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Abstract We present a significantly improved version of the Neighboring Column Approximation
(NCA 2.0), a fast 3D approximation for the calculation of thermal heating and cooling rates in cloudy
atmospheres for large eddy simulation models. The method can now be used on non-rectangular grids,
and the heating rate bias in cloudy atmospheres is substantially reduced compared to a 1D solution and the
original version of the NCA (NCA 1.0). For different cloud fields the bias is in the range of −5–30% in the
1D case and −2–7% for the NCA 2.0. The calculation of 3D radiative transfer quantities requires horizontal
transport of radiation which causes difficulties in the parallelization of numerical models and is
computationally expensive. The NCA overcomes this problem and can calculate 3D thermal heating rates
at the expense of only a factor 1.5 to 2 higher compared to a 1D radiative transfer approximation. The
method uses the fluxes calculated by a 1D radiation scheme and estimates horizontal fluxes using results
from neighboring columns. For the estimation of the heating rates from the before estimated fluxes
pre-calculated lookup tables of emissivities are used. For the calculation of the heating rates we neglect
scattering (independent of the fact if the incoming fluxes consider scattering or not). Inconsistencies made
by assumptions for the method are corrected by a correction factor.

Plain Language Summary Radiation drives weather and climate of our planet. Yet radiative
transfer is treated poorly in most atmospheric models. A common way to treat radiative transfer in
atmospheric models is a so-called independent column approximation. However, this method is known to
introduce biases. Especially in today's high-resolution large eddy simulations models, 3D radiative effects
become more and more important. This work describes a new and fast approach (Neighboring Column
Approximation, NCA) which allows calculating 3D heating and cooling rates in the thermal spectral range
in large eddy simulation models. Compared to the previously described method, the new one can also be
used on non-rectangular grid, as for example a triangular grid, and it improved in speed and accuracy.

1. Introduction
Emission and absorption of radiation in the atmosphere (also known as heating rates) are an important part
of the atmospheric energy balance. In cloudless sky conditions, heating rates are typically in the order of
−1 to −2 K day−1 (Kelvin per day) while at the interfaces of clouds, they can reach much higher values. The
amount of energy of radiative heating is in the same order of magnitude as the release of latent heat and can
therefore play an important role in the development of clouds.

Thermal radiative heating is known to affect the evolution of clouds. Cloud top cooling for example is a
key driver in maintaining stratocumulus clouds by enhancing turbulent fluxes and maintaining an in cloud
circulation which keeps the clouds alive (Wood, 2012, and citations therein). While for stratiform clouds,
1-dimensional (1D) approximations are a sufficient way to describe the radiative heating and cooling rates,
finite clouds (e.g., shallow cumulus clouds and cumulonimbus clouds) are affected by 3-dimensional (3D)
radiative transfer effects. 1D heating rates are calculated using 1D radiative transfer approximations applied
as independent column approximation (ICA), thus taking care of inhomogeneity effects. However, 1D ICA
does not allow for horizontal transport of radiation. This horizontal transport of radiation causes enhanced
cloud top cooling and additional cloud side cooling, so-called 3D effects, in the thermal spectral range.
These 3D thermal heating rates can be as high as several hundred K day−1 (Kablick et al., 2011; Klinger &
Mayer, 2014) and have been shown to modify cloud circulation and cloud field organization (Guan et al.,
1997; Klinger et al., 2017, 2019) of shallow cumulus clouds.
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Accurate radiative transfer models (such as Monte Carlo models, e.g., MYSTIC, Mayer, 2009, or SHDOM,
Evans, 1998) exist, but their high computational costs prevent their application in cloud models and make
new approaches necessary. The “Neighboring Column Approximation” (NCA, Klinger & Mayer, 2016), a
3D approximation for the calculation of thermal heating rates is, next to the “TenStream” (Jakub & Mayer,
2015b, 2015a), one of two fast methods to calculate 3D thermal heating rates and was successfully imple-
mented and applied in different large eddy simulation (LES) models (e.g., UCLA-LES, Stevens et al., 2005,
or SAM, Khairoutdinov & Randall, 2003). It can be used in parallelized models and was shown to increase
the computational time only by a factor of 1.5 to 2 compared to a 1D radiative transfer approximation in LES.
The shown effects of 3D radiative heating rates on the development of shallow cumulus clouds (cloud field
organization and cloud circulation) ask for further investigation. So far, the studies investigating 3D effects
on cloud development focused on specific cloud types and were carried out in idealized large eddy simula-
tions. With the new version of the NCA we can now calculate 3D effects with more confidence as the bias of
the method is reduced. Furthermore, with the possibility to run the NCA in the ICON model (ICON-LEM,
Dipankar et al., 2015; Heinze et al., 2017), we can shift to more realistic cases where different cloud types and
more realistic time scales are considered. In this paper, we describe a new approach, based on the ideas of
the original NCA to calculate 3D thermal heating rates on non-rectangular grids (such as triangular grids).
This is an important step, as more and more atmospheric models are developed on non-rectangular grids.

The paper is structured as follows: Section 2 describes the physical background and radiative transfer theory,
Section 3 describes the modification of the original NCA for the use on non-rectangular grids, Section 4
shows application and performance of the method, and Section 5 provides a summary and conclusions.

2. Radiative Transfer Theory and Reference Models
In this section we introduce the radiative transfer theory and physical background of our approximation.
Furthermore, we describe the reference radiative transfer models/approximations used in this study.

2.1. Radiative Transfer Theory and Heating Rate Calculation
The radiative transfer equation (RTE, Chandrasekhar, 1950) describes the propagation and interaction
(scattering, absorption, and emission) of radiation though a medium (e.g., the atmosphere)

1
𝛽ext

s⃗ ∇L = −L +
𝜔0

4𝜋 ∫4𝜋
p(Ω′,Ω) L(Ω′) dΩ′ + (1 − 𝜔0) B(T). (1)

𝛽ext is the volume extinction coefficient, L is the radiance in direction s⃗, 𝜔0 the single scattering albedo,
p(Ω′,Ω) the scattering phase function, and B(T) is the Planck function at temperature T.

Thermal radiation in the Earth's atmosphere is emitted and absorbed by molecules and particles in the atmo-
sphere as well as the Earth's surface. The basic physics of thermal radiative transfer are described by Planck's
law (Planck, 1901) and Kirchhoff's law (Kirchhoff, 1890). Planck's law describes the amount of energy emit-
ted by a black body, depending on the body's temperature and the wavelength. According to Kirchhoff, the
emitted or absorbed amount of energy depends on the spectral emission or absorption coefficients which are
equal to each other. Scattering, in the thermal spectral range, is of minor importance compared to solar radia-
tive transfer and is therefore often neglected. In this case, the RTE reduces to the “Schwarzschild Equation”

dL
ds

= 𝛽abs [B(T) − L] , (2)

with the absorption coefficient 𝛽abs which can be solved analytically (e.g., Liou, 2002).

In the absence of scattering, the transmitted radiance Ltrans along a path ds can be calculated by using
Lambert Beers law:

Ltrans = L0 exp(−𝛽abs ds). (3)

It thus follows that the absorbed radiance along this path Labs equals

Labs = L0 (1 − exp(−𝛽abs ds)). (4)

Following Kirchhoff's law, the emissivity equals the absorptivity and the emitted radiance Lem is

Lem = B(T) 𝜀, (5)
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where

𝜀 = (1 − exp(−𝛽abs ds)) (6)

is the emissivity 𝜀 along the path.

To calculate heating and cooling rates, or fluxes (irradiance, E), radiances must be calculated for various
directions and have to be integrated over solid angle. Choosing one specific representative angle 𝜇rep is one
way to calculate irradiance and heating rates. For each radiance distribution L(𝜇) there is always a 𝜇rep for
which the approximation is actually an equality:

E = ∫2𝜋
L(𝜇, 𝜙) 𝜇 d𝜇 d𝜙 = 2𝜋 ∫

1

0
L(𝜇) 𝜇 d𝜇 ≈ 𝜋 · L(𝜇rep). (7)

The absorbed or emitted electromagnetic power per volume (often referred to as heating or cooling rate and
measured as change of temperature with time dT

dt
, [K day−1]), can be written as

dT
dt

= − 1
𝜌cp

( .qem − .qabs) = − 1
𝜌cp

∇E⃗net, (8)

with Enet defined as the difference of the irradiance in positive and negative directions (horizontally and
vertically), 𝜌 is the density of a medium, cp the specific heat capacity of the medium, and .qem − .qabs emitted
minus absorbed power per volume (see, e.g., Liou, 2002).

2.2. Reference Models
For the development of the “Neighboring Column Approximation” on non-rectangular grids and the evalu-
ation of its results we use the Monte Carlo model MYSTIC (see Section 2.2.1). Furthermore, we will compare
the improvements of the NCA and the version for non-rectangular grids against the original version of the
NCA (Section 2.2.2).

2.2.1. Monte Carlo Model—MYSTIC
As a reference model for the calculation of the 3D thermal heating rates we use the Monte Carlo model
MYSTIC (Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres, Mayer,
2009). MYSTIC is part of the libRadtran radiative transfer package (Emde et al., 2016; Mayer & Kylling, 2005).
The specific Monte Carlo methods used for the calculation of the 3D thermal heating rates are described
in Klinger and Mayer (2014). The detailed setup of the benchmark simulations will be described in the
according section.

2.2.2. Neighboring Column Approximation—NCA
The “Neighboring Column Approximation” (NCA, Klinger & Mayer, 2016) is a fast and accurate method
to calculate 3D heating and cooling rates in the thermal spectral range. The approximation considers net
fluxes across horizontal box boundaries in addition to the top and bottom boundaries and thus calculates
analytically 3D heating rates from 1D fluxes. It makes use of the upwelling and downwelling fluxes from
direct neighboring columns only to estimate horizontal fluxes, thus allowing for a parallelized treatment of
the radiative transfer in cloud models. The use of neighboring columns is crucial to keep the approximation
fast. Otherwise, the general problem that 3D radiation has to propagate over large distances in the horizontal
would remain which would break the parallelization in cloud models. The NCA neglects scattering for the
heating rate calculation and uses a representative angle of 45◦ for the propagation of radiation through a grid
box (see equation (7)), which can be integrated through the grid box's volume (integration along all paths
for one representative angle through a grid box). With these approximations it offers an analytical solution
to the 3D radiative transfer problem. The error of the heating rate, due to several approximations made
(e.g., neglect of scattering, neighboring column treatment, and the representative angle), depends on the
geometry of the cloud field. In general it lies within the range of 5–15%, equally high as for ICA. However,
as cloud side heating rates are taken into account by the NCA, the root mean square error is reduced. It was
shown that the computational cost are about a factor of 1.5 to 2 higher, compared to a 1D approximation in
LES application. This factor depends on the overall performance of the LES and the implementation of the
NCA in the specific LES model. For further information, the reader is referred to the work of Klinger and
Mayer (2016) and Klinger et al. (2017).
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3. Adaption of the NCA on Non-Rectangular Grid
As the development of numerical models advances, grid structures change. Nowadays, a common one in
atmospheric research is the triangular grid. In order to make 3D thermal radiative transfer available for
those models, we modified our original approach of the NCA. We will refer to the original NCA as NCA 1.0
and to the new version as NCA 2.0. We tested different approaches and found that there is even a simpler
way than the one we used for the NCA 1.0. This new approach is not only simpler but also more precise and
reduces the above mentioned bias of the NCA 1.0 significantly, which is shown later in the paper. We test
our new approach again on an rectangular grid and extend the approach to a triangular grid.

3.1. General Idea
NCA 1.0 is a fast solution where absorption and emission are calculated analytically by integrating over a
rectangular grid box. The difficulty in applying the NCA to a non-rectangular grid is the integration of the
solving equation over a complex volume which causes equations with many terms that are computationally
expensive to evaluate. While trying to adapt this approach we found a new way which is (a) simpler and (b)
more precise than the integration through a complex volume.

The basic ideas of the NCA 1.0 stay the same. Similar to the original version of the NCA, we still use 1D
fluxes from the center column under consideration and its neighbors to estimate the 3D heating and cooling
rates and we still neglect scattering. However, we omit integration of the solving equations over a complex
volume by making use of pre-calculated lookup tables of the emissivity. Our new approach includes the
following main steps which apply to all grid structures:

• Estimation of the incoming irradiance E at top, base and side faces of a grid box from 1D upward and
downward irradiance of the neighboring columns and the column under consideration.

• Calculation of tables of spectral emissivity for grid boxes with various optical thickness and aspect ratios.
• Calculation of correction factors to correct the neglect of scattering and approximations in the estimation

of the incoming irradiances and the spectral emissivity.

For these three steps we create lookup tables and fit functions. The lookup tables depend on optical depth
and aspect ratio. This way we make sure that they can be used for any kind of atmospheric composition and
for different grid setups (e.g., grid box size) as long as the grid type (rectangular, triangular, etc.) does not
change. The lookup tables are based on full 3D radiative transfer calculations with our Monte Carlo model
MYSTIC. A detailed description of the individual steps is shown in the following and in Appendix A. We
will illustrate the method on a rectangular grid (for reference) and a triangular grid.

3.2. Method
3.2.1. Heating Rate Calculation
We assume that calculation of the irradiance from the radiance is known (equation (7)). Therefore, it follows
with equations (4), (5), and (7) that the absorbed or emitted power per volume, of a grid box face, can be
calculated as

.qabs,l = El 𝜖l
Al

V
, (9)

.qem,l = B(T) 𝜋 𝜖l
Al

V
, (10)

where El is the incoming irradiance, B(T) the Planck emission at temperature T of the grid box, Al the grid
box face surface area, V the grid box volume, and 𝜖l the emissivity of the grid box. l represents a grid box
face. This equation can be transformed for the NCA by applying the equation for each face (n𝑓aces) of a grid
box individually and calculating the sum of all contributions:

.qabs,nca =
n𝑓aces∑

l=0
El 𝜖l

Al

V
, (11)

.qem,nca =
n𝑓aces∑

l=0
B(T) 𝜋 𝜖l

Al

V
. (12)

In the limit of infinite optical thickness (and hence emissivity equal to 1), these equations are identical to
equations (14) and (18) of Klinger and Mayer (2016).
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Figure 1. Schematic figure of the incoming irradiances for a full 3D
approach (a), the NCA 1.0 (b), and the NCA 2.0 on rectangular (c) and
triangular grid (d) at the side and top faces of a grid box. Only one side
direction is shown in each case.

Thus, the heating rate dTdt−1 in K day−1 becomes

dT
dt

= − 1
𝜌cp

( .qem − .qabs)

≈ − 1
𝜌cp

( .qem,nca −
.qabs,nca)

= − 1
𝜌cp

(n𝑓aces∑
l=0

𝜀l (B(T) 𝜋 − El )
Al

V

)
.

(13)

In the following we will describe how the emissivities 𝜀l, the incoming
irradiances El, and the correction factor are calculated.

3.2.2. 3D Heating Rate Calculation
For the calculation of dTdt−1 (equation (13)), one needs to know the
incoming irradiance and the optical thickness of the grid box under con-
sideration. Figure 1 shows schematically the difference between a full 3D
approach (a and e) the NCA 1.0 (b and 𝑓 ) and the NCA 2.0 (c, d, g, and
h). Only one side direction is shown to keep the figure simple and only
the downwelling fraction is shown. Please note that for each rectangu-
lar based grid box 4 side directions and for each triangular based grid
box 3 side directions have to be considered. Before going into detail how
irradiance and emissivity are calculated for NCA 2.0 we briefly want to
summarize how this is done in a full 3D calculation and for the NCA 1.0
respectively and what the problems are when generalizing the main idea
of the NCA 1.0 for different grids.

We first focus on a full 3D calculation. Figure 1 shows schematically the
incoming irradiance which hits a top face (j + 1) of a grid box (a) and a
side face of a grid box (e, between j and j + 1) in a full 3D calculation. Dif-
ferent directions have to be taken into account for the calculation of the
incoming irradiance and in the following the heating rate. Furthermore,
radiation emerges from further away than the shown boxes. This makes
solving 3D radiative transfer computationally expensive.

For the NCA 1.0 (Figures 1b and 1f) we simplified this problem by choos-
ing on representative angle of 45◦ for the calculation of the incoming
irradiance (and the heating rate). For NCA 1.0, the incoming irradiances
at top/bottom and the side face of a grid box is calculated separately. The
top/bottom irradiance (level 𝑗 + 1, Figure 1) is calculated as an average
of 4 incoming neighboring irradiances at level 𝑗 + 2 from the neighbor-
ing columns and the irradiance of the center column, propagating with
an angle of 45◦ through the grid box of the layer between 𝑗 + 1 and
𝑗 + 2 (Figure 1b). (Please note again that only one direction is shown
in Figure 1.) Using a combination of the center column irradiance and
the four neighboring irradiances in the top/bottom case assures that the
effect of nearby clouds is taken into account. This irradiance then propa-
gates through the grid box in question (red box) to calculate the absorbed
amount of the irradiance.

The side contribution to the heating rate is a complex integral where the irradiance at level 𝑗 + 1 is propa-
gating through the neighboring grid box i − 1 and the grid box under consideration (Figure 1f, red box) and
the absorbed amount is calculated in one step. For more details, the reader is referred to Klinger and Mayer
(2016), Section 2.3.

Rather than analytically evaluating the integral when different grid shapes are considered we calculated
the incoming irradiance from top/bottom and side faces and the emissivity (𝜀l) separately in the NCA 2.0.
Finally, we correct the uncertainties introduced by different assumptions with a correction factor.
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Figure 2. Schematic figure to illustrate the level/layer convention used in
the description of the NCA in the following. Irradiance E is a level
quantities, emissivity (𝜖), optical depth (𝜏) and Planck function B are layer
quantities.

Before proceeding, Figure 2 provides a schematic overview of the
level/layer convention and the main quantities involved in the follow-
ing description of the method. Irradiance is defined on levels, Planck
function, emissivity and optical depth are defined on layers.
3.2.3. Spectral Emissivity/Absorptivity
We start with the calculation of the spectral emissivity 𝜀l for each grid
box face l. The emissivity (equation (6)) varies with optical thickness and
the aspect ratio of a grid box, respectively. The optical thickness again
varies for different wavelengths. Therefore, we calculate the emissivity
in dependence of the optical depth. As the optical depth is a function
of the distance that radiation passes in a volume, it considers the aspect
ratio of the grid box as well. In application, the optical depth of a grid
box is calculated for each spectral band (or wavelength) individually. For
each spectral band (or wavelength) we can thus get the corresponding
emissivity from the lookup table. Thus, constructing a lookup table based
on optical depth assures that we consider all dependencies of the emis-
sivity if it is applied spectrally. Emissivity equals absorptivity, following
Kirchhoff.

𝜖 = 𝛼. (14)

We calculate absorptivity and store it in lookup tables. The absorptivity varies for incoming irradiance
depending on the direction of the incoming irradiance. In case of a cube, the absorptivity is on average the
same for all directions (or cube faces) of the incoming irradiance. This changes however for a flat, rectangu-
lar shaped, grid box where the absorptivity is higher for the downwelling and upwelling component of the
irradiance as opposed to the incoming irradiance from side directions (see Figure 3 left and right column in
comparison). Essentially it is a function of the grid box volume that is passed by the incoming irradiance.

We focus on a rectangular grid first: To take multiple directions of the irradiance and therefore optical thick-
ness of one grid box into account we calculate a representative absorptivity for each face, depending on the
optical thickness of a grid box, thus avoiding integration over multiple directions. By optical thickness we
mean the optical thickness perpendicular to a grid box face. We vary the aspect ratio of the grid box. Thus,
we get different optical depths in all three directions (𝜏x, 𝜏𝑦, 𝜏z).

The absorptivity is then calculated as the fraction of the absorbed irradiance (absl(𝜏x, 𝜏𝑦, 𝜏z) through one grid
box face (l) compared to the incoming irradiance El of one grid box face.:

𝜖l(𝜏x, 𝜏𝑦, 𝜏z) =
absl(𝜏x, 𝜏𝑦, 𝜏z)

El
. (15)

The dependence of the thus calculated absorptivity on one grid box face makes it (a) usable within the NCA
framework (see equation (13)) where we calculate the contribution to the heating rate for each grid box
face and (b) assures that we account for different aspect ratios. In application, this means that for each grid
box we get for each grid box face a specific emissivity from the lookup table, based on the grid box face's
aspect ratio (𝜁) and the optical depth (rectangular grid: 𝜁 = dzdx−1 for top/base contributions, 𝜁 = dxdz−1

or 𝜁 = d𝑦dz−1 for side contributions; triangular grid: 𝜁 = dzh−1 for top/base contributions and 𝜁 = dxdz−1

or 𝜁 = d𝑦dz−1 for side contributions).

We calculate the absorptivities with our 3D Monte Carlo model MYSTIC (for the specific setup, please
see Appendix A.1). Separate lookup tables are required for each specific grid face, depending on the grid
shape. While one lookup table is sufficient for a rectangular grid two setups are required for the triangular
grid—one for the simulation of the top (base) face absorptivities and one for the calculation of the side face
absorptivities (see Figures 3b and 3c). This is necessary as the face shape changes (triangle vs. rectangle)
and therefore also the geometry of the absorbing volume. Again, the reader is referred to Appendix A.1 for
the specific Monte Carlo setup). The general idea stays the same: We calculate the absorptivity in a triangu-
lar base face grid box depending on varying optical thickness. Note that for the triangular grid, a equilateral
triangle is assumed in our case. This introduces small uncertainties if the shape of the triangle changes
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Figure 3. Setup for estimating the spectral emissivity/absorptivity depending on the optical thickness and aspect ratio.
The upper figure (a) shows the setup for a regular grid, the lower two figures show the setup for top (b), and side (c)
emissivities/absorptivities for a triangular grid.

substantially (see Section 4); however, the triangles vary only slightly in the ICON model (ICON-LEM,
Dipankar et al., 2015; Heinze et al., 2017) for which we intend the method to work. By adding a further
dimension, the lookup tables could of course be calculated for a variety of triangle shapes, if necessary.

Figure 4. Visualization of the 3D lookup table of the
emissivities/absorptivities for a rectangular grid, depending on the three
optical thickness (𝜏x , 𝜏𝑦, 𝜏z).

The absorptivities of the lookup table for the regular grid are shown in
Figure 4. For small optical thickness, the absorptivity is low, while it
converges towards 1 for high optical thickness.
3.2.4. Incoming Irradiance
The next step focuses on estimating the incoming irradiance El for each
grid box face. Similarly to the NCA 1.0, we use 1D irradiance of the center
column and the neighboring columns to calculate the 3D heating rate. We
still separate contributions from the top/bottom face and side faces of a
grid box. To avoid the complex integration through a volume we estimate
with the help of Monte Carlo simulations the contribution of center and
neighboring irradiance to the total incoming irradiance of a grid box.

Estimation of the Top and Bottom Irradiance

First, we will focus on the incoming irradiance at top (Etop,𝑗+1) and bot-
tom (Ebot,𝑗) of the grid box under consideration (i,j). The irradiance from
nside + 1 columns (the center column and nside side columns) contributes
to the incoming irradiance at top (base) face. Based on the results of the
NCA 1.0, the incoming irradiance is a combination of the center column
irradiance and the average of the nside irradiances. Not using the center
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Figure 5. Weights for the incoming radiances at the top face of a rectangular grid cell for three aspect ratios (0.5, 1, and
2) depending on the optical thickness and aspect ratio as well as the coefficients a(𝜁), b(𝜁), and c(𝜁). The dots represent
the Monte Carlos results, and the solid line shows the fit using equation (19).

irradiance alone but also accounting for the nside neighboring column irradiances assures that nearby clouds
which modify the irradiances contribute to the result. The amount of the center and neighbor irradiance at
level 𝑗 + 1 (𝑗) to the incoming top (base) irradiance depends on the optical thickness and the aspect ratio of
the grid box above (below) (see Figure 1). If the grid box above (below) the one in question is optically thick,
most of the irradiance will originate from the grid box directly above (below) the one under consideration.
If the optical thickness of the grid box above (below) the one under consideration is thin, the neighboring
irradiances contribute as well. The contribution of the neighboring irradiances also depends on the aspect
ratio. A very flat grid box will still receive most of the irradiance from the grid box directly above (below),
but for a very tall one, the neighbors gain more weight. We therefore calculated weights wl (with l being the
index of the top (0) or base face (1)) dependent on the optical thickness and the aspect ratio (𝜁) of the upper
(j +1) (lower (j− 1)) grid box which give us the contribution of the averaged side irradiance. The weights
(w(𝜏, 𝜁 )l) for one grid box face are calculated as the fraction of the transmitted irradiance entering the grid
box under consideration compared to the incoming irradiance Ein at (j + 1, top case/j− 1, bottom case):

w(𝜏, 𝜁 )l =
trans(𝜏, 𝜁 )

Ein
. (16)

It therefore follows that the contribution of the center column irradiance (Edn,0,𝑗+1 or Eup,1,𝑗) is (1−w(𝜏, 𝜁 )l),
which means if the the optical depth of the grid box above (j + 1) or below (j− 1) is high, the transmission is
low, thus the weight w(𝜏, 𝜁 )l is low and the center irradiance contributes most (and the other way round).
Thus, the total incoming irradiance at top/bottom can be calculated as follows:

Etop,𝑗+1 = (1 − w(𝜏𝑗+1, 𝜁 )0) · Edn,0,𝑗+1 + w(𝜏𝑗+1, 𝜁 )0

nside∑
l=2

Edn,l,𝑗+1

nside
, (17)

Ebot,𝑗 = (1 − w(𝜏𝑗−1, 𝜁 )1) · Eup,1,𝑗 + w(𝜏𝑗−1, 𝜁 )1

nside∑
l=2

Eup,l,𝑗

nside
. (18)

Edn,0,𝑗+1 and Eup,1,𝑗 are the center column downwelling and upwelling irradiance, Edn,l,𝑗+1 and Eup,l,𝑗 those of
the side columns, respectively. The specific setup of the Monte Carlo simulations can be found in Appendix
A.2. For the weights, we fitted an arctan function (for a variety of aspect ratios and optical thickness) to the
data for both grids (the rectangular and triangular grid):

w(𝜏, 𝜁 )l = b(𝜁 ) · arctan (𝜏 · a(𝜁 ) ) + c(𝜁 ). (19)

The coefficients a(𝜁 ), b(𝜁 ), and c(𝜁 ) slightly differ for the two grids. For the rectangular grid the coefficients
depend on the aspect ratio 𝜁 = dz∕dx and follow again arctan functions. The dependence on aspect ratio
was fitted as follows:

a(𝜁 ) = −0.76 · arctan(1.21 · 𝜁 ) + 1.31,
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Figure 6. Weights (w1,l) for three aspect ratios (0.5, 1, and 2) for the
incoming side irradiances correction in dependence of the optical thickness.

b(𝜁 ) = 8.08 · 𝜁0.028 + 0.01 · 𝜁 + arctan(0.13 · 𝜁 ) + 7.49,

c(𝜁 ) = 1.55 · 𝜁0.44 − 0.25 · 𝜁 + arctan(−0.3 · 𝜁 ) − 0.31.

For the triangular grid the coefficients a(𝜁 ), b(𝜁 ), and c(𝜁 ) are slightly dif-
ferent. Here, the aspect ratio is defined as 𝜁 = dzh−1, where h is the height
of the triangle:

a(𝜁 ) = −0.75 · arctan(1.29 · 𝜁 ) + 1.21,

b(𝜁 ) = −7.98 · 𝜁0.027 − 0.01 · 𝜁 + arctan(0.11 · 𝜁 ) + 7.36,

c(𝜁 ) = 1.46 · 𝜁0.49 − 0.25 · 𝜁 + arctan(−0.29 · 𝜁 ) − 0.12.

Please note that h is not the distance between the layers 𝑗 and 𝑗 + 1, but
the height of the triangle as shown for the optical depth 𝜏h△ in Figure A4.

As can be seen form the coefficients a(𝜁 ), b(𝜁 ), and c(𝜁 ), the fraction of
incoming irradiance varies slightly between the rectangular and triangu-

lar grid because the number of neighboring columns and the surface area of the top face is different. An
example for three aspect ratios of the fit functions is shown in Figure 5 for the rectangular grid. If the center
grid box has a high optical thickness, w(𝜏, 𝜁 )l converges to zero and only the center irradiance contributes
to the incoming irradiance. For low optical thickness, the center irradiance contributes less than the aver-
age of the nside neighboring irradiances. It can also be seen from Figure 5 that the fit does not always match
exactly the Monte Carlo results. This discrepancy is compensated by the correction factor that is applied at
the end (see Section 3.2.5).

Estimation of the Side Irradiance

For the NCA 1.0 we use the side irradiance at the level boundary of a grid box under consideration and
integrate it through the side grid box and the grid box under consideration to estimate how much of the
irradiance is absorbed (Figure 1f). Similar to the top (base) contribution, this integral becomes very com-
plex for non-rectangular girds. We therefore estimate again with the help of Monte Carlos simulations
(see Appendix A.2) the fraction of the side irradiance that enters a grid box. The underlying physics for the
estimation of the weighting factors for the side irradiances are the following: If the surrounding atmosphere
of a grid box is optically thin, most of the irradiance hitting a side face of a grid box originates from the level

Figure 7. Correction factors accounting for uncertainties in the estimation
of the incoming irradiance, the approximated emissivity and the neglect of
scattering. The factors scale the heating rates of grid boxes of high optical
thickness towards the real heating rate results of an isolated cuboid grid
box. Shown here are the correction factors for aspect ratios 0.5, 1, and 2 for
the side face correction of the triangular grid boxes.

above (𝑗+1, downwelling case) or below (𝑗, upwelling case) of the grid box
(Figure 1). If the surrounding atmosphere is optically thick, the irradiance
originates mostly from the layer of the grid box (j). This can be seen from
equation (20), which shows the equation for the downwelling irradiance
Edn which is the sum of the incoming irradiance from level (j + 1) and the
emission of the layer itself (j). The first term contributes most if the optical
thickness 𝜏𝑗 is low, while in case of high optical thickness the Planck term
of the layer contributes most to Edn,𝑗 .

Edn,𝑗 = Edn,𝑗+1 · exp(−𝜏𝑗) + B(T𝑗) · 𝜋 · (1 − exp(−𝜏𝑗)). (20)

To avoid complex integrals, we use the irradiance at the upper and lower
boundaries of a grid box under consideration and estimate the side irradi-
ance contribution as weighted contribution of the irradiance at the upper
and lower levels of the layer in question:

El,side = w1,l · El,𝑗 + w2,l · El,𝑗+1, (21)

where l corresponds to one of the side face directions.
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Figure 8. Heating rate results calculated with the NCA 2.0 and compared
to MYSTIC benchmark results of isolated cuboid (top) and triangular
(bottom) grid boxes. In both figures we show the results with and without
the application of the final correction factor. The dashed lines show the
±15% interval.

It thus follows that for low optical thickness, irradiances contribute
equally from both levels, for high optical thickness from the second layer
(where the Planck term of the neighboring grid box dominates). An exam-
ple for three representative aspect ratios is shown in Figure 6. For both
grids (rectangular and triangular), the side face area is a square. Thus,
no differentiation for the weights between the two grids is necessary. The
weights are found to follow again an arctan function:

w1,l = 0.32 · arctan(−1.96 · kabs · dz) + 0.5
w2,l = 1 − w1,l.

(22)

3.2.5. Correction Factor
As a final step, we calculate correction factors. This is necessary to correct
the approximated treatment of incoming irradiance and emissivity, and
the neglect of scattering in the calculation of the heating rate. These fac-
tors were determined by comparing the results of MYSTIC calculations
of heating rates for varying aspect ratios and optical thickness (which can
be considered as the truth) to the results of the NCA 2.0. The factor is the
ratio of the two results and is simply multiplied to the resulting heating
rate (either top/base or side contribution from dT/dt, equation (13)). The
correction factors were estimated for the top (base) and side contributions
separately. The factors are stored in lookup tables. The correction factor
is shown for aspect ratios 0.5, 1, and 2 in Figure 7 for the side correction
of the triangular grid. For a detailed description of the calculation of the
factor, please see Appendix A.3.

Figure 8 shows a comparison of the heating rates for isolated grid boxes
from MYSTIC simulations and the NCA 2.0 results for both grid types,
with and without the correction factor. With the correction factor, the
heating rates of MYSTIC and the NCA 2.0 match very well (with an
average difference of 3%). Without the correction factor, the NCA 2.0
overestimates cooling on average by 15%.

4. Application
4.1. Performance of the NCA in Realistic Cloud Fields
We finally test the NCA 2.0 in a set of LES cloud fields and compare the
results to full 3D Monte Carlo calculations and 1D ICA results. Addi-
tionally, we show a comparison to the NCA 1.0 version. We present three
different cloud field examples in the following and discuss the perfor-
mance of the method. For the cloud fields we use different aspect ratios
and resolutions as well as different cloud types. The three cloud fields are
shown in Figures 9a–9c. We chose a nearly overcast stratocumulus case
(dx = 40 m, dz = 10 m, van der Dussen et al., 2013) and two cumulus
cases (dx = 75 m, dz = 50 m, Klinger et al., 2019, and dx = 100 m, dz =
30 m, Klinger et al., 2017). The Monte Carlo simulations were performed
using the backward variance reduction methods for thermal heating rates

described by Klinger and Mayer (2014). We use 1,000 photons per spectral band and grid box which keeps
the uncertainty below 1%. The correlated-k method of Fu and Liou (1992) is used for spectral integration.

Figures 10a–10d show in addition a cross section of the heating rates of cloud field of Figure 9c at the black
marked area for MYSTIC (a), ICA (b), NCA 1.0 (c), and NCA 2.0 (d) and the difference between ICA and
MYSTIC (e), NCA 1.0 and MYSTIC (f), NCA 2.0 and MYSTIC (g), and NCA 1.0 and NCA 2.0 (h). These
cross sections show the gain but also the limitations of in applying the NCA instead of a 1D approximation.
The full 3D Monte Carlos simulation (a) shows a cooling in the whole cross section. Comparing this to the
1D approximation (b) one can see the missing cloud side cooling below cloud top (left and right cloud) and
an overestimation of the cloud base warming (for all four clouds) which is a result of the missing horizontal
transport of radiation (the loss of radiation through cloud sides). The NCA 1.0 and NCA 2.0 perform much
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Figure 9. Liquid water path of three different cloud fields: (a) stratocumulus, (b) cumulus case 1, and (c) cumulus case
2 cloud field. The black line indicates the region where cross sections of the heating rates are shown in Figure 10.
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Figure 10. Cross section of the heating rates in the marked region of Figure 9c. The left column shows the total heating
rates calculated with MYSTIC (a), ICA (b), NCA 1.0 (c), and NCA 2.0 (d). The right column shows the differences
between ICA, NCA 1.0, NCA 2.0, and MYSTIC (e–g) as well as both NCA versions (h).

better than the 1D approximation. Cloud side cooling is calculated for most of the grid boxes and the base
warming is reduced. However, one can also see the limitations of the NCA: due to the use of one neighboring
column which allows for the parallelization of the method in LES application, radiation cannot be emitted
from further in the cloud than one column (see left cloud, second column from right) and in the still too
high cloud base warming. This becomes more apparent in the difference plots. The cooling of ICA is reduced
in comparison to MYSTIC. Both NCA versions calculate the stronger 3D cooling but overestimate the 3D
cooling in comparison to MYSTIC. Comparing both NCA versions (h) shows that NCA 2.0 is improved as it
cools less than NCA 1.0. For more details, the reader is again referred to Klinger and Mayer (2016). Overall,
however, the NCA performs much better than a standard 1D approximation which will be shown in the
following in a more statistical analysis.

For the comparison with the NCA 2.0 on triangular grid, we use the same cloud fields and calculated our
benchmark results on the standard rectangular grid, because MYSTIC can not handle non-rectangular grids.
We therefore transform the rectangular grid of our test cases to a triangular grid by simply splitting each
rectangular grid box into two triangular ones. These triangles are not equilateral triangles, but isosceles
triangles. This results in a small error in the application which will be discussed later in the text. We then
calculate the heating rates of each of these isosceles triangles and average the two belonging grid boxes to
one rectangular grid box and compare this result to the Monte Carlo benchmarks.

Figure 11 shows a 2D histogram of the heating rates of all cloudy grid boxes of the stratocumulus cloud field.
The first histogram (upper left) compares 1D ICA heating rates to full 3D Monte Carlo results. As expected,
for this stratiform case, the 1D approximation works well. The overall bias in the cloud field is about −5.8%.
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Figure 11. Scatter plot of heating rates of a stratocumulus case. Only cloud grid boxes are evaluated. We compare 1D
ICA to 3D Monte Carlo (MYSTIC), NCA 1.0 to MYSTIC, and two application of the NCA 2.0 (rectangular grid and
triangular grid) to MYSTIC. Each dot is displayed with a opacity. The denser the dots, the more often the heating rate
occurs.

The following three figures of the panel show the NCA 1.0 results compared to MYSTIC (upper right). The
pixel-by-pixel deviation is smaller; however, the bias increases to more than −16%. This overestimation of
the cooling by this approximation is known (Klinger & Mayer, 2016), especially in stratiform cases. The two
lower figures show the results of the NCA 2.0 applied on a rectangular grid (left) and on triangular grid
(right). Both applications also show that the heating rate pixel-by-pixel deviation is much smaller. The bias
in the cloud field is substantially reduced compared to NCA 1.0 and also reduced compared to the 1D ICA
results. The correlation coefficient is equally high. One feature of the NCA 2.0 is the underestimation of
peak cooling rates (however, these values do not occur frequently; please note the log-colorbar of Figure 11).
This feature results from the correction factors that were estimated for isolated grid boxes. We will see later
that this feature does not occur for cumulus cases (which can be considered more like an isolated grid box).
Table 1 shows in addition the bias for the whole cloud field (including clear sky) and the cloud side grid
boxes only. For the stratocumulus case, the bias is in the same order of magnitude as the 1D bias for NCA 2.0

Table 1
Relative Bias [%] of the Heating Rates in the Three Different Cloud Fields and Subsets of the Cloud Fields

Cloud type Analysis NCA 1.0 NCA 2.0 Rect. NCA 2.0 Tri. ICA
Stratocumulus Total scene −17.0 −2.3 −6.2 −6.0

Cloudy pixels −16.7 −1.8 −5.6 −5.8
Side pixels −66.0 −49.1 −54.9 −42.7

Cumulus 1 Total scene −13.3 −3.4 −10.3 6.3
Cloudy pixels 2.2 6.5 7.3 29.5
Side pixels −5.6 0.2 −7.6 −11.9

Cumulus 2 Total scene −7.6 1.2 −0.8 8.7
Cloudy pixels −6.8 4.7 5.4 15.1
Side pixels −7.9 −2.3 2.3 41.4
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Figure 12. Same figure as Figure 11 but for cumulus 1.

Figure 13. Same figure as Figure 11 but for cumulus case 2.
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Figure 14. Comparison of heating rates calculated with the NCA 2.0 and MYSTIC. Blue dots show the comparison of
the NCA 2.0 on a rectangular grid an MYSTIC; the yellow triangles show the results for the NCA 2.0 with spitted
rectangular grid and the triangular solver. A cold bias compared to the NCA 2.0 on rectangular grid is found for low
heating rates (low optical depth), because the pre-calculated lookup tables are optimized for nearly equilateral triangles
but right-angled triangles are used in this application.

on triangular grid and reduced for NCA 2.0 on rectangular grid and is substantially reduced compared to
NCA 1.0.

Our next case is the first cumulus case. Again, we see that NCA 2.0 reduces the bias in the cloud field, in
cloudy grid boxes, and also at cloud sides (the specific 3D effect) substantially compared to 1D ICA and
also the NCA 1.0 (Table 1). NCA 2.0 for triangular grids has again a higher bias compared to NCA 2.0 for
rectangular grid. The 2D histogram (Figure 12) shows again a smaller pixel-by-pixel deviation of the heating
rates for all NCA applications. The correlation coefficient improves for the NCA. What has to be noted for the
cumulus cases are the blue grid boxes which cumulate around 0 Kda𝑦−1 for the ICA/MYSTIC comparison
(upper left). These heating rates are mostly cloud side heating rates, and it is nicely shown by this histogram
that the NCA can calculate those heating rates much better.

Our last example (Figure 13), the second cumulus case shows similar features as have been explained for the
other two examples (smaller pixel-by-pixel deviation of the heating rate and better calculation of the cloud
side heating rates, reduced bias and improved correlation coefficient).

For the interpretation of the results of NCA 2.0 (on triangular grid), it has to be noted that we used a cloud
field on rectangular grid and split the grid boxes. The cold bias in the total field (Table 1) is an artifact of the
optimization of the lookup tables for equilateral triangles (see Section 3.2.1) and which become right-angled,
isosceles triangles in this application. Indeed, when even comparing the isolated grid boxes and performing
the NCA 2.0 simulations as used in the cloud fields and comparing them to MYSTIC, we see that warm
and cold bias occurs at different magnitudes of the heating rates (which relates to different emissivities)
see Figure 14). For heating rates below −200 K day−1 we find a cold bias, while above that value the bias
changes. We expect the results of the NCA 2.0 on triangular grid to shift towards the results of the NCA 2.0
on rectangular grid in an application on a real triangular grid.

The bias (clear sky and cloudy areas combined) is reduced compared to NCA 1.0 for the NCA 2.0 in both
the rectangular and the triangular application. The overall reduction of the bias (compared to NCA 1.0
and also compared to ICA) is an important issue in application in an LES. Otherwise, the system would
be systematically cooled or warmed too much. As for cloudy and cloud side grid boxes, the heating rates
here are more relevant for locally correct heating and cooling at the clouds. Our main focus here is the
improvement in comparison to ICA which is still the standard treatment for radiative transfer in LES. For
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the stratocumulus case shows an improvement compared to the NCA 1.0. Compared to ICA, the NCA 2.0
perfromes equally well, or better if the total scene and the cloudy pixels are concerned. For the cloud side
pixels it should be noted that those are very few in number.

4.2. Computational Time
The NCA 1.0 (Klinger & Mayer, 2016) was shown to be a computationally fast 3D radiative transfer solver.
In LES application, the computational time increased by a factor 1.5–2 compared to a simulation with a
1D radiative transfer scheme. This factor can vary slightly, depending on the implementation into the LES
model.

The NCA 2.0 (also not yet implemented into an LES) is expected to run with a similar efficiency. Off-line
simulations on the above shown cloud fields showed that the computational time of the NCA 2.0 was even
reduced compared to the NCA 1.0 performance. The time needed for the 3D calculation (after the calculated
1D fluxes) could be reduced by nearly 30–40% for the different cloud fields (all simulations performed on
one CPU on a standard office computer; Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz).

5. Conclusions
We present a new approach for the Neighboring Column Approximation, a fast method for the calculation of
3D thermal heating rates in cloudy atmospheres. With the advancing development of atmospheric models,
flexible methods which can be used on structured and non-rectangular model grids are necessary. We there-
fore modified our original approach (Klinger & Mayer, 2016) to make the NCA usable on non-rectangular
grids, like the triangular grid of the ICON model. The method still makes use of the calculated 1D fluxes of
the neighboring column of a grid box to estimate the 3D heating rate. However, due to the complexity of inte-
grating the former solving equations on non-rectangular grid box shapes, we modified the original approach
which is now based on the use of pre-calculated factors and lookup tables to estimate (a) the amount of a
1D flux entering a grid box, (b) the emissivity and absorptivity of a grid box of specific shape and optical
thickness, and (c) finally to correct the thus received result.

It could be shown that the method, applied both on a regular rectangular grid and an non-rectangular tri-
angular grid in LES cloud fields, substantially reduces the relative bias of the heating rates compared to
commonly used 1D radiative transfer heating rates and also compared to the original version of the NCA.
Furthermore, the method itself (also not yet applied in an LES) reduces the computational time compared
to the original NCA. For the former, the computational time was shown to be a factor of 1.5 to 2 in LES
application compared to ICA.

Thermal cooling has been shown to have a significant impact on the mesoscale circulation and mesoscale
organization of these cloud fields and on the development of individual clouds (e.g., Bretherton & Blossey,
2017; Klinger et al., 2017; Naumann et al., 2017; Seifert et al., 2015). With this new version of the NCA
and the possibility to run it in the ICON model, studies of in a more realistic framework, including many
different cloud types can be made. It thus offers the possibility to investigate, next to small scale impacts,
the broader picture and a possible impact on weather/climate.

Appendix A: Setup for MYSTIC Simulations
A.1. Calculation of the Spectral Emissivity/Absorptivity
Rectangular Grid

For the calculation of the spectral emissivity/absorptivity, which depends on the optical thickness and the
aspect ratio, we chose the following setup: We use a very simple setup with one grid box. The temperature is
set to 0 K everywhere except for the surface under consideration. The surface serves therefore as black body
source (El in equation (15) and Figure A1) while all other areas are non-emitting. The absorptivity is then
calculated as the absorbed irradiance of the grid box based on one black body emitted irradiance divided
by the black body emitted irradiance at the specific temperature (see equation (15)). 10,000,000 photons are
traced which assures us a stable result with a standard deviation of less than 0.05%.

The lookup table depends on the optical depth in all three dimensions. We chose one representative path
through a grid box for each dimension (perpendicular to the face of the grid box) as reference for the optical
thickness. The optical thickness range is between 0.0001 and 100. The increments are increased by a factor
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Figure A1. Schematic figure of the MYSTIC setup to calculate the emissivities/absorptivities for a rectangular grid.
The surface serves as source of the irradiance. The absorbed irradiance is calculated for the grid box.

of 2.5 which results in 16 entries per dimension. We thus assure that for low optical depth where thermal
radiative transfer is more sensitive to changes, the optical depth is better resolved than for high optical
depth where thermal radiative transfer approaches saturation. The range of the optical depth is chosen in
a way that for low optical depth the transmission is nearly 100% (99.99% if the photons would pass the grid
box perpendicular to the face) and approaches zero for the upper bound of the lookup table. Although the
aspect ratio is not an entry in the lookup table, the combination of optical depth in the three dimensions
implies that different aspect ratios of the grid box are taken into account. For example, having an optical
depth of 0.0001 in x and y and of 100 in z corresponds to a stretched grid box with an aspect ratio (dzdx−1)
of 100,000 (a value that one will not find in an atmospheric model but assures us that the lookup table
covers all possibilities). In application, a linear interpolation in three dimensions is performed to get the
corresponding emissivity/absorptivity for a specific grid box optical depth.

Triangular Grid

The calculation of the absorptivities for triangular grid follows the same idea; however, as our Monte Carlo
model uses a rectangular grid we construct one by creating a triangular prism from small regular grid boxes.
Our total domain consists therefore of 50 × 50 × 1 grid boxes (see Figure A2). We use the incoming flux
at one face of the prism (red area) as source. All other surface pixels are set to 0 K. The optical thickness
of the surrounding atmosphere and the temperature are set to zero. The optical thickness of the prism is
varied between 0.0001 and 100 (in the same intervals as for the rectangular grid), but we have two reference
distances now instead of three. We use equilateral triangles as base face of the prism which works well for
the ICON model. We use the height of the base triangle (𝜏h) as one reference path, and the height of the
prism as the second reference path (𝜏z). We thus reduce the lookup table to two dimension; however, the
calculation of the height of the base triangle includes in some degree the third dimension.

As already mentioned in the main text, two different setups are necessary for the calculation to differenti-
ate between top (base) and side absorptivities, because the area of the top (base) face and the side faces are
different and therefore the passed volume. For the side face absorptivities, we flip the prism by 90◦ . Oth-
erwise we perform the same simulations. We use 400,000 photons per pixel. The standard deviation of the
calculated absorptivities is again less than 0.05%.

In application, we perform a 2-dimensional interpolation to get the corresponding emissivity/absorptivity
for a specific grid box optical depth.

A.2. Calculation of the Fraction of the Incoming Irradiance
As we use 1D irradiance from an independent column solution (see Figure 1) as incoming irradiance for
the calculation of heating rates, we need to estimate how much of the irradiance of the center column
and the neighboring columns contributes to the overall incoming irradiance of each grid box face. We use
sets of idealized simulations with our Monte Carlo model MYSTIC to determine the top (base) and side
contributions.
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Figure A2. Schematic figure of the MYSTIC setup to calculate the emissivities/absorptivities for a rectangular grid.

Top/Base Irradiance

To get the weights, we calculated the transmitted irradiance arriving at a of a fully absorbing grid box (dark
gray, infinite optical thickness 𝜏in𝑓 , in Figure A3). The atmosphere itself is non-emitting/non-absorbing
(temperature was set to zero, 𝜏atm) in layer 𝑗 + 1. The surrounding area in layer j (Figure A3) is fully absorb-
ing but non-emitting. The radiation source is a layer where the temperature was set to 288.2 K except for the
part of the center grid box for which the incoming irradiance was estimated. We thus estimate, depending
on the optical thickness of the center grid box (light gray, 𝜏) and the aspect ratio how much irradiance of the
neighboring columns reaches the grid box in question (dark gray, 𝜏in𝑓 ). The fraction of the emitted irradiance
(at j + 1) and the transmitted irradiance of the grid box (at j) is our weight for the contribution of the neigh-
boring irradiances. It follows that the weight for the center irradiance is 1 − w. We neglect inhomogeneities
in the optical thickness of the surrounding atmosphere. This, however, is partially taken into account in the
application by averaging the side column irradiances as shown in equation (17) which have passed the spe-
cific inhomogeneous volumes. The setup and calculations are similar for the rectangular and the triangular
grid, only the grid shapes changes. The simulations are performed with 1,000,000,000 photons.

Side Irradiance

The calculation of the weights is again performed with 3D Monte Carlo simulations for varying optical
thickness (thus also accounting for different aspect ratios). The temperature was set to zero except for one
side contribution at the upper level (see Figure A4). Depending on the optical thickness of the atmosphere
(𝜏atm) we calculated the transmitted irradiance arriving at the grid box in question (see Figure A4, gray grid
box, fully absorbing) and divide it by the emitted irradiance E. As the shape of the side face is the same for
a rectangular and a triangular grid, the weights can be used for both grid types.

w = trans
E

. (A1)

A.3. Calculation of the Correction Factor
The correction factors were calculated by comparing the spectrally integrated heating rates of isolated cuboid
grid boxes from 3D MYSTIC simulations in a realistic background atmosphere to the results of the NCA 2.0.
The factors are calculated for top/base and side contributions to the heating rate separately. The factors are
simply multiplied to the heating rate top/base or side result. We used the correlated-k method of (Fu & Liou,
1992) for the spectral integration. The background atmosphere is the U.S. Standard Atmosphere (Anderson
et al., 1986). The surface albedo is set to zero.
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Figure A3. Schematic figure of the MYSTIC setup for the estimation of the top irradiance weights: (a) rectangular and
(b) triangular grids. We calculated the transmitted irradiance arriving at grid box j and vary the aspect ratio and the
optical thickness of the grid box above.

For the rectangular grid (top/base) we vary the aspect ratio (dzdx−1) of the grid box from 0.1 to 10 in the
following intervals: 0.1, 0.2. 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, and 10. These aspect ratios cover typical values in atmo-
spheric models. The optical depth of the grid box is varied between 0.0001 and 300 again the increments
are increased by a factor of 2.5; 1,000,000 photons are used. The atmosphere surrounding the grid box in
the grid box layer is set to be a black body wherefore the side contributions of emission and absorption to the
heating rate cancel each other out. The remaining heating rate only originates from the top/base face.
The ratio of the 3DMYSTIC result to the NCA 2.0 results is the correction factor.

The factor for the side contribution follows a similar setup, except that the grid box above and below the one
in questions are considered to be black bodies. In this case, the aspect ratio is defined as dxdz−1.

For the triangular grid we follow the same main idea. Similar to the emissivities/absorptivities, we construct
a triangular based prism. The aspect ratio covers the range of about 0.12 to 11.56 following 𝜁 = dzh−1,
where h is the height of the triangle (dx

√
3

2
). dx was chosen to be constant; dz can be calculated from the

same aspect ratio intervals used for the rectangular grid, based on the constant dx. It thus provides the

Figure A4. Schematic figure of the MYSTIC setup for the estimation of the side radiance contribution.
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analogous aspect ratio range to the rectangular grid. Again, correction factors are calculated for top/base
and side contributions to the heating rate separately by following the same idea that either the neighboring
atmosphere in the horizontal is assumed to be a black body or the atmosphere directly above and below the
triangular based prism, 1,000 per grid box of the prism which again keeps our results stable.

The factors are stored in two lookup tables: one for the top and one for the side correction factors based on
the aspect ratio and the optical depth.
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