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Abstract

Hyperspectral remote sensing is a promising tool for a variety of applications including
ecology, geology, analytical chemistry and medical research. This article presents the new
hsdar package for R statistical software, which performs a variety of analysis steps taken
during a typical hyperspectral remote sensing approach. The package introduces a new
class for efficiently storing large hyperspectral data sets such as hyperspectral cubes within
R. The package includes several important hyperspectral analysis tools such as continuum
removal, normalized ratio indices and integrates two widely used radiation transfer models.
In addition, the package provides methods to directly use the functionality of the caret
package for machine learning tasks. Two case studies demonstrate the package’s range of
functionality: First, plant leaf chlorophyll content is estimated and second, cancer in the
human larynx is detected from hyperspectral data.

Keywords: hyperspectral remote sensing, hyperspectral imaging, spectroscopy, continuum re-
moval, normalized ratio indices.

1. Introduction
Hyperspectral data refers to measurements of reflectance, transmission or absorption of elec-
tromagnetic radiation with a very high spectral resolution. Consider photographs taken with
a normal digital camera to illustrate the concept of spectral resolution. The sensors in digital
cameras have three bands that cover the blue, green and red portions of the visible electromag-
netic radiation. Each band is sensitive to radiation in a wavelength range of approximately
100 nm. Hyperspectral sensors, in contrast, feature hundreds of such bands that are sensitive
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to a very narrow wavelength range along the electromagnetic spectrum (often down to 1 nm).
Together, all bands continuously cover a certain portion of the electromagnetic spectrum. Ad-
ditionally, most hyperspectral sensors feature bands within the infrared or ultraviolet ranges.
For instance, the hyperspectral satellite sensor Hyperion provides data with 220 bands with
a spectral resolution of approximately 11 nm (wavelength range) at each 10 nm (sampling
interval) from 400 nm (visible) to 2500 nm (short-wavelength infrared, Pearlman, Carman,
Segal, Jarecke, Clancy, and Browne 2001).
Hyperspectral imaging, also referred to as imaging spectroscopy, is used in various disciplines,
such as analytical chemistry (Blanco and Villarroya 2002), agricultural research (precision
farming, Haboudane, Miller, Tremblay, Zarco-Tejada, and Dextraze 2002), ecology (Ustin,
Roberts, Gamon, Asner, and Green 2004), pedology (Gomez, Rossel, and McBratney 2008),
geology (Bishop, Liu, and Mason 2011), and medical research (Calin, Parasca, Savastru,
and Manea 2014; Regeling et al. 2016a). The main advantages of hyperspectral imaging
are its cost-effectiveness in spatial analysis, the non-destructive measurement of biophysical
and biochemical properties of the investigated surface and the speed of analysis (up to real-
time). Hyperspectral analysis is not restricted to space-born approaches. Many of the above-
mentioned fields make use of portable spectrometers or hyperspectral cameras, which can be
used in the field, in the laboratory or even in a surgical suite. The choice of the measuring
device and its spectral specifications depends on the surface under investigation and the aim
of the analysis. For instance, vegetation has a very prominent spectral feature called the red-
edge. This refers to a sharp increase of reflectance values in the near infrared wavelengths.
These wavelengths, in contrast, are less informative in geological analyzes, which usually
require the short- and mid-infrared wavelengths.
Currently, most hyperspectral approaches use commercial software tools such as Erdas Imag-
ine, ENVI or the hyperspectral toolbox in MATLAB (The MathWorks Inc. 2018). These
tools are generally expensive and have limited functionalities for statistical analysis. There-
fore, we developed a new package in the open source software R (R Core Team 2019). The
hyperspectral data analysis (hsdar) package combines important hyperspectral analysis tools
with the statistical power of R. Package hsdar (Lehnert, Meyer, and Bendix 2019) is avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=hsdar. This article is structured as follows: Section 2 summarizes the reasons
why R is convenient for hyperspectral analysis. Section 3 outlines the main functionalities
and the implementation of the hsdar package, and also compares it with other available soft-
ware tools with a special focus on the other hyperspectral package hyperSpec in R. Finally,
two examples demonstrate the effectiveness of combining hyperspectral techniques with the
statistical power of R.

2. Why use R for hyperspectral imaging analysis
The methodology which is commonly applied in the analysis of hyperspectral data sets consists
of three parts: (1) the preprocessing of spectra, (2) the extraction of the relevant information
(i.e., spectral characteristics associated with biophysical properties of the target), and (3) a
classification or regression analysis to predict biophysical properties in space and time. R is the
most comprehensive software tool for performing statistical analyses during step (3). In this
context, especially the machine learning algorithms such as support vector machines, Random
forests and artificial neural networks are powerful tools for modeling different parameters
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Figure 1: Scheme of the S4 class ‘Speclib’ implemented in hsdar. Black slots are required
and grey ones are optional. The spectra’s slot can either be a matrix or a ‘RasterBrick’
object. The SI slot can encompass various types of objects including raster images. Note that
functions exist to set and return data in each slot.

across space and time (for applications see e.g., Schwieder, Leitão, Suess, Senf, and Hostert
2014; Hansen, DeFries, Townshend, Sohlberg, Dimiceli, and Carroll 2002; Bacour, Baret,
Béal, Weiss, and Pavageau 2006). However, the functionality required for steps (1) and (2)
has only been partly available in R, was distributed across multiple packages and was not
directly applicable to hyperspectral data.
Thus, to take advantage of the statistical power of R for hyperspectral data analysis, a new
package was developed that provides a framework for handling and analyzing hyperspectral
data. A special focus was set on the analysis of large data sets taken under field conditions for
e.g., vegetation remote sensing. The R package hsdar implements commonly used processing
routines for hyperspectral data and further combines or extends the existing functionality of
R to include hyperspectral data into a broad range of statistical analyses.

3. Overview of the functionality of hsdar
This section gives a brief technical overview on the general functionality provided by hsdar.
The description starts with a short introduction of the classes followed by a summary of the
main functions.

3.1. Classes

To provide a framework to handle large hyperspectral data sets, the hsdar package defines
a new S4 class called ‘Speclib’. This allows the user to store hyperspectral measurements
and all information associated with those measurements in a single object (Figure 1). The
hyperspectral measurements consist of reflectance values stored in the spectra slot and their
spectral specifications. The spectra are stored either as a numeric matrix or a RasterBrick-
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object. The matrix is intended for smaller data sets such as point measurements, whereas
the RasterBrick object may contain large hyperspectral (satellite) images. If the spectra are
stored as a matrix, the rows delineate between different samples while the columns represent
the different spectral bands. The spectral specification consists of two numeric vectors stored
in the wavelength and the f ull-width-half-maximum (fwhm) slots. The wavelength gives
the central position of each band and the fwhm value describes the difference between the
wavelength values where the sensitivity of the sensor is half of its maximum in the respective
band. Both values are specifications of the sensor used to acquire the data and must be in
the same unit. It is preferred to use nm but automatic conversion from other typical units
such as µm is supported. If the fwhm values are unknown, the difference between neighboring
bands are used as an approximation. The associated data (termed SI as an abbreviation for
supplementary information), which is included as a list, may contain any type of ancillary
information like the measurement setup or the geographical position. Additionally, raster
images are supported as part of the SI.
Objects of class ‘Speclib’ can be created through several methods. For each method, the user
must at least know the wavelength values of all bands that must be available as a numeric
vector. The most important method to create an object of class ‘Speclib’ is using the file path
pointing to a hyperspectral raster image readable by rgdal or raster (Hijmans 2016; Bivand,
Keitt, and Rowlingson 2016; Pebesma, Bivand, and Ribeiro 2015). The second option to
create a ‘Speclib’ object is to read the reflectance values from a file (e.g., a comma-separated
list) and store these in a matrix. This matrix, together with the wavelength information, can
then be used to create a ‘Speclib’ object. In the following short example, the example data
set spectral_data (which is already a ‘Speclib’ object) is divided into its basic components,
which are then used to create a new ‘Speclib’ object:

R> library("hsdar")
R> data("spectral_data", package = "hsdar")
R> reflectance <- spectra(spectral_data)
R> class(reflectance)

[1] "matrix"

R> wv <- wavelength(spectral_data)
R> class(wv)

[1] "numeric"

R> spec_lib <- speclib(reflectance, wv)
R> class(spec_lib)

[1] "Speclib"
attr(,"package")
[1] "hsdar"

In this example, the spectra (reflectance) are stored as a matrix and the wavelength (wv)
is stored as a numeric vector.
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Aside from using local offline data, hsdar can search online hyperspectral databases and auto-
matically download data. The following example searches for spectra from grass species in the
USGS Digital splib04 Spectral Library (https://speclab.cr.usgs.gov/spectral.lib04/
spectral-lib04.html) and downloads the data. Note that missing data in the downloaded
spectra are automatically masked out.

R> avl <- USGS_get_available_files()
R> grass_spectra <- USGS_retrieve_files(avl = avl, pattern = "grass-fescue")

In the example above, the first command returns all available spectra. Users can specify a
subset of spectra in a search string within the retrieve function (in this case "grass-fescue"),
which is downloaded and converted to a ‘Speclib’ object. Note that the function supports
approximate string matching so that entries similar to the search string are found.

3.2. Functionality

Along with the new ‘Speclib’ class, hsdar includes several methods to summarize, plot, query
and replace data in ‘Speclib’ objects. Since many hyperspectral data sets are available as
raster data sets (e.g., if acquired by satellite), hsdar provides a simple interface to the raster
package that allows users to read and save data from and to all common raster formats via
the rgdal interface (Hijmans 2016; Bivand et al. 2016; Pebesma et al. 2015). On commonly
used hardware, hyperspectral raster data sets often exceed the capacity of the RAM. To
overcome this issue, hsdar provides two processing options for such large data sets. The
simpler, less computational effective option is to store the spectra as a RasterBrick object in
a ‘Speclib’ object. In this case, the spectra are read into memory only upon request and
most of the functions process the spectral data block-wise. In this context, the functions
automatically detect if the data should be processed block-wise or if all the data should be
read before executing the function. For block-wise computation, the resulting spectra are
saved as a temporary raster file and the function returns a new ‘Speclib’ object pointing
to the temporary file. The disadvantage of this option is that if more than one function is
applied, the spectra have to be saved and re-read multiple times. Thus, a second option
is available, which follows the framework of the raster package but requires the user to
be familiar with simple programming tasks in R. Like the raster package, hsdar provides
writeStart, getValuesBlock, writeValues and writeStop methods for the ‘Speclib’ class
so that the user can easily process a large data set by iteratively reading parts (chunks) of
the images, passing it through multiple functions and writing the result to a new raster file.
Only one reading and writing process is required in this case, which considerably expedites
the analysis. A typical code block would look like the following. To execute it, note that
wavelength needs to be defined and infile must point to an existing file readable by the
raster package. The result will be a new file in the GeoTIFF-format defined by outfile
featuring the same number of bands as the existing file (option "nl"):

R> ra <- speclib(infile, wavelength)
R> tr <- blockSize(ra)
R> res <- writeStart(ra, outfile, nl = nbands(ra), format = "GTiff")
R> for (i in 1:tr$n) {
+ v1 <- getValuesBlock(ra, row = tr$row[i], nrows = tr$nrows[i])
+ v2 <- ANY_FUNCTION(v1)

https://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html
https://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html
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Preprocessing Analysis Modeling
• Filtering

• Derivations

• Spectral resampling

• Continuum removal

• Red edge parameters

• ∼ 100 vegetation indices

• Soil indices

• Normalized ratio indices

• Spectral unmixing

• Feature selection algorithms

• Extraction of absorption fea-
tures

• Implementation of the leaf re-
flectance model PROSPECT
and the canopy reflectance
model PROSAIL

• Link to machine learning
functionality of caret (Kuhn
2008)

Table 1: Summary of the main functionalities of the hsdar package. Items in italic are
presented in detail in the case studies section.

+ res <- writeValues(res, v2, tr$row[i])
+ }
R> res <- writeStop(res)

In the loop, function(s) provided by the hsdar package can be applied to the ‘Speclib’ object
v1. Examples of functions will be discussed in detail in the following sections. The result of
the function(s) (termed v2 in this example) is then written to the initially defined file (res).
Note that objects res and v1 are of class ‘Speclib’, while v2 may be a vector, matrix or a
‘Speclib’ object depending on the return value of the functions applied in between. Please
read the help files and the corresponding vignette available in the raster package for further
information. In addition, the replication script contains a working example based on a data
set simulated by PROSAIL.
The functionality provided by the hsdar package can be divided into preprocessing, analysis
and modeling stages (Table 1). In the following, we briefly outline the most important features
except those that are part of the analysis in the section of case studies.
Noise reduction is a critical preprocessing task in hyperspectral analysis because, as a con-
sequence of their high spectral resolution, the sensors often suffer from low signal to noise
ratios, thus, an important step of each hyperspectral analysis is filtering the spectra. In hsdar
the function noiseFiltering applies one of four predefined filters (Savitzky-Golay-, lowess-,
mean-, spline-filter) or any other filter function from the signal package (Ligges, Short, and
Kienzle 2015). Figure 2 shows the effect of filtering (red lines) spectra that were artificially
affected by random noise (black lines). Additionally, hsdar provides functions to calculate
variables derived from spectral features and allows the user to integrate (bin or spectrally
resample) hyperspectral data sets to sensors featuring a lower spectral resolution. Spectral
resampling can be performed using predefined spectral response functions of common satel-
lite sensors or using Gaussian spectral response functions defined by the fwhm values of the
sensor with the lower resolution. Alternatively, spectral response values may be stored in a
‘Speclib’ object and passed directly to the resampling function.
To analyze hyperspectral data sets, the computation of approximately 100 vegetation and soil
indices is implemented in hsdar. The indices can be accessed via the functions vegindex and
soilindex which encompass widely used indices such as the normalized difference vegetation



Journal of Statistical Software 7

700 750 800 850

20
40

60
80

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

Savitzky−Golay−Filter, n = 25

Lowess−Filter, f = 0.1

Mean−Filter, p = 5

Spline−Filter, n = 15

Figure 2: Effect of filtering to reduce noise in spectral data. Red lines are the filtered re-
flectance and the black lines the raw reflectance. All filters are applied to the same spectrum.
Note that for illustration purposes, the values of the lowess-, mean-, and spline-reflectances
have been increased by 10, 20 and 30% after filtering, respectively. Settings for the filters
are as follows: n and p for the Savitzky-Golay-, spline- and mean-filters are the filter lengths,
whereas f gives the proportion of bands in the spectrum that influence the smooth at each
value in the lowess-filter.

index (NDVI, Tucker 1979) in addition to specialized indices such as the cellulose absorption
index (CAI), which is a proxy for litter amounts and plant coverage (Nagler, Inoue, Glenn,
Russ, and Daughtry 2003). Additionally, users can easily define their own index using a simple
syntax. In (hyperspectral) remote sensing of vegetation, the sharp increase in the reflectance
values between 680 and 750 nm (red edge) is the most important feature, as the shape of the
red edge is determined by the amount of water and chlorophyll in the vegetation. Thus, the
red edge is seen as a reliable indicator for plant health in addition to leaf area index, plant
coverage, chlorophyll, water and nitrogen content (e.g., Filella and Peñuelas 1994). Different
methods for extracting relevant information in the shape of the red edge are included in
hsdar. These encompass common methods such as deriving the red edge inflection point
using a Gaussian fit (Miller, Hare, and Wu 1990) or more recent advances such as the red
edge position through linear extrapolation (Cho and Skidmore 2006). Finally, hsdar provides
functionality to perform linear spectral unmixing (LSU, Sohn and McCoy 1997) e.g., for
estimating the fractional vegetation cover.

hsdar implements two frequently used radiative transfer models to simulate the reflectance
values of vegetation. The first one is the leaf reflectance model PROSPECT (vers. 5B and D,
Jacquemoud and Baret 1990; Féret, Gitelson, Noble, and Jacquemoud 2017). The second one
is the canopy reflectance model PROSAIL which enhances the functionality of PROSPECT
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and includes canopy directional reflectance simulation (Jacquemoud et al. 2009). In addition,
the inverted PROSPECT model allows the user to estimate the content of various biochemical
parameters in the leaves from hyperspectral data (Jacquemoud 1993).

4. Other hyperspectral imaging tools
Comparable functionality can be found in commercial software tools, i.e., MATLAB (The Math-
Works Inc. 2018) and ENVI (Exelis Visual Information Solutions 2018). A hyperspectral
toolbox is available in MATLAB that provides feature extraction algorithms such as princi-
pal component analysis as well as supervised classification algorithms such as a maximum
likelihood classifier (Arzuaga-Cruz et al. 2004). ENVI has functions for preprocessing hyper-
spectral images such as continuum removal and feature extraction algorithms such as the
spectral angle mapper.
In the open source software R, hsdar completes its hyperspectral functionality together with
another major hyperspectral package called hyperSpec (Beleites and Sergo 2016). The pri-
mary difference between the packages is that hsdar is intended for analyzing data sets col-
lected under field conditions with satellites or spectrometers with a special focus on vegetation
and ecosystem remote sensing (Dechant, Cuntz, Vohland, Schulz, and Doktor 2017; Große-
Stoltenberg, Hellmann, Werner, Oldeland, and Thiele 2016; Lehnert, Meyer, Meyer, Reuden-
bach, and Bendix 2014; Meyer, Lehnert, Wang, Reudenbach, Nauss, and Bendix 2017). In
contrast, the hyperSpec package provides many useful functions for plotting with a special
focus on hyperspectral data acquired under laboratory conditions as in chemistry or medical
research (Beleites, Geiger, Kirsch, Sobottka, Schackert, and Salzer 2011; Beleites, Salzer, and
Sergo 2013). Functions in hsdar allow it to interface with the hyperSpec package, i.e., to
convert between ‘Speclib’ objects and the hyperSpec class. Consequently, hsdar users also
have access to various import and plotting functions provided by the latter package.

5. Case studies
In the following sections two study cases are presented to explore the functionality of hs-
dar. The first case study uses data from a field experiment conducted in central Germany
where hyperspectral images were taken from grassland vegetation exposed to enhanced CO2
air concentrations (Figure 3a). The example includes spectra preprocessing, followed by the
extraction of absorption features, calibration and validation of a prediction model for chloro-
phyll content. In the second case study, emphasis is given to the calculation of normalized
ratio indices and model parameterization to detect cancer cells in human larynx tissue using
hyperspectral images (Figure 3b).

5.1. Remote sensing of vegetation: Chlorophyll content

The first example demonstrates the applicability of hsdar for hyperspectral data analysis in
vegetation studies. Specifically, the package is used to estimate chlorophyll content of plants
from hyperspectral data. The data set was acquired within the scope of a FACE (f ree air
carbon dioxide enrichment) experiment conducted on a temperate grassland situated near
Giessen, Germany (Kammann, Grünhage, Grüters, Janze, and Jäger 2005; Obermeier et al.
2017). On 15 plots (each 2 × 2 m), the chlorophyll content of the two most abundant
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Figure 3: Sampling of hyperspectral data at the GiFACE experimental site with the spec-
trometer (a). The silver ring is part of the CO2-enrichment system. In (b), an example
image illustrates the hyperspectral cube of the human larynx produced by the hsdar function
cubePlot. The RGB image on top of the cube is created from the bands of the hyperspectral
image corresponding to the center of the red, green and blue wavelengths. The colors at the
vertical sides of the cube represent the intensity values of the 30 different spectral bands of
the sensor (blue = low to red = high).

grasses (Arrhenatherum elatius and Trisetum flavescens) was measured using a Konica Mi-
nolta SPAD-502Plus chlorophyll meter. The mean value of chlorophyll content of both species
was calculated and weighted by their corresponding plant coverage. Hyperspectral data were
acquired at the time of the chlorophyll measurements using a HandySpec® field spectrometer,
which simultaneously measures reflectance values from 305 nm to 1705 nm with a spectral
resolution of 1 nm (Figure 3a). The field spectrometer has two sensors measuring from 305 to
1049 nm and 1050 to 1705 nm. On each plot, 24 spectra were collected under natural (solar)
illumination and averaged. Each plot was visited three times, on 30.05.2014, 08.08.2014 and
13.05.2015. Thus, the data set contains 45 observations.

The following paragraph describes the preprocessing steps that reduce measurement errors
and artifacts in the spectral data. Then, the spectra are transformed to reduce the influence
of the illumination at time of acquisition. Finally, the chlorophyll content is estimated with
Random Forest using the transformed spectra as predictors (Breiman 2001). Here, we use
the randomForest package by Liaw and Wiener (2002) in combination with the caret package
created by Kuhn (2008).

In the first preprocessing step noise is removed from the spectra using a Savitzky-Golay filter
(method "sgolay") with a length of 15 nm. The filter reduces the noise of the reflectance
values by fitting a polynomial function and eliminates small differences between neighboring
bands, which are most likely a result of measurement inaccuracy.
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R> data("spectral_data", package = "hsdar")
R> spectral_data <- noiseFiltering(spectral_data, method = "sgolay", p = 15)

The result is a ‘Speclib’ object, which contains a filtered spectral signature in the original
sampling resolution. In addition, the empirical function of Coste et al. (2010) is used to
transform the chlorophyll SPAD values to µg cm−2 (Ca,b) to facilitate the interpretation of
the chlorophyll content values:

Ca,b = 117.1 · SPAD
148.84 − SPAD (1)

Note that the SPAD chlorophyll value is shipped with the example data set and stored in the
supplementary information (SI) of the object.

R> SI(spectral_data)$chlorophyll <-
+ (117.1 * SI(spectral_data)$chlorophyll) /
+ (148.84 - SI(spectral_data)$chlorophyll)

Chlorophyll strongly absorbs light at around 460 nm in the blue and around 670 nm in the red
parts of the electromagnetic radiation (e.g., Mutanga, Skidmore, and Prins 2004). Therefore,
the spectra are trimmed to their visible and near infrared part (310–1000 nm). The resulting
spectral data after preprocessing are visualized in Figure 4a.

R> spectral_data <- spectral_data[, wavelength(spectral_data) >= 310 &
+ wavelength(spectral_data) <= 1000]

Since the absorption of chlorophyll is not restricted to the central wavelength, but also affects
the neighboring bands, the reflectance values are considerably lowered in the blue and red
parts which lead to “absorption features” in the spectral signature of the reflectance (shown as
gray boxes in Figure 4a). The form and magnitude of these absorption features are correlated
to the chlorophyll content of the measured vegetation (Mutanga and Skidmore 2004; Mutanga
et al. 2004). To enhance the form of the absorption features, the spectra can be transformed
by constructing a continuum hull around each spectrum. In general, there are two methods
for defining such a hull. In the first approach, the convex hull uses the global maximum of
the reflectance values as an initial fix point. Then, additional fix points are found to create
a convex hull (see red line in Figure 4a). The second approach is called segmented upper
hull. Here, the slope of the line to the left and right of the maximum must be positive and
negative, respectively (see blue line in Figure 4a). This does not necessarily mean the hull
is convex, however. Geologic hyperspectral analyzes often use the convex hull because the
distinct absorption features of minerals in the mid-infrared part of the spectrum are easily
derived. In vegetation studies, the absorption features of chlorophyll are very close to one
another and the reflectance maximum in the green part is considerably lower than in the
near infrared. Consequently, only one absorption feature would be detectable. Therefore, a
segmented upper hull (option "sh") is used in this example to ensure that two small features
are identified instead of one large feature. To enhance the chlorophyll absorption features,
the reflectance values are afterward transformed into band depth values (option "bd"):

BDd,λ = 1 − Rλ
CV λ

(2)

where R is the measured reflectance and CV is the reflectance value of the constructed
continuum line at wavelength λ.
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Figure 4: Spectral data of the vegetation at the 15 plots. Black lines show mean (solid)
and mean ± one standard deviation (dashed) of reflectance values (a). The red and blue
dashed lines symbolize the convex and segmented upper hull of the upper standard deviation
spectrum, respectively. The gray boxes symbolize the absorption wavelength of chlorophyll.
In (b) band depth values are plotted as the result of the segmented upper hull transformation
applied to the reflectance spectra.

R> spec_bd <- transformSpeclib(spectral_data, method = "sh", out = "bd")

The band depth values in relation to the wavelength of all 45 spectra are plotted in Figure 4b.
The chlorophyll absorption features correspond to the first two peaks of the band depth values.
The absorption features are now defined as the part of the spectrum between two fix points
(band depth values of 0). Since the third absorption feature centered around 980 nm is related
to plant water content and biomass rather than chlorophyll (Peñuelas, Filella, Biel, Serrano,
and Savé 1993), only the absorption features at 460 nm and 670 nm are selected for further
analysis.

R> featureSpace <- specfeat(spec_bd, c(460, 670))

Several parameters can be calculated from absorption features. These include the wavelength
values corresponding to the maximum and the half maximum band depth values. Additionally,
the area under the curve is extracted as well as the difference between an idealized Gaussian
curve and the observed band depth values. See Table 2 for a subset of the resulting parameters
of the example data set.

R> featureSpace <- feature_properties(featureSpace)

In the last part of this example, the chlorophyll contents of the measured samples are esti-
mated using the parameters derived from the absorption feature and the band depth values
within the features as predictors. Multivariate statistics and machine learning approaches
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ID Area Width Feature Dist. to Gauss Curve
Width f460 f670

f460 f670 f460 f670 f460 f670 left right left right
1 23.85 131.44 518 715 0.11 0.77 191.00 0.13 139.00 0.06
2 22.13 134.01 521 716 0.12 0.76 194.00 0.11 142.00 0.06
3 31.44 136.32 520 718 0.11 0.78 194.00 0.13 144.00 0.07
4 17.26 132.26 519 715 0.11 0.77 192.00 0.12 139.00 0.06
5 21.75 135.03 520 716 0.12 0.78 193.00 0.10 142.00 0.07
6 23.88 132.46 519 717 0.11 0.76 192.00 0.12 142.00 0.06
7 21.39 136.13 519 716 0.11 0.78 193.00 0.13 141.00 0.07
8 20.75 134.76 519 720 0.11 0.79 193.00 0.12 147.00 0.07
9 22.75 138.98 520 717 0.12 0.80 194.00 0.12 143.00 0.07
10 22.94 130.43 520 716 0.11 0.76 192.00 0.11 141.00 0.06
11 27.89 135.50 520 716 0.12 0.77 193.00 0.12 142.00 0.06
12 24.28 129.25 519 718 0.11 0.76 192.00 0.12 144.00 0.06
13 26.50 135.68 520 718 0.11 0.77 195.00 0.14 145.00 0.07
14 22.13 131.74 520 718 0.11 0.77 193.00 0.11 144.00 0.07
15 21.36 134.58 520 717 0.12 0.77 193.00 0.12 143.00 0.06
16 37.25 123.95 514 718 0.11 0.77 192.00 0.13 143.00 0.06
17 36.99 131.96 519 718 0.12 0.75 193.00 0.14 146.00 0.07
18 45.60 127.86 517 719 0.11 0.75 191.00 0.15 146.00 0.06
19 42.09 130.61 518 718 0.11 0.77 194.00 0.15 144.00 0.06
20 51.52 129.11 518 718 0.11 0.75 190.00 0.15 145.00 0.06
21 39.35 126.57 518 718 0.11 0.73 195.00 0.13 144.00 0.06
22 47.63 130.76 517 718 0.11 0.77 192.00 0.16 144.00 0.06
23 39.94 128.55 515 718 0.10 0.77 194.00 0.14 143.00 0.07
24 41.99 128.45 517 718 0.11 0.76 190.00 0.15 144.00 0.06
25 48.01 128.43 518 717 0.11 0.75 190.00 0.14 144.00 0.06
26 38.35 134.08 518 718 0.11 0.77 193.00 0.15 145.00 0.07
27 35.58 130.27 517 719 0.10 0.75 195.00 0.14 146.00 0.06
28 45.22 131.08 517 719 0.11 0.76 192.00 0.15 146.00 0.06
29 47.61 130.07 517 718 0.10 0.76 194.00 0.14 144.00 0.07
30 42.90 130.90 519 719 0.12 0.75 193.00 0.15 148.00 0.07
31 50.20 128.63 520 722 0.12 0.70 202.00 0.18 152.00 0.07
32 45.42 129.62 520 724 0.12 0.71 202.00 0.21 155.00 0.08
33 46.55 132.49 520 721 0.12 0.72 202.00 0.21 150.00 0.07
34 46.95 133.73 521 722 0.12 0.71 204.00 0.20 152.00 0.08
35 56.06 129.62 521 724 0.13 0.70 203.00 0.18 156.00 0.08
36 43.08 130.81 520 722 0.12 0.70 203.00 0.21 152.00 0.07
37 36.21 135.46 521 723 0.13 0.72 204.00 0.19 154.00 0.08
38 45.62 134.72 521 723 0.12 0.72 203.00 0.20 154.00 0.08
39 46.81 134.62 520 722 0.12 0.74 202.00 0.22 153.00 0.08
40 46.84 134.71 520 723 0.13 0.73 202.00 0.20 154.00 0.08
41 41.39 133.68 521 722 0.13 0.72 204.00 0.20 153.00 0.08
42 43.09 134.26 520 723 0.12 0.73 203.00 0.21 154.00 0.08
43 50.85 130.39 520 724 0.13 0.70 203.00 0.21 156.00 0.08
44 44.85 131.95 520 722 0.12 0.72 202.00 0.19 153.00 0.07
45 44.30 135.09 520 722 0.13 0.73 202.00 0.21 153.00 0.07

Table 2: Selected feature properties extracted from the band depth values. The area is the
sum of all band depth values within the respective feature. The feature width is the difference
between the wavelength values at the upper and lower FWHM values. Distance to Gauss curve
is the RMSE of the part smaller than (left) and greater than (right) the maximum. Note that
each line represents one spectral measurement and the two chlorophyll absorption features
are abbreviated according to their central wavelengths as f460 and f670.
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Figure 5: Estimated vs. measured chlorophyll content.

are frequently used for this purpose, because prediction models based on multiple (and often
correlated) variables usually out-perform the univariate approaches. To cope with multivari-
ate and machine learning tasks, hsdar provides wrapper functions that enable the user to
directly use the functionalities of the caret package. This is by far the most comprehensive
multivariate package since it includes various approaches with the same syntax and functions.
To use the functions of caret, the response variable has to be defined, which must be stored
in the SI attached to the ‘Speclib’ object (featureSpace).

R> featureSpace <- setResponse(featureSpace, "chlorophyll")

The spectra are the default selection for predictors. However, additional predictor variables
from the attributes of the spectra can be included. In this example, all parameters extracted
above are added.

R> featureSpace <- setPredictor(featureSpace,
+ names(SI(featureSpace))[5:ncol(SI(featureSpace))])

The final model for deriving chlorophyll content is trained by tuning the required parameter
for the Random Forest model (Number of randomly selected predictor variables, mtry). 10-
fold cross validation is repeated 5 times for model tuning and estimating accuracy. The
internal predictions of the final tuning setup are returned providing an independent data set
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for validation. The accuracy of the predictions performed by the model is evaluated with the
root mean squared error (RMSE) and the R2-value. For further information about strategies
on model settings and cross validation see Kuhn and Johnson (2013) and Kuhn (2008).

R> ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 5,
+ savePredictions = "final")
R> rfe_trained <- train(featureSpace, trControl = ctrl, method = "rf")

The number of randomly selected predictor variables at each split of the trees is set to
mtry = 452. Using the repeated cross validation, the chlorophyll contents estimated by
the Random Forest model fit well if compared to the measured ones (RMSE = 4.85 mg,
R2 = 0.80, Figure 5). This shows that the proposed method incorporating hyperspectral
data is a valid approach for chlorophyll estimation. The resulting model can be used to pre-
dict the chlorophyll content of plots where it has not been measured in the field (e.g., Lehnert
et al. 2014).

5.2. Hyperspectral detection of cancer

The second example shows how hyperspectral imaging can be used in non-invasive detec-
tion of cancer of the human larynx (head and neck squamous cell carcinoma; hence referred
to as “HNSCC”). This is demonstrated with a data subset acquired at the University of
Bonn, Germany that includes hyperspectral images from 25 patients, 10 of which have a
histopathological diagnosis of HNSCC. The images were acquired using an endoscope, which
was coupled with a monochromatic CCD camera. A special Polychrome V light machine al-
lowed researchers to change the wavelength of the impinging radiation so that several images
taken under different illuminations could be combined into hyperspectral cubes (Figure 3b).
The images were preprocessed and collocated using the methodology proposed by Regeling
et al. (2016a). The preprocessing is key because the different bands are acquired with short
time lapse as a consequence of the varying light source. Medical experts’ manual classification
into cancerous and non-cancerous tissue was used as reference. The following code loads the
data into R and plots them to explore the differences between cancerous and non-cancerous
tissue (Figure 6).

R> data("cancer_spectra", package = "hsdar")
R> plot(subset(cancer_spectra, infected == 1), ylim = c(0, 400),
+ col = "darkred")
R> plot(subset(cancer_spectra, infected == 0), new = FALSE)

Additionally, the response variable (“infected”) is converted to a factor:

R> SI(cancer_spectra)$infected <- as.factor(SI(cancer_spectra)$infected)

In contrast to the first example, the spectra of the human larynx are expressed in counts
and not reflectance values. Thus, the absolute values highly depend on the light source,
the temperature of the sensor, and the illumination geometry. To cope with this limitation,
normalized ratio indices are calculated instead of using the absolute count values. Mathemat-
ically, these are defined as:

NRI i,j = Ri −Rj
Ri +Rj

(3)
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Figure 6: Spectral data of the cancerous (red) and non-cancerous (black) parts of the larynx
showing the mean (solid line) and standard deviation (dashed lines) of the count values
detected by the monochromatic CCD camera.

Here, R is the reflectance (or in this case the number of counts) at wavelength i or j. These
indices are then calculated for all possible combinations of bands through the predefined
function “nri”.

R> nri_data <- nri(cancer_spectra, recursive = TRUE)

The NRI values can be directly used as predictors in univariate generalized linear models,
for example. Note that a multitude of models must be derived depending on the number of
bands in the hyperspectral data set. Initially, it is worthwhile to resample the spectra to a
coarser spectral resolution to reduce the number of models. Alternatively, some functions in
hsdar directly support parallel processing using the foreach package (Kane, Emerson, and
Weston 2013; Microsoft and Weston 2017). To execute a function on two cores in parallel,
simply use the following code depending on the operating system.
For Linux/Mac OS:

R> library("doMC")
R> n_cores <- 2
R> registerDoMC(n_cores)

For Windows:

R> library("doMPI")
R> n_cores <- 2



16 hsdar: Hyperspectral Data Analysis in R

R> cl <- startMPIcluster(count = n_cores)
R> registerDoMPI(cl)

Please note that the data set in the current example is not large enough to benefit from
parallel processing. Therefore, the previous code snippet can be skipped, and we continue by
calculating the generalized linear models using the NRI values as predictors for infection:

R> glm_models <- glm.nri(infected ~ nri_data, preddata = cancer_spectra,
+ family = binomial)

It must be noted that the indices are highly correlated, which is a common drawback to using
them in a multivariate analysis. In this example, however, each index is used as a predictor
in a separate model to eliminate collinearity.
The coefficients, p values and test statistics of the generalized linear models can now be plotted
in 2-d correlograms. In such diagrams, the x-axis and the y-axis represent the two spectral
bands used to calculate the index. The color in the diagram symbolizes the coefficient of the
model. Thus, the diagrams provide an initial look at band combinations that might be useful
for distinguishing between cancerous and non-cancerous parts of the tissue.

R> plot(glm_models, coefficient = "z.value", legend = "outer")
R> plot(glm_models, coefficient = "p.value", uppertriang = TRUE,
+ zlog = TRUE)

The plot is shown in Figure 7. Almost every index calculated from wavelengths between
400 nm and 450 nm and any other band featured low p values and, thus, had a significant
effect on the distinction between cancerous and non-cancerous tissue (see white rectangle in
Figure 7). Positive z values were observed for NRI values calculated from longer wavelengths.
Negative z values were obtained for indices calculated from 450 nm to 550 nm for the first
band and 400 nm to 480 nm for the second band. The index with the worst performance was
calculated from bands 490 nm and 590 nm (see shaded black rectangle in Figure 7).
This approach, however, precludes multiple NRI values from being used as predictors be-
cause they are usually highly correlated, as previously mentioned. Thus, machine learning
algorithms classify cancerous cells, as in the first example, because collinearity among predic-
tor variables does not affect their predictive performance. Predictor and response variables
have to be defined: As response variable, the column “infected” in the SI was used and the
NRI values are used as predictors by default. The stage of the cancer is used as an additional
predictor variable, because the spectral signal in the early stages of the cancer differs from
that in later stages.

R> nri_data <- setResponse(nri_data, "infected")
R> nri_data <- setPredictor(nri_data, "stage")

Unlike the first example, highly correlated predictor variables are excluded before model
training by applying a recursive feature elimination, which reduces the computational time.
Afterwards, two techniques are used to classify cancerous and non-cancerous tissues: (1)
support vector machine (Chang and Lin 2011; Meyer, Dimitriadou, Hornik, Weingessel, and
Leisch 2014) and (2) neural network classification (Ripley 1996; Venables and Ripley 2002).
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Figure 7: Relationship between cancer and normalized ratio indices. The lower, right portion
(triangle) of the graph shows the z values of the binomial regression and the upper triangle
represents the corresponding p values. The white squares mark the positions of the index
(z and p values), that perform best, while the black squares show the index with the worst
performance. Note that color of p values is logarithmically scaled.

R> sel_feat <- rfe(nri_data, cutoff = 0.9)
R> ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 5,
+ savePredictions = "final")
R> rfe_trained_svm <- train(sel_feat, trControl = ctrl,
+ importance = TRUE, method = "svmRadial")
R> rfe_trained_nnet <- train(sel_feat, trControl = ctrl,
+ importance = TRUE, method = "nnet")

Table 3 shows the validation result of the final models for both methods. Support vector
machine performed slightly better and yielded an overall accuracy of 94.00% as compared
to 88.8% for the neural network classification. This shows that hyperspectral imaging and
machine learning approaches may yield positive results for detecting cancer in human tissue.
The data used in this case study have several drawbacks mainly due to the acquisition with
a variable light source instead of a hyperspectral camera in combination with a constant
light source. This causes the count values to be dependent on movements of the patient and
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a
Infected Not Infected

Infected 69.00 3.00
Not Infected 6.00 72.00

b
Infected Not Infected

Infected 65.40 7.20
Not Infected 9.60 67.80

Table 3: Error matrix of the obtained classification results for the support vector machine (a)
and the neural network (b) models. The rows and columns are the mean values of observations
and estimations within the 5 repeats of the 10-fold cross validation, respectively.

the illumination geometry by the light source. However, the analysis based on normalized
ratio indices yielded robust results clearly highlighting its large potential. Since hyperspectral
imaging is a non-invasive measurement technology, the examination is relatively comfortable
for the patient. However, it has to be noted that the detection of cancer with hyperspectral
imaging may only facilitate the diagnose of a medical expert. At the moment, there is no
possibility to automatically diagnose cancer in the human larynx without the knowledge of a
trained medical expert (Regeling et al. 2016b).

6. Conclusions

The two case studies provide an initial impression of what hyperspectral remote sensing can
be used for and how a typical approach may look. Both examples show how the hsdar package
can be used as a powerful tool within R for remote sensing and spatial applications. Based
on the widely used raster package, hsdar introduces new functionalities for processing hyper-
spectral data and gives users control over the results of univariate and multivariate modeling
approaches, including machine learning techniques. Although hsdar is dedicated to spec-
tral data featuring many bands, it is applicable to any multispectral satellite data including
Landsat 8 (8 bands in the visible and near infrared part of the electromagnetic radiation)
or MODIS (19 bands) (Lehnert et al. 2015). For example, hsdar can perform linear spectral
unmixing or calculate spectral indices such as the NDVI. hsdar differentiates itself from the
other hyperspectral package available for R (hyperSpec, Beleites and Sergo 2016) by focusing
on environmental instead of laboratory analysis. Data can easily be transferred between both
packages since hsdar provides functions to convert to and from objects in hyperSpec. Both
packages extend R by functions for all state of the art methods in hyperspectral imaging
which have been available only in commercial software tools so far.
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