May 23/30, 1990, Vol 263, No. 20
To promote the science and art of medicine and the betterment of the public health.

Original Contributions

Value of the Ventilation/Perfusion Scan in Acute Pulmonary Embolism .. 2753
The PIOPED Investigators, Bethesda, Md

Methods Used to Quit Smoking in the United States 2760
M. C. Fiore, Madison, Wis; T. E. Novotny, J. P. Pierce, G. A. Giovino, Rockville, Md;
E. J. Hatzizaidou, Washington, DC; P. A. Newcomb, T. S. Surawicz, Madison, Wis;
R. M. Davis, Rockville, Md

Exercise Training Combined With Antihypertensive Drug Therapy .. 2766
M. H. Kellemen, Columbia, Md; M. B. Effron, Baltimore, Md;
S. A. Valentii, Columbia, Md; K. J. Stewart, Baltimore, Md

The ‘Incidentaloma’ of the Pituitary Gland 2772
M. Reinecke, B. Allolio, Cologne, West Germany; W. Saeger, Hamburg, West Germany;
J. Menzel, W. Winkelmann, Cologne, West Germany

Special Communications

The Cystic Fibrosis Gene: Medical and Social Implications for Heterozygote Detection 2777
B. S. Wilford, N. Post, Madison, Wis

Who Profits From Tobacco Sales to Children? 2784
J. R. DiFranza, Fitchburg, Mass; J. B. Tye, Springfield, Mass

Brief Report

Reevaluation of Serum-Plasma Differences in Total Cholesterol Concentration 2788
T. Cloye, P. S. Bachorik, D. Becker, C. Finney, D. Lowry, W. Sigmund, Baltimore, Md

Council Report

Conflicts of Interest in Medical Center/Industry Research Relationships 2790
Council on Scientific Affairs and Council on Ethical and Judicial Affairs, Chicago, Ill

Editorials

Ventilation/Perfusion Scan in Pulmonary Embolism 2794
R. C. Bone, Chicago, Ill

Methods of Smoking Cessation—Finally, Some Answers 2795
T. J. Glynn, Bethesda, Md

Resident Forum 2712

The Cover

Horace Pippin, Barracks 2713
M. T. Southgate, Chicago, Ill

Medical News & Perspectives

Medium Isn’t Accurate ‘Ice Age’ Message . . . Long Struggle Continues to Find New Weapons Against an Old Foe—the Malaria Parasite
Miscellaneous Medica

From the Alcohol, Drug Abuse, and Mental Health Administration 2725

From the Centers for Disease Control 2729

Recommendations for the Prevention of Malaria Among Travelers
Journal Club Reading Assignments

Controlling the Hemorrhage of Routine Coagulation Tests
G. N. Fox, S. B. Erban

Vitamins During Pregnancy and Neural Tube Defects

Miffed by Medical Musings
G. Matz

Acute Carbon Monoxide Poisoning? A Case Report and Literature Review
M. L. Hage, C. A. Piantadosi

Treatment of Dermatofibrosarcoma Protuberans
K. B. Van Hoesen, E. M. Camporesi, R. E. Moon, J. M. Hage, C. A. Piantadosi

Gastrointestinal Disorders
A. T. Greenberger

Should Hyperbaric Oxygen Be Used to Treat the Pregnant Patient for Acute Carbon Monoxide Poisoning? A Case Report and Literature Review
K. B. Van Hoesen, E. M. Camporesi, R. E. Moon, M. L. Hage, C. A. Piantadosi

The doctor in the House diagnoses flux and frustration

JAMA, May 23/30, 1990—Vol 263, No. 20

American Medical Association
224 Northorden Street, Chicago, Illinois 60614

2744

AMA Insights

2745

Poetry and Medicine

2746

Letters

A Trial of Clonidine to Stop Smoking

Vitamins During Pregnancy and Neural Tube Defects

Controlling the Hemorrhage of Routine Coagulation Tests
G. N. Fox, S. B. Erban

Miffed by Medical Musings
J. Pestis

Correction

Should Hyperbaric Oxygen Be Used to Treat the Pregnant Patient for Acute Carbon Monoxide Poisoning? A Case Report and Literature Review
K. B. Van Hoesen, E. M. Camporesi, R. E. Moon, M. L. Hage, C. A. Piantadosi

A Piece of My Mind

2798

Portraits

Specialty Abstracts

2800

JAMA 100 Years Ago

Wood as a Source of Human Food

At Large With Dennis L. Breo

The doctor in the House diagnoses flux and frustration

Questions and Answers

STDs and Used Condoms
K. G. Castro

Treatment of Dermatofibrosarcoma Protuberans
G. S. Rogers, R. M. Beazley

Books

2826

Cancer of the Head and Neck
(Myers, Suen, eds) Reviewed by G. Matz

The American General Hospital
(Long, Golden) Reviewed by N. L. Cannon

The Medical Cost-Containment Crisis
(McCue, ed) Reviewed by B. Stuart

Clinical Urography
(Pollock, ed) Reviewed by R. D. Harris

Consultation in Internal Medicine
(Harrington) Reviewed by S. Wessler

Gastrointestinal Disorders
(Greenberger) Reviewed by P. M. Berman

Literature and Medicine
(Rabuzzi, Daly, eds) Reviewed by J. S. Alpert, H. Mathiassen

Books Received

2826

Obituary Listing

2837

Classified Advertising

2839

CME Corner

2851

Index to Advertisers

2852

JAMA Journal Club Reading Assignments

2852

Instructions for Authors

See April 11, 1990, p 1897.

Reference Directories

US Meetings, May 2; Organizations of Medical Interest, January 12; State Associations and Examinations and Licensure, January 19; Meetings Outside the United States, January 26;AMA Officials, April 4

ADVERTISING PRINCIPLES—Advertisements in this issue have been reviewed to comply with the principles governing advertising in AMA publications. A copy of these principles is available on request. The appearance of advertising in AMA publications is not an AMA guarantee or endorsement of the product or the claims made for the product by the manufacturer.

ADVERTISING OFFICES: Eastern: 600 Third Ave, Suite 700, New York, NY 10016 (Manager: Robert C. Corcoran [212-867-6640]; Representatives: Alice Harvey-Herman, Cliff Vandershot; Midwest/Farwest: 535 N Dearborn St, Chicago, IL 60610 [Manager: Thomas J. Carroll [312-280-7182]; Representative: Daniel J. McAlpine] [312-280-7180])

The Journal of the American Medical Association
The 'Incidentaloma' of the Pituitary Gland

Is Neurosurgery Required?

We describe a series of 18 patients with an intrasellar mass incidentally discovered by computed tomography or magnetic resonance imaging. The average size of the mass was 13 mm, with a range from 5 to 25 mm. Initial ophthalmologic examination revealed bitemporal hemianopia in 2 patients. Results of routine endocrine testing showed partial hypopituitarism in 5 patients and growth hormone hypersecretion without signs and symptoms of acromegaly in 1 patient. Four patients underwent neurosurgery. Histologically, one chondroid chordoma and three pituitary adenomas were found. In the remaining 14 patients treated conservatively, repeated computed tomography and magnetic resonance imaging revealed no significant change in tumor size at the time of follow-up (median, 22 months). Our results suggest that the "incidentaloma" of the pituitary gland is a benign condition that does not necessarily require neurosurgical intervention.

IN 1936, Costello reported in his investigation entitled "Subclinical Adenomas of the Pituitary Gland" that in a series of 1000 pituitary glands obtained from unselected autopsies pituitary adenomas occurred with the remarkable frequency of 22.5%. The tumors were unassociated with clinical signs or obvious hormonal abnormalities and remained undiagnosed during the subjects' lifetime.

Costello's investigation has been cited in numerous publications. The prevalence of subclinical pituitary adenomas has been reexamined by many subsequent investigators and was found to vary from 4.8% to 27% in unselected autopsy subjects. In most cases, these adenomas were small and could only be detected by microscopy. Adenomas visible at the time of gross examination are detected less frequently. In the series of McComb et al, 4 of 100 pituitary adenomas incidentally discovered at the time of autopsy were detected already by gross examination.

During the last two decades, the introduction of radioimmunoassays, new radiological procedures, and microsurgical techniques have allowed early diagnosis and removal of small pituitary adenomas. However, even today, pituitary adenomas are a common incidental finding at the time of autopsy. With wider application of computed tomography (CT) and magnetic resonance imaging (MRI), pituitary masses will be detected incidentally during patients' lifetimes in increasing frequency. The diagnostic and therapeutic approach to patients with "incidentalomas" of the pituitary gland has not yet been established. We, therefore, present herein the findings of 18 patients with a subclinical pituitary mass incidentally discovered by CT or MRI.

PATIENTS AND METHODS

Since 1980, we studied 27 patients (21 female and 6 male) with an intrasellar mass incidentally discovered by CT or MRI ("incidentaloma"), which was defined as follows: (1) the patient underwent CT scanning (or MRI) for evaluation of an unrelated disease, and (2) the patient did not complain of symptoms associated with a sellar mass (visual disturbance, symptoms of hypopituitarism, or anterior pituitary hormone excess). Headache as an isolated symptom was considered to be nonspecific if the life profile of it was chronic, recurrent, and unassociated with other important signs. Patients with headache of increasing frequency and intensity were excluded. Patients with a primary parasellar or suprasellar mass or with the empty-sella syndrome were not included in the study.

Of the 27 patients with an incidentaloma of the pituitary gland, 9 cases were excluded from this study for the following reasons: 6 patients were unavailable for follow-up, 1 patient had suspected...
pituitary hyperplasia caused by primarily hypothyroidism, and 2 patients had normal CT scans at the time of follow-up, suggestive of artifacts that imitated a pituitary tumor in the initial scans.

In the remaining 18 patients, complete medical histories were recorded and physical examinations given initially and during follow-up. In addition, ophthalmologic examinations, including Goldman and computed perimeter, and routine pituitary function testing were performed. Assessment of the hormonal status included determination of baseline and stimulated hormone concentrations of plasma corticotropin and serum cortisol (corticotropin-stimulation test, overnight metyrapone test, and since 1986 corticotropin-releasing hormone stimulation test), thyrotropin (thyroid-stimulating hormone), triiodothyronine and thyroxine

(1) Ten percent to 50% of tumor cells stained.
(2) Greater than 50% of tumor cells stained.
(3) Less than 10% of tumor cells stained.
(4) CT indicates computed tomography; LH (luteinizing hormone), FSH (follicle-stimulating hormone), C (corticotropin), and TSH (thyrotropin [thyroid-stimulating hormone]), hormone deficiencies in patients with hypopituitarism; GH, growth hormone; and PRL, prolactin.

Sections of tumor tissue were examined by light microscopy using conventional and immunocytochemical techniques described previously. Using the peroxidase-antiperoxidase method on paraffin-embedded sections, the following commercial primary antibodies were tested: anticytokeratin, anti-GH, antiprolactin, antithyrotropin, anti-follicle-stimulating hormone, antiluteinizing hormone, anti-α-subunit.

High-resolution CT of the pituitary fossa in 2-mm sections was performed after intravenous administration of contrast material with second- and third-generation scanning machines (Siemens Somatom DR1 and DR2, Munich, Germany). Reformating of multiple axial images was obtained in all patients; thin-section coronal scans were obtained in 10 patients.

Since 1987, in addition to CT, magnetic resonance images in the coronal and sagittal views were obtained in eight patients at 1.0 T (Siemens Magnetom 1.0T, Munich, Germany). Both T1- and T2-weighted spin-echo pulse sequences were acquired before and after the administration of gadolinium-diethylenetriaminepentaacetic acid.

RESULTS

Clinical data of the patients are summarized in Tables 1 and 2. In 17 patients, the pituitary mass was discovered by CT and in patient 4 by MRI. Patients' ages ranged from 15 to 68 years at the time of admission. The reasons for CT scanning (or MRI) were headache of chronic pattern (n = 3), cluster headache (n = 1), cerebrovascular disease (n = 2), psychiatric disorders (n = 2), vertigo (n = 2), epilepsy (n = 2), concussion (n = 2), and other causes (n = 4). All female patients except for the postmenopausal women had regular menses. None of the male patients com-

Table 1.—Clinical, Radiological, and Biochemical Characteristics of Four Patients With an 'Incidentaloma' of the Pituitary Gland That Required Neurosurgery*

<table>
<thead>
<tr>
<th>Patient/ Age, y/ Sex</th>
<th>Complaint (Reason for CT)</th>
<th>Maximum Tumor Diameter, mm</th>
<th>Endocrine Function</th>
<th>Surgery</th>
<th>Visual Acuity</th>
<th>Histology</th>
<th>Immunostaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/55/F</td>
<td>Concussion</td>
<td>25</td>
<td>Transfrontal</td>
<td>Hypopituitarism (LH, FSH)</td>
<td>Normal</td>
<td>Normal</td>
<td>Chondroid chordoma</td>
</tr>
<tr>
<td>2/64/M</td>
<td>Cerebrovascular disease</td>
<td>25</td>
<td>Transfrontal</td>
<td>Hypopituitarism (LH, FSH)</td>
<td>Normal</td>
<td>Normal</td>
<td>Chromophob pituitary adenoma</td>
</tr>
<tr>
<td>3/66/M</td>
<td>Epilepsy</td>
<td>20</td>
<td>Transfrontal</td>
<td>Normal</td>
<td>Normal</td>
<td>Left hemianopia</td>
<td>Oncocytic pituitary adenoma</td>
</tr>
<tr>
<td>4/G5/M</td>
<td>Cervical myelopathy</td>
<td>17</td>
<td>Transsphenoidal</td>
<td>GH hypersecretion</td>
<td>Normal</td>
<td>Normal</td>
<td>Acidophilic pituitary adenoma</td>
</tr>
</tbody>
</table>

*CT indicates computed tomography; and LH (luteinizing hormone) and FSH (follicle-stimulating hormone), hormone deficiencies in patients with hypopituitarism; GH, growth hormone; and PRL, prolactin.

Table 2.—Clinical, Radiological, and Biochemical Data of 14 Patients With an 'Incidentaloma' of the Pituitary Gland Treated Conservatively*

<table>
<thead>
<tr>
<th>Patient/ Age, y/ Sex</th>
<th>Complaint (Reason for CT)</th>
<th>Maximum Tumor Diameter, mm</th>
<th>Endocrine Function</th>
<th>Follow-up, mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/65/F</td>
<td>Concussion</td>
<td>22</td>
<td>25</td>
<td>Hypopituitarism (LH, FSH)</td>
</tr>
<tr>
<td>5/65/M</td>
<td>Cerebrovascular disease</td>
<td>20</td>
<td>20</td>
<td>Normal</td>
</tr>
<tr>
<td>7/61/F</td>
<td>Headache</td>
<td>16</td>
<td>15</td>
<td>Hypopituitarism (LH, FSH)</td>
</tr>
<tr>
<td>8/59/M</td>
<td>Cluster headache</td>
<td>14</td>
<td>20</td>
<td>Normal</td>
</tr>
<tr>
<td>9/56/M</td>
<td>Vertigo</td>
<td>14</td>
<td>14</td>
<td>Hypopituitarism (LH, FSH)</td>
</tr>
<tr>
<td>10/32/F</td>
<td>Psychiatric disorder</td>
<td>12</td>
<td>12</td>
<td>Normal</td>
</tr>
<tr>
<td>11/27/F</td>
<td>Headache</td>
<td>11</td>
<td>11</td>
<td>Normal</td>
</tr>
<tr>
<td>12/15/F</td>
<td>Epilepsy</td>
<td>9</td>
<td>9</td>
<td>Normal</td>
</tr>
<tr>
<td>13/19/F</td>
<td>Concussion</td>
<td>8</td>
<td>8</td>
<td>Normal</td>
</tr>
<tr>
<td>14/22/F</td>
<td>Syncope</td>
<td>8</td>
<td>4</td>
<td>Normal</td>
</tr>
<tr>
<td>15/24/F</td>
<td>Headache</td>
<td>8</td>
<td>8</td>
<td>Normal</td>
</tr>
<tr>
<td>16/43/M</td>
<td>Vertigo</td>
<td>8</td>
<td>8</td>
<td>Normal</td>
</tr>
<tr>
<td>17/37/F</td>
<td>Psychiatric disorder</td>
<td>5</td>
<td>5</td>
<td>Normal</td>
</tr>
<tr>
<td>18/44/F</td>
<td>Headache</td>
<td>5</td>
<td>9</td>
<td>Normal</td>
</tr>
</tbody>
</table>

*CT indicates computed tomography; and LH (luteinizing hormone) and FSH (follicle-stimulating hormone), hormone deficiencies in patients with hypopituitarism.
plained of loss of libido.

On coronal CT scans, an intrasellar soft-tissue mass greater than 10 mm in maximum diameter was identified in 11 patients (range, 11 to 25 mm) (Fig 1). Enhancement characteristics were variable, with uniformly isodense lesions (5 patients), uniformly hypodense lesions (1 patient), and mixed-density lesions (5 patients) encountered relative to the adjacent cavernous sinus. Seven tumors extended into the suprasellar region. Magnetic resonance imaging was available in 6 of these patients. In 2 patients (patients 1 and 2) with bitemporal visual field defects, the chiasm could not be discerned from the tumor by MRI. Displacement of the optic nerve was noted in patient 3, who had normal visual acuity.

In seven patients, pituitary gland CT scans showed a small lesion (diameter, <10 mm) within the sella turcica. In five of these patients, the sella cavity was almost completely filled by homogeneously enhancing soft tissue, with a convex upper contour of the gland. The two other patients had a small, hypodense lesion within the pituitary gland that was clearly distinguished from the normal enhancing parenchyma. Neither suprasellar nor parasellar extension nor sellar floor erosion was seen.

Goldman or computed perimetry revealed normal visual fields in 16 patients. Two patients showed a bitemporal visual field defect in the superior quadrant. The results of pituitary function testing was normal in 13 patients. Patients 1, 2, 5, and 7 had partial hypopituitarism (secondary hypogonadism). Patient 3 showed elevated baseline levels of GH and elevated somatomedin C concentrations without signs and symptoms of acromegaly. The GH concentrations were not suppressed to less than 2 μg/L during oral glucose tolerance test. Patient 3 had evidence of a left temporal visual field defect; visual field defects were unchanged in patient 2 and worse in patient 1. Follow-up studies were unchanged in both patients 12 to 24 months after surgery.

In 4 patients, (Table 1) neurosurgery was performed for the following reasons: visual field defects in patients 1 and 2, displacement of the chiasm by the tumor in patient 3, and biochemical evidence of acromegaly in patient 4. In all cases, complete removal of the tumor was achieved by the transfrontal (n=3) and transsphenoidal (n=1) route, respectively. Histologically, a chondroid chordoma and three pituitary adenomas were found. Immunohistochemical studies showed strong GH immunoreactivity in patient 4, follicle-stimulating hormone and thyrotropin immunoreactivity in patient 3, and luteinizing hormone and follicle-stimulating hormone immunoreactivity in a few scattered cells in patient 2.

Postoperatively, complete hypopituitarism that required replacement therapy developed in patients 1 and 2. Patient 4 had normal baseline GH levels that were suppressible to less than 2 μg/L during the oral glucose tolerance test. Patient 3 had evidence of a left temporal visual field defect; visual field defects were unchanged in patient 2 and worse in patient 1. Follow-up studies were uneventful in all patients 12 to 24 months after surgery.

During the follow-up period of the 14 patients who were treated conservatively (median, 22 months; range, 11 to 96 months), no change in tumor size occurred in 10 patients. Three patients had evidence of tumor growth (patients 5, 8, and 18). Patient 14 showed tumor regression. Visual acuity remained intact in all patients. The results of endocrine follow-up studies were unchanged in 13 patients. Patient 5 had a further decrease of serum gonadotropin levels, but thyrotropin and corticotropin secretion remained intact. In 4 additional patients (patients 5, 8, 9, and 18), transsphenoidal surgery was considered because of tumor growth or hypopituitarism. However, 3 patients refused to undergo neurosurgical intervention. The fourth patient was ineligible for surgery because of severe pulmonary disease.

COMMENT

In our report, we describe 18 patients with an incidentally discovered sellar mass. In 11 patients, the lesion was greater than 10 mm in diameter. However, only 2 of the patients had visual field defects, and only 5 patients (28%) had partial hypopituitarism. In 4 patients (22%), neurosurgery was performed. Follow-up studies in the remaining 14 patients showed tumor growth in 3, whereas in the majority the lesions remained unchanged. To our knowledge, this is the first report of patients with an incidentaloma of the sellar region that provides complete clinical, biochemical, and follow-up data.

We included patients who complained of chronic headache in our series of incidentalomas of the pituitary gland. This symptom was considered to be nonspecific and not to be caused by the tumor because patients with symptomatic pituitary lesions typically complain of
headache of recent onset or increasing frequency and intensity. In addition, Cohen et al. reported in their large series of 100 patients with nonfunctioning pituitary adenomas that headache—the second most frequent symptom—was never observed as an isolated complaint; it was always accompanied by visual symptoms.

The pituitary region can now be easily evaluated by means of high-resolution CT and MRI. By CT, it is best demonstrated either directly on coronal scans or indirectly from data obtained in the axial plane and reformatted into coronal and sagittal images. The use of high-resolution CT scans for the diagnosis of pituitary tumors is well established. In addition, MRI before and after administration of gadolinium-diethylene-triaminepentaacetic acid has been demonstrated to be more effective in the detection of microadenomas of the pituitary gland. Therefore, since 1987, MRI frequently has been used by us to confirm the presence of a pituitary tumor and to define the relationship of the lesion to the surrounding anatomic structures.

Asymptomatic pituitary adenomas are a common incidental finding at the time of autopsy. Most reported series showed an incidence of approximately 20%. We believe that most of the incidentalomas in our patients represent slowly growing pituitary microadenomas and macroadenomas. No change in tumor size was noted in the majority of cases. This may be explained by the slow growth characteristics of pituitary adenoma cells.

Patients with incidentalomas of the pituitary gland should be carefully monitored for anterior pituitary hormone excess, although the majority of patients have nonfunctional pituitary tumors. In the present study, only one patient with a GH-secreting adenoma had biochemical evidence of anterior pituitary hormone excess. No prolactin-secreting pituitary tumor was detected. Immunohistochemistry revealed a gonadotroph cell adenoma in one patient whereas gonadotropin levels were normal or low in all patients. However, gonadotroph cell adenomas cannot really be excluded on this basis since serum α-subunit was not measured in our patients.

Nevertheless, subclinical masses may be caused by abnormalities other than microadenomas or macroadenomas. The differential diagnosis includes aneurysm, meningioma, and craniopharyngioma, pituitary hyperplasia, lymphoid adenohypophysitis, pars intermedia cysts, metastasis to the pituitary gland, infarcts of the pituitary gland, and abscesses.

Aneurysm, parasellar meningioma, and craniopharyngioma sometimes mimic the CT characteristics of pituitary tumors, especially the large pituitary adenomas with suprasellar extension. However, generally they present a characteristic constellation of findings.

Fig 2.—Approach to the incidentally discovered noncystic mass.
on CT scans and MRI, which allows the differential diagnosis.

It is well known that in patients with suspected microadenomas, artifacts may mimic low-density lesions on CT. Earnest et al. stated that a significant percentage of intrasellar low-density areas, visualized on reformatted images especially, represented artifacts associated with the bones of the skull base. We excluded two patients with normal CT scans at the time of follow-up from this study in whom probable artifacts initially imitated the findings of a true pituitary tumor.

The therapeutic approach to patients with an incidentally discovered pituitary mass has not yet been established. We believe that it is rational to observe the clinical course carefully in patients with normal visual acuity and normal pituitary function. Serial CT scans or MRI, pituitary function testing, and ophthalmologic examination should be performed depending on the size of the lesion (Fig 2). Magnetic resonance imaging may be useful to confirm the presence of the mass (especially in the case of small lesions), to define the boundaries of the tumor, and to characterize its relationship to normal gland and vascular, neural, and bony structures. If the lesion shows no increase in size and endocrine and visual function remain intact, we recommend a conservative approach. However, in patients with tumor growth, loss of vision, or displacement of the optic apparatus shown on MRI or hypopituitarism or anterior pituitary hormone excess initially or at the time of follow-up, immediate neurosurgery is the treatment of choice.

In conclusion, we describe a series of 18 patients with an incidentally detected sellar mass. These lesions seem to be heterogenous in origin, however, at least some of them represent slowly growing nonfunctional pituitary adenomas. Our preliminary results suggest that in most cases the incidentaloma of the pituitary gland is a benign condition that does not necessarily require neurosurgical intervention.

References