Contents

Volume 39, Number 1, July 1993

1 **Review** The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women: R. PASQUALI and F. CASIMIRRI

17 **Commentary** Glucokinase and non-insulin-dependent diabetes: S. O’RAHILLY

21 Proinsulin, proinsulin intermediate and insulin in cystic fibrosis: I. HAMDI, M. GREEN, J. M. SHINEERSON, C. R. PALMER and C. N. HALE

27 Elevated serum immunoreactive inhibin levels in peripubertal boys with chronic renal failure: R. MITCHELL, F. SCHAEFER, I. D. MORRIS, K. SCHÄRER, J. G. SUN, W. R. ROBERTSON and THE COOPERATIVE STUDY GROUP ON PUBERTAL DEVELOPMENT IN CHRONIC RENAL FAILURE (CSPCRF)

35 Premature ovarian failure: autoimmunity and natural history: C. BETTERLE, A. ROSSI, S. DALLA PRIA, A. ARTIFONI, B. PEDINI, S. GAVASSO and A. CARETTO

45 Effect of varying concentrations of follicle stimulating hormone on the production of gonadotrophin surge attenuating factor (GnSAF) in women: J. E. MESSINIS, D. LOLIS, L. PAPADOPOULOS, TH. TSAHALINA, N. PAPANIKOLAOU, K. SEFERIADIS and A. A. TEMPLETON

51 Peptide α-amidation activity in human plasma: relationship to gastrin processing: M. KAPUSCINSKI, M. GREEN, S. N. SINHA, J. J. SHEPHERD and A. SHULKES

67 Prevalence of subclinical hyperthyroidism and relationship between thyroid hormonal status and thyroid ultrasonographic parameters in patients with non-toxic nodular goitre: M. RIEU, S. BEKKA, B. SAMBOR, J.-L. BERROD and J.-P. FOMBEUR

73 Relation between phenotype and intra-cellular thyroid hormone effect in patients with altered peripheral thyroid hormone sensitivity: J. KVETNY and J. BOLLERSLEV

77 Effect of growth hormone administration frequency on 24-hour growth hormone profiles and levels of other growth related parameters in girls with Turner’s syndrome: A. VAN TEUNENBROEK, S. M. P. F. DE MUINCK KEIZER-SCHRAMA, T. STIJNEN, J. W. MOUTON, W. F. BLUM, M. MERCADO, G. BAUMANN, S. L. S. DROP and THE DUTCH WORKING GROUP ON GROWTH HORMONE

85 Effects of growth hormone therapy on the developmental changes of follicle stimulating hormone and insulin-like growth factor-I serum concentrations in Turner’s syndrome: J.-P. BOURGUIGNON, A. GÉRARD, G. DEBY-DUPont and P. FRANCHIMONT

91 Longitudinal evaluation of adrenocorticotropic and β-lipotrophin plasma levels following bilateral adrenalectomy in patients with Cushing’s disease: A. C. MOREIRA, M. CASTRO and H. R. MACHADO

97 An audit of dynamic function tests: errors in the timing of blood specimens: J. H. BARTH, M. D. PAGE and I. R. BAILEY

109 **Case report** Serious, prolonged hypoglycaemia with glibenclamide in a patient with Mendenhall’s syndrome: S. KUMAR and A. J. M. BOULTON

113 **Case report** Severe peripheral neuropathy and elevated plantar pressures causing foot ulceration in pituitary gigantism: A. M. JENNINGS, A. ROBINSON, R. H. KANDLER, R. P. BETTS, R. E. J. REYDER and D. R. CULLEN

Volume 39, Number 2, August 1993

131 **Review** The cellular and molecular basis of the ectopic ACTH syndrome: A. WHITE and A. J. L. CLARK

143 **Current therapy** The treatment of women with hirsutism: W. JEFFCOATE

151 17-Hydroxyprogesterone response to buserelin testing in the polycystic ovary syndrome: Y. ŞAHIN and K. KELEŞTIMUR

Notices
157 The impact of a pure anti-androgen (flutamide) on LH, FSH, androgens and clinical status in idiopathic hirsutism: B. COUZINET, M. PHOLSENA, J. YOUNG and G. SCHAISON

163 Circadian variation in serum free and non-SHBG-bound testosterone in normal men: measurements, and simulation using a mass action model: R. R. COOKE, J. E. A. MCINTOSH and \[R. P. MCINTOSH \]

173 Molecular heterogeneity of serum follicle-stimulating hormone in hypogonadal patients before and during androgen replacement therapy and in normal men: J. A. HARSCH, M. SIMONI and E. NIESCHLAG

181 Evening administration of melatonin enhances the pulsatile secretion of prolactin but not of LH and TSH in normally cycling women: M. TERZOL, A. REVELLI, D. GUIDETTI, A. PIOVESAN, P. CASSONI, P. PACCOTTI, A. ANGELI and M. MASSOBRO

193 Melatonin stimulates growth hormone secretion through pathways other than the growth hormone-releasing hormone: R. VALCAVI, M. ZINI, G. J. MAESTRONI, A. CONTI and I. PORTIOLI

207 In-vitro response of erythroid progenitors from children with thalassaemia major to human growth hormone and insulin-like growth factor I: S. MERCHAV, Z. GRAIF, F. P. GIRALDI, A. TAGLIAFERRI, M. SCACCHI, A. DUBINI and F. CAVAGNINI

217 Protein intake during aggressive calorie restriction in obesity determines growth hormone response to growth hormone-releasing hormone after weight loss: A. MEGIA, L. HERRANZ, R. LUNA, C. GÓMEZ-CANDELA, F. PALLARDO and P. GONZALEZ-GANCEDO

229 The combined use of intravenous and oral calcium for the treatment of vitamin D dependent rickets type II (VDDR II): A. AL-AQEEL, P. OZAND, S. SOBKI, W. SEWAIRI and S. MARX

239 Case of the Month A case of antibody formation against octreotide visualized with \[111 \text{In} \]-octreotide scintigraphy: D. J. KWEKKEBOOM, J. ASSIES, L. J. HOFLAND, J. C. REUBI, S. W. J. LAMBERTS and E. P. KRENNING

244 Commentary: H. ORSKOV

253 Case report Thyrotoxicosis increases right to left shunt in congenital cyanotic heart disease: S. M. ORME, J. P. SEBASTIAN, M. D. PAGE, C. COWAN and P. E. BELCHETZ

257 Notices

Volume 39, Number 3, September 1993

259 Review Endothelins as regulators of growth and function in endocrine tissues: R. L. KENNEDY, W. G. HAYNES and D. J. WEBB

267 Commentary Thyrotrphin receptor expression: does it help in assessing the prognosis of thyroid cancer?: M. C. SHEPARD

269 Expression of thyrotrphin receptor gene in thyroid carcinoma is associated with a good prognosis: YUEFEI SHI, MINJING ZOU and N. R. FARID

281 The effect of treatment with levothyroxine or iodine on thyroid size and thyroid growth stimulating immunoglobulins in endemic goitre patients: M. M. WILDERS-TRUSCHNIG, H. WARNKROß, G. LEB, W. LANGSTEGER, O. EBER, A. TIRAN, H. DOBNIG, A. PASSATH, G. LANZER and H. A. DREXHAGE
287 Prospective study of the hypothalamic-pituitary axis in thalassaemic patients who developed secondary amenorrhoea: R. CHATTERJEE, M. KATZ, T. F. COX and J. B. PORTER

307 Comparison of computerized tomography and magnetic resonance imaging for the examination of the pituitary gland in patients with Cushing’s disease: H. ESCOURROLLE, J. P. ABECASSIS, X. BERTAGNA, B. GUILHAUME, D. PARIENTE, P. DEROME, A. BONNIN and J. P. LUTON

331 The short and long-term effects of octreotide on calcium homeostasis in patients with acromegaly: L. FREDSTORP, Y. PERNOW and S. WERNER

351 The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries: S. ROBINSON, D. KIDDY, S. V. GELDING, D. WILLIS, R. NIHATHYANANTHAN, A. BUSH, D. G. JOHNSTON and S. FRANKS

363 Response of sex hormone binding globulin and insulin-like growth factor binding protein-1 to an oral glucose tolerance test in obese women with polycystic ovary syndrome before and after calorie restriction: D. HAMILTON-FAIRLEY, D. KIDDY, V. ANYAOKU, R. KOISTINEN, M. SEPPÄLÄ and S. FRANKS

369 Pharmacokinetic properties of the tocolytic agent [Mpa]₄-D-Tyr(Et)², Thr⁴, Orn⁴]-oxytocin (antocin) in healthy volunteers: C. F. CLOSE, M. C. MANN, J. F. WATTS and K. G. TAYLOR

381 Case report Isolated congenital ACTH deficiency: a cleavage enzyme defect?: S. S. NUSSEY, SHIU-CHING SOO, S. GIBSON, I. GOUT, A. WHITE, M. BAIN and A. P. JOHNSTONE

385 Commentary Isolated ACTH deficiency: enzyme defect or chimaeric enzyme?: J. W. FUNDER and A. I. SMITH

387 Notices

Volume 39, Number 4, October 1993

389 Review The effects of drugs on endocrine function: M. P. J. VANDERPUMP and W. M. G. TUNBRIDGE

399 Invited Commentary Pancreatic and islet transplantation for diabetes: D. A. PYKE

401 Commentary Growth hormone replacement in adults: What dose?: R. J. M. ROSS

409 Short and long-term effects of growth hormone treatment on bone turnover and bone mineral content in adult growth hormone-deficient males: M. VANDEREGEHE, P. TAEMLAND and J.-M. KAUFMAN

417 Carpal tunnel syndrome and gynaecomastia during growth hormone treatment of elderly men with low circulating IGF-I concentrations: L. COHN, A. G. FELLER, M. W. DRAPER, I. W. RUDMAN and D. RUDMAN
Contents

Clinical Endocrinology (1993) 39

433 Pituitary adenomas with high and low basal inositol phospholipid turnover; the stimulatory effect of kinins and an association with interleukin-6 secretion: T. H. JONES, R. L. KENNEDY, S. K. JUSTICE and A. PRICE

445 Discrimination between β-endorphin and β-lipotrophin in human plasma using two-site immunoradiometric assays: S. GIBSON, S. R. CROSBY and A. WHITE

455 Thyroid dysfunction in African trypanosomiasis: a possible role for inflammatory cytokines: M. REINCKE, B. ALLOLIO, F. PETZKE, C. HEPPNER, D. MBULAMBERI, D. VOLLMER, W. WINKELMANN and G. P. CHROUSOS

463 Response of plasma low density lipoprotein subfractions to oestrogen replacement therapy following surgical menopause: B. GRIFFIN, E. FARISH, D. WALSH, J. BARNE, M. CASLAKE, J. SHEPHERD and D. HART

469 The determination of delta-5-androstenediol and its sulphate in serum and urine by gas chromatography-mass spectrometry: L. D. DIKKESCHEI, B. G. WOLThERS, P. H. B. WILLEMSE, H. VAN DER POL, A. W. DE RUYTER-BUITENHUIS and G. T. NAGEL

475 Delta-5-androstenediol and its sulphate in serum and urine of normal adults and patients with endocrine diseases: L. D. DIKKESCHEI, P. H. B. WILLEMSE, B. G. WOLThERS, A. W. DE RUYTER-BUITENHUIS and G. T. NAGEL

483 Combined 17α-hydroxylase/17,20-lyase deficiency caused by heterozygous stop codons in the cytochrome P450 17α-hydroxylase gene: G. RUMSBY, C. SKINNER, H. A. LEE and J. W. HONOUR

487 Pregnancy associated osteoporosis: F. DUNNE, B. WALTERS, T. MARSHALL and D. A. HEATH

497 Notices

Volume 39, Number 5, November 1993

499 Review The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism: R. DOCTER, E. P. KRENNING, M. DE JONG and G. HENNEMANN

519 Commentary Thyroid hormone therapy and the skeleton: J. E. COMPSTON

521 Bone mineral density in patients with endogenous subclinical hyperthyroidism: Is this thyroid status a risk factor for osteoporosis?: J. FÖLDES, G. TARJÁN, M. SZATHMÁRI, F. VARGA, I. KRASNAI and C. HORVATH

529 Suppressed TSH levels secondary to thyroxine replacement therapy are not associated with osteoporosis: D. J. GRANT, M. E. T. MCMURDO, P. A. MOLE, C. R. PATerson and R. R. DAVIES

541 A long-term follow-up study of patients with non-toxic goitre in Japan: T. HARA, T. TAMAI, T. MUKUTA, S. FUKATA, K. KUMA and T. NAKAGAWA

547 Commentary Variable androgen sensitivity in relationship to hirsutism and acne: T. J. MCKENNA

551 Two different pathogenetic mechanisms may play a role in acne and in hirsutism: V. TOSCANO, R. BALDUCCI, P. BIANCHI, R. GUGLIELMI, A. MANGIANTINI, F. G. ROSSI, L. M. COLONNA and F. SCIARRA

557 Plasma 19-hydroxyandrostenedione is elevated in patients with high renin essential hypertension: N. SEKIHARA, K. YONEMITSU and Y. YAZAKI

569 Effect of oestrogen status on serum levels of growth hormone-binding protein and insulin-like growth factor I in non-pregnant women: G. MASSA, A. IGOUT, L. ROMBAUTS, F. FRANKENNE and M. VANDERSCHUEREN-LODEWEYCKX

583 Insulin-like growth factor-I blood levels in severely
burned patients: effects of time post injury, age of
patient and severity of burn: T. ABRIBAT,
P. BRAZEAU, J. DAVIGNON and D. R. GARREL

591 Leucine metabolism in patients with Cushing's
syndrome before and after successful treatment:
S. B. BOWES, J. J. BENN, I. N. SCOBIE,
A. M. UMPLEBY, C. LOWY and P. H. SÖNKEN

599 Abnormal twenty-four hour pattern of pulsatile
luteinizing hormone secretion and the response to
naloxone in women with hyperprolactinaemic
amenorrhoea: C. C. K. TAY, A. F. GLASIER,
P. J. ILLINGWORTH and D. T. BAIRD

607 Growth hormone treatment affects plasma LH
pulsatile release in women with secondary
amenorrhoea: A. D. GENAZZANI, F. PETRAGLIA,
C. VOLPOGNI, F. PIANAZZI, V. MONTANINI,
G. D'AMBROGIO and A. R. GENAZZANI

613 Case report Necrosis of a phaeochromocytoma
associated with spontaneous remission of diabetes and
hypertension: L. ZANIN, G-P. ROSSI,
A. POLETTI, A. PIOTTO, M. CHIESURA-CORONA and
A. C. PEZZINA

619 Case report Tissue-specific modulation of insulin
receptor mRNA levels in a patient with a
phaeochromocytoma: M. A. LEAL, P. ALLER,
A. TORRES, A. PICARDO and C. CALLE

Volume 39, Number 6, December 1993

623 Review Clinical implications of hyperinsulinaemia in
women: G. S. CONWAY and H. S. JACOBS

633 Differences in testosterone metabolism by beard and
scalp hair follicle dermal papilla cells:
M. J. THORNTON, I. LAING, K. HAMADA,
A. G. MESSENGER and V. A. RANDALL

641 Alternate-day GnRH therapy for ovarian
hyperfunction induced by weight loss: treatment of six
patients who remained amenorrhoeic after weight
gain: F. KOTSUJI, M. KUBO, Y. TAKEUCHI and
T. TOMINAGA

649 Effects of norethisterone on bone related biochemical
variables and forearm bone mineral in post-
menopausal osteoporosis: M. HOROWITZ,
J. M. WISHART, A. G. NEED, H. A. MORRIS and
B. E. C. NORDIN

657 Reversibility of thyroid dysfunction induced by
recombinant alpha interferon in chronic hepatitis C:
E. BAUDIN, P. MARCELLIN, M. POUTEAU,
N. COLAS-LINHART, J-P. LE FLOCH, C. LEMMONIER,
J-P. BENHAMOU and B. BOK

663 Tissue resistance to 1,25-dihydroxyvitamin D without
a mutation of the vitamin D receptor gene:
M. HEWISON, A. R. RUT, K. KRISTJANSSON,
R. E. WALKER, M. J. DILLON, M. R. HUGHES and
J. L. H. O'RIORDAN

671 The effect of morphine and naloxone administration
on maternal oxytocin concentration in late pregnancy:
S. W. LINDOW, Z. M. VAN DER SPUY,
M. S. HENDRICKS, F. A. NUGENT and T. T. DUNNE

677 Recombinant human growth hormone therapy does
not increase microalbuminuria in children with short
stature: D. LEVINE, P. KREITZER, S. FREEDMAN and
H. TRACHTMAN

681 Preliminary observations using endocrine markers of
pituitary venous dilution during bilateral
simultaneous inferior petrosal sinus catheterization in
Cushing's syndrome: Is combined CRF and TRH
stimulation of value?: P. G. MCNALLY, A. BOLIA,
S. R. ABSALOM, J. FALCONIR-SMITH and
T. A. HOWLETT

687 Modulation of IGF-I receptors by exogenous hGH
 treatment in constitutionally short children: R. ESHET,
B. KLINKER, A. SILBERGELD and Z. LARON

695 Case of the Month Hypercalcaemia due to
parathyroid hormone-related protein: long-term
circulating levels may not reflect tumour activity:
M. W. SAVAGE, W. D. FRASER, C. W. BODMER,
A. F. GINTY, J. A. GALLAGHER, J. ROBINSON and
G. WILLIAMS

699 Commentary E. B. MAWER

701 Letters to the Editors

705 Book reviews

707 Notices

708 Referees

709 Author index

717 Subject index
Thyroid dysfunction in African trypanosomiasis: a possible role for inflammatory cytokines

Martin Reincke*, Bruno Allolio*, Frank Petzket†, Christina Heppner‡, Dawson Mbulamberi†, Doris Vollmert‡, Werner Winkelmann† and George P. Chrousos§

*Department of Medicine, University of Würzburg, †Department of Medicine II, University of Köln, FRG ‡National Sleeping Sickness Control Program, Jinja, Uganda; and §Developmental Endocrinology Branch, National Institute of Child Health and Human Development, MD, USA

(Received 11 December 1992; returned for revision 1 March 1993; finally revised 26 April 1993; accepted 13 May 1993)

Summary

OBJECTIVE Sleeping sickness (African trypanosomiasis) is an anthropozoonosis transmitted by the tsetse fly. The treatments of choice are the antiparasitic agents suramin and/or melarsoprol. Experimental infection of animals with Trypanosoma brucei results in inflammatory lesions in the pituitary and/or the thyroid gland. In biochemical terms, these animals have hypothyroidism. We evaluated the functional integrity of the hypothalamic-pituitary-thyroid axis in patients with African trypanosomiasis before, during and after specific therapy.

DESIGN Prospective, controlled, cross-sectional study.

PATIENTS AND MEASUREMENTS Sixty-five patients with sleeping sickness (31 female, 34 male; aged 18-66; 32 with haemolymphatic sleeping sickness receiving suramin i.v., 33 with cerebral sleeping sickness receiving melarsoprol) and 13 control subjects (6 female, 7 male; aged 21-60) were enrolled in a cross-sectional study after giving informed consent. Fourteen patients were studied shortly after admission for sleeping sickness, 19 in the middle of the course of treatment, 18 at the end of the 5-week treatment period, and 14 patients after cure. All subjects underwent a TRH stimulation test at 1200 with bolus injection of 400 μg TRH i.v. Blood was drawn for determination of fT3, fT4, TSH, rT3, TNF-α, IL-1 and IL-6 at 0 minutes and TSH at 60 minutes. All hormones and cytokines were determined by RIA or ELISA.

RESULTS Baseline TSH concentrations (mean ± SEM) were elevated in unmedicated patients with sleeping sickness compared to normal subjects (2.6 ± 0.4 vs 1.4 ± 0.2 mU/l; P = 0.01), whereas fT3 (2.7 ± 0.5 vs 5.8 ± 0.3 pmol/l; P = 0.0002) and fT4 concentrations (10.3 ± 1.2 vs 15.4 ± 0.8 pmol/l; P = 0.007) were low. Stimulated TSH concentrations did not significantly differ from normal controls. Reverse T3 concentration in patients with sleeping sickness were normal (2.2 ± 0.3 vs 2.4 ± 0.2 nmol/l; P = NS). During the course of treatment, baseline TSH, fT3 and fT4 concentrations slowly returned to normal and were indistinguishable from controls after cure. Plasma concentrations of TNF-α (16.0 ± 4.1 vs 2.9 ± 1.4 ng/l in controls; P = 0.003) and interleukin-6 (19.2 ± 7.3 vs 13 ± 0.2 ng/l; P = 0.0001), but not interleukin-1β (2.0 ± 0.2 vs 0.9 ± 0.2, ng/l P = NS), were elevated, when thyroid function impairment and disease activity were at their maximum, but gradually decreased into the normal range with therapy. We found a negative correlation between baseline cytokine concentrations and fT3 concentrations (TNF-α: r = -0.34, P = 0.003; IL-6: r = -0.43, P = 0.0001).

CONCLUSIONS We conclude that unmedicated sleeping sickness is associated with significant impairment of thyroid function, which is reversed with specific therapy. Elevated TSH concentrations and low fT3 and fT4 concentrations suggest primary hypothyroidism in patients with sleeping sickness. However, an additional pituitary and/or hypothalamic component cannot be excluded. This impairment may be due to the elevated plasma cytokine concentrations found in these patients or may be the result of parasitic thyroiditis.

African sleeping sickness (SS) is caused by Trypanosoma brucei, an extracellular protozoan parasite transmitted by the bite of the tsetse fly (Manson-Bahr & Apted, 1982; Hunter et al., 1984). Approximately 20000 new cases are reported each year to the WHO, although there is considerable fluctuation due to epidemic outbreaks (WHO, 1987; 1990). Clinically, the early acute disease is characterized by haemolymphatic involvement with predominant invasion of lymphatic tissue, whereas pancarditis, glomerulonephritis and hepatitis are observed less frequently. After invasion of the central nervous system by the parasite, a meningoencephalitis, with a broad spectrum of neurologic and psychiatric symptoms, evolves. Untreated, the disease is fatal and death is due to secondary bacterial infection, coma, or cachexia. Recent work has pointed to the importance of interaction...
Table 1 Clinical profile of patients and controls

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Sex (female/male)</th>
<th>Haemolymphatic stage (n)</th>
<th>Cerebral stage (n)</th>
<th>Age (mean, range) (years)</th>
<th>Time of test after onset of therapy (mean, range)</th>
<th>Day time of test (mean ± SD) (hour/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal controls</td>
<td>13</td>
<td>6/7</td>
<td>—</td>
<td>—</td>
<td>34 (21-60)</td>
<td>—</td>
<td>11:34 ± 1:05</td>
</tr>
<tr>
<td>Patients shortly after admission</td>
<td>14</td>
<td>5/9</td>
<td>6</td>
<td>8</td>
<td>31 (18-60)</td>
<td>4:0 (2-7) d</td>
<td>12:05 ± 1:10</td>
</tr>
<tr>
<td>Patients after 2 weeks of therapy</td>
<td>19</td>
<td>10/9</td>
<td>10</td>
<td>9</td>
<td>36 (21-56)</td>
<td>15:0 (9-22) d</td>
<td>11:45 ± 0:53</td>
</tr>
<tr>
<td>Patients after 4 weeks of therapy</td>
<td>18</td>
<td>9/9</td>
<td>10</td>
<td>8</td>
<td>37 (18-65)</td>
<td>28:0 (23-38) d</td>
<td>12:00 ± 0:55</td>
</tr>
<tr>
<td>Patients after 4 weeks of therapy</td>
<td>14</td>
<td>7/7</td>
<td>6</td>
<td>8</td>
<td>39 (20-65)</td>
<td>22 (6-37) mo</td>
<td>11:31 ± 0:53</td>
</tr>
</tbody>
</table>

d, Days; mo, months.

between the immune and neuroendocrine system (Imura et al., 1991; Chrousos & Gold, 1992). It is well known that serum thyroid hormone levels change in severe illness (Wartofsky & Burman, 1982). Such abnormalities of thyroid hormone tests, including low normal TSH, low normal fT4, low T3 and high reverse T3, designated 'euthyroid sick syndrome', are considered to be partly mediated by the effects of the inflammatory cytokines on the hypothalamic–pituitary–thyroid (HPT) axis. In vivo and in vitro, interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) inhibit TSH secretion as well as thyroid hormone release (Dubuis et al., 1988; Van Der Poll et al., 1990; Ozawa et al., 1988), whereas the effects of interleukin-6 (IL-6) on the HPT axis have not been studied in detail.

Endocrine abnormalities in African SS have been observed since the early 1950s and include hypothyroidism, hypogonadism and mild adrenocortical insufficiency (Apted, 1953; Ridet, 1953; Emeh & Nduka, 1983; Hublart et al., 1988; Reincke et al., 1992). Patients with SS frequently suffer from lethargy, skin pallor, cold intolerance and hypothermia, suggestive of hypothyroidism (Noireau et al., 1988).

Experimental trypanosomiasis in animals has been associated with inflammatory changes in the pituitary and/or the thyroid gland (Murray, 1974; Morrison et al., 1981), and goats infected with Trypanosoma congoense had very low thyroxine concentrations (Mutayoba et al., 1988). The pathogenesis of these abnormalities in humans has not been elucidated; however, experimental data in animals suggest a direct effect of the parasite on the pituitary and/or the thyroid gland (Ikede & Losos, 1975). In addition, inflammatory cytokines are elevated in African trypanosomiasis and may play a role in the thyroid hormone abnormalities of these patients. We investigated the interaction between the HPT axis and the inflammatory cytokines TNF-α, IL-1β and IL-6 in 65 patients with African trypanosomiasis and compared the results with those of 13 normal Ugandan controls.

Patients and methods

Patients and controls

Patients and controls were recruited through the National Sleeping Sickness Control Program in south-east Uganda. The diagnosis of SS was established by microscopical demonstration of parasites in the peripheral blood (haemolymphatic stage), and/or in cerebrospinal fluid obtained by lumbar puncture (cerebral stage). All patients with SS received initially a small dosage of suramin (day 1, 0.25 g; day 3, 0.5 g i.v.). Thereafter, patients without cerebral involvement (haemolymphatic stage) received weekly 1-g injections of suramin up to a total dose of 5–7.5 g, whereas patients with cerebral SS were treated with a 5-week course of melarsoprol (total dose: 20 mg/kg body weight).

A total of 65 patients with Trypanosoma brucei rhodesiense infection and 13 healthy Ugandan control subjects were studied after giving informed consent (clinical data, see Table 1). None of the healthy subjects had a previous history of SS, thyroid disease or had received suramin, melarsoprol or thyroxine treatment. Using a cross-sectional study design, every patient was studied once during the course of treatment, on each of the following occasions:

1. while acutely ill, within the first 7 days from admission to the health care centre
2. in the middle of the course of treatment (days 9–22)
3. at the end of the treatment period (days 23–38)
4. after permanent cure (at least 6 months after end of treatment)

The patients had no clinically apparent signs of thyroid involvement. None of the patients had a goitre or complained of local tenderness over the thyroid region.

The study was approved by the ethics committee of the University of Köln and by the Ministry of Health, Uganda, and post hoc by the ICRS of the NICHD.

All patients and controls underwent a TRH stimulation
test between 1000 and 1400 h. In addition, the patients received hCRH (100 µg i.v.; results reported elsewhere (Reincke et al., 1992)). After placing an indwelling catheter in the forearm blood was drawn for determination of TSH, T3, T4, rT3 at baseline and 30 minutes after a bolus injection of 400 µg TRH i.v. (protirelin, TRH Relefact, Hoechst, Frankfurt, FRG). The concentrations of TNF-α, IL-1β and IL-6 were determined in the baseline samples.

The samples were stored on ice for up to 6 hours, then centrifuged and stored at —20°C. After transportation to FRG or USA on dry ice, all samples from a single patient were run in the same assay.

Assays

Serum TSH was determined in duplicate by a commercial two-site immunoradiometric assay (Nichols, Bad Nauheim, FRG). The interassay and intra-assay variabilities were 6.8 and 4.5%, respectively. Free T3 and fT4 concentrations were determined directly by ‘solid-phase technique’ RIAs (Hennig, Berlin, FRG). The interassay and intra-assay variabilities were 9.1 and 5.2%, and 7.4 and 4.5%, respectively. Reverse T3 was measured by RIA as described elsewhere (Bagni et al., 1977). The inter and intra-assay variabilities were 14.2 and 11.9%. Cross-reactivities of the antiserum with L-thyroxine, L-3,5,3'-triiodothyronine, L-3,5-diiodothyronine and L-3,3'-diiodothyronine were 0.08, 0.002, 0.0006 and 0.03%, respectively. TNF-α, IL-1β and IL-6 were determined by specific ELISA using commercial assays (R&D Systems, Minneapolis, USA). The lower limits of detection of these assays were, respectively, 2.8, 1.0 and 1.0 ng/l, and the inter and intra-assay variability 6.4 and 7.8, 3.0 and 5.0, and 7.8 and 7.5%.

Statistics

The data of patients with haemolymphatic and cerebral SS were analysed separately to exclude effects of disease stage and treatment on the HPT axis. Since no significant differences were found, the combined data of both groups are shown. All data are expressed as mean±SEM, if not otherwise stated. The normal range of hormones and peptides was defined as the mean of the controls ± 2 standard deviations. Differences between group means were assessed using a non-parametric one-way ANOVA (Kruskal–Wallis test) and the Mann–Whitney U-test for unpaired data, as appropriate. Correlations were examined with linear regression analysis, after logarithmic transformation of cytokine concentrations when the arithmetic values did not have a Gaussian distribution, and expressed as Pearson’s correlation coefficient. P≤0.05 was considered as statistically significant.

Results

Baseline thyroid function

In 65 patients with SS and 13 age and sex-matched normal Ugandan controls baseline TSH, fT3, fT4 and rT3 were determined (Fig. 1). For TSH concentrations (Kruskal–Wallis test, P = 0.04), fT3 (P ≤ 0.0001), fT4 (P = 0.01) and rT3 concentrations (P = 0.04) significant differences were found. Shortly after admission, SS patients had elevated TSH concentrations compared to normal controls (2.6±0.4 vs 1.4±0.2 mU/l; P = 0.01), whereas fT3 (2.8±0.5 vs 5.4±0.3 pmol/l; P = 0.0002) and fT4 (10.3±1.2 vs 15.4±0.8 pmol/l; P = 0.007) were low and rT3 concentrations normal (2.2±0.4 vs 2.4±0.3 nmol/l; P = NS). After 2 and 4 weeks of treatment, elevated TSH concentrations slowly returned to normal. In addition, fT3 and fT4 concentrations increased somewhat, but remained subnormal. However, rT3 concen-
trations were significantly lower in patients with SS than in controls after 2 and 4 weeks of treatment. After cure, rT3 concentrations remained low in patients with SS, whereas TSH, fT3 and fT4 concentrations were normal.

Seven of 14 (50%) patients on admission, 4 of 19 (21%) after 2 weeks of treatment, 4 of 18 (22%) after 4 weeks of treatment and none of 14 patients after cure had rT4 concentrations below the normal range of controls (10-0–20-7 pmol/l).

TRH stimulation test

All patients and controls underwent a TRH stimulation test. Stimulated TSH concentrations as well as the TSH increase did not significantly differ between patients with SS and control subjects (Kruskal–Wallis test, P = 0-14 and 0-13, respectively). TSH concentrations after TRH in control subjects were 16-8 ± 1-7, in patients with SS shortly after admission 17-4 ± 2-2, after 2 weeks of treatment 14-8 ± 1-5, after 4 weeks of treatment 13-8 ± 2-6, and after cure 17-3 ± 2-1 mU/l, respectively. The corresponding TSH increase was 15-4 ± 1-6 in controls and 14-8 ± 2-0, 12-8 ± 1-3, 12-5 ± 2-2 and 15-8 ± 2-0 mU/l, respectively, in patients with SS during the course of treatment.

Cytokines

In all subjects basal circulating TNF-α, IL-1β and IL-6 concentrations were determined (Fig. 2a). TNF-α (Kruskal–Wallis test, P = 0-005) and IL-6 (Kruskal–Wallis test, P = 0-0001), but not IL-1β, were substantially elevated in SS. TNF-α concentrations were high in patients shortly after admission (16-0 ± 4-5 vs 2-9 ± 1-4 ng/l in controls, P = 0-003) and returned to normal after 2 and 4 weeks of treatment (3-8 ± 1-6 and 6-5 ± 1-7 ng/l, respectively). A weak, but significant, positive correlation was observed between basal TNF-α concentrations and basal TSH concentrations in patients with SS (r = 0-27, P = 0-02; Fig. 2b). In addition, TNF-α concentrations were inversely correlated with fT3 concentrations (r = −0-34, P = 0-003) and, to a lesser degree, with fT4 concentrations (r = −0-23, P = 0-05). TNF-α concentrations showed a positive correlation with reverse T3 levels (r = 0-26, P = 0-02).

IL-1β concentrations were undetectable in most of the patients with SS, and mean immunoreactive concentrations did not differ from those of control subjects (0-9 ± 0-2 vs 2-0 ± 0-8 ng/l, P = NS).

IL-6 concentrations, on the other hand, were dramatically elevated in SS (19-2 ± 7-3 vs 2-9 ± 1-4 ng/l in controls, P = 0-0001) and slowly returned to normal (after 2 weeks, 16-3 ± 10-8 ng/l; after 4 weeks, 2-8 ± 1-6 ng/l). TSH concentrations showed no correlation with IL-6 concentrations. Free T3 and fT4 concentrations were negatively correlated with basal IL-6 concentrations (r = −0-43, P = 0-0001; r = −0-22, P = 0-05, respectively). No significant correlation was observed between rT3 and IL-6 (r = 0-21, P = 0-06).

Discussion

African trypanosomiasis is associated with extensive mononuclear infiltration of organs invaded by the parasite (Murray, 1974; Morrison et al., 1981). In animals, inflammatory
changes in endocrine tissue have been described in the anterior and posterior pituitary (Ikede & Losos, 1975), the thyroid gland (Mutayoba et al., 1988b), the adrenals (Ikede & Losos, 1975) and gonads (Ikede, 1979; Anosa & Kaneko, 1984). Low fertility rates are a well known phenomenon in African trypanosomiasis and have been described in cattle, goats, sheep and rats. Biochemically, infected goats have low circulating oestriadiol (Mutayoba et al., 1988a) and testosterone concentrations (Waindi et al., 1986) and low thyroxine concentrations (Mutayoba et al., 1988b). In humans, endocrine abnormalities in SS have been less extensively investigated. Pituitary fibrosis and thyroid atrophy were described in two fatal cases of cerebral SS (Hawking & Greenfield, 1941). Loss of libido, amenorrhoea and impotence frequently occur during the course of the disease (Ridet, 1953; Noireau et al., 1988). Abnormalities in thyroid (Boersma et al., 1989) and gonadal hormone secretion (Emeh & Nduka, 1983; Hublart et al., 1988) have been demonstrated in these patients, and we recently described a significant impairment of adrenocortical function in patients with SS, with 25% of the patients within the adrenocortical insufficiency range, which was most likely secondary to ACTH deficiency (Reincke et al., 1992). We now show that, in addition to abnormalities in the pituitary-adrenal axis, the hypothalamic-pituitary-thyroid axis is impaired in SS, and this is correlated with circulating concentrations of inflammatory cytokines.

Patients with unmedicated SS had slightly, but significantly, elevated TSH concentrations, lowered fT3 and fT4 concentrations and normal rT3 concentrations. The TSH response to TRH was not different from control subjects. These results are similar to reports by Hublart et al. (1988) and Boersma et al. (1989), who also described elevated TSH concentrations in the presence of low T3 and T4 concentrations in smaller series of patients with SS. In addition, these authors found normal or low rT3 concentrations. The observed abnormalities in thyroid hormone secretion seem to be rather unusual and cannot be explained by either central hypothryroidism, primary hypothryroidism or the ‘euthyroid-sick syndrome’. The last is characterized by very low T3 concentrations, low total T4 and normal fT4 levels, normal baseline TSH with a blunted response to stimulation with TRH and elevated rT3 concentrations due to an inhibition of the 5′-deiodinase which converts T3 to the inactive thyroid hormone 3,3′,5′-triiodothyronine (Wartofsky & Burman, 1982; Wehmann et al., 1985; Hamblin et al., 1986; Faber et al., 1987; Felicetta, 1989). Although some of the thyroid hormone abnormalities observed in patients with SS may be attributed to the ‘euthyroid-sick syndrome’, elevated baseline TSH concentrations and normal rT3 concentrations do not favour this explanation.

Assuming a normally functioning hypothalamic-pituitary unit, primary hypothyroidism is accompanied by elevated baseline TSH concentrations and an exaggerated TSH response to TRH. Our patients had slightly elevated baseline TSH concentrations and a normal TSH response to TRH, excluding the presence of ‘simple’ primary hypothyroidism. However, pituitary TSH secretion may be abnormal in SS, because of parasitic infiltration of the pituitary gland, thus impairing the appropriate TSH surge in response to TRH in the background of primary hypothyroidism. Since ACTH (Reincke et al., 1992) and LH/FSH (Emeh & Nduka, 1983; Hublart et al., 1988) secretion is also impaired in African trypanosomiasis, patients with SS may suffer from mild panhypopituitarism. Low fT3 and fT4 concentrations in SS, therefore, are most likely the result of combined pituitary and peripheral hypothyroidism. In addition, hypothalamic hypothyroidism resulting from cerebral trypanosomiasis may contribute to the thyroid hormone abnormalities in SS. This condition is associated with slightly elevated baseline TSH concentrations (Ingbar, 1985) which have been attributed to secretion of a form of TSH that is immunoreactive but has little or no biological activity due to reduced ability to bind to its receptor (Faglia et al., 1983; Beck-Beezoz et al., 1985). Post-translational modifications of the TSH molecule associated with reduced biological activity have also been found in patients with non-thyroidal illness (Lee et al., 1987).

The pathogenesis of the impairment of the HPT axis function observed in SS is not clear. It can be explained in two major ways which may not be mutually exclusive. First, it may be due to parasite infiltration and transient inflammatory dysfunction of the hypothalamic–pituitary unit and/or of the thyroid gland. Animal and human data support this possibility (Hawking & Greenfield, 1941; Murray, 1974; Ikede & Losos, 1975; Morrison et al., 1981; Mutayoba et al., 1988b). Thus, experimental infection with *Trypanosoma brucei* in sheep, resulted in acute coagulative necrosis of the adenohypophysis and leucocytic infiltration of the neurohypophysis, with trypanosomas present in pituitary tissue (Ikede & Losos, 1975). In goats experimentally infected with *Trypanosoma congoles*, chronic thyroiditis and very low T4 concentrations have been described (Mutayoba et al., 1988b). In this paradigm the hypothyroidism was severe and permanent, different from the mild to moderate transient dysfunction that we observed.

Second, elevated cytokine concentrations may suppress TSH and T3/T4 secretion in SS. Subcutaneously or intraperitoneally administered TNF-α and IL-1β decrease TSH and T3/T4 concentrations in rats (Dubuis et al., 1988; Van Der Poll et al., 1990) while the former causes also a reduction in hypothalamic TRH content (Pang et al., 1989). In addition, TNF-α, a putative mediator of the euthyroid-sick syndrome,
inhb', inhibits the 5'-deiodinase of peripheral tissues (Ozawa et al., 1988). IL-6 has been shown to inhibit the TSH-induced thyroid peroxidase gene expression and T3 secretion in a dose-dependent manner (Ahren, 1991; Tominaga et al., 1991). The high circulating TNF-α and IL-6 levels in patients with SS correlated positively with baseline TSH and rT3 concentrations, but negatively with fT3 and fT4 concentrations. These data are compatible with a direct inhibitory effect of chronically elevated TNF-α and/or IL-6 on thyroid hormone secretion in SS, resulting in compensatory, albeit inadequate, elevation of TSH with potentially reduced bioactivity due to post-translational modifications (Faglia et al., 1985; Beck-Beccoz et al., 1985; Lee et al., 1987). High plasma inflammatory cytokine levels combined with the release of thyroid antigens due to parasitic thyroiditis could also provoke an autoimmune response with production of thyroid autoantibodies. However, thyroid antibodies measured in pooled serum samples were not elevated in our patients compared to controls (data not shown) which does not support this attractive hypothesis.

The correlation between plasma cytokine and thyroid hormone concentrations was weak in this study. The interaction between the immune system and the HPT axis in SS may reflect more an association with the severity of the underlying illness rather than a direct inhibitory effect of TNF-α and/or IL-6 on the HPT axis.

Acknowledgements

We would like to thank the staff of the National Sleeping Illness Control Program for their skilful technical assistance. MR is supported in part by a grant of the Deutsche Forschungsgemeinschaft and the Gesellschaft für Technische Zusammenarbeit (Re 752/2-1).

References

We wish to thank the following who acted as referees during the period 1 January–30 June 1993.

J. E. Adams
K. G. M. M. Alberti
S. A. Amiel
J. Anderson
D. Anderson
A. B. Atkinson
D. T. Baird
A. Barkan
N. Barnes
G. Baumann
C. Beardwell
G. H. Beastall
P. Belchett
X. Bertagna
D. J. Betteridge
J. S. Bevan
W. F. Blum
G. F. Bottaio
R. Bouillon
P. Bouloux
M. Brada
L. E. Braverman
C. G. D. Brook
A. G. Burger
H. Burger
A. J. Camm
F. F. Casanueva
M. L. Casey
K. J. Cast
T. Chard
K. Chatterjee
C. Christiansen
J. S. Christiansen
E. Ciccarelli
A. J. L. Clark
M. Clarke
R. N. Clayton
P. E. Clayton
D. R. Clemmons
J. E. Compston
G. S. Conway
B. A. Cooke
J. C. Cookson
A. Cotterill
A. Crisp
W. H. Daughaday
M. Davies
W. Davies
J. R. E. Davis
L. J. De Groot
D. De Ketser
G. Delitala
C. Dieguez
T. Dinan
R. Docter
R. A. Donald
I. Doniach
P. L. Drury
A. Dunaf
D. B. Dunger
C. Edmonds
C. Emerson
E. A. Espiner
G. Faglia
P. Fairclough
N. Finer
A. P. F. Flint
M. G. Forest
M. L. Forsling
P. Franchimont
J. A. Franklyn
S. Franks
A. G. Frantz
H. G. Friesen
J. W. Funder
R. C. Gaillard
E. Gule
D. S. Galton
G. Gilies
G. Giordano
D. G. Grahame-Smith
D. B. Grant
J. E. Griffin
A. B. Grossman
D. R. Hadden
C. N. Hales
R. Hall
D. Hamilton-Fairley
A. G. Harris
D. A. Heath
W. F. Hendry
G. Henneman
J. Herbert
S. Hillier
R. L. Himsworth
P. C. Hindmarsh
K. Y. Ho
M. B. Hodgins
I. M. Holdaway
J. Honour
D. Hosking
T. Howlett
F. L. S. Huang
I. A. Hughes
G. R. V. Hughes
M. Hull
H. Hussaini
H. Imura
H. S. Jacobs
V. H. T. James
S. L. Jeffcoate
W. J. Jeffcoate
J. S. Jenkins
D. E. Jewitt
D. G. Johnston
J. A. Kanis
C. J. H. Kelner
P. Kendall-Taylor
P. Kopelman
M. Laker
S. W. J. Lamberts
P. R. Larsen
J. H. Lazarus
R. D. G. Leslie
S. Lightman
A. Liuzzi
D. Lowe
I. MacIntyre
F. Mantero
R. Marcus
V. Marks
J. C. Marshall
T. J. Martin
D. R. Matthews
B. Mawer
A. M. McGregor
T. J. McKenna
S. M. McLachlan
A. S. McNeilly
M. E. Molitch
J. Monson
J. F. Norris
I. F. Moseley
P. Moult
E. E. Muller
D. S. Munro
E. Nieschlag
R. J. Norman
S. Nuysse
B. O’Malley
B. W. O’Malley
S. O’Rahilly
J. L. H. O’Riordan
E. H. Oldfield
H. Orskov
S. E. Papapoulos
A. M. Parfitt
E. H. O. Parry
B. Ponder
R. E. Pounder
H. J. Quabe
I. D. Ramsay
J. G. Ratcliffe
W. A. Ratcliffe
J. P. D. Reckless
J. Reeve
S. Reichlin
C. Ribot
B. L. Riggs
R. J. M. Ross
R. G. G. Russell
L. Sandler
M. Savuge
M. F. Scanlon
W. A. Scherbaum
J. R. Seckl
S. M. Shalet
B. H. Shapiro
M. C. Sheppard
R. E. Silman
B. R. Smith
R. Smith
P. H. Sönksen
R. Stanhope
A. D. Stephens
J. Stevenson
P. Stewart
J. Studd
A.-M. Suikkari
R. Taylor
R. V. Thakker
J. A. Thomson
M. O. Thorner
A. D. Toft
P. J. Trainer
J. Treasure
R. S. Trompeter
W. M. G. Tunbridge
M. Vallotton
M. L. Vance
J. D. Veldhuis
J. Verbalis
A. Vermeulen
G. C. Viberti
T. J. Visser
K. von Werder
R. Walker
D. Ward
A. P. Weetman
B. Weintraub
M. Wheeler
A. White
M. White
J. E. A. Wickham
L. Wide
T. J. Wilkin
A. Williams
J. D. Wilson
J. S. Woodhead
J. S. Yudkin
R. Ziegler
Author index to Volume 39

Abecassis J.P. see Escourolle H.
Abribat T., Brazeau P., Davignon I. & Garrel D.R.
Insulin-like growth factor-I blood levels in severely burned patients: effects of time post injury, age of patient and severity of burn 583

Absalom S.R. see McNally P.G.
Addison G.M. see Skinner A.M.
Al-Aqeel A., Skinner C., Sobki S., Sewairi W. & Marx S.
The combined use of intravenous and oral calcium for the treatment of vitamin D dependent rickets type II (VDDRII) 229

Abert K.G.M.M. see Moller N.
Aller P. see Leal M.A.
Alloio B. see Reinfcke M.
Altaras M. see Dunne F.
Andrade A. see Garcia-Mayor R.V.G.
Angeli A. see Terzolo M.
Anyakoo V. see Hamilton-Fairley D.
Artifoni L. see Betterle C.
Assies J. see Kwekkeboom D.J.
Atkinson A.B. see McCance D.R.

Bailey I.R. see Barth J.H.
Baird D.T. see Tay C.C.K.
Balducci R. see Toscano V.
Barnes J. see Griffin B.
Baudin E., Marcellin P., Pouteau M., Colas-Linhart N., Le Floch J-P., Lemonnier C., Benhamou J-P. & Bok B. Reversibility of thyroid dysfunction induced by recombinant alpha interferon in chronic hepatitis C 657

Baumann G. see Van Teunenbroek A.
Bekka S. see Ries M.
Belchetz P.E. see Orme S.M.
Benhamou J-P. see Baudin E.
Benn J.J. see Bowes S.B.
Berrod J-L. see Rieu M.
Bertagna X. see Escourrolle H.
Besser G.M. see Trainer P.J.
Betts R.P. see Jennings A.M.
Beyth Y. see Dunne F.
Bianchi P. see Toscano V.
Blum W.F. see Van Teunenbroek A.
Bok B. see Baudin E.
Bolia A. see McNally P.G.
Bollerslev J. see Kvety N.
Bonnin A. see Escourrolle H.
Bork E. see Schifer S.
Boulton A.J.M. see Kumar S.
Bourguignon J-P., Gerard A., Deby-Dupont G. & Franchimont P. Effects of growth hormone therapy on the developmental changes of follicular stimulating hormone and insulike-like growth factor-I serum concentrations in Turner's syndrome 85

Brazeau P. see Abribat T.
Brickell P. see Schifer S.
Broeders A. see Lundin S.
Brook C.G.D. see Spoudeas H.A.
Bunker C. see Schifer S.
Bush A. see Robinson S.

Calle C. see Leal M.A.
Camacho-Hübner C. see Cotterill A.M.
Carettia A. see Betterle C.
Casanueva F.F. see Garcia-Mayor R.V.G.
Caslake M. see Griffin B.
Casmirri F. see Pasquali R.
Cassoni P. see Terzolo M.
Castro M. see Moreira A.C.
Cavagnini F. see Invitti C.
Chalew S.A. see Phillip M.
Chatterjee R., Katz M., Cox T.F. & Porter J.B.
Prospective study of the hypothalamic-pituitary axis in thalassaemic patients who developed secondary amenorrhoea 278

Chiesura-Corona M. see Zanin L.
Christiansen J.S. see Möller J.
Christiansen J.S. see Möller N.
Chrousos G.P. see Reincke M.
Ciccarelli E. see Webster J.
Clark A.J.L. see White A.
Clayton P.E. see Skinner A.M.
Cohn L., Feller A.G., Draper M.W., Rudman I.W. & Rudman D. Carpal tunnel syndrome and gynaecomastia during growth hormone treatment of elderly men with low circulating IGF-I concentrations 417
Author index

Colas-Linhart N. see Baudin E.
Colonna L.M. see Toscano V.
Compston J.E. Commentary Thyroid hormone therapy and the skeleton 519
Conti A. see Valcavi
Conway G.S. & Jacobs H.S. Review Clinical implications of hyperinsulinaemia in women 623
Cooke R.R., McIntosh J.E.A. & McIntosh R.P. Circadian variation in serum free and non-SHBG-bound testosterone in normal men: measurements, and simulation using a mass action model 163
Cotterill A.M., Camacho-Hübner C., Holly J.M.P. & Savage M.O. Rapid communication The effect of recombinant human insulin-like growth factor-I treatment on growth hormone secretion in two subjects with growth hormone insensitivity (Laron syndrome) 119
Couzinet B., Pholsena M., Young J. & Schaison G. The impact of a pure anti-androgen (flutamide) on LH, FSH, androgens and clinical status in idiopathic hirsutism 157
Cowan C. see Orme S.M.
Cox T.F. see Chatterjee R.
Crosby S.R. see Gibson S.
Crosignani P.G. see Webster J.
Cullen D.R. see Jennings A.M.
Cuperman S. see Dunne F.
D’Alberton A. see Webster J.
D’Ambogio G. see Genazzani A.D.
Dalla Pria S. see Betterle C.
Davies R.R. see Grant D.J.
Davignon I. see Abribat T.
De Bruyn A.M. see Geul K.W.
de Jong M. see Docter R.
De Muinck Keizer-Schrama S.M.P.F. see Van Teunenbroek A.
De Ruyter-Buitenhuys A.W. see Dikkeschei L.D.
Devecseri L. see Webster J.
Derome P. see Escourrolle H.
Dillon M.J. see Hewison M.
Dobni H. see Wilders-Truschnig M.M.
Docter R. see Geul K.W.
Docter R., Krenning E.P., de Jong M. & Hennemann G. Review The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism 499
Draper M.W. see Cohn L.
Drexhage H.A. see Wilders-Truschnig M.M.
Drop S.L.S. see Van Teunenbroek A.
Dubini A. see Invitti C.
Dunne T.T. see Lindow S.W.
Eastment C. see Trainer P.J.
Eber O. see Wilders-Truschnig M.M.
Edwards C.R.W. see Walker B.R.
Escourrolle H., Abecassis J.P., Bertagna X., Guilhaume B., Pariente D., Derome P., Bonnin A. & Luton J.P. Comparison of computerized tomography and magnetic resonance imaging for the examination of the pituitary gland in patients with Cushing’s disease 307
Eshet R., Klinger B., Silbergeld A. & Laron Z. Modulation of IGF-I receptors by exogenous hGH treatment in constitutionally short children 687
Faber J. see Schifter S.
Fadini R. see Webster J.
Faglia G. see Webster J.
Falconer-Smith J. see McNally P.G.
Falsetti L. see Webster J.
Farid N.R. see Shi Yufei
Farish E. see Griffin B.
Feller A.G. see Cohn L.
Ferrari C. see Webster J.
Fioretti P. see Webster J.
Flamigni C. see Webster J.
Fombeur J-P. see Rieu M.
Forsling M.L. see Weaver J.U.
Franchimont P. see Bourguignon J-P.
Frankenne F. see Massa G.
Franks S. see Hamilton-Fairley D.
Franks S. see Robinson S.
Fredstorp L., Pernow Y. & Werner S. The short and long-term effects of octreotide on calcium homeostasis in patients with acromegaly 331
Freedman S. see Levine D.
Frystyk J. see Moller J.
Fukata S. see Hara T.
Funder J.W. & Smith A.I. Commentary Isolated ACTH deficiency: enzyme defect or chimaeric enzyme? 385

Gandara A. see Garcia-Mayor R.V.G.
Garrel D.R. see Abrivat T.
Gavasso S. see Betterle C.
Gelding S.V. see Robinson S.
Genazzani A.D., Petragni F., Volpogni C., Pianazzi F., Montanini V., D’Ambrogio G. & Genazzani A.R. Growth hormone treatment affects plasma LH pulsatile release in women with secondary amenorrhoea 607
Genazzani A.R. see Genazzani A.D.
Gérard A. see Bourguignon J-P.
Gibson S. see Crowne E.C.
Gibson S. see Nussey S.S.
Gibson S., Crosby S.R. & White A. Discriminating between /3-endorphin and /3-lipotrophin in human plasma using two-site immunoradiometric assays 445
Giordano G. see Webster J.
Giraldi F.P. see Invitti C.
Glasier A.F. see Tay C.C.K.
Goldberger S. see Dunne F.
Gómez-Candel A. see Megia A.
Gonzalez-Gancedo P. see Megia A.
Gout I. see Nussey S.S.
Graif Z. see Merchav S.
Grant D.J., McMurdo M.E.T., Mole P.A., Paterson C.R. & Davies R.R. Suppressed TSH levels secondary to thyroxine replacement therapy are not associated with osteoporosis 529
Green M. see Hamdi I
Green M. see Kapuscinski M.
Griffin B., Farish E., Walsh D., Barnes J., Caslake M., Shepherd J. & Hart D. Response of plasma low density lipoprotein subfractions to oestrogen replacement therapy following surgical menopause 463
Grobbee D.E. see Geul K.W.
Grossman A. see Weaver J.U.
Grossman A.B. see Trainer P.J.
Guglielmi R. see Toscano V.
Guidetti D. see Terzolo M.
Guilhaume B. see Escourrolle H.
Hadden D.R. see McCance D.R.
Hales C.N. see Hamdi I.
Hamada K. see Thornton M.J.
Hamidi I., Green M., Shneerson J.M., Palmer C.R. & Hales C.N. Proinsulin, proinsulin intermediate and insulin in cystic fibrosis 21
Hamilton-Fairley D., Kiddy D., Anyaoku V., Koistinen R., Seppälä M. & Franks S. Response of sex hormone binding globulin and insulin-like growth factor binding protein-1 to an oral glucose tolerance test in obese women with polycystic ovary syndrome before and after calorie restriction 363
Hara T., Tamai H., Mukuta T., Fukata S., Kuma K. & Nakagawa T. A long-term follow-up study of patients with non-toxic goitre in Japan 541
Harsch I.A., Simoni M. & Nieschlag E. Molecular heterogeneity of serum follicle-stimulating hormone in hypogonadal patients before and during androgen replacement therapy and in normal men 173
Hart D. see Griffin B.
Haynes W.G. see Kennedy R.L.
Hendricks M.S. see Lindow S.W.
Hennemann G. see Docter R.
Hennemann G. see Geul K.W.
Heppner C. see Reineke M.
Herranz L. see Megia A.
Ho K.K.Y. see Kelly J.J.
Hofland L.J. see Kwekkeboom D.J.
Holly J.M.P. see Cotterill A.M.
Honour J.W. see Rumsby G.
Honour J.W. see Spoudeas H.A.
Hooykaas H. see Geul K.W.
Horvath Cs. see Földes J.
Howlett T.A. see McNally P.G.
Hughes M.R. see Hewison M.

Igout A. see Massa G.
Ilringworth P.J. see Tay C.C.K.
Ismail I. see Webster J.

Jacobs H.S. see Conway G.S.
Jeffcoate W. Current therapy The treatment of women with hirsutism 143

Jennings A.M., Robinson A., Kandler R.H., Betts R.P., Reyder R.E.J. & Cullen D.R. Case report Severe peripheral neuropathy and elevated plantar pressures causing foot ulceration in pituitary gigantism 113

Johannsen L. see Schifter S.
Johnston D.G. see Robinson S.
Johnstone A.P. see Nussey S.S.
Jones T.H., Kennedy R.L., Justice S.K. & Price A. Pituitary adenomas with high and low basal inositol phospholipid turnover; the stimulatory effect of kinins and an association with interleukin-6 secretion 433

Jørgensen J.O.L. see Møller J.
Jørgensen J.O.L. see Møller N.
Justice S.K. see Jones T.H.

Kandler R.H. see Jennings A.M.
Kapucinski M., Green M., Sinha S.N., Shepherd J.J. & Shulkes A. Peptide a-amidation activity in human plasma: relationship to gastrin processing 51
Katz M. see Chatterjee R.
Kaufman J.-M. see Vandeweghe M.
Kelentimur K. see Şahin Y.
Kennedy L. see McCance D.R.
Kennedy R.L. see Jones T.H.

Kennedy R.L., Haynes W.G. & Webb D.J. Review Endothelins as regulators of growth and function in endocrine tissues 259
Kennedy T.L. see McCance D.R.
Kiddy D. see Hamilton-Fairley D.
Kiddy D. see Robinson S.
Klinger B. see Eshet R.
Koistinen R. see Hamilton-Fairley D.
Kopelman P.G. see Weaver J.U.
Kotsuji F., Kubo M., Takeuchi Y. & Tominaga T.

Alternate-day therapy for ovarian hyperfunction induced by weight loss: treatment of six patients who remained amenorrhoeic after weight gain 641
Kowarski A.A. see Phillip M.
Krasnai I. see Földes J.
Kreitzer P. see Levine D.

Krenning E.P. see Docter R.
Krenning E.P. see Geul K.W.
Krenning E.P. see Kwekkeboom D.J.
Kristjansson K. see Hewison M.
Kubo M. see Kotsuji F.
Kuma K. see Hara T.

Kumar S. & Boulton A.J.M. Case report Serious, prolonged hypoglycaemia with glibenclamide in a patient with Mendenhall's syndrome 109
Kung A.W.C., Lorentz T. & Tam S.C.F. Thyroxine suppressive therapy decreases bone mineral density in post-menopausal women 535

Kvetny J. & Bollerslev J. Relation between phenotype and intra-cellular thyroid hormone effect in patients with altered peripheral thyroid hormone sensitivity 73
Kwekkeboom D.J., Assies J., Hofland L.S., Reubi J.C., Lamberts S.W.J. & Krenning E.P. Case of the Month A case of antibody formation against octreotide visualized with 111In-octreotide scintigraphy 239

L'Hermite M. see Webster J.
Laing I. see Thornton M.J.
Lamberts S.W.J. see Kwekkeboom D.J.
Lansteger W. see Wilders-Truschnig M.M.
Lanzer G. see Wilders-Truschnig M.M.
Laron Z. see Eshet R.
Lauersen T. see Møller J.
Le Floch J-P. see Baudin E.
Leb G. see Wilders-Truschnig M.M.
Lee H.A. see Rumsby G.
Lemonnier C. see Baudin E.
Levine D., Kreitzer P., Freedman S. & Trachtman H. Recombinant human growth hormone therapy does not increase microalbuminuria in children with short stature 677

Lindberg H. see Schifter S.
Lindow S.W., Van der Spuy Z.M., Hendricks M.S., Nugent F.A. & Dunne T.T. The effect of morphine and naloxone administration on maternal oxytocin concentration in late pregnancy 671
Lolis D. see Messinis I.E.
Lorentz T. see Kung A.W.C.
Lowry A. see Meier C.A.
Lowy C. see Bowes S.B.
Luna R. see Megia A.
Lundin S., Broeders A. & Melin P. Pharmacokinetic properties of the tocolytic agent [Mpa\(^1\),d-Tyr(Et)\(^2\), Thr\(^4\), Orn\(^8\)-oxytocin (antocin) in healthy volunteers 369
Luton J.P. see Escourrolle H.

Machado H.R. see Moreira A.C.
Maestroni G.J. see Balevici R.
Maisey M.N. see Meier C.A.
Mallo F. see Garcia-Mayor R.V.G.
Mangiantini A. see Toscano V.
Mann M.C. see Close C.F.
Marcellin P. see Baudin E.
Marx S. see Al-Aqeel A.
Massa G., Igout A., Rombauds L., Frankenke F. & Vanderschueren-Lodewycx M. Effect of oestrogen status on serum levels of growth hormone-binding protein and insulin-like growth factor I in non-pregnant and pregnant women 569
Massobrio M. see Terzolo M.
Mawer E.B. Commentary Hypercalcaemia due to PTHrP 699
Mbulambcri D. see Reincke M.
McIntosh J.E.A. see Cooke R.R.
McIntosh R.P. see Cooke R.R.
McKenna T.J. Commentary Variable androgen sensitivity in relationship to hirsutism and acne 547
McLoughlin L. see Weaver J.U.
McMurdo M.E.T. see Grant D.J.
Megia A., Herranz L., Luna R., Gomez-Candela C., Pallardo F. & Gonzalez-Gancedo P. Protein intake during aggressive calorie restriction in obesity determines growth hormone response to growth hormone-releasing hormone after weight loss 217
Meier C.A., Maisey M.N., Lowy A., Muller J. & Smith M.A. Interindividual differences in the pituitary-thyroid axis influence the interpretation of thyroid function tests 101
Melin P. see Lundin S.
Mercado M. see Van Teunenbroek A.
Merchav S., Graif Z. & Skottner A. In-vitro response of erythroid progenitors from children with thalassaemia major to human growth hormone and insulin-like growth factor-I 207
Messer A.G. see Thornton M.J.
Messinis I.E., Lolis D., Papadopoulos L., Tsahalina Th., Papanikolaou N., Seferiadis K. & Templeton A.A. Effect of varying concentrations of follicle stimulating hormone on the production of gonadotrophin surge attenuating factor (GnSAF) in women 45
Mitchell R., Schafer F., Morris I.D., Schauer K., Sun J.G. & Robertson W.R. Elevated serum immunoreactive inhibin levels in peripubertal boys with chronic renal failure 27
Mole P.A. see Grant D.J.
Moller J. see Moller N.
Moller J., Jorgensen J.O.L., Lauersen T., Frystyk J., Næraa R.W., Ørskov H. & Christiansen J.S. Growth hormone dose regimens in adult GH deficiency: effects on biochemical growth markers and metabolic parameters 403
Montanini V. see Genazzani A.D.
Moore C.M. see Crowne E.C.
Moreira A.C., Castro M. & Machado H.R. Longitudinal evaluation of adrenocorticotropic and \(\beta\)-lipotropin plasma levels following bilateral adrenalectomy in patients with Cushing’s disease 91

Morris H.A. see Horowitz M.
Morris I.D. see Mitchell R.
Mouton J.W. see Van Teunenbroek A.
Mukuta T. see Hara T.
Muller J. see Meier C.A.

Næraa R.W. see Møller J.
Nagel G.T. see Dikkeschei L.D.
Nakagawa T. see Hara T.
Need A.G. see Horowitz M.
Nieschlag E. see Harsch I.A.
Nithlthyanthan R. see Robinson S.
Nordin B.E.C. see Horowitz M.
Nugent F.A. see Lindow S.W.

O’Rahilly S. Commentary Glucokinase and non-insulin-dependent diabetes 17
O’Riordan J.L.H. see Hewison M.
714 Author index

O'Sullivan A.J.O. see Kelly J.J.
Ormo S.M., Sebastian J.P., Page M.D., Cowan C. & Belchetz P.E. Case report Thyrotoxicosis increases right to left shunt in congenital cyanotic heart disease 253
Ørskov H. Commentary
Ørskov H. see Møller J.
Ovesen P. see Møller N.

Paccotti P. see Terzolo M.
Padfield P.L. see Walker B.R.
Page M.D. see Barth J.H.
Page M.D. see Orme S.M.
Pallardo F. see Megia A.
Palmer C.R. see Hamdi I.
Papadopoulos L. see Messinis I.E.
Papanikolaou N. see Messinis I.E.
Pariente D. see Escourroule H.
Pasquali R. & Casmirri F. Review The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women 427
Passath A. see Wilders-Truschin M.M.
Paterson C.R. see Grant D.J.
Pedini B. see Betterle C.
Perez A.J. see Garcia-Mayor R.V.G.
Pernow Y. see Fredstorp L.
Perry L. see Trainer P.J.
Pessina A.C. see Zanin L.
Petracchia F. see Genazzani A.D.
Petzke F. see Reincke M.
Phillip M., Chalew S.A., Kowarski A.A. & Stone M.A. Plasma IGFBP-3 and its relationship with quantitative growth hormone secretion in short children 427
Pholsena M. see Couzinet B.
Pianazzi P. see Genazzani A.D.
Picardo A. see Leal M.A.
Piotto A. see Zanin L.
Piovesan A. see Terzolo M.
Piscitelli G. see Webster J.
Poletti A. see Zanin L.
Polli A. see Webster J.
Porter J.B. see Chatterjee R.
Portioli I. see Valcavi R.
Pouletau M. see Baudin E.
Price A. see Jones T.H.
Price D.A. see Skinner A.M.
Pyke D.A. Invited Commentary Pancreatic and islet transplantation for diabetes 399
Rebner A. see Tezolo M.
Ricci M., Alloio B., Petzke F., Heppner C., Mbulamberi D., Vollmer D., Winkelmann W., Chrousos G.P. & Vollmer D. Thyroid dysfunction in African trypanosomiasis: a possible role for inflammatory cytokines 455
Reubi J.C. see Kwekkeboom D.J.
Revel J. see Terzolo M.
Reyrer R.E.J. see Jennings A.M.
Rieu M., Bekka S., Sambor B., Berod J-L. & Fombeur J-P. Prevalence of subclinical hyperthyroidism and relationship between thyroid hormonal status and thyroid ultrasonographic parameters in patients with non-toxic nodular goitre 67
Robertson W.R. see Mitchell R.
Robinson A. see Jennings A.M.
Robinson S., Kiddy D., Gelding S.V., Willis D., Niththyananthan R., Bush A., Johnston D.G. & Franks S. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries 351
Rombauts L. see Massa G.
Rossi A. see Betterle C.
Rossi F.G. see Toscano V.
Rossi G-P. see Zanin L.
Rudman D. see Cohn L.
Rudman I.W. see Cohn L.
Rumsby G. see Spoudeas H.A.
Rumsby G., Skinner C., Lee H.A. & Honour J.W. Combined 17α-hydroxylase/17,20-lyase deficiency caused by heterozygous stop codons in the cytochrome P450 17α-hydroxylase gene 483
Russell C.F.J. see McCance D.R.
Rut A.R. see Hewison M.
Şahin Y. & Keleştimur K. 17-Hydroxyprogesterone response to buserelin testing in the polycystic ovary syndrome 151
Sambor B. see Rieu M.
Savage M.O. see Cotterill A.M.
Savage M.W. Case of the Month Hypercalcaemia due to parathyroid hormone-related protein: long-term circulating levels may not reflect tumour activity 695
Scacchi M. see Invitti C.
Scanlon F. see Webster J.
Schaefer F. see Mitchell R.
Schaison G. see Couzinet B.
Schärer K. see Mitchell R.
Schmitz O. see Møller N.
Sciarra F. see Toscano V.
Scobie I.N. see Bowes S.B.
Sebastian J.P. see Orme S.M.
Seferiadis K. see Messinis I.E.
Sekihara N., Yonemitsu K. & Yazaki Y. Plasma 19-hydroxyandrostenedione is elevated in patients with high renin essential hypertension 557
Seppälä M. see Hamilton-Fairley D.
Seppälä M. see Tiitinen A.
Sernia C. see Kelly J.J.
Sewairi W. see Al-Aqeel A.
Shackleton C.H.L. see Walker B.R.
Shalet S.M. see Crowne E.C.
Shapira M. see Dunne F.
Shepherd J. see Griffin B.
Shepherd J.J. see Kapuscinski M.
Sheppard M.C. Commentary Thyrotrophin receptor expression: does it help in assessing the prognosis of thyroid cancer? 267
Shi Yufei, Zou Minjing & Farid N.R. Expression of thyrotrophin receptor gene in thyroid carcinoma is associated with a good prognosis 269
Shneerson J.M. see Hamdi I.
Shulkes A. see Kapuscinski M.
Siegal A. see Dunne F.
Silbergeld A. see Eshet R.
Simoni M. see Harsch I.A.
Sinha S.N. see Kapuscinski M.
Skinner C. see Al-Aqeel A.
Skinner C. see Rumsby G.
Skottnner A. see Merchav S.
Slater J.D.H. see Spoudeas H.A.
Smith A.I. see Funder J.W.
Smith M.A. see Meier C.A.
Sobki S. see Al-Aqeel A.
Sönkesen P.H. see Bowes S.B.
Soo A. see Skinner A.M.
Soo Shiu-Ching see Nussey S.S.
Stewart P.M. see Walker B.R.
Stijnen T. see Van Teunenbroek A.
Stone M.A. see Phillip M.
Sun J.G. see Mitchell R.
Szathmari M. see Földes J.
Taelman P. see Vandeweghe M.
Tagliferri A. see Invitti C.
Takeuchi Y. see Kotsuji F.
Tam S.C.F. see Kung A.W.C.
Tamai H. see Hara T.
Tamburrano G. see Webster J.
Tarján G. see Földes J.
Tay C.C.K., Glasier A.F., Illingworth P.J. & Baird D.T. Abnormal twenty-four hour pattern of pulsatile luteinizing hormone secretion and the response to naloxone in women with hyperprolactinaemic amenorrhoea 599
Taylor K.G. see Close C.F.
Templeton A.A. see Messinis I.E.
Tenhunen A. see Tiitinen A.
Terzolo M., Reveli D., Guidetti D., Piovesan A., Cassoni P., Paccotti P., Angelì A. & Massobrio M. Evening administration of melatonin enhances the pulsatile secretion of prolactin but not of LH and TSH in normally cycling women 185
Thornton M.J., Laing I., Hamada K., Messenger A.G. & Randall V.A. Differences in testosterone metabolism by beard and scalp hair follicle dermal papilla cells 633
Tiitinen A., Tenhunen A. & Seppälä M. Ovarian electrocauterization causes LH-regulated but not insulin-regulated endocrine changes 181
Tiran A. see Wilders-Truschnig M.M.
Tominaga T. see Kotsuji F.
Torres A. see Leal M.A.
Toscano V., Balducci R., Bianchi P., Guglielmi R., Mangiantini A., Rossi F.G., Colonna L.M. & Sciarrà F. Two different pathogenetic mechanisms may play a role in acne and hirsutism 551
Trachtman H. see Levine D.
Tsahalina Th. see Messinis I.E.
Tunbridge W.M.G. see Vanderpump M.P.J.
Umpleby A.M. see Bowes S.B.
Valcavi R., Zini M., Maestroni G.J., Conti A. & Portioli I. Melatonin stimulates growth hormone secretion through pathways other than growth hormone-releasing hormone 193
Van der Merwe J.P. see Geul K.W.
Van der Pol H. see Dikkeschei L.D.
Van der Spuy Z.M. see Lindow S.W.
Van Hemert A.M. see Geul K.W.
Van Sluisveld I.L.L. see Geul K.W.
Van Teunenbroek A., De Muinck Keizer-Schrama S.M.P.F., Stijnen T., Mouton J.W., Blum W.F., Mercado M., Baumann G. & Drop S.L.S. Effect of
growth hormone administration frequency on 24-hour growth hormone profiles and levels of other growth related parameters in girls with Turner’s syndrome 77
Vanderpump M. P. J. & Tunbridge W. M. G. Review The effects of drugs on endocrine function 389
Vanderschueren-Lodeweyckx M. see Massa G.
Vandewege M., Taelman P. & Kaufman J.-M. Short and long-term effects of growth hormone treatment on bone turnover and bone mineral content in adult growth hormone-deficient males 409
Varga F. see Földes J.
Vollmer D. see Reincke M.
Volpogni C. see Genazzani A. D.

Walker R. E. see Hewison M.
Wallace W. H. B. see Crowne E. C.
Walsh D. see Griffin B.
Warncroß H. see Wilders-Truschnig M. M.
Wass J. A. H. see Cotterill A. M.
Watts J. F. see Close C. F.
Webb D. J. see Kennedy R. L.
Weber R. F. A. see Geul K. W.
Werner S. see Fredstorp L.
Wheeler M. J. see Trainer P. J.
White A. & Clark A. J. L. Review The cellular and molecular basis of the ectopic ACTH syndrome 131
White A. see Crowne E. C.
White A. see Gibson S.
White A. see Nussey S. S.
Willemse P. H. B. see Dikkeschei L. D.
Willis D. see Robinson S.
Winkelmann W. see Reincke M.
Wishart J. M. see Horowitz M.
Wolthers B. G. see Dikkeschei L. D.

Yazaki Y. see Sekihara N.
Yonemitsu K. see Sekihara N.
Young J. see Couzinet B.

Zini M. see Valcavi R.
Zou Minjing see Shi Yufei
Subject index to Volume 39

Acromegaly
- octreotide and Ca homeostasis 331
ACTH
- and β-lipotrophin levels after adrenalectomy in Cushing’s disease 91
- ectopic syndrome (Review) 131
- and cortisol secretion in children after cranial irradiation 297
Adrenal cortex
- deoxycorticosterone and 11β-hydroxylane (Case report) 245
Adrenalectomy
- bilateral in Cushing’s disease 315
African trypanosomiasis
- role of inflammatory cytokines 455
Amidation
- of peptides and gastrin processing 51
Δ^1-Androstenediol
- GC-MS assay 469
- role in health and endocrine disease 475
Antocin
- pharmacokinetics 369
Autoimmunity
- in premature ovarian failure 35
Beta-blockers
- in hyperthyroidism (Letter) 123
Bone
- and GH treatment in men 409
- pregnancy associated osteoporosis 487
- post-menopausal osteoporosis and norethisterone 649
Buserelin
- 17-hydroxyprogesterone response in PCOS 151
Cabergoline
- in hyperprolactinaemia 323
CAH
- and deoxycorticosterone (Case report) 245
- 17α-hydroxylase/17,20-lyase deficiency and cytochrome P450 gene 483
Calcium
- homeostasis and octreotide in acromegaly 331
Carpal tunnel syndrome
- and gynaecomastia in GH treatment with low IGF 417
CGRP
- in small cell lung carcinoma 59
Children
- inhibin levels in boys with renal failure 27
- GH and GH profiles in girls with Turner’s syndrome 77
- GH and FSH and IGF-I in girls with Turner’s syndrome 85
- urinary GH in disorders of growth 201
- response of erythroid progenitors to hGH and IGF-I in thalassaemia major 207
- with CAH and deoxycorticosterone excess (Case report) 245
- ACTH and cortisol secretion after cranial irradiation 297
- GH and IGFBP-3 in short children 427
- rhGH and microalbuminuria in short stature 677
- hGH treatment and IGF-I receptors in short stature 687
Cortisol
- inactivation in essential hypertension 221
- and ACTH in children after cranial irradiation 297
- production and estimation in Cushing’s syndrome on medication 441
Cranial irradiation
- ACTH and cortisol in children 297
CT
- and MRI imaging of pituitary in Cushing’s disease 307
Cushing’s disease/syndrome
- ACTH and β-lipotrophin levels after adrenalectomy 91
- PRL responsiveness to galanin 213
- CT and MRI for pituitary imaging 307
- bilateral adrenalectomy 315
- metyrapone in pregnancy (Case report) 375
- cortisol production and estimation in treated 441
- assay discriminating β-endorphin and β-lipotrophin 445
- CRF and TRH in petrosal sampling 681
- cortisol and transsphenoidal resection (Letters) 701
Cystic fibrosis
- proinsulin and insulin 21
Cytokines
- role in sleeping sickness 455
Deoxycorticosterone
- and CAH (Case report) 245
Diabetes
- glucokinase and NIDDM (Commentary) 17
- hypoglycaemia with glibenclamide in Mendenhall’s syndrome (Case report) 109
- pancreatic and islet transplants (Invited Commentary) 399
Drugs
- effect on endocrine function (Review) 389
Ectopic ACTH syndrome
- cellular and molecular basis (Review) 131
Endocrine function
- effect of drugs (Review) 389
- and Δ^1 androstenediol 475

717
Subject index

β-Endorphin
discrimination from β-lipotrophin in assays 445

Endothelins
regulators of growth and function in endocrine tissues
(Review) 259

Errors
in timing of dynamic function tests 97

Erythroid progenitors
response to hGH and IGF-I in thalassaemic children 207

Essential hypertension
cortisol inactivation 221

Flutamide
impact on LH, FSH and androgens in hirsutism 157

Foot
ulceration in pituitary gigantism (Case report) 113

FSH
and GnSAF production 45
GH and IGF-I in girls with Turner’s syndrome 85
heterogeneity in hypogonadal men on androgen replacement 173

Galanin
and PRL response in Cushing’s disease 213

Gastrin
processing and peptide α-amidation 51

Genetics
17α-hydroxylase/17,20-lyase deficiency and cytochrome P450 gene 483

GH
and GH profiles in girls with Turner’s syndrome 77
and FSH and IGF-I in girls with Turner’s syndrome 85
non-GHRH stimulation by melatonin 193
urinary in disorders of growth in children 201
and erythroid progenitors from thalassaemic children 207
response to GHRH and protein intake in obesity 217
in chronic renal failure after octreotide 337
replacement dosage in adults (Commentary) 401, 403
and bone turnover in men 409
and IGFBP-3 in short children 427
and microalbuminuria in short children 677
treatment and IGF-I receptors in short children 687

Gigantism
pituitary, and foot ulceration (Case report) 113

Glibenclamide
and hypoglycaemia in Mendenhall’s syndrome (Case report) 109

Glucokinase
and NIDDM (Commentary) 17

GnRH
weight and ovarian hypofunction 641

GnSAF
production and FSH 45

Goitre
thyroid hormone status and ultrasonography 67
thyrotoxicosis, iodine and thyroid growth stimulating Ig 287

Gynaecomastia
and carpal tunnel syndrome in GH treatment with low IGF-I 417

Hair and beard follicles
testosterone metabolism 633

Heart disease
cyanotic, and thyrotoxicosis (Case report) 253

Hepatitis
thyroid dysfunction and IFN-α 657

Hirsutism
(Current therapy) 143
flutamide impact on LH, FSH and androgens 157

Hydroxylases
deficiency and deoxycorticosterone (Case report) 245
deficiency and cytochrome P450 gene 483

17β-Hydroxysteroid dehydrogenase
inactivation of cortisol in essential hypertension 221

17-Hydroxyprogesterone
response to buserelin in PCOS 151

Hyperandrogenism
impact of obesity (Review) 1
PCO, insulin insensitivity and menstrual pattern 351

Hypercalcaemia
PTHrP and tumour activity (Case of the Month) 695,
(Commentary) 699

Hyperinsulinaemia
in women (Review) 623

Hyperprolactinaemia
and cabergoline 323

Hyperthyroidism
beta-blockers in (Letter) 123

IFN-α
and thyroid dysfunction in hepatitis 657

IGF-I
GH and FSH in girls with Turner’s syndrome 85
effect on GH in Laron dwarfism (Rapid communication) 119
and erythroid progenitors from thalassaemic children 207
carpal tunnel syndrome and gynaecomastia in GH treatment with low IGF-I 417

IGF-I receptors
modulated by hGH in short children 687

IGFBP-1–3
regulation in fasting 357
and SHBG response to OGTT in obese PCO and calorie restriction 363
and GH secretion in short children 427
IL1-6
and kallidin, effect on phospholipid turnover in pituitary adenoma 433
Inhibin
in boys with renal failure 27
Insolol phospholipid
turnover and pituitary adenoma, effect of kinins and IL-6 433
Insulin
proinsulin in cystic fibrosis 21
hyperinsulinaemia in women (Review) 623
Iodine
effect on thyroid and growth stimulating Ig in goitre 281
Isolated congenital ACTH deficiency
cleavage enzyme defect (Case report) 381, (Commentary) 385
Kallidin
and IL-6, effect on phospholipid turnover in pituitary adenoma 433
Klinefelter’s syndrome
heterogeneity of FSH in adrenogen replacement 173
Laron dwarfism
effect of rhIGF-I on GH (Rapid communication) 119
Leukaemia
ACTH and cortisol in children after cranial irradiation 297
LH
TSH and PRL secretion in women on melatonin 185
Lipids
serum, thyroid microsomal antibodies and TSH in women 275
Lipoprotein
response to oestrogen replacement in surgical menopause 463
β-Lipotrophin
and ACTH levels after adrenalectomy in Cushing’s disease 91
discrimination from β-endorphin in assays 445
Lung carcinoma
and CRG P 59
Melatonin
and PRL, LH and TSH secretion in women 185
and non-GHRH GH stimulation 193
Men
model of circadian variations in testosterone 163
heterogeneity of FSH in hypogonadal patients during androgen replacement 173
GH effects on bone in GH-deficient men 409
carpal tunnel syndrome and gynaecomastia in GH treatment with low IGF 417
testosterone metabolism by beard and hair follicles 633
MEN-1
peptide γ-amidation and gastrin processing 51
Mendenhall’s syndrome
hypoglycaemia with glibenclamide (Case report) 109
Metyrapone
and Cushing’s syndrome in pregnancy (Case report) 37
Microalbuminuria
and rhGH in short children 677
Morphine
and naloxone effect on oxytocin in pregnancy 671
MRI
and CT in pituitary imaging in Cushing’s disease 307
Naloxone
and morphine effect on oxytocin in pregnancy 671
Norethisterone
and post-menopausal osteoporosis 469
Obesity
impact on hyperandrogenism and PCOS (Review) 1
GH response to GHRH and protein intake 217
hyperactivity of the h-p-a axis and hypoglycaemia 345
and PCOS; SHBG and IGFBP-1 response to OGTT 363
Octreotide
antibody formation with "111In scintigraphy (Case of the Month) 239, (Commentary) 244
and Ca homeostasis in acromegaly 331
and GH in chronic renal failure 337
Oestrogen replacement
and lipoprotein after surgical menopause 463
Osteoporosis
pregnancy associated 487
post-menopausal, and norethisterone 649
Ovarian failure
and autoimmunity 35
electrocauterization and endocrine changes 181
GnRH treatment and weight 641
Oxytocin
effect of morphine and naloxone in pregnancy 671
Pancreatic islet transplants
for diabetes (Invited Commentary) 399
PCOS
impact of obesity (Review) 1
17-hydroxyprogesterone response to buserelin 151
hyperandrogenism, insulin insensitivity and menstrual pattern 351
obese; SHBG and IGFBP-1 response to OGTT 363
in female-to-male transsexuals (Letters) 702, 703
Pituitary adenoma
inositol phospholipid turnover, effects of kinins and IL-6 433
Pituitary gigantism
and foot ulceration (Case report) 113
Pituitary–thyroid axis
differences and thyroid function 101
Phenotype
and thyroid hormone sensitivity 73
Pregnancy
and osteoporosis 487
effects of morphine and naloxone on oxytocin 671
PRL
LH and TSH secretion in women on melatonin 185
response to galanin in Cushing’s disease 213
PThrP
hypercalcaemia and tumour activity (Case of the Month) 695, (Commentary) 699
Renal failure
inhibin in boys 27
GH levels after octreotide 337
Rickets
i.v. and oral Ca treatment 229
Sertoli–Leydig cell tumour
in-vivo detection of hormonal expression following hCG
(Case report) 491
SHBG
and IGFBP-I response to OGTT in obese PCO and
calorie restriction 363
Sleeping sickness
role of cytokines 455
Tests
errors in timing 97
thyroid function and differences in p-t axis 101
Thyroid
size and levothyroxine or iodine in goitre 281
dysfunction in hepatitis and IFN-α 657
Thyroid growth stimulating Ig
effect of levothyroxine and iodine in goitre 281
Thyroid hormone
status and ultrasonography in goitre 67
sensitivity and phenotype 73
tests and differences in p-t axis 101
levels and effect of cytokines in sleeping sickness 455
Thyroid microsomal antibodies
TSH and serum lipids in women 275
Thyrotoxicosis
and cyanotic heart disease (Case report) 253
Thyrotrophin receptor
expression and prognosis of thyroid cancer
(Commentary) 267, 269
Thyroxine
effect on thyroid growth stimulating Ig in goitre 281
Transsexuals
and PCOS in female-to-male (Letters) 702, 703
TSH
LH and PRL secretion in women after melatonin 185
thyroid microsomal antibodies and serum lipids in
women 275
Turner’s syndrome
GH administration and GH levels in girls 77
GH and FSH and IGF-I in girls 85
Ultrasonography
thyroid hormonal status and goitre 67
Vitamin D
tissue resistance 663
Women
obesity, hyperandrogenism and PCOS (Review) 1
autoimmunity and premature ovarian failure 35
FSH and GnSAF production 45
hirsutism (Current therapy) 143
17-hydroxyprogesterone response to buserelin in
PCOS 151
flutamide in hirsutism 157
ovarian electrocauterization and endocrine changes 181
melatonin and PRL, LH and TSH secretion 185
thyroid microsomal antibodies, TSH and serum
lipids 275
h-p axis and amenorrhoea in thalassaemia 287
cabergoline in hyperprolactinaemia 323
insulin insensitivity and menstrual pattern in
hyperandrogenism and PCO 351
obese PCO, SHBG and IGFBP-I response to
OGGT 363
Cushing’s syndrome and metyrapone in pregnancy
(Case report) 375
lipoprotein and oestrogen replacement in surgical
menopause 463
pregnancy associated osteoporosis 487
hyperinsulinaemia (Review) 623
ovarian hypofunction, weight and GnRH 641
post-menopausal osteoporosis and norethisterone 641
effect of morphine and naloxone on oxytocin in
pregnancy 671