 0, w1)
⇤
.

Regarding the realization of uncertainty, the timing is such that individuals directly enter the
labor market in period one and draw their first wage w1, which is hence only known after the
education decision has been made. Next, we turn to the decisions during college. Besides the
question of how much to work and consume while in college, individuals also make the binary
decision of dropping out or staying enrolled.

The value function of a college student at age t is given by

V
E

t
(X, I, at, "t) = max[V ND

t
(X, I, at, "t), V

D

t
(X, I, at, "t)]

where V
D(·) is the value function associated with dropping out, V

ND

t
(·) denotes the value

function of staying enrolled (not dropping out), and "t is a vector of preference shocks. Agents
who drop out of college enter the labor force and may also pay a psychic cost associated with
dropping out. The value of dropping out is therefore given by:

V
D

t
(X, I, at) =E

⇥
V

W

t
(X, I, e = D, at, wt)

⇤
� d ("t)

where d ("t) represents the psychic cost of dropping out.
The value function for staying enrolled is a bit more complex and given by:
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V
ND

t
(X, I, at, "t) = max

ct,`
E

t

[UE
�
ct, `

E

t
;X, "t

�
+

�
��

1� Pr
Grad

t
(X)

�
⇥ E

⇥
V

E

t+1 (X, I, at+1, "t+1)
⇤
+ Pr

Grad

t
(X)⇥ E

⇥
V

W

t+1 (X, I, e = G, at+1, wt+1)
⇤ 

subject to

ct = `
E

t
! + at (1 + r (at, I))� at+1 � F(X) + G (X, I) + tr

E

t
(X, I,G(X, I))

and
at+1 � ā

E

t+1.

w is the wage that students earn if they work during college and F(X) is tuition. Tuition might
vary by X because of regional differences in college tuition, for example. We denote work in
college by `

E

t
.8 The term G(X, I) is the amount of financial aid a student with characteristics

X and parental income I receives, and tr
E

t
(X, I,G(X, I)) captures parental transfers in year

t for children that are enrolled in college. They are endogenous with respect to the level of
financial aid to account for the potential crowding out of parental transfers through financial
aid. Pr

Grad

t
(X) is a stochastic graduation probability which can depend on the vector X.

We allow the interest rate for college enrollees to vary by the agent’s asset position (positive
or negative) and by the agent’s parental income. We denote flow utility while enrolled in
college by U

E(ct, `Et ;X, "t). Importantly, this flow utility may include the psychic costs and
nonpecuniary benefits of college attendance, in addition to flow utility from consumption and
labor supply. These psychic costs have been found to be important in explaining college en-
rollment patterns.9 The flow utility in college can depend directly on personal characteristics,
X, allowing these psychic costs of college to vary with the individual’s characteristics. Note
that the vector of personal characteristics, X, may also include idiosyncratic preferences for
enrolling in college.

Finally we denote the value of enrolling into college in the first place as

V
E(X, I) = E

⇥
V

E

1 (X, I, a1 = 0, "1)
⇤
+ �(X),

where �(X) is a function that gives any additional nonpecunairy benefits of enrolling in college
for agents with characteristics X. An individual enrolls in college if V E(X, I) � V

H(X, I).
Denote by P

D

t
(X, I,G(X, I)) the share of individuals of type (X, I) that drop out in period

t. Importantly the model captures the idea that the dropout decision is endogenous with
8We assume these earnings are not taxed. In the data, the average earnings of students who work in

college are so low that they do not have to pay positive income taxes; in addition, the vast majority of college
students does not qualify for welfare/transfer programs.

9See Cunha et al. (2005), Heckman et al. (2006) or Heckman and Navarro (2007).
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respect to financial aid. Further, denote by P
E

t
(X, I,G(X, I)) =

Q
t

s=1(1�P
D

s
(X, I,G(X, I))⇥

Q
t�1
s=1

�
1� Pr

Grad

s
(X)

�
the proportion of all initially enrolled students that are enrolled in

period t. Finally, we denote the proportion of initially enrolled students that successfully
complete college by P

C(X, I,G(X, I)) =
Pt

max
g

t=1 P
E

t
(X, I,G(X, I))Pr

Grad

t
(X). We move to the

policy analysis and for the remainder of the section make three simplifying assumption for the
purpose of simpler notation. We assume that individuals can only drop out after two years
in college such that P

D

t
(X, I,G(X, I)) = 0 if t 6= 3 and cannot graduate before year t = 3,

i.e. Pr
Grad

t
(X) = 0 for t = 1, 2.10 Finally, we assume that financial aid only depends only on

parental income, and not on other characteristics, X. We therefore write financial aid as G(I)
for the remainder of this section.11

2.2 Fiscal Contributions

We now define the expected net fiscal contributions for different types (X, I) and different
education levels as these will be key ingredients for the policy analysis. We start with the net
present value (NPV) in net tax revenues of high school graduates of type (X, I):

NT H

NPV
(X, I) =

TX

t=1

✓
1

1 + r

◆t�1

E (T (yt)|X, I,H) ,

where yt = wt`t is total earnings in year t.
The fiscal contribution of a dropout is given by their net present value of tax payments

minus grants received:

NT D

NPV
(X, I) =

TX

t=3

✓
1

1 + r

◆t�1

E (T (yt)|X, I,D)� G(I)
2X

t=1

✓
1

1 + r

◆t�1

.

Finally, we turn to students that do not dropout but graduate. The average fiscal contri-
bution of graduates of type (X, I) is given by:

NT G

NPV
(X, I) =

1
Ptmax

g

g=3 PE
g
(X, I,G(I))PrGrad

g
(X)

t
max
gX

g=3

P
E

g
(X, I,G(I))Pr

Grad

g
(X)

"
TX

t=g+1

✓
1

1 + r

◆t�1

E (T (yt)|X, I,G)� G(I)
gX

t=1

✓
1

1 + r

◆t�1
#

10We provide the optimal policy formulas without these simplifying assumptions in Appendix A.2. The
intuition of these formulas are the same but the notation is considerably more cumbersome.

11We allow for other characteristics to enter the financial aid formula in the quantitative version of the
model in Section 4. We show that our main result also extends to the case in which the merit-based elements
are chosen optimally in Appendix C.10.
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where t
max

g
is the latest possible graduation date. Finally, we define the expected fiscal con-

tribution of an individual that decides to enroll:

NT E

NPV
(X, I) = P

C(X, I,G(I))⇥NT G

NPV
(X, I) + (1� P

C(X, I,G(I)))⇥NT D

NPV
(X, I).

Before we derive optimal education subsidies, we ease the upcoming notation a little bit.
Let a type (X, I) be labeled by j and define the enrollment share for income level I:

E(I) =

Z

�

1V
E

j
�V

H

j

h(X|I)dX,

where 1V
E

j
�V

H

j

is an indicator function capturing the education choice for each type j = (X, I).
Next, we define the completion rate by

C(I) =

R
�
1V

E

j
�V

H

j

P
C(X, I,G(I))h(X|I)dX

E(I)
,

which captures the share of enrolled students of parental income level I that actually graduate.
We assume that these shares, as well as the probabilities of dropping out, PD

t
(X, I,G(I)), are

differentiable in the level of financial aid.

2.3 Government Problem and Optimal Policies

We now characterize the optimal financial aid schedule G(I). We denote by F (I) the un-
conditional parental income CDF, by K(X, I) the joint CDF and by H(X|I) the conditional
one; the densities are f(I), k(X, I), and h(X|I), respectively. The government assigns Pareto
weights k̃(X, I) = f̃(I)h̃(X|I), which are normalized to integrate up to one.

Importantly, we assume that the government takes the tax-transfer system T (·) as given
and consider the optimal budget-neutral reform of G(I). Whereas the tax-transfer system is
not changed if financial aid is reformed, a change in the financial aid schedule changes the size
and the composition of the set of individuals that go to college. This implies a change in tax
revenue and transfer spending that directly feeds back into the available resource for financial
aid.12 Taking the tax-transfer system as given, the problem of the government is

max
G(I)

Z

R+

Z

�

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI (1)

subject to the net present value government budget constraint:
12We consider this as the more policy-relevant exercise than considering the joint optimal choice of T (·) and

G(I). Nevertheless, to complete the picture, in Appendix C.9, we consider the joint optimal design of financial
aid G(I) and the tax-transfer system T (·). Further, we also explore jointly optimal merit and need-based
financial aid in Appendix C.10.
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Z

R+

Z

�

NT H

NPV
(X, I)1V

E

j
<V

H

j

k(X, I)dXdI

+

Z

R+

Z

�

NT G

NPV
(X, I)1V

E

j
�V

H

j

P
C(X, I,G(I))k(X, I)dXdI

+

Z

R+

Z

�

NT D

NPV
(X, I)1V

E

j
�V

H

j

�
1� P

C(X, I,G(I))
�
k(X, I)dXdI � F̄ , (2)

The term F̄ captures exogenous revenue requirements (e.g. spending on public goods) and
exogenous revenue sources (e.g. tax revenue from older cohorts). Hence, F̄ < 0 could capture
that the cohort for which we are reforming the financial aid schedule is effectively subsidized
from other cohorts. Now we consider a marginal increase in G(I). As we show in Appendix A.1,
it has the following impact on welfare:

@E(I)

@G(I) ⇥�T E(I)
| {z }
Enrollment Effect

+
@C(I)

@G(I)

�����
E(I)

⇥ E(I)⇥�T C(I)

| {z }
Completion Effect

� Ẽ(I)
�
1�W

E(I)
�

| {z }
Mechanical Effect

= 0. (3)

The first two terms of (3) capture behavioral effects (i.e., changes in welfare that are due to
individuals changing their behavior). The third term captures the mechanical welfare effect
(i.e. the welfare effect that would occur for fixed behavior). We start with the latter.

The mechanical effect captures the direct welfare impact of the grant increase to infra-
marginal students. The more students are inframarginal in their decision to go to college and
the more of them do not drop out, the higher are the immediate costs of the grant increase.
The term Ẽ(I) is the total discounted years of college attendance of income group I and is
defined as

Ẽ(I) =

Z

�

1V
E

j
�V

H

j

0

@
t
max
gX

t=1

✓
1

1 + r

◆t�1

P
E

t
(X, I,G(I))

1

Ah(X|I)dX.

This captures the direct marginal fiscal costs of the grant increase. Since the utility of these
students is valued by the government, the costs have to be scaled down by a social marginal
welfare weight (Saez and Stantcheva, 2016). We denote average social marginal welfare weight
of inframarginal students with parental income I by W

E(I). Formally it is given by

W
E(I) =

R
�
1V

E

j
�V

H

j

E
hPt

max
g

t=1 �
t�1

U
E

c
(·)
⇣
1 + @tr

E

t
(·)

@G(I)

⌘Q
t

s=1(1V ND
s �V D

s
)
Q

t�1
s=1

�
1� Pr

Grad

s
(X)

�i
h̃(X|I)dX

⇢
f(I)

f̃(I)
Ẽ(I)

,
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where ⇢ is the marginal value of public funds, UE

c
is the marginal utility of consumption,

and 1V ND
s �V D

s
is an indicator for an individual choosing not to drop out of college in year

s. Thus, WE(I) is a money-metric (appropriately weighted) average marginal social welfare
weight. One difference from the standard concept applies here, however. One has to correct
for the implied reduction in parental transfers that accompanies an increase in resources
for college students. For each marginal dollar of additional grants, students only have a
change in consumption that is given by

⇣
1 + @tr

E

t
(X,I,G(I))
@G(I)

⌘
. Ceteris paribus, the stronger the

crowding out of transfers, the lower are these welfare weights since fewer of the additional
grants effectively reach students.13

We now turn to the behavioral welfare effects in the first line of (3). The first term captures
the change in tax revenues due to an increase in enrollment and @E(I)

@G(I) captures the additional
enrollees. Since these individuals are marginal in their enrollment decision, this change in their
decision has no first-order effect on their utility. Therefore, we only have to track the effect
on welfare through the effect on public funds. The term �T E(I) captures the the average
increase in the NPV of net tax revenues for these marginal enrollees. Formally, it is given by

�T E(I) =

R
�
1Hj!Ej

�T E(X, I) h(X|I)dX
R
�
1Hj!Ej

h(X|I)dX
, (4)

where 1Hj!Ej
takes the value one if an individual of type j is marginal in her college en-

rollment decision with respect to a small increase in financial aid. By definition we have
R
�
1Hj!Ej

h(X|I)dX = @E(I)
@G(I) . �T E(X, I) is the (expected) fiscal externality of an individual

of type (X, I): �T E(X, I) = NT E

NPV
(X, I)�NT H

NPV
(X, I).

There is a second behavioral effect due to endogenous college dropout. This second term
in (3) captures the increase in tax revenue due to an increase in the completion rate of the
inframarginal enrollees. The term @C(I)

@G(I)

���
E(I)

is the partial derivative of completion w.r.t.

financial aid, holding E(I) constant. Therefore, the term @C(I)
@G(I)

���
E(I)

⇥ E(I) captures the
amount of inframarginal enrollees who did not graduate in the absence of the grant increase
but graduate now. Again, the envelope theorem applies and the change in their behavior has
no first-order effect on their utility. However, there is a welfare effect through the change
in public funds. �T C(I) captures the implied change in net fiscal contributions through the
increased completion rate:

�T C(I) =

R
�
�T C(X, I)@P

C(X,I,G(I))
@G(I) h(X|I)dX

R
�

@PC(X,I,G(I))
@G(I) h(X|I)dX

,

13Note that we are not accounting for parents’ utilities here. Doing so would basically imply an increase in
the social welfare weights as not only the children but also the altruistic parents are benefiting from the grants.
The change in parental transfers would have no impact on parent’s utility due to the envelope theorem.
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where �T C(X, I) = NT G

NPV
(X, I) � NT D

NPV
(X, I). Finally, note that formula (3) is inde-

pendent of the adjustment in labor supply during college as a response to the grant increase.
This is an implication of the envelope theorem.

Formula (3) expresses the optimal policy as a function of reduced-form elasticities and
provides intuition for the main trade-offs underlying the design of financial aid.14 It is valid
without taking a stand on the functioning of credit markets for students, the riskiness of
education decisions, or the exact modeling of how parental transfers are influenced by parental
income and how they respond to changes in financial aid. Those factors, of course, influence
the values of the reduced-form elasticities. For example, a tightening of borrowing constraints
should increase the sensitivity of enrollment especially for low-income students.

However, note that all terms in the optimal financial aid formula are endogenous with
respect to policies. Even if we know the empirical values for current policies, this is not
enough to calculate optimal policies. For this purpose, a fully specified model is necessary.
In the next Section 3, we consider a simplified model, for which we can derive closed-form
solutions.15

3 Is Optimal Financial Aid Progressive? A Simple Model

Simplified Environment. We assume that preferences are linear in consumption and that
labor incomes are taxed linearly at rate ⌧ , which is larger than 0 and smaller than one.
We consider a static problem. If individuals do not go to college, they earn income yH . If
they go to college, they pay tuition F and earn yH(1 + ✓). Individuals are heterogeneous in
ability/returns to college, ✓, and each ✓ > 0. There is no uncertainty. Further, individuals
are heterogeneous in parental income I. If individuals go to college, they receive a parental
transfer tr(I) with tr

0(I) > 0 and financial aid G(I).

Individual Problem. If an individual decides against college, utility is given by U
H =

(1� ⌧)yH . If an individual goes to college, utility is given by U
C(✓, I) = (1� ⌧) yH (1 + ✓)�

(F � G(I)� tr(I)). For each income level I, we can define the ability of the marginal college
graduate ✓̃(I), implicitly given by U

H = U
C(✓̃(I), I). All types (✓, I) with ✓ � (<)✓̃(I) (do

not) attend college. Note that higher parental income here simply has the role of lowering the
costs of college. This implies that high-parental-income children are more likely to select into
college. This channel is reinforced if there is a positive association between I and ✓.

Government Problem and Optimal Financial Aid for a Given I. The government
uses non-negative Pareto weights over the types as in the general model from the last section.

14Sometimes such formulas are labeled as sufficient statistics formulas. See Kleven (2018) for a discussion
on the terminology in the literature.

15We are very grateful to one of our referees for many detailed suggestions how to clarify the intuition
behind the results in Section 3.
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Consistent with the notation from last section, F (I) is the parental income distribution and
H(✓|I) the conditional distribution of ability. Appendix A.3 shows that the following version
of equation (3) holds:

h(✓̃(I)|I)
yH(1� ⌧)| {z }

@E(I)
@G(I)

⇥
⇣
⌧yh✓̃(I)� G(I)

⌘

| {z }
�T E(I)

�
⇣
1�H(✓̃(I)|I)

⌘

| {z }
Ẽ(I)

(1�W
E(I)) = 0.

First note that there is no completion effect since we abstract from dropout. Second, the
fiscal externality takes a simple form. Third the ratio of marginal over inframarginal students
is determined by the hazard rate of the conditional skill distribution. Rewriting leads to a
rather tractable expression for optimal financial aid G(I).

Proposition 1. The optimal financial aid schedule in the simplified enviornment is given by

G(I) = ⌧ (F � tr(I))� yH(1� ⌧)2

⇣
1�H(✓̃(I)|I)

⌘

h(✓̃(I)|I)
⇥ (1�W

E(I)), (5)

where ✓̃(I) = F�tr(I)�G(I)
(1�⌧)yH

. and ⌧ (F � tr(I)) = ⌧yH ✓̃(I).

Proof. See Appendix A.3.

The first term in (5), ⌧ (F � tr(I)), can be interpreted as a Pigouvian correction. Without
any distortions, i.e. G(I) = ⌧ = 0, the marginal college enrollee would be characterized by

✓
⇤(I)yH = F � tr(I). (6)

Here the private returns and costs are equalized to the social ones. Such a condition is typically
called “first best”. When ⌧ or G(I) 6= 0, the marginal enrollee still equates private returns to
private costs, but there is a wedge between the social returns and costs now. Equating private
returns and costs yields:

✓̃(I)(1� ⌧)yH = F � tr(I)� G(I). (7)

Comparing (7) with (6) shows that the fiscal externality �T E(I) = ⌧yh✓̃(I)�G(I) can be seen
as a wedge. This is the classical “siamese twins” result of Bovenberg and Jacobs (2005): the
sole presence of taxes gives a rationale for subsidizing education and the size of the subsidy
is increasing in the size of the tax. Setting G(I) = ⌧ (F � tr(I)) = ⌧yH✓

⇤(I) would imply
✓̃(I) = ✓

⇤(I) and hence yield the first-best education level. When choosing the optimal
education subsidy G(I), the social planner, however, cannot target the marginal students but
has to account for the fact that an increase in G(I) also has to be paid to those students
that are inframarginal in their decision.16 This is accounted for in the second part of (5).

16If the planner can choose G(I, ✓) in this simple model, she effectively has lump-sum taxes/transfers
available (for all college students). She only needs to correct the fiscal externality in this case (the other
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Since the decision of inframarginal students is not altered, this is a pure transfer which is
valued by W

E(I)� 1 multiplied with the share of inframarginal students. This implies that if
W

E(I) > (<)1, the planner would subsidize students of parental income up to a point where
education is above (below) the first best level as defined above.17 Further, this second term
inversely proportional to share of marginal students. Intuitively, the more marginal students
can be incentivized, the higher is the relative weight on the first term.

In the following we want to explore whether financial aid optimally decreases with parental
income. For this purpose, we shut down any redistributive case for financial aid and assume
that @W

E(I)
@I

= 0. Two useful benchmark cases generate this: (i) a government that solely wants
to maximize tax revenue (implying W

E(I) = 0 for all I) and (ii) unweighted Utilitarinism
(implying W

E(I) = constant < 1 for all I as we elaborate in Appendix A.3). If redistribution
within college students is desired, i.e. with declining weights WE 0

(I) < 0, this would strengthen
the case for progressivity and need-based financial aid.

Is Optimal Financial Aid Decreasing in Parental Income? We proceed in two steps
and first state a result on the progressivity if parental income and child’s ability are indepen-
dently distributed.

Corollary 1. Assume that ability ✓ and parental income I are independent, that is, H(✓|I) =
H(✓) 8 ✓, I. Further assume @W

E(I)
@I

= 0, i.e. there is no desire to redistribute from high to
low parental income students. Then the optimal financial aid schedule is progressive (i.e.,
G 0(I) < 0 8 I) if the distribution H(✓) is log concave.

Proof. See Appendix A.4.

The first term in (5) is decreasing in I. The higher parental income, the lower are the costs
of college F � tr(I) and hence, for a given rate of subsidization ⌧ , the lower is the overall level
of the subsidy. Since ✓̃0(I) < 0,18 the second term is decreasing in I if the inverse of the hazard
rate of H(✓) is decreasing. As Bagnoli and Bergstrom (2005) point out, log-concavity of a
density function is sufficient for an increasing hazard rate.19 Hence, in the illustrative case in
which parental income and child’s ability are independent, we have an important benchmark,
where the selection mechanism through parental income in itself calls for progressive financial

considerations like the ratio of marginal to inframarginals and redistribution within students can be perfectly
dealt with by choosing G(I, ✓) for each type. This is not the case in the more general model presented in
Section 2. We analyze the case of jointly optimizing merit-based and need-based financial aid quantitatively
in C.10.

17This resembles the results of the optimal income tax literature with extensive margin labor supply re-
sponses that negative participation taxes are optimal if the social welfare weight of low income workers is
above one, see e.g. Saez (2002).

18Note that for this we need tr
0(I) + G0(I) > 0, i.e. that financial aid is not too progressive. As our proof

in Appendix A.4 shows, this is the case.
19Log-concavity of a probability distribution is a frequent condition used in many mechanism design or

contract theory applications, as this is "just enough special structure to yield a workable theory" (Bagnoli and
Bergstrom, 2005).
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aid. Next we turn to the empirically more appealing case in which parental income and ability
are positively associated.20

Corollary 2. Assume that ability ✓ and parental income I are positively associated in the
sense that for I

0
> I, the distribution H(✓|I 0) dominates H(✓|I) in the hazard rate order, that

is,

8✓, I, I 0 with I
0
> I :

h(✓|I)
1�H(✓|I) � h(✓|I 0)

1�H(✓|I 0) . (8)

Further assume @W
E(I)
@I

= 0, i.e. there is no desire to redistribute from high to low parental
income students. Then the optimal financial aid schedule is progressive (i.e. G 0(I) < 0 8 I) if
the conditional skill distributions H(✓|I) are log concave.

Proof. See Appendix A.5.

This condition (8) is stronger than first-order stochastic dominance (FOSD) but does imply
that the skill distribution of higher parental income levels first-order stochastically dominates
the skill distribution of lower parental income levels. FOSD of the skill distribution, however,
does not automatically imply (8).21 For the empirically plausible Pareto distribution, FOSD
does imply dominance in the hazard rate order. Consider, for example, the specification
h(✓|I) = ↵(I) ✓

↵(I)

✓↵(I)+1 , where ↵(I) is the thickness parameter. Here we have 1�H(✓|I)
h(✓|I) = ✓

↵(I) and
hence if ↵0(I) < 0, then the tail of the skill distribution of high-parental-income children is
thicker and the FOSD property is fulfilled. Therefore, (8) is fulfilled.

The goal of this section was to show that under some rather weak assumptions, optimal
financial aid is indeed decreasing in income. Whereas the simple model provides an interesting
and intuitive benchmark, a richer empirical model is needed to give more concrete policy
implications. In the next section we set up such a model and quantify it for the United States.

4 Quantitative Model and Estimation

We now present the fully specified model version, which is a specific case of the model presented
in Section 2.

20As Carneiro and Heckman (2003, p.27) write: "Family income and child ability are positively correlated,
so one would expect higher returns to schooling for children of high income families for this reason alone."
In a famous paper, Altonji and Dunn (1996) find higher returns to schooling for children with more-educated
parents than for children with less-educated parents.

21See, e.g., Shaked and Shanthikumar (2007, p.18).
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4.1 Quantitative Model

4.1.1 Basics

We first specify the underlying heterogeneity. Besides parental income I, individuals differ in
X = (✓, s,ParEdu,Region, "E), which captures ability, gender, their parents’ education levels,
the region in which they live, and an idiosyncratic taste for college. Workers’ flow utility in
the labor force is parameterized as

U
W (ct, `t) =

⇣
ct � `

1+✏s

t

1+✏s

⌘1��

1� �
,

where the labor supply elasticity 1
✏s

is allowed to vary by gender. Individuals work until 65
and start at age 18 in case they decide to not enroll in college. Each year, individuals make
a labor-supply decision and a savings decision. Life-cycle wage paths depend on ability ✓,
gender s, education e, and on a permanent skill shock that individuals draw upon finishing
education and entering the labor market. We present the details of the wage parameterization
in Appendix B.3.

4.1.2 College Problem

We now consider decisions of individuals that are enrolled in college. We assume that students
can choose to work part-time, full-time, or not at all. Formally, `E

t
2 {0, PT, FT}. For flow

utility in college we assume the following functional form:

U
E

⇣
ct, `

E

t
;X, "

`
E

t

⌘
=

c
1��

t

1� �
� X � ⇣

`
E

t + "
`
E

t

t .

The term X is the deterministic component of the psychic cost of attending college. Workers
of higher ability may find college easier and more enjoyable and therefore may have lower
psychic costs of college. Furthermore, children with parents who attended college may find
college easier, as they can learn from their parents’ experiences. Finally, we allow the psychic
cost of college to vary by an agent’s gender, to reflect differences in college-going rates across
genders. We therefore parameterize the psychic cost term as

X = 0 + ✓ log (✓) + femI (s = female) + ParEdParEdu.

The term ⇣
`
E

t is the cost of working `
E

t
hours in college,22 and "

`
E

t

t is a shock associated with
continuing college and working `

E

t
hours. This represents any idiosyncratic factors associated

with staying in college and working that are not captured elsewhere in the model. We assume
that the idiosyncratic preference shocks for students, "`

E

t

t , are distributed with a nested logit
structure, with a separate nest for the three options involving continuing in college and a

22We normalize ⇣
0 = 0 w.l.o.g.
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separate nest for dropping out of college. We denote the nesting parameter by � and the
scale parameter by �

`
E . Given these assumptions, one can define the choice-specific Bellman

equations of an agent, depending on their labor supply choices V
E,`

E

t

t

⇣
X, I, at, "

`
E

t

t

⌘
. For

brevity, we do so in Appendix B.4, since it is just a specific case of the problem from Section
2.1. We now turn to the value of staying in college, dropping out of college and enrolling in
college initially. Note that these are all just special cases of the value functions presented in
Section 2.1. The value of staying enrolled is the maximum of the three labor supply options:

V
ND

t
(X, I, at, "t) = max

n
V

E,0
t

�
X, I, at, "

0
t

�
, V

E,PT

t

�
X, I, at, "

PT

t

�
, V

E,FT

t

�
X, I, at, "

FT

t

�o

where "t is the vector of choice-specific preference shocks. At the beginning of each pe-
riod, the agent must either choose to drop out of college or continue in college. We pa-
rameterize the psychic cost of dropping out as d (✏t) = � � "

D

t
, where � is the determin-

istic part of the dropout cost and "
D

t
is the idiosyncratic part. Therefore, we can write

V
D

t

�
X, I, at, "

D

t

�
= E

⇥
V

W

t
(X, I, e = D, at, wt)

⇤
� � + "

D

t
. As in Section 2.1, an agent’s prob-

lem at the beginning of the period is to choose whether or not to drop out: V
E

t
(X, I, at, "t) =

max
�
V

D

t

�
X, I, at, "

D

t

�
, V

ND

t
(X, I, at, "t)

 
.

At the beginning of the model, children must decide whether to enter college or to enter
the labor market directly. Let �(X) = "

E represent idiosyncratic taste for college that is
unreflected elsewhere in the model and is observed by the agent before their enrollment choice.
We consider "

E to be a random, idiosyncratic component of the nonpecuniary benefits of
college enrollment, in addition to the deterministic psychic cost X . We assume that "

E is
distributed as type I extreme value with scale parameter �E. Given this, the value of enrolling
in college is

V
E(X, I) = E

⇥
V

E

1 (X, I, a1 = 0, "1)
⇤
+ "

E

As before, an agent enrolls if V E (X, I) > V
H (X, I). For the remainder of the paper, it will

be useful to separate the elements of the vector X that are observable to the econometrican
from the idiosyncratic enrollment draw "

E. We therefore let X̃ = (✓, s,ParEdu,Region).

4.1.3 Parent’s Problem

In Section 2 we modeled parental transfers in a general reduced form fashion. Now we provide
an explicit microfoundation where we model the parental life-cycle decision problem. Each
year the parent makes a consumption/saving decision. The parent also chooses how much to
transfer to the child dependent on the child’s education choice.23 Therefore, the parent has to
trade off the utility of helping their child through parental transfers with their own consump-
tion. Parents make transfers to their child in the year in which a child graduates from high

23Note that this also implies that high school transfers may also be endogenous with respect to financial
aid. We account for this in the calculation of optimal policy but find it to be economically unimportant
quantitatively.
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school. We assume that parents commit to a transfer schedule before the child’s idiosyncratic
enrollment benefit, "E, is realized. This simplifies the model solution considerably.24 For all
years when the transfer is not given the parent simply chooses how much to consume and
save.25 The parent’s Bellman equation and details on the calibration of life-cycle parental
earnings are given in Appendix B.5.26 In the main body, we only elaborate on the portion of
the utility function that arises due to transfers.

In the year of the transfer, the parent receives utility from transfers. Let F
⇣
tr

H
, tr

E
, X̃, I

⌘

represent the expected utility the parent receives from the transfer schedule tr
H
, tr

E, condi-
tional on a child with observable characteristics and parental income (X̃, I).

F

⇣
tr

H
, tr

E
, X̃, I

⌘
= !E

⇥
V
�
X, I, tr

H
, tr

E
�⇤

| {z }
Altruism

+E

2

664(⇠0 + ⇠ParEdu)1E

| {z }
Paternalism

+�
(cb + tr

e)1��

1� �| {z }
Warm Glow

3

775

where 1E is a dummy indicating that the child enrolls in college. There are three components,
which help to match key features of the relationship between parental transfers, parental
income, and the child’s problem. First, parents are altruistic, which allows for the possibility
that changes in the financial aid schedule crowd out parental transfers. With some abuse of
notation, let a child’s expected lifetime utility as a function of parental transfers be written
as

E
⇥
V
�
X, I, tr

H
, tr

E
�⇤

= E
⇥
max

�
V

H
�
X, I|trH

�
, V

E
�
X, I|trE

� ⇤
,

where the expectation is taken over the child’s idiosyncratic enrollment benefit, "E. The term !

measures the weight the parent places on the child’s lifetime expected utility. Second, parents
are paternalistic; they receive prestige utility if the child attends college. Allowing for such
paternalism allows us to match the level of college transfers relative to transfers for children
who forgo college and adds an additional crowding-out element. The parameter ⇠ParEdu allows
prestige utility to vary by the parent’s education level. Specifically, ⇠0 is the prestige utility all
parents receive and ⇠ParEdu is the additional prestige utility parents receive if at least one of
the parents has a college education. Third, parents receive warm-glow utility from transfers
that is independent of how the transfer affects the child’s utility or choices. Allowing for utility
from warm-glow helps us to match the gradient between parental income and transfers. Here
we adopt the the functional form commonly used in the literature (De Nardi, 2004). The
parameter � measures the strength of the warm-glow incentive, and cb measures the extent to
which parental transfers are a luxury good.

24If not, the child will have to take into account how parental transfers will respond to their preferences
and ability shocks which they partially reveal through their college choice.

25The fact that parents provide all transfers based on the initial enrollment decision can give the incentive
to strategically enroll for one year and then drop out directly only to obtain the larger parental transfer. This
is one reason for why we incorporated the dropout costs �, which makes such strategic behavior less attractive.
As we show in Section 4.3, our model performs well regarding the dynamics of dropout and graduation.

26We assume that parents exogenously provide transfers to the agent’s siblings as well.
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4.1.4 The Optimality Condition in the Structural Model

Before turning to the estimation, it is worthwhile to get back to (3), the optimality condition
for financial aid, and highlight which structural parameters are key for the relationship between
optimal financial aid and parental income in our quantitative model. For brevity and clarity,
we focus on the share of marginal and inframarginal enrollees because our numerical analysis
below shows that these are the most important forces for our progressivity result.

Inframarginal Enrollees: For brevity we focus on the share of inframarginal enrollees
E (I) instead of Ẽ(I).27 It is given by:

E (I) =

Z

X̃

exp
⇣
Ṽ

E(X̃, I)/�E

⌘

exp
⇣
Ṽ (X̃, I)/�E

⌘
+ exp

⇣
V H(X̃, I)/�E

⌘dH⇤(X̃|I).

where H
⇤(X̃|I) is the CDF for X̃ conditional on I and where Ṽ

E

⇣
X̃, I

⌘
= V

E (X, I)� "
E is

the value of enrolling in college minus the idiosyncratic taste for college "
E28. This expression

immediately follows from the fact that the idiosyncratic enrollment benefit "
E is distributed

according to a type I extreme value distribution with scale parameter �
E. The number of

enrollees conditional on
⇣
X̃, I

⌘
increases in the difference in the value functions of attending

college or not. How E (I) varies with parental income is largely determined by the relation of
parental income with (i) psychic costs , (ii) parental transfers, (iii) ability. In Section 6.1 we
provide a model-based decomposition which addresses the importance of the different elements
(i)-(iii).

Marginal Enrollees: For a given (X̃, I), the share of marginal enrollees is given by

@E(X̃, I)

@G(I) =
E(X̃, I)

⇣
1� E(X̃, I)

⌘

�E

@V
E(X̃, I)

@G(I) ,

where E(X̃, I) is the enrollment share of individuals with observable characteristics X̃ and
income I, E(X̃,I)(1�E(X̃,I))

�E is the density of the enrollment benefit parameter "
E at the value

where an (X̃, I) individual is indifferent between enrolling in college or not. Formally, this
threshold is given by "̃

E(X̃, I) = Ṽ
E(X̃, I)�V

H(X̃, I). Intuitively, the higher this density, the
more individuals are marginal in their decision and the stronger is the increase in enrollment
due to higher financial aid. A property of the extreme value distribution is that the density is
maximized if enrollment is at 50%, as is the case also for a normal distribution. Further, the
lower the scale parameter �E, the higher the share of marginal students ceteris paribus.

27The insights would be identical if we were looking at Ẽ(I) here but notation would be unnecessarily
cumbersome.

28Note that V H(X̃, I) = V
H(X, I), with some abuse of notation, because the idiosyncratic preference term

"
E does not affect V

H(X, I)
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The share of marginal enrollees also depends on how much this threshold "̃
E(X̃, I) changes

due to an increase in financial aid, which is captured by:

@V
E(X̃, I)

@G(I) = E

2

4
t
max
gX

t=1

�
t�1

ct(·)��

 
1 +

@tr
E

t
(X̃, I,G(I))
@G(I)

!
tY

s=1

(1V ND
s �V D

s
)
t�1Y

s=1

�
1� Pr

Grad

s
(X)

�
3

5 .

Intuitively, agents with low marginal utility ct(·)�� during college react more strongly financial
aid changes. According to this logic, children with low parental income should be more
responsive to increases in financial aid. How much this effect varies with parental income
is governed by �, which we estimate with maximum likelihood. In addition, the stronger
the crowding out of the parental transfer (�@tr

E

t
(X̃,I,G(I))
@G(I) ), the less responsive are individuals

ceteris paribus since less of the financial aid increase reaches them.
All the key parameters are estimated with maximum likelihood and as we document in

Section 4.3 the model performs very well not only in terms of enrollment patterns (targeted
moments) but also in terms of replicating quasi-experimental evidence about the impact of
grant increases on enrollment which was not targeted. In Section 6.1 we provide a model-
based decomposition for how the share of marginal students varies with parental income and
show that the correlation between parental income and parental transfers is a key driver in
our model for why the share of marginal enrollees is decreasing along the parental income
distribution.

4.2 Estimation and Data

To bring our model to the data, we make use of the National Longitudinal Survey of Youth
97 (henceforth NLSY97). A big advantage of this data set is that it contains information
on parental income and the Armed Forces Qualification Test score (AFQT-score) for most
individuals. The latter is a cognitive ability score for high school students that is conducted
by the US army. The test score is a good signal of ability. Cunha et al. (2011), for example,
show that it is the most precise signal of innate ability among comparable scores in other
data sets. We use the NLSY97 for data on college-going, working in college, dropout, parental
transfers, and grant receipts.29 Since individuals in the NLSY97 are born between 1980 and
1984, not enough information about their later-life earnings is available. We therefore also use
the NLSY79 to better understand how earnings evolve throughout an agent’s life. Combining
both data sets has proven to be a fruitful way in the literature to overcome the limitations
of each individual data set; see Johnson (2013) and Abbott et al. (2018). The underlying
assumption is that the relation between the AFQT score and wages has not changed over

29We calculate parental transfers using the same method as Johnson (2013) which involves summing the
amount of money parents give to the child, the amount of money received from family for college related
expenditures and the monetary value of living at home if the individual lives with his parents. If a child is
living at home in the data, we assume the child additional receives a transfer equal to the monetary value of
living at home. We use estimates of the monetary value of living at home directly from Johnson (2013).
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that time period. We use the method of Altonji et al. (2012) to make the AFQT scores
comparable between the two samples and different age groups. We define an individual as a
college graduate if she has completed at least a bachelor’s degree. An individual is considered
enrolled in college in a given year if they report being enrolled in college for at least six months
in a given academic year. Individuals who report enrolling for at least one year in a four-year
college but do not report a bachelor’s degree are considered dropouts. Agents who never enroll
in college are considered as high school graduates. Since individuals in the NLSY97 turn 18
years old between 1998 and 2002, we express all US dollar amounts in year 2000 dollars. We
drop individuals with missing values for key variables. We also drop individuals who take off
one year or more of college before re-enrolling. These agents constitute 11% of the sample.
We allow college tuition to vary by the agent’s region. For the variable Region, we consider
the four regions for which we have information in the NLSY: Northeast, North Central, South,
and West. An overview of our calibration and estimation procedure is given in Table 1. First
of all, to quantify the joint distribution of parental income and ability, we take the cross-
sectional joint distribution in the NLSY97. We then proceed in four steps. First, we calibrate
and preset a few parameters in Section 4.2.1. Second, we calibrate current US tax and college
policies, which we document in Appendices B.1 and B.2, respectively. Third, we estimate the
parameters of the wage function, which we document in Appendix B.3. Fourth, we estimate
the parameters of the child’s and parent’s utility via maximum likelihood in Section 4.2.2.

4.2.1 Calibrated Parameters

We set the risk-free interest rate to 3% (i.e., r = 0.03) and assume that individuals’ discount
factor is � = 1

1+r
. For the labor supply elasticity, we choose ✏ = 5 for men and ✏ = 1.66

for women, which imply compensated labor supply elasticities of 0.2 and 0.6, respectively.30

We make the assumption that students can only borrow through the public loan system. In
the year 2000, dependent undergraduates could borrow $2,625 during the first year of college,
$3,500 during the second, and $5,500 during following years up to a maximum of $23,000. We
set these as the loan yearly borrowing limits in our model. Students are eligible for either
subsidized Stafford loans, under which the student does not pay interest on the loan while
he/she is enrolled in college, or unsubsidized Stafford loans, where the student pays interest
on the loan. Students are eligible for subsidized loans if their cost of college exceeds their
expected family contribution, which is calculated as a function of parental assets and income,
number of siblings, and student assets and income. For simplicity, we follow Johnson (2013),
and assume that students with parental income below the sample median are eligible for
subsidized loans and therefore do not pay interest on their loans while in college and that

30See Blau and Kahn (2007) for a discussion of labor supply differences across gender. Our results are
robust to assuming smaller gender differences in labor supply behavior and also larger differences. The labor
supply elasticity is in general not a crucial parameter for optimal financial aid.
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Table 1: Parameters and Targets

Object Description Procedure/Target

F (I) Marginal distribution of parental income Directly taken from NSLY97
(✓, I) Joint and conditional distribution of innate abilities Directly taken from NSLY97
r = 0.03 Interest Rate
✏Men = 5 Inverse Labor Supply Elasticity for Men
✏Women = 1.66 Inverse Labor Supply Elasticity for Women
Pr

Grad

t
(✓) Graduation Probabilities Directly taken from NSLY97

Wage Parameters Estimated from regressions
Parameters of Child and Parental Utility Maximum Likelihood (Table 5)

Current Policies
L̄t Yearly Stafford Loan Maximum Values Value in year 2000
T (y) Current Tax Function Heathcote et al. (2017)
G(✓, I) Need- and Merit-Based Grants Estimated from regressions

students with parental income above the median receive unsubsidized loans and therefore pay
interest on loans while in college. Finally, we allow graduation probabilities to depend on
an agent’s ability and chose Pr

Grad

t
(✓) as the fraction of continuing students with ability ✓

who graduate each year. In practice, we estimate separate yearly graduation probabilities for
students with above median ability and below median ability. We assume that all agents in
the model have to graduate after six years by setting Pr

Grad

6 (✓) = 1 for all ability levels.

4.2.2 Estimation

We estimate the remaining parameters with maximum likelihood. An agent’s likelihood con-
tribution consists of 1) the contribution of their initial college choice, 2) the contribution of
their labor supply and continuation decision each year in college, and 3) the contribution
of their realized parental transfers. We assume that parental transfers are measured with
normally distributed measurement error. The set of parameters estimated via maximum like-
lihood consists of the CRRA parameter, �, the set of parameters governing the amenity value
of college and working in college, X and ⇣, the dropout cost, �, the parameters governing
the parent’s altruism, paternalism, and warm glow, !, ⇠0, ⇠ParEd, � and cb, the parameters
governing the distribution of the college enrollment and working in college preference shocks:
�
E, �`

E and �, and the standard deviation of the measurement error of parental transfers,
�
e
tr . The likelihood contribution of college enrollment and labor supply in college are given

by the logit choice probabilities and the likelihood contribution of parental transfers by the
PDF of the normal distribution. As these formulas are relatively standard, we present the full
likelihood function in Appendix B.6.

Appendix B.7 provides a discussion of the identification. The maximum likelihood estimates
are shown in Table 5 in Appendix B.8. We now discuss the estimates of several of the key
parameters. This is kept brief, as the magnitude of the parameters is difficult to interpret
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in a vacuum. The parameter � governs the curvature of the utility function with respect
to consumption and plays a key role in determining an agent’s risk aversion. We estimate
� = 1.89, which is in the middle of the range of estimates from the literature. As we have
seen in Section 4.1.4, this parameter, along with the variance of the college-going shock, plays
an important role in dictating the elasticity of college enrollment with respect to financial
aid. The parameters governing the psychic cost of college are 0, ✓, fem, and ParEd. Our
estimates of these parameters imply that the psychic cost of college is decreasing in an agent’s
ability and parental education. Furthermore, females have a lower psychic cost of college
relative to men, reflecting the fact that women attend college in high numbers despite lower
monetary returns than men.

4.3 Model Performance and Relation to Empirical Evidence

4.3.1 Model Fit

Enrollment, Graduation and Dropout. Figure 2 illustrates enrollment as a function
of parental income and AFQT scores in percentiles. The solid lines indicate results from
the model, and the dashed lines are from the data. The relationships in general are well
fitted, though we slightly underestimate both gradients. The overall number of individuals
who enroll in college is 38.4% in our sample and 39.4% in our model. In our model, 30.0%
of agents graduate from college compared to 27.7% in the data. Data from the US Census
Bureau are very similar: in 2009 the share of individuals aged 25-29 holding a bachelor’s
degree is 30.6% – a number that comes very close to our data, where we look at cohorts
born between 1980 and 1984. In Appendix B.9 we also show that the fit is equally good for
graduation rates and when we examine enrollment rates separately by gender. Figure 2(a)

(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 1: Enrollment Rates
Notes: The solid (red) line shows simulated enrollment shares by parental income and AFQT
percentile. This is compared to the dashed (black) line which shows the shares in the data.
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shows graduation and dropout fractions over time in the model and the data. The solid red
line and the dashed black line show the fraction of the total population that have graduated as
a function of number of years of college completed in the model and the data, respectively. In
both the model and the data, graduation rates are very low for students with less than three
years of college. Graduation shares peak at four years before decreasing. The dashed-dotted
blue line and the dotted green line show the fraction of students that drop out in each year in
the model and data, respectively. Dropout shares are slightly downward sloping as a function
of years in college in both the model and the data. This slope is slightly steeper in the model
compared to the data.

(a) Graduation and Dropout Over Time (b) College Transfers and Parental Income

Figure 2: Model Fit: Graduation, Dropout and Parental Transfers

Notes: The panel on the left shows simulated graduation and dropout rates in the model versus the
NLSY97. The panel on the right shows the present value of parental transfers given by parents of
college enrollees and non-enrollees in data (NLSY97) versus model.

Parental Transfers. Differences in parental transfers across parental income levels can
play a role in generating differential college-going rates across income groups. We analyze the
fit of our model with respect to parental transfers in Figure 2(b). We can see that college
transfers are strongly increasing in parental income in both the model and data, though our
model slightly underestimates the average college transfers in the data. The average college
transfer for enrollees with below-median parental income is $45,000 in the model compared
to $49,000 in the data, while the average college transfer for enrollees with above-median
parental income is $57,000 in the model compared to $60,000 in the data. The model does a
good job of matching the average level of high school transfers. While in our simulations high
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Mean Earnings College Premia SD(log (y))Age High-School College

j Model Data Model Data Model Data Model Data

25 22,938 21,348 26,923 25,205 1.17 1.18 0.66 0.59
26 23,747 22,407 29,353 28,300 1.24 1.26 0.67 0.60
27 24,549 23,340 31,829 31,781 1.30 1.36 0.67 0.61
28 25,340 24,022 34,334 33,840 1.35 1.41 0.68 0.62
29 26,117 25,217 36,848 36,254 1.41 1.44 0.69 0.65
30 26,877 25,306 39,354 37,904 1.46 1.50 0.70 0.65
31 27,617 26,449 41,833 40,904 1.51 1.55 0.70 0.66
32 28,334 27,346 44,267 42,954 1.56 1.57 0.71 0.67
33 29,025 28,680 46,639 44,346 1.61 1.55 0.72 0.68
34 29,687 30,494 48,932 46,872 1.65 1.54 0.72 0.67

Notes: Data based on NLSY97 with cohorts born between 1980 and 1984.
Mean earnings expressed in year 2000 dollars. Most recent wave from 2015.
Model based moment results represent results from estimated model. Zero
and small earnings below $300 a month excluded. SD(log y) equal to stan-
dard deviation of log earnings. NLSY97 is top coded at income levels around
$155,000.

Table 2: Earnings Dynamics

school transfers are increasing globally in parental income, parental transfers for high school
graduates in the data are decreasing for the highest-income children.31

Working During College. We match average hours worked quite well. The average college
student in our simulation works 16.21 hours per week compared to 17.39 in the data.32 We
observe a weak negative relationship between parental income and working during college in
the model and the data.

Earnings and College Premia. Table 2 analyzes the performance of the model with
respect to earnings dynamics. We can only compare the model to the NLSY97 data up to
age 34 since cohorts in the NLSY97 are born between 1980 and 1984. The simulated mean
earnings across ages are very close to those in the data. As described in Section 4, we account
for top-coding of earnings data by appending Pareto tails to the observed earnings distribution.
As such, average earnings are slightly larger in model as compared to the data. We match
college earnings premia very closely until around age 32. After that, the model and data
diverge slightly as more and more college students reach top-coded earnings in the NLSY97.
In Figure 13 in Appendix B.10, we plot the implied earnings profiles in the model over the

31A reasonable suspicion is that this partly reflects measurement error because the set of high-income
children who never enroll in college is relatively small. Our parameter estimates were robust ignoring this set
of individuals in the estimation.

32Note that average hours of work are calculated using data from the entire year and thus include work
during summer break.
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full range of ages.33 The college-earnings premium averaged across all ages greater than 25 in
our model is 85%, that is, the average income of a college graduate is nearly twice as high as
the average income of a high school graduate. This is well in line with empirical evidence in
Oreopoulos and Petronijevic (2013); see also Lee et al. (2017).

Untargeted Moments. The model successfully replicates quasi-experimental studies. First,
it is consistent with estimated elasticities of college attendance and graduation rates with
respect to financial aid expansions (Deming and Dynarski, 2009). Second, it is consistent
with the causal impact of parental income changes on college graduation rates (Hilger, 2016).
Further, our model yields (marginal) returns to college that are in line with the empirical
literature (Card, 1999; Oreopoulos and Petronijevic, 2013; Zimmerman, 2014). More details
are contained in Appendix B.11.

5 Results: Optimal Financial Aid

5.1 Optimal (Need-Based) Financial Aid

For our first policy experiment, we ask which levels of financial aid for different parental
income levels maximize Utilitarian welfare. For this experiment, we consider optimal budget
neutral reforms where we do not change taxes or any other policy instrument but instead only
vary the targeting of financial aid.34 Additionally, we work under the constraint that financial
aid is nonnegative everywhere.35 Figure 3(a) illustrates our main result for the benchmark
case. Optimal financial aid is strongly decreasing in parental income. Compared to current
policies, financial aid is higher for students with parental income below $78,000. This change
in financial aid policies is mirrored in the change in college graduation, as shown in Figure 3(b).
The total graduation rate increases by 2.8 percentage points to 32.8%. This number highlights
the efficient character of this reform.

33The effect of the fatter right tails we include in the model can also be seen in the fit of standard deviation
of log earnings. The simulated standard deviation of log earnings is 4-7 log points higher than that in the data
from age 25 to age 34.

34At this stage, we leave the merit-based element of current financial aid policies unchanged, that is, we do
not change the gradient of financial aid in merit and show the financial aid level for the median ability level.
In Appendix C.10, we show that our main result also extends to the case in which the merit-based elements
are chosen optimally.

35Relaxing this, one would get a negative subsidy at high parental income levels but nothing substantial
changes in terms of results.
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(a) Financial Aid (b) Graduation Rates

Figure 3: Optimal versus Current Financial Aid

Notes: Optimal financial aid with a Utilitarian welfare function and current financial aid in Panel
(a). In Panel (b) we display the college graduation share by parental income group.

5.2 No Desire for Redistribution

One might be suspicious of whether the progressivity is driven by a desire for redistribution
from rich to poor students that results in declining welfare weights.36 If this were the case, the
question would naturally arise whether the financial aid system is the best means of doing so.
However, we now show that the result holds even in the absence of redistributive purposes. We
modify the social planner’s problem such that the marginal social welfare weights are constant
across parental income levels, i.e. @W

E(I)
@I

= 0. In this case, the social planner values a dollar
transferred to any inframarginal student equally, independent of the student’s marginal utility
of consumption or level of parental crowdout. The results are in Figure 4(a). The optimal
financial aid schedule is slightly less progressive than the optimal financial with a Utilitarian
welfare function. The implied graduation patterns are illustrated in Figure 4(b). The results
show that the social planner’s redistribution motive only plays a minor role in generating
progressive optimal financial aid.

5.3 Tax-Revenue-Maximizing Financial Aid

In this section we ask the following question: how should a government that is only interested
in maximizing tax revenue (net of expenditures for financial aid) set financial aid policies? Fig-

36In fact, 1 � W
C(I), which is the relevant term for the formula, increases from around by a factor of

around 2.3 between the 75th and 25th percentile of parental income. Note that this welfare weight is defined
such that it accounts for crowding out of parental transfers. In fact, we find that crowding out is stronger for
high parental income students. Going from the lowest to the highest parental income, the crowding out rate
is monotonically increasing, from 9% at the 25th percentile to 25% at the 75th percentile of parental income.
The fact that 1�W

C(I) increases by a factor of 2.3 is hence not only due to the Utilitarian welfare function
but also due to the fact that an increase in financial aid for the poorest students will be crowded out much
less than financial aid for the richest students.
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(a) Financial Aid (b) Graduation Rates

Figure 4: Financial Aid Policies with no Redistribution Motive

Notes: The dashed-dotted (blue) line shows the optimal schedule for a social planner with no
redistribution motive. Optimal financial aid with a Utilitarian welfare function and current financial
aid are also shown for comparison in Panel (a). In Panel (b) we display the college graduation share
by parental income group for each of the three scenarios.

ure 5(a) provides the answer: revenue-maximizing financial aid in this case is very progressive
as well. Whereas the overall level of financial aid is naturally lower if the consumption utility of
students is not valued, the declining pattern is basically unaffected. For lower parental income
levels, revenue-maximizing aid is more generous than the current schedule, which implies that
an increase must be more than self-financing. We study this in more detail in Section 5.4.
The implied graduation patterns are illustrated in Figure 5(b).

5.4 Self-Financing Reforms

An increase in financial aid can be self-financing if properly targeted. The solid red line in
Figure 6 illustrates the fiscal return, that is, the net effect on government revenue were financial
aid for a particular income level to be increased by $1. For example, a 40% return implies that
the net present value increase in tax revenue is 40% larger than the cost of increasing financial
aid. Returns are positive for parental income between $0 and $33,000; the latter number
corresponds to the 32nd percentile of the parental income distribution. This result is striking:
increasing subsidies for this group is a free lunch. An alternative would be to consider reforms
where financial aid is increased for students below a certain parental income level. This case
is illustrated by the dashed-dotted blue line in Figure 6. An increase in financial aid targeted
to children with parental income below $54,000 – corresponding to the 59th percentile – is
slightly above the margin of being self-financing.
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(a) Financial Aid (b) Graduation Rates

Figure 5: Tax-Revenue-Maximizing Financial Aid Policies

Notes: The dashed-dotted (blue) line shows the optimal schedule under the objective of maximizing
net-tax revenue (net of expenditures for financial aid). Optimal financial aid with a Utilitarian
welfare function and current financial aid are also shown for comparison in Panel (a). In Panel (b)
we display the college graduation share by parental income group for each of the three scenarios.

6 Why Are Optimal Policies Progressive?

We have just shown in Section 5 that optimal financial aid is progressive and more so than
the current US policies. In Sections 5.2 and 5.3, we have also shown that the results are not
driven by the desire to redistribute from richer to poorer students. We now explore the key
forces determining this progressivity result. Recall that the change in welfare due to a small
increase of G(I) is given by (3)

@E(I)

@G(I) ⇥�T E(I)
| {z }
Enrollment Effect

+
@C(I)

@G(I)

�����
E(I)

E(I)⇥�T C(I)

| {z }
Completion Effect

� Ẽ(I)
�
1�W

E(I)
�

| {z }
Mechanical Effect

.

To explain why the optimal financial aid schedule is more progressive than the current US
financial aid, we illustrate the two most important determinants of this welfare effect: the
enrollment effect and the mechanical effect evaluated at the current US system financial aid.
We only found a quantitatively very small contribution of the completion effect and therefore
focus on the other two effects. Figure 7(a) plots the increase in enrollment for a $1,000 increase
starting from the current financial aid system against parental income. The curve is decreasing
in income – children with low parental income react more strongly. This contributes to the
result that optimal financial aid is more progressive than the current US benchmark. By
contrast, the fiscal externality �T E(I) is increasing in parental income because (i) marginal
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Figure 6: Fiscal Returns on Increase in Financial Aid

Notes: The dashed-dotted (blue) line shows the net fiscal return for a $1 increase in financial aid
targeted to all students with a parental income level lower than X. It crosses the profitability line
at $54,000 – corresponding to the 59th percentile. The solid (red) line shows the net fiscal return for
a $1 increase in financial aid targeted to all students with a parental income level equal to X. It
crosses the profitability line at $33,000 – corresponding to the 32nd percentile.

enrollees from higher income households have higher returns37 and (ii) the fiscal externality is
higher for children with high income parents because they receive less financial aid. We now
turn to the mechanical effect. Since we have already shown in Sections 5.2 and 5.3 that the
redistributive preferences play a minor role, we turn again to the of inframarginal enrollees
as plotted in Figure 1(a). As discussed above, there is a strong parental income gradient, as
the simulated share of enrollees increases from around 21% to around 63%. Note that this
basically implies that the direct marginal fiscal costs of a grant increase by a factor of three
with parental income.

Summing up, both the increasing share of inframarginal students and the declining share
of marginal students are important drivers for why optimal financial aid is more progressive
than current financial aid. An open question is what exactly drives how the share of marginal
and inframarginal students vary with parental income. We now provide a model-based de-
composition to shed light on the key drivers.

6.1 Relationship between Inframarginal Students, Marginal Students,

and Parental Income

We have just seen that the following two features mainly explain why optimal financial aid
is more progressive than current financial aid. First, students with low parental income are
more likely to be on the margin of enrolling in college, therefore an increase in financial aid

37The relationship between parental income and the average ability of marginal students depends on how
strongly college enrollees are selected on ability. Ultimately, we find that average ability of marginal enrollees
is increasing in parental income. As the college wage premium is increasing in ability, this implies that increase
of tax payments of marginal enrollees is increasing in parental income.
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(a) Marginal Students (b) Fiscal Externality

Figure 7: Marginal Students and Tax Revenue Changes

Notes: In (a), we plot the change in enrollment rates for a simulated $1,000 change in financial aid
for each parental income level. The average (across all individuals in the sample) is 1.69 percentage
points. In (b), we show the implied average fiscal externality across all students who are marginal
w.r.t. the financial aid increase.

targeted at low income families will induce larger increases in college enrollment. Second, the
positive relation between college enrollment and parental income is strong and therefore the
direct fiscal costs of increasing financial aid is lower for children with low parental income.
We now perform a model-based decomposition exercise to better understand which factors
drive these two relationships. For this decomposition, all changes to the model specification
are cumulative. That is, each new model specification contains the same model alterations as
the previous specification.38

To isolate the effects of model primitives, we perform this decomposition for a hypothetical
flat financial aid schedule instead of the current US tax schedule. This allows us to isolate
the influence of the model primitives, instead of mixing the effects of current policies and
model primitives. Specifically, we set the aid for all parental income groups to the mean level
of financial aid in the data. Results are similar if the decomposition is performed for the
current financial aid system, as we document in Appendix C.1. We start by focusing on the
relationship between parental income and college enrollment in Figure 8(a).39 The solid line
captures the baseline case. College enrollment rates are strongly increasing in parental income:
69% of students at the top of the parental income distribution enroll in college compared to
only 17% at the bottom of the distribution.40 One factor that leads to this positive relationship
is the correlation between parental income and ability. To understand the contribution of this

38In Appendix C.2, we consider an alternative decomposition in which we equalize parental transfers first.
In Appendix C.3, we consider a decomposition where we remove the borrowing constraint before we equalize
parental transfers.

39Alternatively, we could have focused on graduation instead of enrollment. The implications are very
similar.

40Note that this relationship is stronger than the one in Figure 1(a) where the current financial aid schedule
is used as benchmark.
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correlation toward differential college-going rates by parental income, we simulate a version of
the model in which we remove the correlation between parental income and ability by drawing
each agent’s ability from the unconditional ability distribution. Recall that ability affects
both the returns to college and the psychic costs of attending college. Figure 8(a) shows that
the relation between college enrollment and parental income reduces substantially, with 27%
of children at the bottom of the income distribution enrolling in college compared to 69% of
children from the top of the income distribution.

Additionally, children with higher parental income are more likely to go to college because
parental income is positively correlated with parental education. Since higher parental edu-
cation lowers psychic costs, this implies a negative correlation between parental income and
psychic costs. We remove the relation between parental education and psychic costs in college
by setting ParEd = 0, in addition to removing the correlation between parental income and
ability.41 After removing these differences in psychic costs, the relationship between parental
income and college enrollment becomes again flatter with 33% of children from the bottom of
the income distribution and 48% from the top of the income distribution.

In our model, there are further factors that influence the parental income gradient in college
education. The individual returns to college are not known at the time of the enrollment
decision. As individuals are risk averse and as parents with higher income levels give higher
transfers for students attending college, this riskiness of college is another mechanism which
can generate a positive relationship between college and parental income. In addition to the
modifications above, we remove this risk in the monetary return to college by simulating a
version of the model in which each agent with certainty receives a fixed labor market ability
draw. Removing the riskiness of college leads to a further flattening of the relationship between
parental income and college enrollment. Yet there is still a gradient as enrollment increases
from 35% to 48% due to the fact that high parental income children obtain more transfers from
their parents. We finally remove this relationship by providing all children the mean parental
transfer levels for enrollees and non-enrollees and assuming that no families are eligible for
subsidized Stafford loans. As a consequence, the relationship between parental income and
college enrollment becomes flat.42 We conclude that all components play an important role
for the increasing share of inframarginal students with the exception of the risk channel.

We turn to the determinants of the negative relation between parental income and share of
marginal enrollees (again considering a $1,000 increase in financial aid) in Figure 8(b). The
solid line shows the relationship between parental income and the share of marginal students
in the baseline case. The share of marginal students is decreasing in parental income. The
dotted line and the dash-dotted line show the cases in which we remove the correlation between

41Furthermore, we set 0 so that the average psychic cost of going to college is unchanged.
42The fact that it is not totally flat is due to the fact that individuals still differ in gender and region and

these variables are not distributed in exactly the same way for each parental income group.
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(a) Inframarginal Graduates (b) Marginal Students

Figure 8: Model-Based Decomposition for Marginal and Inframarginal Students

Notes: We plot the share of college enrollees and marginal college enrollees given a flat financial aid
schedule for different model specifications. The solid red line represent the baseline model (but also
with the flat financial aid schedule). For the dashed black line we simulate a model version for which
we remove the correlation between ability and parental income. For the dashed-dotted blue line we
simulate a model version for which we remove additionally the correlation between the psychic costs
and parental education. For the dotted pink line we simulate a model version for which we
additionally removes labor market riskiness; i.e. education decisions are made with no uncertainty
about future wages. For the turquoise line with crosses we simulate a model version for which we
set parental transfers to the mean parental transfers in the data, conditional on education.

parental income and ability and in which we remove the relation between parental income and
parental education, respectively. In both cases, the share of marginal students among low
income families increases slightly. One reason why this occurs is because the enrollment share
of low income families moves closer to 50%. As we have seen in Section 4.1.4, 50% corresponds
with the mode of the extreme value distribution, which implies a higher marginal share, all
else equal. Removing the riskiness of college returns (the dotted line) reduces the share of
marginal low income students slightly, but the relation between parental income and the share
of marginal students is still strongly decreasing. Finally, we set parental transfers to the mean
levels for enrollees and non-enrollees and assume no families are eligible for subsidized Stafford
loans. The relation between parental income and the share of marginal enrollees disappears
completely when there is no relationship between parental income and the child’s financial
resources. We conclude that the correlation between parental transfers and parental incomes
play the strongest role in differences in the share of marginal students across parental income
levels.

6.2 Recalculation of Optimal Policies

This decomposition has illustrated the key factors in the positive relation between parental
income and college education and the negative relation between parental income and the
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Figure 9: Optimal Financial Aid for Different Model Specifications

Notes: For each model specification (see Figure 8), we illustrate the respective optimal financial aid
schedule.

share of marginal students. Removing the different elements from the model also affects the
other forces that determine the optimal financial aid schedule. To get the complete picture,
we therefore now simulate the respective optimal financial aid schedule for all these model
specifications. Figure 9 shows the implied optimal policies for each model specification. First,
the positive relation of parental income with ability and parental education are not the main
drivers of the financial aid results. Although graduation rates flatten (see the lines in Figure
8(a)), there are offsetting effect as low-income children are now more likely to be marginal
(see the lines in Figure 8(b)). Policies are still relatively progressive in those models.

Removing riskiness in addition has a stronger impact, because there are no offsetting effects
in this case. Both the inframarginal and marginal schedule are flatter now. Finally, the
turquoise crossed line shows an almost zero slope, as transfers are equalized and we are in
a world where parental income plays no more role. The effects for marginal students and
inframarginal students again work in tandem, pushing towards flat aid.43

From this decomposition, we conclude that the correlations between parental income and
parental transfers, psychic costs, and ability all play important roles in the progressive opti-
mal aid schedule with parental transfers probably playing the biggest role. The correlation of
parental income with parental transfers drives the negative correlation of parental income and
share of marginal students and also plays a role in the positive correlation of parental income
and the share of inframarginal students. The relationships between parental income and ability
and psychic costs play important roles in the correlation between share of inframarginal stu-
dents and parental income, and therefore also play important roles in the progressive optimal
aid schedule.44

43Again, the fact that it financial aid not totally flat is due to the fact that individuals still differ in gender
and region and these variables are not distributed in exactly the same way for each parental income group.

44In Appendix C.2 we consider a decomposition in which we first remove the correlation with parental
transfers before removing the correlations with ability and psychic costs. We reach similar conclusions. In
Appendix C.3, we consider a decomposition which is as in the main body but we also remove borrowing
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7 Extensions

We consider five important extensions: the role of borrowing constraints, endogenous abilities
of children, general equilibrium effects, endogenous optimal taxation, and merit-based aid.
The latter three are found in the appendix, because of space constraints. General equilibrium
effects can be found in Appendix C.8, endogenous optimal taxation can be found in Appendix
C.9, and merit-based aid can be found in Appendix C.10.

7.1 The Role of Borrowing Constraints

We have shown that optimal progressivity is not primarily driven by redistributive tastes but
rather by efficiency considerations in Section 5.3. Given that our analysis assumes that stu-
dents cannot borrow more than the Stafford Loan limit, the question arises whether these
efficiency considerations are driven by borrowing limits that should be particularly binding
for low-parental-income children. To elaborate on this question, we ask how normative pre-
scriptions for financial aid policies change if students can suddenly borrow as much as they
want (up to the natural borrowing limit, which is not binding). For this thought experiment,
we first remove borrowing constraints and keep the current financial aid system. This will
increase college enrollment and imply a windfall fiscal gain for the government. In a second
step, we choose optimal financial aid but restrict the government to not use this windfall gain.
As we show in Section C.4, optimal financial aid policies become less progressive in this case.
This is expected. More low-income children are close to the borrowing constraint in the base-
line specification. When we remove borrowing constraints, redistributing funds towards these
students becomes less attractive for the utilitarian social planner. Quantitatively, however,
optimal policies are still very progressive even when borrowing constraints are removed. We
also re-estimated a version of the model in which borrowing constraints varied by parental
resources. We found that the optimal financial aid schedule was very similar to the baseline
schedule. Details can be found in Appendix C.5. We also considered alternative unreported
versions, where exogenous borrowing constraints depend differently on characteristics of the
child and the parent. The policy implications were not affected much.

7.2 Endogenous Ability

Up to this point, we have assumed that a child’s ability at the beginning of the model, ✓,
is exogenous. One might be concerned that parents may respond to changes in the financial
aid schedule by adjusting their investment in their child’s development, therefore changing
their child’s ability at the time of the college entrance decision. To better understand how the
optimal financial aid schedule would differ if ability were endogenous with respect to financial

constraints as an intermediate case before removing parental transfers. In this case the role of parental
transfers is much more limited.
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aid, we posit a model extension in which a child’s ability is determined endogenously as a
function of parental investment.

Children are endowed with an initial ability at birth ✓0, where ✓0 is a random variable with
CDF ✓0 ⇠ F✓0(·|I). A child’s ability at the time of college, ✓, is produced as a function of the
child’s initial ability and parental monetary investment, Invest. The parent observes ✓0 at
the beginning of the child’s life and then chooses investment in the child. Additionally, the
parent chooses parental transfers when the child attends college, as in the baseline model. For
simplicity, we assume that grants are only a function of income when solving the model with
endogenous ability. This considerable simplifies the model solution.

For the production of the child’s ability, we assume the following functional form, which is
very similar to and based on the translog functional form employed in Agostinelli and Wiswall
(2016)45

✓ = lnA+ �1 ln ✓0 + �2 ln Invest+ �3 ln ✓0 ln Invest+ ◆,

where ◆ is a normally distributed error that is unknown by the parent at the time of choosing
Invest, and where A, �1, �2, and �3 are parameters of the ability production function. After
the parent chooses Invest, the ability production shock ◆ is realized. The parent’s problem
is then the same as in the baseline case: each year, the parent continues to make consump-
tion/saving decisions and chooses a parental transfer schedule when the agent reaches the
college enrollment choice. Therefore, increases in early childhood investment increase the
child’s expected ability, but come at the cost of reduced consumption for the parent and
potentially lower transfers when the child reaches the enrollment decision.

We calibrate the parameters of the childhood ability production function to match the joint
distribution of parental income and ability we observe in our data and selected moments from
Agostinelli and Wiswall (2016). Details on the calibration are included in Appendix C.6. Dahl
and Lochner (2012) use changes in the EITC to instrument for family income and find that
a $1000 increase in family income leads to an increase in ability scores by 6% of a standard
deviation. We simulate an increase in yearly family income of parents by $1,000 in our model.
The increase in income leads to an average increase in AFQT scores of 2.2% of a standard
deviation across all children, and an increase of 5.1% of a standard deviation for children in
the lowest quintile. Therefore, the simulated responsiveness of ability with respect to parental
income is slightly smaller than but in line with Dahl and Lochner (2012).

The optimal financial aid schedule, graduation rates, and ability levels with endogenous
ability are shown in Figure 10. Panel 10(a) shows the new optimal financial aid schedule
when ability is endogenous. Compared to the baseline case when ability is exogenous, the

45Agostinelli and Wiswall (2016) estimate a model of early childhood developments with multiple periods
in which childhood skills are latent. Additionally, they use a broader concept of parental investment; the
investment we refer to here is strictly monetary.
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optimal aid schedule is now much higher, reflecting that increases in financial aid are now much
more profitable for the government. With endogenous ability, increases in financial aid lead
to increases in child ability, which increase tax payments of both marginal and inframarginal
children. The optimal aid schedule is still highly progressive. Panel 10(b) shows the graduation
rates evaluated at the optimal aid schedule with endogenous ability. Switching to the optimal
schedule leads to an increase in college graduation rates of over 10%, reflecting that 1) the
optimal schedule is considerably more generous than the current schedule and 2) increases in
financial aid lead to larger increases in college-going when ability is endogenous.46

(a) Financial Aid (b) Graduation Rates

Figure 10: Financial Aid and Graduation with Endogenous Ability
Notes: The dashed-dotted (blue) line shows the optimal schedule when child’s ability is endogenous.
Optimal financial aid with exogenous ability and current financial aid are also shown for comparison
in Panel (a). In Panel (b) we display the college graduation share by parental income group when
ability is endogenous with the optimal aid schedule and with the current aid schedule.

As emphasized by Caucutt and Lochner (2017) and Lee and Seshadri (2019), low income
parents may face borrowing constraints when their child is young and therefore unable to
adjust their investment in their child’s ability in response to changes in education policy.
In Appendix C.7, we calculate the optimal aid schedule with endogenous ability under the
assumption that low income parents may be borrowing constrained when their child is young.
We find that the optimal progressivity of the system decreases as we increase the percentage of
low-education families who are borrowing constrained. However, the optimal schedule remains
more progressive than the current schedule in all cases.

46We show the end of childhood ability as a function of parental income under the current financial aid
schedule and under the optimal schedule in Section C.6. Switching to the optimal aid schedule leads to
substantial increases in child ability, especially for children in the lower end of the parental income distribution.
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8 Conclusion

This paper has analyzed the normative question of how to optimally design financial aid
policies for students. We find that optimal financial aid policies are strongly progressive. This
result holds for different social welfare functions, assumptions on credit markets for students,
and assumptions on income taxation. Moreover, we find that a progressive expansion in
financial aid policies could be self-financing through higher tax revenue, thus benefiting all
taxpayers as well as low-income students directly. It seems to be that financial aid policies
are a rare case with no classic equity-efficiency trade-off because a cost-effective targeting
of financial aid goes hand in hand with goals of social mobility and redistribution. We also
think that our results can be used for policy recommendations according to the criteria of
Diamond and Saez (2011):47 the economic mechanism is empirically relevant and of first
order importance to the problem, it is very robust and progressive financial aid systems are
clearly implementable, as they are universal across all OECD countries.

Future work could focus on adding heterogeneity in the quality of colleges, which would
allow for rich interactions with financial aid policies. In such a setting, it would seem natural
to let the government optimize over financial aid as a joint function of parental background and
college quality. In addition, college quality could adjust endogenously. Thinking more seriously
about these issues could also extend the scope of the analysis to the level of community colleges.
We leave that for future research.
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A Theoretical Appendix

A.1 Derivation of Equation 3

The Lagrangian for the government’s problem reads as:
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The derivative w.r.t. G(I) is given by:
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Recall that 1Hj!Ej
takes the value one if an individual of type j is pushed over the college

enrollment margin due to a small increase in financial aid.
The first term captures the direct utility increase of inframarginal enrollees due to receiving

more financial aid. The second term captures the direct fiscal effect of paying more financial aid
to inframarginal students. The third term captures the fiscal effect of additional enrollees. The
fourth effect captures the fiscal effect due to the increase in the completion rate of inframarginal
students. The implied change in the enrollment and dropout rate has no direct first-order effect
on welfare: individuals that are marginal in their decision to enroll or not and to continue
studying or drop out, were just indifferent between the two respective options, hence this
change in behavior has no effect on their utility.

The definitions of E(I) and �T
E(I) directly imply that the third term equals the enrollment

effect in (3) multiplied by ⇢. The definitions of �T C(I), E(I) and C(I) directly imply that
the fourth term equals the completion effect in (3) multiplied by ⇢.

41



Now it remains to be shown that the first and second term are equal to the mechanical
effect in (3). The application of the envelope theorem implies that the first term reads as
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The second term, using the definitions of NT G
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Adding (10) and (11), using the definition of the social marginal welfare weight yields equation
3.

A.2 More General Version of Equation 3 with Annual Dropout De-

cisions

We now show the generalization in which individuals can drop out each period. For this case,
we have to distinguish between individuals that drop out in different periods. Hence, for the
education decision we have: e 2 {H,G,D1, D2, ..., Dtmax

g
}, where Dt implies that individuals

drop out at the beginning of year t. Accordingly we can define the net fiscal contribution of
an individual of type (X, I) that drops out in period t by NT Dt
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The Lagrangian for the government’s problem reads as:
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The FOC for G(I) shares the same basic structure as (9). However, here the fiscal effects due
to change in dropout behavior are more involved:48
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where we let P0(X, I,G(I)) = 1.
In short term notation, similar to that in (3), we can write
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�T Con,t(I)Et(I)

where Cont(I) is the share of those enrollees with parental income I in period t, that continue
studying to year t+ 1. It is defined by

Cont(I) =
Et+1(I)

Et(I)

for t = 1, 2, .., tmax

g
� 1 and

Contmax
g

(I) =

R
�
1V

E

j
�V

H

j

Qt
max
g

s=1 Ps(X, I,G(I))h(X|I)dX
Etmax

g
(I)

.

where
E1(I) = E(I) =

Z

�

1V
E

j
�V

H

j

h(X|I)dX.

and

Et(I) =

Z

�

1V
E

j
�V

H

j

t�1Y

s=1

Ps(X, I,G(I))h(X|I)dX.

48Again, changes in dropout behaviour have no direct welfare effect due to the envelope theorem.
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Finally, the changes in tax revenue are defined by:

�T Con,t(I) =

R
�
�T Con,t(X, I)@P (X,I,G(I))

@G(I) h(X|I)dX
R
�

@P (X,I,G(I))
@G(I) h(X|I)dX

where

�T Con,t(X, I) = NT Et

NPV
(X, I)�NT Dt

NPV
(X, I).

Hence, the equivalent to equation 3 is given by:

@E(I)

@G(I) ⇥�T E(I) +

t
max
gX

t=1

Et(I)
@Cont(I)

@G(I)

�����
Et(I)

�T Con,t(I)� Ẽ(I)
�
1�W

E(I)
�
.

A.3 Proof of Proposition 1

The government’s problem reads as

max
G(I)

Z

R+

Z
✓̃(I)

✓

U ((1� ⌧)yH) dH̃(✓|I)dF̃ (I)

+

Z

R+

Z
✓

✓̃(I)

U (((1� ⌧yH) (1 + ✓)� (F � G(I)� tr(I)))) dH̃(✓|I)dF̃ (I)

+ �

"Z

R+

Z
✓̃(I)

✓

⌧yH dH(✓|I)dF (I) +

Z

R+

Z
✓

✓̃(I)

(⌧yH (1 + ✓)� G(I)) dH(✓|I)dF (I)� F̄

#
,

where, as in Section 2, H̃ and F̃ denote the distributions of Pareto weights which integrate up
to one and F̄ is some exogenous revenue requirement. All Pareto weights are non-negative.

The first-order condition for G(I) is given by:

h(✓̃(I)|I)
���
@✓̃(I)

@G(I)

���
⇣
⌧yh✓̃(I)� G(I)

⌘
�
⇣
1�H(✓̃(I)|I)

⌘
(1�W

E(I)) = 0, (12)

where W
E(I) is average social marginal welfare weight for enrollees with parental income I

and formally given by:

W
E(I) =

R
✓

✓̃
U

0 (((1� ⌧yH) (1 + ✓)� (F � G(I)� tr(I)))) dH̃(✓|I)f̃(I)
�(1�H(✓|I))f(✓) .

Using
@✓̃(I)

@G(I) = � 1

yH(1� ⌧)
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and inserting into (12) gives the first-order condition explained in the main text just before
Proposition 1. Solving for G(I) gives Proposition 1.

Unweighted Utilitarianism with U(x)=x. If we assume h̃(✓|I) = h(✓|I) for all (✓, I)
and further assume U(x) = x, then, we obtain

W
E(I) =

1

�
8 I,

hence the welfare weights are the same for all parental income groups. The value for � is
measures the marginal value of public funds and therefore depends on F̄ . To get an under-
standing of the optimal value for �, consider the perturbation around the optimum, where
G(I) is increased by � ! 0 for all I. This basically implies changing the lump sum component
of G(I) and is equivalent to just integrating over (12). The impact on welfare is given by:

Z

I

(1�W
E(I))

⇣
1�H(✓̃(I)|I)

⌘
dF (I) +

Z

I

h(✓̃(I)|I)
���
@✓̃(I)

@G(I)

���
⇣
⌧yh✓̃(I)� G(I)

⌘
dF (I) = 0.

and hence for WE(I) = 1
�
8 I:

Z

I

✓
1� 1

�

◆⇣
1�H(✓̃(I)|I)

⌘
dF (I) +

Z

I

h(✓̃(I)|I)
���
@✓̃(I)

@G(I)

���
⇣
⌧yh✓̃(I)� G(I)

⌘
dF (I) = 0.

Here we see that � = 1 would be consistent with G(I) = ⌧yh✓̃(I) for all I. Recall that the
government budget constraint is given by:

Z

R+

Z
✓̃(I)

✓

⌧yH dH(✓|I)dF (I) +

Z

R+

Z
✓

✓̃(I)

(⌧yH (1 + ✓)� G(I)) dH(✓|I)dF (I)� F̄ = 0.

If the exogenous revenue requirement F̄ is such that the budget constraint holds for G(I) =
⌧yh✓̃(I) for all I, then we obtain � = 1 and the formula in Proposition 1 becomes

G(I) = ⌧ (F � tr(I)) . (13)

Assume that instead the budget constraint would be violated and this level of financial aid
can not be financed. Then we have � > 1 and hence W

E(I) < 1 8 I. Generally, we could also
have the case where � < 1. E.g. assume that F̄ = �1. In this case, there would be infinitely
many public funds available for financial aid and therefore the marginal value of public funds
would be zero. But of course this is only of theoretical interest.

The fact that the marginal value of public funds is not equal to unity even though pref-
erences are linear may seem in contrast to the optimal income tax literature, where it is a
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standard result that the marginal value of public funds is equal to one for quasi-linear pref-
erences and in other words the average welfare weights is equal to one, see e.g. Saez (2002).
The reason is that the policy instruments that we consider are such that there is no lump
sum element. While the financial aid schedule G(I) of course has an intercept G(0) that can
optimally be chosen, this is no lump sum transfer in the classical sense because it only reaches
college students and not individuals who forgo college. Therefore, varying this lump sum
component also has incentive effects on the college decision and one cannot just pay out a
dollar to everyone without affecting behavior.

A.4 Proof of Corollary 1

Differentiating (5) w.r.t. I yields:
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which proves Corollary 1 since by assumption tr
0(I) > 0 and log concavity of the skill distri-
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A.5 Proof of Corollary 2

Differentiating (5) w.r.t. I yields:
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which proves Corollary 2 since by assumption tr
0(I) > 0, log concavity of the skill distribution

implies
@

⇣
1�H(✓̃(I))

h(✓̃(I))

⌘

@✓̃(I)
< 0 and we assumed

@

⇣
1�H(✓|I)
h(✓|I)

⌘

@I
> 0 8 ✓, I.

A.6 Optimal Income Taxation

The planner’s problem is the same as in (1) with the difference that the planner also optimally
chooses the income tax schedule T (·). Notice that the formula for optimal financial aid policies
is unaltered. We allow the tax function T (·) to be arbitrarily nonlinear in the spirit of Mirrlees
(1971). We restrict the tax function to be only a function of income and to be independent
of the education decision. This tax problem can either be tackled with a variational or tax
perturbation approach (Saez, 2001; Golosov et al., 2014; Jacquet and Lehmann, 2016) or with
a restricted mechanism design approach for nonlinear history-independent income taxes that
we explore in Findeisen and Sachs (2017).

We here provide a heuristic version of the former approach within our model. For notational
convenience, we consider the model of Section 2 with the assumption that individuals can only
dropout at the beginning of period 3. We also assume that agents can only graduate in 4 years.

Consider an increase of the marginal tax by an infinitesimal amount dT 0 in an income
interval of infinitesimal length [y⇤, y⇤ + dy]. As a consequence of this reform, all individuals
with y > y

⇤ face an increase of the absolute tax level of dT 0
dy. The tax reform therefore

induces a mechanical increase in welfare of

�WMR(y
⇤) = ⇢dT 0

dy

TX

t=1

✓
1

1 + r

◆t�1 Z 1

y⇤
ht,H(y)dy ⇥ sH

+ ⇢dT 0
dy

TX

t=3

✓
1

1 + r

◆t�1 Z 1

y⇤
ht,D(y)dy ⇥ sD

+ ⇢dT 0
dy

TX

t=5

✓
1

1 + r

◆t�1 Z 1

y⇤
ht,G(y)dy ⇥ sG

through the tax revenue increase (in net present value). ht,e(y) is the density of income of
individuals with education level e in period t and se is the overall share of individuals with
education level e. Both, the income densities and the education shares are endogeneous w.r.t.
to taxes, we get to this below.
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Note that this increase in tax payment also has mechanical effects on individual utilities
which adds up to the following welfare effect

�WMU(y
⇤) = dT 0

dy
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Now we turn to the endogeneity of education shares. First of all some individuals will change
their initial enrollment decision. We define 1y

⇤

Hj!Ej
to take the value one if an individual of

type j is marginal in the enrollment decision w.r.t. to a one dollar tax increase for earnings
above y

⇤. Then, the welfare effect of individuals changing their enrollment decision due to a
small increase in T

0(y⇤) is given by:
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o
h(X|I)dXdI.

Similarly, the probability to continue college and not drop out is endogenous w.r.t. taxes, i.e.
we have P (X, I,G(I), T (·)). The change in welfare due to the change in dropout behavior,
with some abuse of notation, is simply given by:
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h(X|I)dXdI.

Finally, an increase in the marginal tax rate also affects labor supply behavior for individuals
within the interval [y⇤, y⇤+dy]. Individuals within this infinitesimal interval change their labor
supply by

@y
⇤
t

@T 0dT
0 = �"y⇤

t
,1�T 0

y
⇤
t

1� T 0dT
0
.

Whereas this change in labor supply has no first-order effect on welfare via individual utilities
by the envelope theorem, it has an effect on tax revenue, which is given by:
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.

Since this reform must not have any non-zero effect on welfare if the tax system is optimal,
we have to have
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�WMR(y
⇤) +�WMU(y

⇤) +�WE(y
⇤) +�WD(y

⇤) +�WL(y
⇤) = 0 (14)

which provides an implicit characterization of T 0(y⇤).
Finally, the optimal level for the lump-sum element of the tax schedule T (0) is implicitly

characterized by

�WMR(0) +�WMU(0) +�WE(0) +�WD(0) = 0.

This optimal tax approach is related to the formulas of Saez (2002) and Jacquet et al.
(2013).

To implement this formula numerically, we follow a guess and verify approach. Hence, we
start with a guess for the tax schedule and then evaluate (14).49 We then slightly adjust
T

0(y⇤) to make (14) closer to zero (but keep �WMR(y⇤)+�WMU(y⇤)+�WE(y⇤)+�WD(y⇤)

fixed, i.e. we only adjust �WL(y⇤)). We then calculated the new allocation for this adjusted
schedule and evaluate (14) for income levels again and so on. We proceed until convergence.50

B Estimation and Calibration

B.1 Current Tax Policies and Tuiton

To capture current tax policies, we use the approximation of Heathcote et al. (2017), which
has been shown to work well in replicating the US tax code. Since this specification does not
contain a lump-sum element, we slightly adjust this schedule. We set the lump sum element
of the tax code T (0) to minus $1,800 a year. For average incomes this fits the deduction in the
US-tax code quite well.51 For low incomes this reflects that individuals might receive transfers
such as food stamps.52

For tuition costs, we take average values for the year 2000 from Snyder and Hoffman
(2001) for the regions Northeast, North Central, South, and West, as they are defined in the
NLSY. We also take into account the amount of money that is spent per student by public
appropriations, which has to be taken into account for the fiscal externality. The average
values are $7,434 for annual tuition and $4,157 for annual public appropriations per student.
Besides these implicit subsidies, students receive explicit subsidies in the form of grants and
tuition waivers. We estimate how this grant receipt varies with parental income and ability

49In fact a more complicated version of (14) which accounts for dropout behavior in every period and also
accounts for stochastic graduation.

50In each iteration, we also optimally choose the financial aid schedule G(I) given the tax schedule in the
respective iteration.

51Guner et al. (2014) report a standard deduction of $7,350 for couples that file jointly. For an average tax
rate of 25% this deduction could be interpreted as a lump sum transfer of slightly more than $1,800.

52The average amount of food stamps per eligible person was $72 per month in the
year 2000. Assuming a two person household gives roughly $1,800 per year. Source:
http://www.fns.usda.gov/sites/default/files/pd/SNAPsummary.pdf
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in Appendix B.2 using information provided in the NLSY97. We find a strong negative effect
of parental income on financial aid receipt. Additionally, we can capture merit-based grants
by the conditional correlation of AFQT scores with grant receipt. Finally, we calibrate the
exogenous budget element F̄ in the following way. For the current U.S. polices, we calculate
the present value of financial aid spending and the present value of tax revenues collected from
the cohorts that we consider (born between 1980 and 1984 from the NLSY97) and obtain F̄

from the difference between the two.
We categorize the following 4 regions:

• Northeast: CT, ME, MA, NH, NJ, NY, PA, RI, VT

• North Central: IL, IN, IA, KS, MI, MN, MO, NE, OH, ND, SD, WI

• South: AL, AR, DE, DC, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN , TX, VA, WV

• West: AK, AZ, CA, CO, HI, ID, MT, NV, NM, OR, UT, WA, WY

We base the following calculations on numbers presented by Snyder and Hoffman (2001). Table
313 of this report contains average tuition fees for four-year public and private universities.
According to Table 173, 65% of all four-year college students went to public institutions,
whereas 35% went to private institutions. For each state we can therefore calculate the
average (weighted by the enrollment shares) tuition fee for a four-year college. We then use
these numbers to calculate the average for each of the four regions, where we weigh the different
states by their population size. We then arrive at numbers for yearly tuition & fees of $9,435
(North East), $7,646 (North Central), $6,414 (South) and $7,073 (West). For all individuals
in the data with missing information about their state of residence, we chose a country wide
population size weighted average of $7,434.

Tuition revenue of colleges typically only covers a certain share of their expenditure. Figures
18 and 19 in Snyder and Hoffman (2001) illustrate by which sources public and private colleges
finance cover their costs. Unfortunately no distinction between two and four-year colleges is
available. From Figures 18 and 19 we then infer how many dollars of public appropriations
are spent for each dollar of tuition. Many of these public appropriations are also used to
finance graduate students. It is unlikely that the marginal public appropriation for a bachelor
student therefore equals the average public appropriation at a college given that costs for
graduate students are higher. To solve this issue, we focus on institutions “that primarily
focus on undergraduate education” as defined in Table 345. Lastly, to avoid double counting
of grants and fee waivers, we exclude them from the calculation as we directly use the detailed
individual data about financial aid receipt from the NLSY (see Section B.2). Based on these
calculations we arrive at marginal public appropriations of $5,485 (Northeast), $4,514 (North
Central), $3,558 (South), $3,604 (West) and $4,157 (No information about region).
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B.2 Estimation of Grant Receipt

Grants and tuition subsidies are provided by a variety of different institutions. Pell grants,
for example, are provided by the federal government. In addition, there exist various state
and university programs. To make progress, similar to Johnson (2013) and others, we go on
to estimate grant receipt directly from the data.

Next, we estimate the amount of grants conditional on receiving grants as a Tobit model:

gri = ↵
gr + f(Ii) + �

gr

4 AFQTi + �
gr

5 depkidsi + "
gr

i
. (15)

where f(Ii) is a spline function of parental income and "
gr

i
represents measurement error.

Besides grant generosity being need-based (convexly decreasing), generosity is also merit-
based as �̂

gr

4 > 0 and increases with the number of other dependent children (besides the
considered student) in the family.

Table 3: OLS for Grants

AFQT Dependent Children

Coefficient 39.40*** 321.75**
Standard Error ( 5.03) (106.39)

N=968. * p  0.10, ** p  0.05, *** p  0.01.

B.3 Wage Estimation

We specify and estimate wage life-cycle paths as follows. Our procedure first estimates labor
earnings life-cycle profiles and then calibrates the respective wage profiles based on those
estimates in a second step. Specifically, we use the following functional form for earnings y :

8 e = H,G : log ye
it
= �

es

0 + �
e

✓
log ✓i + �

e

t1t+ �
e

t2t
2 + �

e

t3t
3 + v

e⇤
i
. (16)

We estimate separate parameters for high school graduates and college graduates.53 The
parameter �

e

✓
captures different returns to ability for agents of a given education level. The

extent to which the college wage premium is increasing in ability is determined by the ratio
�
G

✓

�
H

✓

. We find a ratio larger than 1, which implies a complementary relationship between initial
ability and education. Our estimates can be found in Table 4. v

e
⇤

i
is a random effect that

captures persistent differences in wages conditional on the agent’s schooling choice. We assume
that agents do not know the value of ve⇤

i
at the beginning of the model, but that its value is

revealed as soon as the agents finish their education and enter the labor market. Uncertainty
53Dropouts have the same wage parameters as high school graduates except for the constant term. This

gives us a very good fit for the relative earnings of dropouts, consistent with the evidence in Lee et al. (2017).
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over v
e
⇤

i
creates uncertainty over an agent’s returns to college. After v

e
⇤

i
there is no further

uncertainty about an agent’s wage path.
The age earnings coefficients �e

t1, �
e

t2 and �
e

t3 are education dependent but independent from
gender. However, since we assume different labor supply elasticities for men and women, the
implied wage life-cycle profiles will differ across gender because how a given earnings path
maps into wages depends on the labor supply elasticity. The age coefficients are estimated
from the NLSY79 since individuals from the NLSY97 are only observed until their mid-30s. In
sum, this procedure pins down a stochastic distribution of potential life-cycle wage paths for
each individual, which depend on gender, ability, and the education decisions. We demonstrate
in Section 4.3 that we obtain life-cycle paths of earnings and wages which are consistent with
the data.54

We estimate the age coefficients �
e

t1, �
e

t2 , �
e

t3 using panel data from the NLSY79 since
individuals in the NSLY97 are too young (born between 1980 and 1984) such that we can
infer how wages evolve once individuals are older than 35. In the second step, we build
the transformed variable l̂og ye

it
= log ye

it
� �

e

t
t � �

e

t2t
2 � �

e

t3t
3, which takes out age affects

from yearly log incomes. Using the NLSY97, we estimate the relationship of log income with
gender and log AFQT, estimating separate models and coefficients by education level. We use
a random-effects estimator and assume normality, yielding education specific variances for ve

i
.

The estimates are displayed in Table 4. There is a significant college premium in the model,
although the high-school constant is larger, because we have used education dependent age
profiles.

College Educated

Female Log AFQT Education Constant Variance vi

Coefficient -0.14*** 0.47*** 3.06*** 0.42
Standard Error (0.02) (0.07) (0.35)

High-School Educated

Female Log AFQT Education Constant Variance vi

Coefficient -0.25*** 0.31*** 7.11*** 0.36
Standard Error (0.01) (0.03) (0.35)

Table 4: Regressions: Income

Notes: Random effect models, estimated with NLSY9. Dependent variable is log yearly income,
cleaned for age effects. Age effects are obtained by estimating a cubic polynomial on the NLSY79.
These age coefficients are available upon request. N=10,165 (College) and N=19,955 (High-School) .
* p  0.10, ** p  0.05, *** p  0.01.

54We use these same parameter estimates to calculate life-cycle earnings for parents. We choose the id-
iosyncratic competent of earnings, ve⇤

i
, to generate earnings at age 45 equal to the parental earnings levels we

observe in the data.
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Next, we explain how to go from the estimated income to the wage profiles. The reason
why we do not estimate wage profiles directly is that we append Pareto tails to the income dis-
tribution on which more reliable information is available. Top incomes are underrepresented
in the NLSY as in most survey data sets. Following common practice in the optimal tax liter-
ature (Piketty and Saez, 2013), we therefore append Pareto tails to each income distribution,
starting at incomes of $150,000. We set the shape parameter ↵ of the Pareto distribution to
1.5 for all income distributions.

Next we describe the mapping from y to w as in Saez (2001). Given the utility function we
assume with no income effects, in each year individuals solve a static labor supply problem
where optimal labor supply in that year only depends on the current wage (which evolves over
the life-cycle) and marginal tax distortions. It is easy to show that the first-order condition
for an individual facing a marginal tax rate schedule is

lnw =
✏+ ⌧

1 + ✏
ln y � 1

1 + ✏
ln(� (1� ⌧)),

if the tax function is of the form T (y) = y � ⇢y
1�⌧ . Using the estimates from the regression

model, we can express the wage for a given type (age, gender, ability, education) as at age t:

lnwit =
✏+ ⌧

1 + ✏
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1 + ✏
ln(� (1� ⌧)).

B.4 Value Functions During College

Agents do not graduate and remain in college with probability
�
1� Pr

Grad

t
(✓)
�
, which depends

on the agent’s ability level ✓. Further, we allow the interest rate the agent receives in college
to vary by the agent’s assets (positive or negative) and by the agent’s parental income, to
reflect features of the Stafford loan program.
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subject to
ct = `

E

t
! + at (1 + r (at, I))� at+1 � FRegion + G (X, I)

and
at+1 � ā

E

t+1,

where V E

t+1 (X, I, at+1, "t+t) and "t+t are defined in the main body. The term
⇥
V

W

t+1 (X, e = G, at+1, wt+1)
⇤

is the expected value of being a college graduate in the workforce in year t + 1, where the
expectation is taken over the permanent skill shock. We allow tuition, FRegion, to depend on
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the agent’s region. This allows the model to capture differences in tuition across geographic
regions and is also helpful for identifying the parameters of the model.

B.5 Details: Parent’s Problem

The parent’s problem begins when the parent turns 20 years old. Each year the parent receives
income and makes consumption/saving decisions. We assume that all parents make transfers
to their children at the year which corresponds to t = 1 for the child and an age of 43 for the
parent.55 Parents start the model with 0 assets and live until age 65.

For all years when the transfer is not given, the parent simply chooses how much to consume
and save. Let V

P

t
denote the parent’s value function in year t. We can write this as

V
P

t

⇣
X̃, I, a

P

t

⌘
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c


c
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,

subject to:
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it
+ (1 + r) aP

it
� a
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where a
P

t
is the parent’s assets in year t and y

P

it
is the parent’s income in year t.56 Note that

a parent’s state space does not include the child’s idiosyncratic preference for college "
E.

In the year of the transfer, the parent also receives utility from transfers. In this year, we
write the parent’s Bellman equation as
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subject to:
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it
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where trhs and tr
col are the transfers offered conditional on the child’s education choice, and tr

e

are the realized transfers.57 As the parent must commit to transfers before the child’s college
preference shock is realized, the child’s college choice and therefore the value of tre is stochastic
at the time the parent chooses the transfer in the eyes of the parent. F

⇣
tr

hs
, tr

col
, X̃, I

⌘
is

55This will correspond to age 18 of the child if the parent gave birth to the child at age 25. This is the
median age a mother gave birth to their child in the NLSY97.

56We set the risk aversion for parents � = 1 outside of estimation such that the estimate of the child’s � is
identified only by decisions of the child, and is not identified by the amount of parental transfers given.

57In the data, we follow Johnson (2013) we calculate transfers as the sum of monetary transfers and the
monetary benefit of living at home. We assume that the monetary benefit of living at home is given exogenously
and only the actual monetary transfers are included in the parent’s budget constraint. We assume that the
monetary benefit of living at home is equal to the average amount conditional on parental income and the
child’s education choice.
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the expected utility the parent receives from the transfer schedule tr
hs
, tr

col and is defined in
the main text.

We assume parents must also pay transfers to the agent’s siblings. Therefore, if the child
has nsibs siblings, the child’s parents also pay nsibs ⇥ t̄r (nsibs, I) out of their budget to
the other siblings, where t̄r (nsibs, I) is the predicted level of parental monetary transfers for
children with nsibs and parental income of I, unconditional of the child’s education choice.
We predict t̄r (nsibs, I) by regressing monetary transfers on parental income separately for
each number of siblings we observe in the data.

Parent’s Earnings Profile Calibration We assume that parental earnings are determined
by a similar process to the child’s earnings. Specifically, parental earnings are given by

8 e = H,G : log yP
t
= �

ParEdu
t1 ParAge

t
+ �

ParEdu
t2 ParAge2

t
+ �

ParEdu
t3 ParAge3

t
+ v

P
.

where ParAge
t
is the parent’s age in period t. The age coefficients, �ParEdu

t1 , �ParEdu
t2 , and �

ParEdu
t3

are taken from the child’s earnings regression. We assume that the parent’s age coefficients
are given by the college age coefficients if at least one parent has attended college, otherwise
the parent’s age coefficients are given by the age coefficients for a child that has not attended
college.

The term v
P represents persistent, idiosyncratic differences in earnings across parents.

We assume that we observe the parental income variable I when parents are 40 years old.
Therefore, we must have y40 = I for each parent we observe in data. We therefore choose v

P

such that the predicted parental income at age 40 is equal to the observed parental income
variable I. We can write this as

v
P = log I �

�
�

ParEdu
t1 ParAge

t
+ �

ParEdu
t2 ParAge2

t
+ �

ParEdu
t3 ParAge3

t

�
.

B.6 Likelihood Function

Assume that the econometrician observes transfers tre,o
i

, which differ from true transfers, tre?
i

,
by an error term e

tr. Further, we assume this error term is normally distributed: e
tr ⇠

N
�
0, �e

tr
�
. We suppress all dependencies for notational convenience. Then, given parameters

�, the likelihood contribution of an agent who graduates from college after T
E

i
years, has a

sequence of work in college decisions of
�
`
E

it

 TE

i

t=1
, and has observed college transfers tr

E,o

i
is58

58The probability of this event in fact also depends on the graduation probabilities Pr
Grad

t
. But these are

just constant factors in the likelihood, which is why refrain from putting them here.
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where f
N is the standard normal PDF, and where the probability of initially enrolling in

college, Pr (E), and the choice probability of not dropping out and working `
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it
in college,
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, are given by the extreme-value choice probabilities as
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Ṽ

E,`

t /(�`E�)
⌘⌘� ,

where �
E and �

`
E are parameters governing the variance of the enrollment shock and college

working shock, respectively, and � is a nesting parameter and where value functions with
tildes represent the value function minus the idiosyncratic preference draws.
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where the probability of dropping out, Pr (DTD), is given by the extreme value choice proba-
bilities as

Pr (DTD) =
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The likelihood function of an agent who enters the labor force directly and is observed with
transfers tr

H,o

i
is given by
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We therefore choose the parameters � to maximize the log likelihood:

max
�

X

i

logLi (·|�) .

B.7 Identification

B.7.1 Identification of Main Parameters

The parameter � and the parameter governing the variance of the college-enrollment preference
shock, �E, play crucial roles in our analysis as they determine the extent to which increasing
financial aid affects the college enrollment decision. Higher values of �

E and lower values
of � imply a smaller elasticity of enrollment with respect to increases in financial aid. These
parameters are jointly identified by the relationship between enrollment and parental income of
otherwise similar individuals. Enrolling in college will generally imply lower net income while
enrolled in college and higher income later in life. To the extent that borrowing constraints
are effective and that parental transfers are increasing in parental income, children from lower-
income backgrounds will not be able to smooth consumption and therefore will have lower
consumption in their early life. The parameter � determines the cost of not being able to
smooth consumption early in life. A high value of � therefore implies low college enrollment
for individuals close to the borrowing constraint.

Furthermore, exclusion restrictions in the grant function help us to identify the elasticity
of college going with respect to financial aid. Tuition varies by region but region does not
enter the earnings function or utility function. Therefore, similar to Heckman et al. (1998),
variation in tuition levels creates variation in the value of college enrollment which helps us to
identify � and �

E. In Section B.7.2 we use a simple example to build intuition on how these
two parameters are separately identified.

Additionally, the extent to which poor students are more likely to work than rich students
will be governed by �; this tells us how much more students who are close to the borrowing
constraint are willing to work relative to those who are not. As such, we can identify � by
comparing the labor supply decisions of poor students with those from rich students.

The psychic cost of college, X , is identified by different rates of attending college by
ability, gender, and parental education, after controlling for differences in utility coming from
consumption and differences in future earnings. The parameters governing the value of working
in college, ⇣, �

`
E , and �, are jointly identified by variation in college labor supply choices

across agents and across periods. Specifically, the parameter vector ⇣ is identified by different
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rates of working in college after controlling for differences in utility coming from consumption
and differences in future earnings. The parameter governing the variance of the labor supply
shock, �`

E , is identified by variation in the timing of working in college decisions. For example,
suppose that �

`
E

= 0. Then the labor supply decisions of identical agents would be exactly
the same in each period. A larger �

`
E implies more variation in the labor supply choices of

identical agents and across periods. The nesting parameter �, is identified by the substitution
patterns across labor supply decisions and dropping out. The warm-glow parameters, � and
cb, are identified by the relationship between parental income and parental transfers. A larger
value of � increases the derivative of parental transfers on parental income. Decreasing cb

increases the level of transfers overall. Warm-glow utility only depends on the amount of
transfers given, not on other things that may enter the child’s problem (i.e., ability, tuition,
number of siblings). The degree to which parental transfers respond to different children’s
characteristics will instead be determined by the strength of the altruism motive. Therefore,
any differences in parental transfers across student characteristics will identify !. For example,
if students who face higher tuition levels generally receive higher parental transfers, this will
identify ! and give us a sense of how much we expect parental transfers to be crowded out
by financial aid. Parents’ paternalism parameters, ⇠0 and ⇠ParEd, are identified by the ratio
of college parental transfers to high school parental transfers. A higher value of ⇠0 implies
higher transfers for children going to college relative to transfers for children entering the labor
force directly. Finally, the parameter governing the standard deviation of observed parental
transfers, �e

tr , is identified by the variance in observed parental transfers of identical agents.

B.7.2 Identification in a Simplified Model

In this section we use a simple model to show how the parameter governing the the agents’
risk aversion, �, is separately identified from the variance of the idiosyncratic taste for college
�
E.
Consider a simple static model where agents make a discrete choice over options j, rep-

resenting schooling options. For an agent i, each option has an associated income Yij which
could represent, for example, how much income an agent has left for consumption net of tuition
costs. Let an agent’s choice specific utility be given by:

uij =
c
1��

ij

1� �
+ j + �"ij

where j is a parameter that is common to all agents who choose option j and "ij is an extreme
value-type I preference parameter. Collectively, we can think of � (j + "ij) as the psychic
cost of option j. As this is a static model, let cij = Yij.

Note that (1� �) shows up in two places in the utility function. First it shows up as
the denominator of c

1��

ij

1��
and therefore scales utility from consumption. This scaling factor
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alone is not separately identified from the variance of the error term �. However, (1� �) also
shows up as the exponent on consumption, and therefore dictates the curvature of utility from
consumption. This is crucial for separately identifying � from �. Essentially if � is large (and
(1��) small), then agents with lower levels of income will behave differently than agents with
higher levels of income.

Suppose we can divide agents i into several different “regions”. All agents in a given region
r face the same menu of incomes across options. We will therefore write all choice specific
incomes as Yrj. Note that agents across regions all have same preferences but face different
income levels, representing differences in tuition across regions, differences in wage income in
college, or differences in parental transfers.

The probability that an agent in region r chooses option j is given by:

Prj =

exp

✓
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j
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j0 exp

✓
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◆

We can then write the log ratio of choice probabilities of choosing option j over k for agents
in region r:
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(21)

Now consider the difference in this log ratio between agents in region r and agents in region
r̂:
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(22)

Before completing the proof, we consider a simple example here to build intuition. Suppose
agents in region r̂ are poorer by a positive amount ⌧ for both options, relative to agents
in region r. That is: Yr̂j = Yrj � ⌧ and Yr̂k = Yrk � ⌧ . Then � = 0 would imply that
log Prj

Prk

� log Pr̂j

Pr̂k

= 0— the ratio of choice probabilities in the poor region is equal to the ratio
in the rich region. Larger � implies that the poorer region will choose the relatively higher
income option more relative to the richer region.

Consider now a third region, r̃. We now also have
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combined with 22, this gives us two equations and two unknowns. Further, taking the ratio
of 22 and 23 yields:

log Prj

Prk

� log Pr̂j

Pr̂k

log Prj

Prk

� log Pr̃j

Pr̃k

=

�
Y

1��

rj
� Y

1��

rk

�
�
�
Y

1��

r̂j
� Y

1��

r̂k

�
�
Y

1��

rj
� Y

1��

rk

�
�
�
Y

1��

r̃j
� Y

1��

r̃k

�

59



Table 5: Maximum Likelihood estimates

Estimate Standard Error

College Utility: U
E (c, `) = c

1��

1��
� ✓,d � ⇣

`
E

+ "
`
E

it

Curvature of Utility � 1.9 0.0057
No work ⇣

0 0 (Normalization)
Part time ⇣

1 0.057 3.6?
Full time ⇣

2 0.18 4.1?
Standard Deviation of Enrollment Shock �

{E} 7.8? .069?
Dropout cost � 1.2 1.7?

Standard Deviation of Working Shock �
{`E} 0.40 .0078?

Nesting Parameter � 0.59 0.38?

Psychic Cost: ✓,d = 0 + ✓ log (✓i) + femI (s = female) + ParEdParEdui

Constant 0 0.44 0.15?
Ability Interaction ✓ -8.3? 0.014?
Female Dummy fem -0.083? 0.00075?
Parental Education ParEd -1.7? 0.0049?

Parental Utility from Transfers:

F
�
tr

H
, tr

E
,⌦i

�
= !EV

�
⌦i|trH , tr

E
�

| {z }
Altruism

+E

2

664(⇠0 + ⇠ParEdParEdui)1E

| {z }
Paternalism

+�
(cb + tr

e)1��

1� �| {z }
Warm Glow

3

775

Altruiusm ! 3.0 0.021
Prestige Constant ⇠0 0.27 0.0017
Parent’s Education Interaction ⇠ParEd 0.69? 0.00024?
Warm Glow Strength � 0.09 0.0016
Warm Glow Level cb -3.4 ?? 0.059??

? we display 10,000 times the parameter value.
?? we display the parameter value divided by 10,000.

which identifies �. � is therefore identified by 22. Finally, we must normalize one of the
j = 0. Then all of the j terms are identified by 21.

B.8 ML Estimates

The parameter estimates are contained in Table 5.

B.9 Graduation Rates and Enrollment by Gender

Figure 11 shows the college graduation rates as a function of parental income and ability in
the model and in the data. The model is able to replicate these moments well.

Figure 12(a) shows the college enrollment rates for male and female students as a function
of parental income in the model and in the data. Figure 12(b) shows the college enrollment
rates for male and female students as a function of ability in the model and in the data. We
can see that the model is able to replicate these moments quite well.
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(a) Graduation Rates and Parental Income (b) Graduation Rates and AFQT

Figure 11: Graduation and Enrollment Rates

Notes: The solid (red) line shows simulated enrollment shares by parental income and AFQT
percentile. This is compared to the dashed (black) line which shows the shares in the data.

B.10 Earnings Profiles Model

Figure 13 shows the simulated average for college graduates and high school graduates as a
function of age.

B.11 Untargeted Moments

Responsiveness of Enrollment to Grant Increases. Many papers have analyzed the
impact of increases in grants or decreases in tuition on college enrollment. Deming and
Dynarski (2009) survey the literature. The estimated impact of a $1,000 increase in yearly
grants (or a respective reduction in tuition) on enrollment ranges from 1 to 6 percentage points,
depending on the policy reform and research design. A more recent study by Castleman
and Long (2016) looks at the impact of grants targeted to low-income children. Applying a
regression-discontinuity design for need-based financial aid in Florida (Florida Student Access
Grant), they find that a $1,000 increase in yearly grants for children with parental income
around $30,000 increases enrollment by 2.5 percentage points.

Simulating a $1,000 increase in financial aid for all individuals in our model leads to a 1.69
percentage point increase in overall enrollment rates and a 2.06 percentage point increase for
students near the studied discontinuity in Castleman and Long (2016). Overall, our simulated
elasticities are fairly consistent with these reduced-form estimates. This gives us confidence
in our maximum likelihood estimates, especially given that these reduced form estimates were
not targeted in estimation.

Importance of Parental Income. A well-known empirical fact is that individuals with
higher parental income are more likely to receive a college degree (see also Figure 2). However,
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(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 12: Graduation and Enrollment Rates by Gender

Notes: The panel on the left shows the relationship between enrollment rates and parental income
in the model and in the data for females and males. The panel on the right shows the relationship
between enrollment rates and ability in the model and in the data for females and males.

Figure 13: College and High School Graduate Earnings Profiles.

it is not obvious whether this is primarily driven by parental income itself or by variables
correlated with parental income and college graduation. Using income tax data and a research
design exploiting parental layoffs, Hilger (2016) finds that a $1,000 increase in parental income
leads to an increase in college enrollment of 0.43 percentage points. To test our model, we
increased parental income for each individual by $1,000 and obtained increases in college
enrollment by 0.18 percentage points. Our model predicts a moderate direct effect of parental
income, smaller but in line with Hilger (2016).

Returns for Marginal Students. We find a return to one year of schooling of 12.1% for
marginal students. This reflects that marginal students are of lower ability on average than
inframarginal students and is also in line with Oreopoulos and Petronijevic (2013). A clean way
to infer returns for marginal students is found in Zimmerman (2014). In his study, students
are marginal with respect to academic ability, measured by a GPA admission cutoff. He finds
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that these students have earnings 22% higher than those just below the cutoff, when earnings
are measured 8 to 14 years after high school graduation. We perform a similar simulation and
make use of the fact that the NLSY also provides GPA data. In fact, our model gives a return
to college of 26.3%, measured 8 to 14 years after high school graduation, for students with a
GPA in this neighborhood.59

C Additional Results

C.1 Marginal and Inframarginals Evaluated at Current Financial

Aid Levels

In Section 6.1, we plotted the share of marginal enrollees and inframarginal enrollees at a flat
financial schedule for a number of model specifications. In this section, we repeat this exercise
but plot the share of marginal enrollees and inframarginal enrollees at the current financial
aid schedule.

The results are very similar to those presented in Section 6.1. The relationship between
parental income and share of inframarginal students has become weaker (and eventually be-
comes negative), reflecting that the current financial aid schedule is decreasing in parental
income, see Figure 14(a). Further, children with high income parents are more likely to be
marginal with respect to financial aid relative to graph is in Section 6.1, again reflecting that
they receive less financial aid then children with low income parents, see Figure 14(b).

C.2 An Alternative Decomposition

In Section 6.1, we perform a model-based decomposition exercise to better understand which
drive the optimal progressivity result. In this appendix, we perform a similar decomposition
but alter the order in which we change various components to the model. In particular, we first
remove the relationship between parental income and parental transfers, before proceeding to
remove the relation between parental income and ability and the relation between parental
education and the psychic costs of college. As before, all changes to the model specification
are cumulative.

We first analyze the determinants of the positive relation between college enrollment and
parental income in Figure 15(a) and the negative relationship between share of marginal stu-
dents and parental income in Figure 15(a). The simulated relationships at a flat financial aid

59Finally, we do not account for differing rates of unemployment and disability insurance rates. Both
numbers are typically found to be only half as large for college graduates (see Oreopoulos and Petronijevic
(2013) for unemployment and Laun and Wallenius (2016) for disability insurance). Further, the fiscal costs
of Medicare are likely to be much lower for individuals with a college degree. Lastly, we assume that all
individuals work until 65 not taking into account that college graduates on average work longer (Laun and
Wallenius, 2016). These facts would generally strengthen the case for an increase in college subsidies.
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(a) Inframarginal Enrollees (b) Marginal Students

Figure 14: Model-Based Decomposition for Marginal and Inframarginal Students at Current
Grant Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given the current US aid
schedule for different model specifications. The solid red line represent the baseline model. For the
dashed black line we simulate a model version for which we remove the correlation between ability
and parental income. For the dashed-dotted blue line we simulate a model version for which we
additionally remove the correlation between the psychic costs and parental education. For the
dotted pink line we simulate a model version for which additionally removes labor market riskiness;
i.e. education decisions are made with no uncertainty about future wages. For the turquoise line
with crosses we simulate a model version for which we set parental transfers to the mean parental
transfers in the data, conditional on education.

schedule are shown in the solid lines in the two figures. In this baseline case, college enroll-
ment rates are strongly increasing in parental income while the share of marginal students are
strongly decreasing in parental income. Next, in the turquoise lines, we set parental transfers
exogenously to the mean levels for enrollees and non-enrollees and assume no families are
eligible for subsidized Stafford loans. From Figure 15(a) we can see that the positive rela-
tion between college enrollment and parental income weakens slightly. The relation between
parental income and share of marginal enrollees, however, flattens completely. The black
dotted line and the blue dash-dotted line show the cases in which we remove the correlation
between parental income and ability and in which we remove the relation between parental
education and psychic costs, respectively. After removing these two factors there is no inter-
esting heterogeneity between parental income groups. Removing these two relationships both
weak the relationship between parental income and enrollment. In both these simulations, the
gradient between parental income and share of marginal students remains flat.

We now simulate the respective optimal financial aid schedule under each model specifica-
tion in Figure 16. When we remove the relationship between parental income and parental
transfers (the turquoise line in Figure 16), the optimal financial aid schedule flattens. This
flattening of the optimal schedule occurs because the relationship between parental income
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(a) Inframarginal Graduates (b) Marginal Students

Figure 15: Alternative Model-Based Decomposition for Marginal and Inframarginal Students
at Flat Grant Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given a flat financial aid
schedule for different model specifications. The solid red line represent the full model. For the
turquoise line with crosses we simulate a model version for which set parental transfers to the mean
parental transfers in the data, conditional on education. For the dashed black line we simulate a
model version for which we remove the correlation between ability and parental income. For the
dashed-dotted blue line we simulate a model version for which we additionally remove the
correlation between the psychic costs and parental education.

and share of marginal enrollees is flat. However, there optimal aid is still positive—ranging
from above $6,500 for the poorest families to below $4,500 for the wealtheat families. The
optimal aid schedule is progressive because high income children are still much more likely in-
framarginal. When we remove the positive ability-income correlation (the black dashed line)
and the relationship between parental education and psychic costs we flatten the relation-
ship between parental income and share of inframarginal students. The optimal aid schedule
flattens as a result.

C.3 Decomposition with Removal of Borrowing Constraints

In Figures 17(a) and 17(b), we perform the same decomposition we performed in Section
6.1 but additionally remove borrowing constraints before equalizing parental transfers. We
additionally assume that no families are eligible for subsidized Stafford loans throughout
the decomposition. Figure 18 shows the resulting optimal financial aid under each model
specification.

As before, the red line shows the baseline case, the black dotted line shows the case where
we remove the ability correlation, the blue dash-dotted line shows the case where we remove
the correlation between psychic cost of parental education, and the dotted pink line show
the case with no labor market uncertainty. These lines tell essentially the same story as the
decomposition in Section 6.1.
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Figure 16: Optimal Financial Aid for Different Model Specifications

Notes: For each model specification (see Figure 15), we illustrate the respective optimal financial
aid schedule.

The green dotted lines show the case in which we remove borrowing constraints. As a
result, the number of inframarginal students increases for all income groups, as student no
longer have to deal with borrowing constraints in college. Additionally, the share of marginal
enrollees drops substantially for all parental income groups. As students are no longer affected
by borrowing constraints in college, the marginal benefit of additional financial aid decreases
substantially.

However, despite the fact that both the gradients of marginal and inframarginal enrollees
are flat, the optimal aid is still slightly decreasing in parental income. This is because, once
the correlations of parental income with marginal and inframarginal students have been shut
down, the differences in marginal social welfare weights play a role. We find that at the flat
financial aid schedule, the marginal social welfare weight of the poorest children is roughly 20%
higher than that of the richest students. Essentially, given that enrollment is so unresponsive
to financial aid, the social planner allocates financial aid to agents with the highest marginal
social welfare weights. This leads to a slightly progressive financial aid schedule.

Equalizing parental transfers on top of this removes these differences in marginal social
welfare weights and therefore leads to an flat optimal aid schedule.

C.4 The Role of Borrowing Constraints

Figure 19(a) shows the optimal financial aid policies when we have abolished borrowing con-
straints. We first remove borrowing constraints and keep the current financial aid system.
This will increase college enrollment and imply a windfall fiscal gain for the government. In
a second step, we choose optimal financial aid but restrict the government to not use this
windfall gain. Figure 19(b), shows the implied graduate patterns.
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(a) Inframarginal Graduates (b) Marginal Students

Figure 17: Model-Based Decomposition for Marginal and Inframarginal Students at Flat Grant
Schedule with Removal of Borrowing Constraints

Notes: We plot the share of college enrollees and marginal college enrollees given a flat financial aid
schedule for different model specifications. We assume no subsidized Stafford loans for all
specifications. The solid red line represent the full model at the flat financial aid schedule. For the
dashed black line we simulate a model version for which we remove the correlation between ability
and parental income. For the dashed-dotted blue line we simulate a model version for which we
additionally remove the correlation between the psychic costs and parental education. For the
dotted pink line we simulate a model version for which on top removes any riskiness; i.e. education
decisions are made under perfect foresight. For the dashed green line with circles we simulate a
model version for which on top we remove all borrowing constraints. For the turquoise line with
crosses we simulate a model version for which set parental transfers to the mean parental transfers
in the data, conditional on education.

C.5 Varying Borrowing Constraints

To get a sense of how varying borrowing constraints would affect our main conclusions, we
have re-estimated a version of the model in which the borrowing limit depends on parental
resources. Here, it was very hard for us to get guidance on what would be a reasonable way
to have exogenous borrowing constraints depend on parental income and ability of the child.
Hence, we have decided to report a very simple and transparent case in the paper: we assume
that children whose both parents have a college degree can borrow twice the amount of the
Stafford loan limit. Admittedly, this is ad-hoc in two ways. The first ad-hoc decision is to
separate children along the parental education dimension. Our motivation was that parental
education strongly correlates with both parental earnings and child’s ability. The second ad-
hoc decision we faced was: how much more can these children with highly educated parents
borrow? We here decided to just double the amount in the case that we report.

The optimal utilitarian financial aid with parental education dependent borrowing con-
straints are shown in Figure 20. The shape is slightly different from the baseline optimal
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Figure 18: Optimal Financial Aid for Different Model Specifications

Notes: For each model specification (see Figure 17), we illustrate the respective optimal financial
aid schedule.

schedule, as changes in the borrowing constraints lead to changes share of marginal students.60

However, the optimal financial aid is still highly progressive.

C.6 Details: Endogenous Ability

We assume that initial ability ✓0 is distributed as:

ln ✓0 = �0 + �1 ln I + u

where u is normally distributed. We choose �0, �1, and the variance of u to match the mean
and variance of log childhood ability and covariance of log childhood ability and log parental
income from Agostinelli and Wiswall (2016).

We need to calibrate the parameters of the childhood ability production function:

1. A- TFP of parental production function.

2. �1 - weight on initial ability

3. �2 - weight on parental investment

4. �3 - interaction term

5. �
◆ - variance of ◆.

60As we have shown earlier, relaxing borrowing constraints for all students reduces the progressivity of the
optimal aid schedule. That force is still present here, as some low income students have two college educated
parents. However, this force is partially muted by the fact that parental education is increasing in parental
income. As such, the optimal aid schedule here is more progressive than the case with relaxed borrowing con-
straints for all individuals, but slightly less progressive than the baseline case with equal borrowing constraints
for all students.
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(a) Financial Aid (b) Graduation Rates

Figure 19: Financial Aid and Graduation with Free Borrowing

Notes: The dashed-dotted (blue) line shows the optimal schedule with no borrowing constraints.
Optimal financial aid with a Utilitarian welfare function and with borrowing constraints and current
financial aid are also shown for comparison in Panel (a). In Panel (b) we display the college
graduation share by parental income group for each of the three scenarios.

Agostinelli and Wiswall (2016) estimate a translog production function of the following
form:

ln ✓t+1 = lnAt + �1t ln ✓t + �2t ln It + �3t ln ✓t · ln It + ⌘✓,t

for t = 0, 1, 2, 3. By combining these four equations, we can derive a single equation for end of
childhood ability ln ✓4 as a function of initial ability ln ✓0, parental investment in each period
ln It, the yearly shocks ⌘✓,t, and the technology parameters.

Specifically, after some algebra we can write

ln ✓4 = ln ✓0 (�30 ln I0 + �10) (�13 + �33 ln I1) (�12 + �32 ln I2) (�11 + �31 ln I1) + f(I, A, �)

where f(I, A, �) is a function that depends on investment and the other parameters but
not directly on initial ability ln ✓0.

We can further rearrange this equation to yield

ln ✓4 = �̃ ln ✓0 + g (✓0, I0, I1, I2, I3) + f(I, A, �)

where
�̃ = �10�11�12�13

and

g (✓0, I0, I1, I2, I3) = ln ✓0 (�30 ln I0 + �10) (�13 + �33 ln I1) (�12 + �32 ln I2) (�11 + �31 ln I1)��̃ ln ✓0
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Figure 20: Optimal Financial Aid with Parental Education Dependent Borrowing Constraints

Notes: The dashed-dotted (blue) line shows the optimal schedule with parental income dependent
borrowing constraints. Optimal financial aid with in the baseline case and current financial aid are
also shown for comparison in Panel (a). In Panel (b) we display the college graduation share by
parental income group for each of the three scenarios.

We set �1 equal to the product of the coefficients on lagged ability from Agostinelli and
Wiswall (2016) �1,1�1,2�1,3�1,4 ⇡ 2. This approximation will be true if the terms on the interac-
tion terms in Agostinelli and Wiswall (2016) are close to zero. Agostinelli and Wiswall (2016)
estimate �30 = �0.105(0.066), �31 = �0.005(0.019), �32 = �0.003(0.013), �33 = 0.003(0.010).
None of the estimates are statistically different from 0 at 95% confidence level and only the first
one at a 90% confidence level. Therefore, we think calibrating �1 = 2 seems like a reasonable
choice.

Then we have four parameters, A, �2, �◆, and �3. We choose these parameters to match
the four following moments:

1. Mean of ✓

2. Variance of ✓

3. Covariance of ✓ and parental income I.

4. From Agostinelli and Wiswall (2016): The effect on realized years of schooling of a
monetary transfer to parents is roughly ten times larger for parents in the 10th percentile
of the income distribution compared to those in the 90th percentile.

Loosely speaking, the covariance of ✓ and I helps to pin down the importance of parental
monetary investments �2. The variance of ✓ helps to pin down the variance to shock of ability
production, �◆. The differential effect of monetary transfers for rich and poor parents helps
to pin down the interaction between parental investment and initial ability, �3. Finally, the
average ability level helps to discipline the TFP of the production function, �1.

Finally, we need to translate these measures of final ability, which are in the units used in
Agostinelli and Wiswall (2016) into our measure of ability, which is based on AFQT scores.
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Let ✓̂ represent end of childhood ability as measured in the units used in Agostinelli and
Wiswall (2016). We assume that our measures of ability ✓ is a linear projection of this log
skill measure

✓ = ↵0 + ↵1 ln ✓̂

where we choose ↵1 and ↵0 to match the mean and variance of our AFQT measure. Therefore,
when we simulate the model, we first simulate childhood ability in the units used in Agostinelli
and Wiswall (2016). Then we translate the measures of ability in Agostinelli and Wiswall
(2016) to the ability measures we use in this paper.

Changes in Childhood Ability Figure 21 shows the change in the relationship between
parental income and ability as a result of switching from the current financial aid system
to the optimal system with endogenous ability. Ability is measured in percentiles of AFQT
scores where percentiles are evaluated at their current levels. We can see that switching to
the optimal aid schedule leads to substantial increases in child ability, especially for children
in the lower end of the parental income distribution.

Figure 21: Ability Levels with Endogenous Ability
Notes: This figure shows the relationship between parental income and ability in the optimal system
with endogenous ability and under the current financial aid system. Ability is measured in percentiles
of the AFQT distribution before financial aid is re-optimized.

C.7 Endogenous Ability with Parental Borrowing Constraints

One issue with the preceding analysis is that we have assumed that parents do not face
borrowing constraints. Poor parents may be borrowing constrained while their children are
young and therefore may not be able to increase investment in their children in response to
changes in financial aid. To explore how borrowing constraints would affect the optimal policy,
we assume that P% of parents without a college education cannot increase their investment in
their children while the remainder of parents may choose their investment level without this
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constraint.61 The optimal policy for a range of values of P is displayed in Figure 22. We can
see that the optimal progressivity of the system decreases as we increase the percentage of
low-education families who are borrowing constrained. However, the optimal schedule remains
more progressive than the current schedule in all cases.

(a) Financial Aid (b) Graduation Rates

(c) Ability Levels

Figure 22: Financial Aid, Graduation and Ability Levels with Endogenous Ability and
Parental Borrowing Constraints
Notes: In Panel (a), each line shows the optimal financial aid with endogenous ability when P percent
of low-education parents are borrowing constrained and therefore cannot adjust their child’s ability in
response to changes in financial aid. In Panel (b) we display the college graduation share for each of
these scenarios. Panel (c) shows the relationship between parental income and ability in each scenario.
Ability is measured in percentiles of the AFQT distribution before financial aid is re-optimized.

C.8 General Equilibrium Effects on Wages

Our analysis abstracted from general equilibrium effects on relative wages. Accounting for
these effects would imply that the effects of financial aid on enrollment might be mitigated in

61Caucutt and Lochner (2017) find that 20% of parents with a high school degree and young children are
borrowing constrained. Of course, borrowing constraints will also affect the investment decisions of parents
who are not at the borrowing limit.
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the long run: if more individuals go to college, the college wage premium should be expected
to decrease because of an increase in the supply of college educated labor (Katz and Murphy,
1992). This in turn would mitigate the initial enrollment increase. To investigate the role
of general equilibrium effects on our results, we recalculate the optimal financial aid schedule
under the assumption that wages are determined in equilibrium. We assume firms use a
CES production function that combines total efficiency units of labor supplied by skilled and
unskilled workers, implying that wages are determined by the ratio of skilled to unskilled
labor. We assume an elasticity of substitution between skilled and unskilled workers of 2.

We assume identical perfectly competitive firms use CES production functions which com-
bine skilled and unskilled labor. Therefore, wages are determined as a function of the ratio of
the total skilled labor to the total unskilled labor.

Let P
U and P

S denote the endogenously determined efficiency wages for unskilled and
skilled workers, respectively, where skilled workers are those with a college degree and unskilled
workers are high school graduates. We allocate half of college dropouts to each of the skill
groups, as is common in the literature (e.g. Card and Lemieux (2001)). Suppose an agent’s
wages can be written as the product of her efficiency wage and her quantity of efficiency units
of labor supplied: wit = P

sk
Hit, where sk 2 {unskilled, skilled} denotes skill level and Hit

denotes agent i’s level of human capital.62

We assume perfectly competitive labor markets. Production at the representative firm is a
CES function combining skilled and unskilled labor:

Y = A
�
�S

(��1)/� + (1� �)U (��1)/�
��/(��1)

where A is total factor productivity, � is the factor intensity of skilled labor, and � is the
elasticity of substitution between skilled and unskilled labor. We assume � = 2. S and U

represent the total amount of human capital units supplied by skilled and unskilled workers.
We assume the economy is in a long run steady-state equilibrium, and that the economy
consists of identical overlapping cohorts. Therefore, as cohorts are identical, the total labor
supply in the steady-state equilibrium is equal to the total amount of labor supplied over the
life-cycle for a given cohort.

Therefore, we can write:

S =
X

i

X

t

Hit`itI (ski = skilled)

and
62We normalize units of human capital such that Hit = 1 is an efficiency unit of labor is defined as the

labor supplied by a male worker whose log wages at age 18 are equal to the constant of the wage equation.
Therefore, the constants of the wage functions for skilled and unskilled workers are equal to the logs of the
efficiency wages for skilled and unskilled workers.
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U =
X

i

X

t

Hit`itI (ski = unskilled)

.
Efficiency wages are given by the first order conditions of the firm’s profit maximization

problem:

P
S = A

�
�S

(��1)/� + (1� �)U (��1)/�
�1/(��1)

�S
�1/�

and

P
U = A

�
�S

(��1)/� + (1� �)U (��1)/�
�1/(��1)

(1� �)U�1/�
.

These two functions determine wages endogenously as functions of labor supply.
The optimal financial aid schedule and graduation rates with general equilibrium wages are

shown in Figures 23(a) and 23(b). We can see that the overall amount of aid has decreased
slightly as the fiscal externality of college has been scaled down by general equilibrium wage ef-
fects. However, the optimal aid schedule with endogenous wages is just as progressive as in the
case with exogenous wages. Thus, while general equilibrium wages dampen the effectiveness
of financial aid overall, they do not lead to dramatic changes in the relative benefit of finan-
cial aid increases for students of different parental income levels. Hence, whereas the overall
(average) generosity of the optimal financial aid schedule is slightly lower, the implications for
how financial aid should vary with parental income are unchanged.63

C.9 Jointly Optimal Financial Aid and

Income Taxation

The size of the fiscal externality of college education depends on the tax and transfer system
in place. Our structural estimates took the current US tax system as given. An interesting
question to ask is how optimal subsidies change when the tax schedule is chosen optimally.
To address this, we enrich the optimal policy space such that the planner can also pick a
nonlinear tax function T (y) as is standard in the public finance literature (Piketty and Saez,
2013).64

First, the optimal formulas for the subsidy schedule are unchanged and still given by the
formulas in Section 2. In Appendix A.6, we show what the endogenous extensive education

63Our results are, hence, consistent with the important earlier paper(s) by Heckman et al. (1998). They
find that GE effects dampen the effectiveness of tuition subsidies, and in our case the average level of financial
aid is also affected.

64We abstract from education dependent taxation; for such cases please see Findeisen and Sachs (2016) and
Stantcheva (2017).
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(a) Financial Aid (b) Graduation Rates

Figure 23: Financial Aid and Graduation with General Equilibrium Wages
Notes: The dashed-dotted (blue) line shows the optimal schedule when wages are determined in
equilibrium. Production is CES between skilled and unskilled workers with an elasticity of substitution
of 2. Optimal financial aid with exogenous wage rates and current financial aid are also shown for
comparison in Panel (a). In Panel (b) we display the college graduation share by parental income
group for each of the three scenarios.

margin implies for optimal marginal tax rates.65 For the sake of brevity, we discuss the
theory only in the Appendix and now move on to the quantitative implications of optimal
taxes. We assume that agents are borrowing constrained and the government only (besides
the tax schedule) maximizes the need-based element of the financial aid schedule. Results are
barely changed if borrowing constraints are relaxed and/or the merit-based element is chosen
optimally as well.

Figure 24(a) displays optimal average tax rates in the optimal as well as in the current US
system. Average tax rates are higher for most part of the income distribution. As Figure 24(b)
shows, this is driven by higher marginal tax rates throughout but especially at the bottom of
the distribution, a familiar result from the literature (Diamond and Saez, 2011). In unreported
results, we find that the direct effect of taxes on enrollment decisions, which we discussed in
Section 3, is very small. In particular, it does not overturn the optimal U-shaped pattern of
optimal tax rates nor does it influence the optimal top tax rate which is still mainly determined
by the interaction of the labor supply elasticity and the Pareto parameter of the income
distribution (Saez, 2001).

Figure 25(a) illustrates optimal financial aid in the presence of the optimal tax schedule.
First, notice that financial aid is significantly higher on average compared to the case with the
current US tax code. Higher income tax rates increase the fiscal externality, which increases the
optimal level of the college subsidy (i.e. financial aid). Second, strikingly, the progressivity of

65The formula is therefore related to the formulas of Saez (2002) and Jacquet et al. (2013), where the
extensive margin is due to labor market participation, or Lehmann et al. (2014) where the extensive margin
captures migration.
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(a) Average Tax Rates (b) Marginal Tax Rates

Figure 24: Optimal versus Current: Average and Marginal Tax Rates

(a) Financial Aid (b) Graduation Rates

Figure 25: Financial Aid and Graduation with Optimal Tax Schedule

Notes: The dashed-dotted (blue) line shows the optimal schedule when the tax schedule is also
chosen optimally. Optimal financial aid with the current tax schedule and current financial aid are
also shown for comparison in Panel (a). In Panel (b) we display the college graduation share by
parental income group for each of the three scenarios.

optimal financial aid policies is preserved. Progressive taxation does not change the desirability
of progressive financial aid policies.

C.10 Merit-Based Financial Aid

Up to now, we have assumed that the merit-based element of financial aid policies stays
unaffected. We now allow the government to optimally choose the gradient in merit and
parental income. Figure 26(a) shows that – if optimally targeted also in terms of merit –
financial aid policies can be more generous. The progressive nature however is even slightly
reinforced.
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(a) Financial Aid (b) Illustration of Optimal Merit Based Element

Figure 26: Optimal Need and Merit Based Financial Aid

Notes: The dashed-dotted (blue) line shows the optimal financial aid for students with median
ability as a function of income when the merit-based component of financial aid is also chosen
optimally. Optimal financial aid with exogenous wage rates and current financial aid are also shown
for comparison in Panel (a). In Panel (b) the merit based component of the optimal aid schedule.

Figure 26(b) shows how optimal financial aid is increasing in AFQT. Interestingly, the slope
is almost independent of parental income.
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